changes made due to new Ring_and_Field theory
authorobua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14737 77ea79aed99d
child 14739 86c6f272ef79
changes made due to new Ring_and_Field theory
src/HOL/Algebra/abstract/Ring.ML
src/HOL/Algebra/abstract/Ring.thy
src/HOL/Algebra/poly/LongDiv.thy
src/HOL/Complex/CLim.thy
src/HOL/Complex/NSComplex.thy
src/HOL/Finite_Set.thy
src/HOL/Hyperreal/HyperDef.thy
src/HOL/Hyperreal/HyperNat.thy
src/HOL/Hyperreal/MacLaurin.ML
src/HOL/Hyperreal/MacLaurin.thy
src/HOL/Hyperreal/MacLaurin_lemmas.ML
src/HOL/IMP/Compiler.thy
src/HOL/Integ/Bin.thy
src/HOL/Integ/IntArith.thy
src/HOL/Integ/IntDef.thy
src/HOL/Integ/NatBin.thy
src/HOL/Integ/Parity.thy
src/HOL/Integ/Presburger.thy
src/HOL/Integ/int_arith1.ML
src/HOL/Integ/int_factor_simprocs.ML
src/HOL/IsaMakefile
src/HOL/LOrder.thy
src/HOL/Library/Multiset.thy
src/HOL/Matrix/Matrix.thy
src/HOL/Nat.thy
src/HOL/NumberTheory/WilsonBij.thy
src/HOL/NumberTheory/WilsonRuss.thy
src/HOL/OrderedGroup.thy
src/HOL/Power.thy
src/HOL/Presburger.thy
src/HOL/Real/PReal.thy
src/HOL/Real/RealDef.thy
src/HOL/Ring_and_Field.thy
src/HOL/UNITY/Comp/AllocBase.thy
src/HOL/arith_data.ML
src/HOL/ex/Lagrange.thy
--- a/src/HOL/Algebra/abstract/Ring.ML	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Algebra/abstract/Ring.ML	Tue May 11 20:11:08 2004 +0200
@@ -5,9 +5,9 @@
 *)
 
 (*
-val a_assoc = thm "plus_ac0.assoc";
-val l_zero = thm "plus_ac0.zero";
-val a_comm = thm "plus_ac0.commute";
+val a_assoc = thm "semigroup_add.add_assoc";
+val l_zero = thm "comm_monoid_add.add_0";
+val a_comm = thm "ab_semigroup_add.add_commute";
 
 section "Rings";
 
--- a/src/HOL/Algebra/abstract/Ring.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Algebra/abstract/Ring.thy	Tue May 11 20:11:08 2004 +0200
@@ -117,37 +117,37 @@
 
 (* Basic facts --- move to HOL!!! *)
 
-lemma natsum_0 [simp]: "setsum f {..(0::nat)} = (f 0::'a::plus_ac0)"
+lemma natsum_0 [simp]: "setsum f {..(0::nat)} = (f 0::'a::comm_monoid_add)"
 by simp
 
 lemma natsum_Suc [simp]:
-  "setsum f {..Suc n} = (f (Suc n) + setsum f {..n}::'a::plus_ac0)"
+  "setsum f {..Suc n} = (f (Suc n) + setsum f {..n}::'a::comm_monoid_add)"
 by (simp add: atMost_Suc)
 
 lemma natsum_Suc2:
-  "setsum f {..Suc n} = (setsum (%i. f (Suc i)) {..n} + f 0::'a::plus_ac0)"
+  "setsum f {..Suc n} = (setsum (%i. f (Suc i)) {..n} + f 0::'a::comm_monoid_add)"
 proof (induct n)
   case 0 show ?case by simp
 next
-  case Suc thus ?case by (simp add: plus_ac0.assoc) 
+  case Suc thus ?case by (simp add: semigroup_add.add_assoc) 
 qed
 
 lemma natsum_cong [cong]:
-  "!!k. [| j = k; !!i::nat. i <= k ==> f i = (g i::'a::plus_ac0) |] ==>
+  "!!k. [| j = k; !!i::nat. i <= k ==> f i = (g i::'a::comm_monoid_add) |] ==>
         setsum f {..j} = setsum g {..k}"
 by (induct j) auto
 
-lemma natsum_zero [simp]: "setsum (%i. 0) {..n::nat} = (0::'a::plus_ac0)"
+lemma natsum_zero [simp]: "setsum (%i. 0) {..n::nat} = (0::'a::comm_monoid_add)"
 by (induct n) simp_all
 
 lemma natsum_add [simp]:
-  "!!f::nat=>'a::plus_ac0.
+  "!!f::nat=>'a::comm_monoid_add.
    setsum (%i. f i + g i) {..n::nat} = setsum f {..n} + setsum g {..n}"
-by (induct n) (simp_all add: plus_ac0)
+by (induct n) (simp_all add: add_ac)
 
 (* Facts specific to rings *)
 
-instance ring < plus_ac0
+instance ring < comm_monoid_add
 proof
   fix x y z
   show "(x::'a::ring) + y = y + x" by (rule a_comm)
--- a/src/HOL/Algebra/poly/LongDiv.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Algebra/poly/LongDiv.thy	Tue May 11 20:11:08 2004 +0200
@@ -22,7 +22,7 @@
   apply (simp)
   apply (force)
   apply (simp)
-  apply (subst plus_ac0.commute[of m])
+  apply (subst ab_semigroup_add.add_commute[of m])
   apply (simp)
   done
 
--- a/src/HOL/Complex/CLim.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Complex/CLim.thy	Tue May 11 20:11:08 2004 +0200
@@ -17,7 +17,7 @@
 by (simp add: numeral_2_eq_2)
 
 text{*Changing the quantified variable. Install earlier?*}
-lemma all_shift: "(\<forall>x::'a::ring. P x) = (\<forall>x. P (x-a))";
+lemma all_shift: "(\<forall>x::'a::comm_ring_1. P x) = (\<forall>x. P (x-a))";
 apply auto 
 apply (drule_tac x="x+a" in spec) 
 apply (simp add: diff_minus add_assoc) 
--- a/src/HOL/Complex/NSComplex.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Complex/NSComplex.thy	Tue May 11 20:11:08 2004 +0200
@@ -412,7 +412,7 @@
 
 lemma hcomplex_add_minus_eq_minus:
       "x + y = (0::hcomplex) ==> x = -y"
-apply (drule Ring_and_Field.equals_zero_I)
+apply (drule OrderedGroup.equals_zero_I)
 apply (simp add: minus_equation_iff [of x y])
 done
 
@@ -429,7 +429,7 @@
 subsection{*More Multiplication Laws*}
 
 lemma hcomplex_mult_one_right: "z * (1::hcomplex) = z"
-by (rule Ring_and_Field.mult_1_right)
+by (rule OrderedGroup.mult_1_right)
 
 lemma hcomplex_mult_minus_one [simp]: "- 1 * (z::hcomplex) = -z"
 by simp
@@ -454,7 +454,7 @@
 by (simp add: hcomplex_diff_def hcomplex_minus hcomplex_add complex_diff_def)
 
 lemma hcomplex_diff_eq_eq [simp]: "((x::hcomplex) - y = z) = (x = z + y)"
-by (rule Ring_and_Field.diff_eq_eq)
+by (rule OrderedGroup.diff_eq_eq)
 
 lemma hcomplex_add_divide_distrib: "(x+y)/(z::hcomplex) = x/z + y/z"
 by (rule Ring_and_Field.add_divide_distrib)
--- a/src/HOL/Finite_Set.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Finite_Set.thy	Tue May 11 20:11:08 2004 +0200
@@ -742,15 +742,15 @@
 subsection {* Generalized summation over a set *}
 
 constdefs
-  setsum :: "('a => 'b) => 'a set => 'b::plus_ac0"
+  setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add"
   "setsum f A == if finite A then fold (op + o f) 0 A else 0"
 
 syntax
-  "_setsum" :: "idt => 'a set => 'b => 'b::plus_ac0"    ("(3\<Sum>_:_. _)" [0, 51, 10] 10)
+  "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_:_. _)" [0, 51, 10] 10)
 syntax (xsymbols)
-  "_setsum" :: "idt => 'a set => 'b => 'b::plus_ac0"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
+  "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 syntax (HTML output)
-  "_setsum" :: "idt => 'a set => 'b => 'b::plus_ac0"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
+  "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 translations
   "\<Sum>i:A. b" == "setsum (%i. b) A"  -- {* Beware of argument permutation! *}
 
@@ -761,7 +761,7 @@
 lemma setsum_insert [simp]:
     "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F"
   by (simp add: setsum_def
-    LC.fold_insert [OF LC.intro] plus_ac0_left_commute)
+    LC.fold_insert [OF LC.intro] add_left_commute)
 
 lemma setsum_reindex [rule_format]: "finite B ==>
                   inj_on f B --> setsum h (f ` B) = setsum (h \<circ> f) B"
@@ -820,7 +820,7 @@
     ==> setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B"
   -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
   apply (induct set: Finites, simp)
-  apply (simp add: plus_ac0 Int_insert_left insert_absorb)
+  apply (simp add: add_ac Int_insert_left insert_absorb)
   done
 
 lemma setsum_Un_disjoint: "finite A ==> finite B
@@ -874,7 +874,7 @@
   apply (case_tac "finite A")
    prefer 2 apply (simp add: setsum_def)
   apply (erule finite_induct, auto)
-  apply (simp add: plus_ac0)
+  apply (simp add: add_ac)
   done
 
 subsubsection {* Properties in more restricted classes of structures *}
@@ -892,18 +892,18 @@
 
 lemma setsum_constant_nat [simp]:
     "finite A ==> (\<Sum>x: A. y) = (card A) * y"
-  -- {* Later generalized to any semiring. *}
+  -- {* Later generalized to any comm_semiring_1_cancel. *}
   by (erule finite_induct, auto)
 
 lemma setsum_Un: "finite A ==> finite B ==>
     (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"
   -- {* For the natural numbers, we have subtraction. *}
-  by (subst setsum_Un_Int [symmetric], auto)
+  by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps)
 
 lemma setsum_Un_ring: "finite A ==> finite B ==>
-    (setsum f (A Un B) :: 'a :: ring) =
+    (setsum f (A Un B) :: 'a :: comm_ring_1) =
       setsum f A + setsum f B - setsum f (A Int B)"
-  by (subst setsum_Un_Int [symmetric], auto)
+  by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps)
 
 lemma setsum_diff1: "(setsum f (A - {a}) :: nat) =
     (if a:A then setsum f A - f a else setsum f A)"
@@ -914,16 +914,16 @@
   apply (drule_tac a = a in mk_disjoint_insert, auto)
   done
 
-lemma setsum_negf: "finite A ==> setsum (%x. - (f x)::'a::ring) A =
+lemma setsum_negf: "finite A ==> setsum (%x. - (f x)::'a::comm_ring_1) A =
   - setsum f A"
   by (induct set: Finites, auto)
 
-lemma setsum_subtractf: "finite A ==> setsum (%x. ((f x)::'a::ring) - g x) A =
+lemma setsum_subtractf: "finite A ==> setsum (%x. ((f x)::'a::comm_ring_1) - g x) A =
   setsum f A - setsum g A"
   by (simp add: diff_minus setsum_addf setsum_negf)
 
 lemma setsum_nonneg: "[| finite A;
-    \<forall>x \<in> A. (0::'a::ordered_semiring) \<le> f x |] ==>
+    \<forall>x \<in> A. (0::'a::ordered_semidom) \<le> f x |] ==>
     0 \<le>  setsum f A";
   apply (induct set: Finites, auto)
   apply (subgoal_tac "0 + 0 \<le> f x + setsum f F", simp)
@@ -983,16 +983,16 @@
 subsection {* Generalized product over a set *}
 
 constdefs
-  setprod :: "('a => 'b) => 'a set => 'b::times_ac1"
+  setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult"
   "setprod f A == if finite A then fold (op * o f) 1 A else 1"
 
 syntax
-  "_setprod" :: "idt => 'a set => 'b => 'b::times_ac1"  ("(3\<Prod>_:_. _)" [0, 51, 10] 10)
+  "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_:_. _)" [0, 51, 10] 10)
 
 syntax (xsymbols)
-  "_setprod" :: "idt => 'a set => 'b => 'b::times_ac1"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
+  "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 syntax (HTML output)
-  "_setprod" :: "idt => 'a set => 'b => 'b::times_ac1"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
+  "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 translations
   "\<Prod>i:A. b" == "setprod (%i. b) A"  -- {* Beware of argument permutation! *}
 
@@ -1002,7 +1002,7 @@
 lemma setprod_insert [simp]: "[| finite A; a \<notin> A |] ==>
     setprod f (insert a A) = f a * setprod f A"
   by (auto simp add: setprod_def LC_def LC.fold_insert
-      times_ac1_left_commute)
+      mult_left_commute)
 
 lemma setprod_reindex [rule_format]: "finite B ==>
                   inj_on f B --> setprod h (f ` B) = setprod (h \<circ> f) B"
@@ -1043,7 +1043,7 @@
 
 lemma setprod_1: "setprod (%i. 1) A = 1"
   apply (case_tac "finite A")
-  apply (erule finite_induct, auto simp add: times_ac1)
+  apply (erule finite_induct, auto simp add: mult_ac)
   apply (simp add: setprod_def)
   done
 
@@ -1056,13 +1056,13 @@
 lemma setprod_Un_Int: "finite A ==> finite B
     ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B"
   apply (induct set: Finites, simp)
-  apply (simp add: times_ac1 insert_absorb)
-  apply (simp add: times_ac1 Int_insert_left insert_absorb)
+  apply (simp add: mult_ac insert_absorb)
+  apply (simp add: mult_ac Int_insert_left insert_absorb)
   done
 
 lemma setprod_Un_disjoint: "finite A ==> finite B
   ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
-  apply (subst setprod_Un_Int [symmetric], auto simp add: times_ac1)
+  apply (subst setprod_Un_Int [symmetric], auto simp add: mult_ac)
   done
 
 lemma setprod_UN_disjoint:
@@ -1110,9 +1110,9 @@
 lemma setprod_timesf: "setprod (%x. f x * g x) A =
     (setprod f A * setprod g A)"
   apply (case_tac "finite A")
-   prefer 2 apply (simp add: setprod_def times_ac1)
+   prefer 2 apply (simp add: setprod_def mult_ac)
   apply (erule finite_induct, auto)
-  apply (simp add: times_ac1)
+  apply (simp add: mult_ac)
   done
 
 subsubsection {* Properties in more restricted classes of structures *}
@@ -1127,13 +1127,13 @@
   apply (auto simp add: power_Suc)
   done
 
-lemma setprod_zero: "finite A ==> EX x: A. f x = (0::'a::semiring) ==>
+lemma setprod_zero: "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1_cancel) ==>
     setprod f A = 0"
   apply (induct set: Finites, force, clarsimp)
   apply (erule disjE, auto)
   done
 
-lemma setprod_nonneg [rule_format]: "(ALL x: A. (0::'a::ordered_ring) \<le> f x)
+lemma setprod_nonneg [rule_format]: "(ALL x: A. (0::'a::ordered_idom) \<le> f x)
      --> 0 \<le> setprod f A"
   apply (case_tac "finite A")
   apply (induct set: Finites, force, clarsimp)
@@ -1142,7 +1142,7 @@
   apply (auto simp add: setprod_def)
   done
 
-lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::ordered_ring) < f x)
+lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::ordered_idom) < f x)
      --> 0 < setprod f A"
   apply (case_tac "finite A")
   apply (induct set: Finites, force, clarsimp)
@@ -1152,13 +1152,13 @@
   done
 
 lemma setprod_nonzero [rule_format]:
-    "(ALL x y. (x::'a::semiring) * y = 0 --> x = 0 | y = 0) ==>
+    "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==>
       finite A ==> (ALL x: A. f x \<noteq> (0::'a)) --> setprod f A \<noteq> 0"
   apply (erule finite_induct, auto)
   done
 
 lemma setprod_zero_eq:
-    "(ALL x y. (x::'a::semiring) * y = 0 --> x = 0 | y = 0) ==>
+    "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==>
      finite A ==> (setprod f A = (0::'a)) = (EX x: A. f x = 0)"
   apply (insert setprod_zero [of A f] setprod_nonzero [of A f], blast)
   done
--- a/src/HOL/Hyperreal/HyperDef.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Hyperreal/HyperDef.thy	Tue May 11 20:11:08 2004 +0200
@@ -332,7 +332,7 @@
 lemma hypreal_add_zero_left: "(0::hypreal) + z = z"
 by (cases z, simp add: hypreal_zero_def hypreal_add)
 
-instance hypreal :: plus_ac0
+instance hypreal :: comm_monoid_add
   by intro_classes
     (assumption | 
       rule hypreal_add_commute hypreal_add_assoc hypreal_add_zero_left)+
@@ -423,9 +423,6 @@
 instance hypreal :: field
 proof
   fix x y z :: hypreal
-  show "(x + y) + z = x + (y + z)" by (rule hypreal_add_assoc)
-  show "x + y = y + x" by (rule hypreal_add_commute)
-  show "0 + x = x" by simp
   show "- x + x = 0" by (simp add: hypreal_add_minus_left)
   show "x - y = x + (-y)" by (simp add: hypreal_diff_def)
   show "(x * y) * z = x * (y * z)" by (rule hypreal_mult_assoc)
@@ -512,7 +509,7 @@
 
 lemma hypreal_eq_minus_iff: "((x::hypreal) = y) = (x + - y = 0)"
 apply auto
-apply (rule Ring_and_Field.add_right_cancel [of _ "-y", THEN iffD1], auto)
+apply (rule OrderedGroup.add_right_cancel [of _ "-y", THEN iffD1], auto)
 done
 
 lemma hypreal_mult_left_cancel: "(c::hypreal) \<noteq> 0 ==> (c*a=c*b) = (a=b)"
--- a/src/HOL/Hyperreal/HyperNat.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Hyperreal/HyperNat.thy	Tue May 11 20:11:08 2004 +0200
@@ -158,7 +158,7 @@
 apply (simp add: hypnat_zero_def hypnat_add)
 done
 
-instance hypnat :: plus_ac0
+instance hypnat :: comm_monoid_add
   by intro_classes
     (assumption |
       rule hypnat_add_commute hypnat_add_assoc hypnat_add_zero_left)+
@@ -280,13 +280,10 @@
 declare hypnat_zero_not_eq_one [THEN not_sym, simp]
 
 
-text{*The Hypernaturals Form A Semiring*}
-instance hypnat :: semiring
+text{*The Hypernaturals Form A comm_semiring_1_cancel*}
+instance hypnat :: comm_semiring_1_cancel
 proof
   fix i j k :: hypnat
-  show "(i + j) + k = i + (j + k)" by (rule hypnat_add_assoc)
-  show "i + j = j + i" by (rule hypnat_add_commute)
-  show "0 + i = i" by simp
   show "(i * j) * k = i * (j * k)" by (rule hypnat_mult_assoc)
   show "i * j = j * i" by (rule hypnat_mult_commute)
   show "1 * i = i" by (rule hypnat_mult_1)
@@ -352,9 +349,9 @@
 done
 
 
-subsection{*The Hypernaturals Form an Ordered Semiring*}
+subsection{*The Hypernaturals Form an Ordered comm_semiring_1_cancel*}
 
-instance hypnat :: ordered_semiring
+instance hypnat :: ordered_semidom
 proof
   fix x y z :: hypnat
   show "0 < (1::hypnat)"
@@ -456,7 +453,7 @@
 qed
 
 
-subsection{*The Embedding @{term hypnat_of_nat} Preserves Ring and 
+subsection{*The Embedding @{term hypnat_of_nat} Preserves comm_ring_1 and 
       Order Properties*}
 
 constdefs
--- a/src/HOL/Hyperreal/MacLaurin.ML	Tue May 11 14:00:02 2004 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,717 +0,0 @@
-(*  Title       : MacLaurin.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 2001 University of Edinburgh
-    Description : MacLaurin series
-*)
-
-Goal "sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed "sumr_offset";
-
-Goal "ALL f. sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed "sumr_offset2";
-
-Goal "sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
-by (simp_tac (simpset() addsimps [sumr_offset]) 1);
-qed "sumr_offset3";
-
-Goal "ALL n f. sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
-by (simp_tac (simpset() addsimps [sumr_offset]) 1);
-qed "sumr_offset4";
-
-Goal "0 < n ==> \
-\     sumr (Suc 0) (Suc n) (%n. (if even(n) then 0 else \
-\            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n) = \
-\     sumr 0 (Suc n) (%n. (if even(n) then 0 else \
-\            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n)";
-by (res_inst_tac [("n1","1")] (sumr_split_add RS subst) 1);
-by Auto_tac;
-qed "sumr_from_1_from_0";
-
-(*---------------------------------------------------------------------------*)
-(* Maclaurin's theorem with Lagrange form of remainder                       *)
-(*---------------------------------------------------------------------------*)
-
-(* Annoying: Proof is now even longer due mostly to 
-   change in behaviour of simplifier  since Isabelle99 *)
-Goal " [| 0 < h; 0 < n; diff 0 = f; \
-\      ALL m t. \
-\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
-\   ==> EX t. 0 < t & \
-\             t < h & \
-\             f h = \
-\             sumr 0 n (%m. (diff m 0 / real (fact m)) * h ^ m) + \
-\             (diff n t / real (fact n)) * h ^ n";
-by (case_tac "n = 0" 1);
-by (Force_tac 1);
-by (dtac not0_implies_Suc 1);
-by (etac exE 1);
-by (subgoal_tac 
-     "EX B. f h = sumr 0 n (%m. (diff m 0 / real (fact m)) * (h ^ m)) \
-\                  + (B * ((h ^ n) / real (fact n)))" 1);
-
-by (simp_tac (HOL_ss addsimps [real_add_commute, real_divide_def,
-    ARITH_PROVE "(x = z + (y::real)) = (x - y = z)"]) 2);
-by (res_inst_tac 
-  [("x","(f(h) - sumr 0 n (%m. (diff(m)(0) / real (fact m)) * (h ^ m))) \
-\        * real (fact n) / (h ^ n)")] exI 2);
-by (simp_tac (HOL_ss addsimps [real_mult_assoc,real_divide_def]) 2);
- by (rtac (CLAIM "x = (1::real) ==>  a = a * (x::real)") 2);
-by (asm_simp_tac (HOL_ss addsimps 
-    [CLAIM "(a::real) * (b * (c * d)) = (d * a) * (b * c)"]
-     delsimps [realpow_Suc]) 2);
-by (stac left_inverse 2);
-by (stac left_inverse 3);
-by (rtac (real_not_refl2 RS not_sym) 2);
-by (etac zero_less_power 2);
-by (rtac real_of_nat_fact_not_zero 2);
-by (Simp_tac 2);
-by (etac exE 1);
-by (cut_inst_tac [("b","%t. f t - \
-\      (sumr 0 n (%m. (diff m 0 / real (fact m)) * (t ^ m)) + \
-\                       (B * ((t ^ n) / real (fact n))))")] 
-    (CLAIM "EX g. g = b") 1);
-by (etac exE 1);
-by (subgoal_tac "g 0 = 0 & g h =0" 1);
-by (asm_simp_tac (simpset() addsimps 
-    [ARITH_PROVE "(x - y = z) = (x = z + (y::real))"]
-    delsimps [sumr_Suc]) 2);
-by (cut_inst_tac [("n","m"),("k","1")] sumr_offset2 2);
-by (asm_full_simp_tac (simpset() addsimps 
-    [ARITH_PROVE "(x = y - z) = (y = x + (z::real))"]
-    delsimps [sumr_Suc]) 2);
-by (cut_inst_tac [("b","%m t. diff m t - \
-\      (sumr 0 (n - m) (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) \
-\       + (B * ((t ^ (n - m)) / real (fact(n - m)))))")] 
-    (CLAIM "EX difg. difg = b") 1);
-by (etac exE 1);
-by (subgoal_tac "difg 0 = g" 1);
-by (asm_simp_tac (simpset() delsimps [realpow_Suc,fact_Suc]) 2);
-by (subgoal_tac "ALL m t. m < n & 0 <= t & t <= h --> \
-\                   DERIV (difg m) t :> difg (Suc m) t" 1);
-by (Clarify_tac 2);
-by (rtac DERIV_diff 2);
-by (Asm_simp_tac 2);
-by DERIV_tac;
-by DERIV_tac;
-by (rtac lemma_DERIV_subst 3);
-by (rtac DERIV_quotient 3);
-by (rtac DERIV_const 4);
-by (rtac DERIV_pow 3);
-by (asm_simp_tac (simpset() addsimps [inverse_mult_distrib,
-    CLAIM_SIMP "(a::real) * b * c * (d * e) = a * b * (c * d) * e" 
-    mult_ac,fact_diff_Suc]) 4);
-by (Asm_simp_tac 3);
-by (forw_inst_tac [("m","ma")] less_add_one 2);
-by (Clarify_tac 2);
-by (asm_simp_tac (simpset() addsimps 
-    [CLAIM "Suc m = ma + d + 1 ==> m - ma = d"]
-    delsimps [sumr_Suc]) 2);
-by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
-          (read_instantiate [("k","1")] sumr_offset4))] 
-    delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
-by (rtac lemma_DERIV_subst 2);
-by (rtac DERIV_add 2);
-by (rtac DERIV_const 3);
-by (rtac DERIV_sumr 2);
-by (Clarify_tac 2);
-by (Simp_tac 3);
-by (simp_tac (simpset() addsimps [real_divide_def,real_mult_assoc] 
-    delsimps [fact_Suc,realpow_Suc]) 2);
-by (rtac DERIV_cmult 2);
-by (rtac lemma_DERIV_subst 2);
-by DERIV_tac;
-by (stac fact_Suc 2);
-by (stac real_of_nat_mult 2);
-by (simp_tac (simpset() addsimps [inverse_mult_distrib] @
-    mult_ac) 2);
-by (subgoal_tac "ALL ma. ma < n --> \
-\        (EX t. 0 < t & t < h & difg (Suc ma) t = 0)" 1);
-by (rotate_tac 11 1);
-by (dres_inst_tac [("x","m")] spec 1);
-by (etac impE 1);
-by (Asm_simp_tac 1);
-by (etac exE 1);
-by (res_inst_tac [("x","t")] exI 1);
-by (asm_full_simp_tac (simpset() addsimps 
-     [ARITH_PROVE "(x - y = 0) = (y = (x::real))"] 
-      delsimps [realpow_Suc,fact_Suc]) 1);
-by (subgoal_tac "ALL m. m < n --> difg m 0 = 0" 1);
-by (Clarify_tac 2);
-by (Asm_simp_tac 2);
-by (forw_inst_tac [("m","ma")] less_add_one 2);
-by (Clarify_tac 2);
-by (asm_simp_tac (simpset() delsimps [sumr_Suc]) 2);
-by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
-          (read_instantiate [("k","1")] sumr_offset4))] 
-    delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
-by (subgoal_tac "ALL m. m < n --> (EX t. 0 < t & t < h & \
-\                DERIV (difg m) t :> 0)" 1);
-by (rtac allI 1 THEN rtac impI 1);
-by (rotate_tac 12 1);
-by (dres_inst_tac [("x","ma")] spec 1);
-by (etac impE 1 THEN assume_tac 1);
-by (etac exE 1);
-by (res_inst_tac [("x","t")] exI 1);
-(* do some tidying up *)
-by (ALLGOALS(thin_tac "difg = \
-\          (%m t. diff m t - \
-\                 (sumr 0 (n - m) \
-\                   (%p. diff (m + p) 0 / real (fact p) * t ^ p) + \
-\                  B * (t ^ (n - m) / real (fact (n - m)))))"));
-by (ALLGOALS(thin_tac "g = \
-\          (%t. f t - \
-\               (sumr 0 n (%m. diff m 0 / real  (fact m) * t ^ m) + \
-\                B * (t ^ n / real (fact n))))"));
-by (ALLGOALS(thin_tac "f h = \
-\          sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\          B * (h ^ n / real (fact n))"));
-(* back to business *)
-by (Asm_simp_tac 1);
-by (rtac DERIV_unique 1);
-by (Blast_tac 2);
-by (Force_tac 1);
-by (rtac allI 1 THEN induct_tac "ma" 1);
-by (rtac impI 1 THEN rtac Rolle 1);
-by (assume_tac 1);
-by (Asm_full_simp_tac 1);
-by (Asm_full_simp_tac 1);
-by (subgoal_tac "ALL t. 0 <= t & t <= h --> g differentiable t" 1);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
-by (blast_tac (claset() addDs [DERIV_isCont]) 1);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
-by (Clarify_tac 1);
-by (res_inst_tac [("x","difg (Suc 0) t")] exI 1);
-by (Force_tac 1);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
-by (Clarify_tac 1);
-by (res_inst_tac [("x","difg (Suc 0) x")] exI 1);
-by (Force_tac 1);
-by (Step_tac 1);
-by (Force_tac 1);
-by (subgoal_tac "EX ta. 0 < ta & ta < t & \
-\                DERIV difg (Suc n) ta :> 0" 1);
-by (rtac Rolle 2 THEN assume_tac 2);
-by (Asm_full_simp_tac 2);
-by (rotate_tac 2 2);
-by (dres_inst_tac [("x","n")] spec 2);
-by (ftac (ARITH_PROVE "n < m  ==> n < Suc m") 2);
-by (rtac DERIV_unique 2);
-by (assume_tac 3);
-by (Force_tac 2);
-by (subgoal_tac 
-    "ALL ta. 0 <= ta & ta <= t --> (difg (Suc n)) differentiable ta" 2);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
-by (blast_tac (claset() addSDs [DERIV_isCont]) 2);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
-by (Clarify_tac 2);
-by (res_inst_tac [("x","difg (Suc (Suc n)) ta")] exI 2);
-by (Force_tac 2);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
-by (Clarify_tac 2);
-by (res_inst_tac [("x","difg (Suc (Suc n)) x")] exI 2);
-by (Force_tac 2);
-by (Step_tac 1);
-by (res_inst_tac [("x","ta")] exI 1);
-by (Force_tac 1);
-qed "Maclaurin";
-
-Goal "0 < h & 0 < n & diff 0 = f & \
-\      (ALL m t. \
-\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
-\   --> (EX t. 0 < t & \
-\             t < h & \
-\             f h = \
-\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\             diff n t / real (fact n) * h ^ n)";
-by (blast_tac (claset() addIs [Maclaurin]) 1);
-qed "Maclaurin_objl";
-
-Goal " [| 0 < h; diff 0 = f; \
-\      ALL m t. \
-\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
-\   ==> EX t. 0 < t & \
-\             t <= h & \
-\             f h = \
-\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\             diff n t / real (fact n) * h ^ n";
-by (case_tac "n" 1);
-by Auto_tac;
-by (dtac Maclaurin 1 THEN Auto_tac);
-qed "Maclaurin2";
-
-Goal "0 < h & diff 0 = f & \
-\      (ALL m t. \
-\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
-\   --> (EX t. 0 < t & \
-\             t <= h & \
-\             f h = \
-\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\             diff n t / real (fact n) * h ^ n)";
-by (blast_tac (claset() addIs [Maclaurin2]) 1);
-qed "Maclaurin2_objl";
-
-Goal " [| h < 0; 0 < n; diff 0 = f; \
-\      ALL m t. \
-\         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t |] \
-\   ==> EX t. h < t & \
-\             t < 0 & \
-\             f h = \
-\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\             diff n t / real (fact n) * h ^ n";
-by (cut_inst_tac [("f","%x. f (-x)"),
-                 ("diff","%n x. ((- 1) ^ n) * diff n (-x)"),
-                 ("h","-h"),("n","n")] Maclaurin_objl 1);
-by (Asm_full_simp_tac 1);
-by (etac impE 1 THEN Step_tac 1);
-by (stac minus_mult_right 1);
-by (rtac DERIV_cmult 1);
-by (rtac lemma_DERIV_subst 1);
-by (rtac (read_instantiate [("g","uminus")] DERIV_chain2) 1);
-by (rtac DERIV_minus 2 THEN rtac DERIV_Id 2);
-by (Force_tac 2);
-by (Force_tac 1);
-by (res_inst_tac [("x","-t")] exI 1);
-by Auto_tac;
-by (rtac (CLAIM "[| x = x'; y = y' |] ==> x + y = x' + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (Asm_full_simp_tac 1);
-by (auto_tac (claset(),simpset() addsimps [real_divide_def,
-    CLAIM "((a * b) * c) * d = (b * c) * (a * (d::real))",
-    power_mult_distrib RS sym]));
-qed "Maclaurin_minus";
-
-Goal "(h < 0 & 0 < n & diff 0 = f & \
-\      (ALL m t. \
-\         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t))\
-\   --> (EX t. h < t & \
-\             t < 0 & \
-\             f h = \
-\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\             diff n t / real (fact n) * h ^ n)";
-by (blast_tac (claset() addIs [Maclaurin_minus]) 1);
-qed "Maclaurin_minus_objl";
-
-(* ------------------------------------------------------------------------- *)
-(* More convenient "bidirectional" version.                                  *)
-(* ------------------------------------------------------------------------- *)
-
-(* not good for PVS sin_approx, cos_approx *)
-Goal " [| diff 0 = f; \
-\      ALL m t. \
-\         m < n & abs t <= abs x --> DERIV (diff m) t :> diff (Suc m) t |] \
-\   ==> EX t. abs t <= abs x & \
-\             f x = \
-\             sumr 0 n (%m. diff m 0 / real (fact m) * x ^ m) + \
-\             diff n t / real (fact n) * x ^ n";
-by (case_tac "n = 0" 1);
-by (Force_tac 1);
-by (case_tac "x = 0" 1);
-by (res_inst_tac [("x","0")] exI 1);
-by (Asm_full_simp_tac 1);
-by (res_inst_tac [("P","0 < n")] impE 1);
-by (assume_tac 2 THEN assume_tac 2);
-by (induct_tac "n" 1);
-by (Simp_tac 1);
-by Auto_tac;
-by (cut_inst_tac [("x","x"),("y","0")] linorder_less_linear 1);
-by Auto_tac;
-by (cut_inst_tac [("f","diff 0"),
-                 ("diff","diff"),
-                 ("h","x"),("n","n")] Maclaurin_objl 2);
-by (Step_tac 2);
-by (blast_tac (claset() addDs 
-    [ARITH_PROVE "[|(0::real) <= t;t <= x |] ==> abs t <= abs x"]) 2);
-by (res_inst_tac [("x","t")] exI 2);
-by (force_tac (claset() addIs 
-    [ARITH_PROVE "[| 0 < t; (t::real) < x|] ==> abs t <= abs x"],simpset()) 2);
-by (cut_inst_tac [("f","diff 0"),
-                 ("diff","diff"),
-                 ("h","x"),("n","n")] Maclaurin_minus_objl 1);
-by (Step_tac 1);
-by (blast_tac (claset() addDs 
-    [ARITH_PROVE "[|x <= t;t <= (0::real) |] ==> abs t <= abs x"]) 1);
-by (res_inst_tac [("x","t")] exI 1);
-by (force_tac (claset() addIs 
-    [ARITH_PROVE "[| x < t; (t::real) < 0|] ==> abs t <= abs x"],simpset()) 1);
-qed "Maclaurin_bi_le";
-
-Goal "[| diff 0 = f; \
-\        ALL m x. DERIV (diff m) x :> diff(Suc m) x; \ 
-\       x ~= 0; 0 < n \
-\     |] ==> EX t. 0 < abs t & abs t < abs x & \
-\              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
-\                    (diff n t / real (fact n)) * x ^ n";
-by (res_inst_tac [("x","x"),("y","0")] linorder_cases 1);
-by (Blast_tac 2);
-by (dtac Maclaurin_minus 1);
-by (dtac Maclaurin 5);
-by (TRYALL(assume_tac));
-by (Blast_tac 1);
-by (Blast_tac 2);
-by (Step_tac 1);
-by (ALLGOALS(res_inst_tac [("x","t")] exI));
-by (Step_tac 1);
-by (ALLGOALS(arith_tac));
-qed "Maclaurin_all_lt";
-
-Goal "diff 0 = f & \
-\     (ALL m x. DERIV (diff m) x :> diff(Suc m) x) & \
-\     x ~= 0 & 0 < n \
-\     --> (EX t. 0 < abs t & abs t < abs x & \
-\              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
-\                    (diff n t / real (fact n)) * x ^ n)";
-by (blast_tac (claset() addIs [Maclaurin_all_lt]) 1);
-qed "Maclaurin_all_lt_objl";
-
-Goal "x = (0::real)  \
-\     ==> 0 < n --> \
-\         sumr 0 n (%m. (diff m (0::real) / real (fact m)) * x ^ m) = \
-\         diff 0 0";
-by (Asm_simp_tac 1);
-by (induct_tac "n" 1);
-by Auto_tac; 
-qed_spec_mp "Maclaurin_zero";
-
-Goal "[| diff 0 = f; \
-\       ALL m x. DERIV (diff m) x :> diff (Suc m) x \
-\     |] ==> EX t. abs t <= abs x & \
-\             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
-\                   (diff n t / real (fact n)) * x ^ n";
-by (cut_inst_tac [("n","n"),("m","0")] 
-       (ARITH_PROVE "n <= m | m < (n::nat)") 1);
-by (etac disjE 1);
-by (Force_tac 1);
-by (case_tac "x = 0" 1);
-by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_zero 1);
-by (assume_tac 1);
-by (dtac (gr_implies_not0 RS  not0_implies_Suc) 1);
-by (res_inst_tac [("x","0")] exI 1);
-by (Force_tac 1);
-by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_all_lt 1);
-by (TRYALL(assume_tac));
-by (Step_tac 1);
-by (res_inst_tac [("x","t")] exI 1);
-by Auto_tac;
-qed "Maclaurin_all_le";
-
-Goal "diff 0 = f & \
-\     (ALL m x. DERIV (diff m) x :> diff (Suc m) x)  \
-\     --> (EX t. abs t <= abs x & \
-\             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
-\                   (diff n t / real (fact n)) * x ^ n)";
-by (blast_tac (claset() addIs [Maclaurin_all_le]) 1);
-qed "Maclaurin_all_le_objl";
-
-(* ------------------------------------------------------------------------- *)
-(* Version for exp.                                                          *)
-(* ------------------------------------------------------------------------- *)
-
-Goal "[| x ~= 0; 0 < n |] \
-\     ==> (EX t. 0 < abs t & \
-\               abs t < abs x & \
-\               exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
-\                       (exp t / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
-    Maclaurin_all_lt_objl 1);
-by Auto_tac;
-qed "Maclaurin_exp_lt";
-
-Goal "EX t. abs t <= abs x & \
-\           exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
-\                      (exp t / real (fact n)) * x ^ n";
-by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
-    Maclaurin_all_le_objl 1);
-by Auto_tac;
-qed "Maclaurin_exp_le";
-
-(* ------------------------------------------------------------------------- *)
-(* Version for sin function                                                  *)
-(* ------------------------------------------------------------------------- *)
-
-Goal "[| a < b; ALL x. a <= x & x <= b --> DERIV f x :> f'(x) |] \
-\     ==> EX z. a < z & z < b & (f b - f a = (b - a) * f'(z))";
-by (dtac MVT 1);
-by (blast_tac (claset() addIs [DERIV_isCont]) 1);
-by (force_tac (claset() addDs [order_less_imp_le],
-    simpset() addsimps [differentiable_def]) 1);
-by (blast_tac (claset() addDs [DERIV_unique,order_less_imp_le]) 1);
-qed "MVT2";
-
-Goal "d < (4::nat) ==> d = 0 | d = 1 | d = 2 | d = 3";
-by (case_tac "d" 1 THEN Auto_tac);
-qed "lemma_exhaust_less_4";
-
-bind_thm ("real_mult_le_lemma",
-          simplify (simpset()) (inst "b" "1" mult_right_mono));
-
-
-Goal "abs(sin x - \
-\          sumr 0 n (%m. (if even m then 0 \
-\                         else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
-\                         x ^ m)) \
-\      <= inverse(real (fact n)) * abs(x) ^ n";
-by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
-       ("diff","%n x. if n mod 4 = 0 then sin(x) \
-\                     else if n mod 4 = 1 then cos(x) \
-\                     else if n mod 4 = 2 then -sin(x) \
-\                     else -cos(x)")] Maclaurin_all_le_objl 1);
-by (Step_tac 1);
-by (Asm_full_simp_tac 1);
-by (stac mod_Suc_eq_Suc_mod 1);
-by (cut_inst_tac [("m1","m")] (CLAIM "0 < (4::nat)" RS mod_less_divisor
-    RS lemma_exhaust_less_4) 1);
-by (Step_tac 1);
-by (Asm_simp_tac 1);
-by (Asm_simp_tac 1);
-by (Asm_simp_tac 1);
-by (rtac DERIV_minus 1 THEN Simp_tac 1);
-by (Asm_simp_tac 1);
-by (rtac lemma_DERIV_subst 1 THEN rtac DERIV_minus 1 THEN rtac DERIV_cos 1);
-by (Simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (rtac (ARITH_PROVE "[|x = y; abs u <= (v::real) |] ==> abs ((x + u) - y) <= v") 1);
-by (rtac sumr_fun_eq 1);
-by (Step_tac 1);
-by (rtac (CLAIM "x = y ==> x * z = y * (z::real)") 1);
-by (stac even_even_mod_4_iff 1);
-by (cut_inst_tac [("m1","r")] (CLAIM "0 < (4::nat)" RS mod_less_divisor
-    RS lemma_exhaust_less_4) 1);
-by (Step_tac 1);
-by (Asm_simp_tac 1);
-by (asm_simp_tac (simpset() addsimps [even_num_iff]) 2);
-by (asm_simp_tac (simpset() addsimps [even_num_iff]) 1);
-by (asm_simp_tac (simpset() addsimps [even_num_iff]) 2);
-by (dtac lemma_even_mod_4_div_2 1);
-by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2,real_divide_def]) 1);
-by (dtac lemma_odd_mod_4_div_2 1);
-by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2, real_divide_def]) 1);
-by (auto_tac (claset() addSIs [real_mult_le_lemma,mult_right_mono],
-      simpset() addsimps [real_divide_def,abs_mult,abs_inverse,power_abs RS
-sym]));
-qed "Maclaurin_sin_bound";
-
-Goal "0 < n --> Suc (Suc (2 * n - 2)) = 2*n";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed_spec_mp "Suc_Suc_mult_two_diff_two";
-Addsimps [Suc_Suc_mult_two_diff_two];
-
-Goal "0 < n --> Suc (Suc (4*n - 2)) = 4*n";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed_spec_mp "lemma_Suc_Suc_4n_diff_2";
-Addsimps [lemma_Suc_Suc_4n_diff_2];
-
-Goal "0 < n --> Suc (2 * n - 1) = 2*n";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed_spec_mp "Suc_mult_two_diff_one";
-Addsimps [Suc_mult_two_diff_one];
-
-Goal "EX t. sin x = \
-\      (sumr 0 n (%m. (if even m then 0 \
-\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
-\                      x ^ m)) \
-\     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
-       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
-       Maclaurin_all_lt_objl 1);
-by (Safe_tac);
-by (Simp_tac 1);
-by (Simp_tac 1);
-by (case_tac "n" 1);
-by (Clarify_tac 1); 
-by (Asm_full_simp_tac 1);
-by (dres_inst_tac [("x","0")] spec 1 THEN Asm_full_simp_tac 1);
-by (Asm_full_simp_tac 1);
-by (rtac ccontr 1);
-by (Asm_full_simp_tac 1);
-by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
-(*Could sin_zero_iff help?*)
-qed "Maclaurin_sin_expansion";
-
-Goal "EX t. abs t <= abs x &  \
-\      sin x = \
-\      (sumr 0 n (%m. (if even m then 0 \
-\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
-\                      x ^ m)) \
-\     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-
-by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
-       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
-       Maclaurin_all_lt_objl 1);
-by (Step_tac 1);
-by (Simp_tac 1);
-by (Simp_tac 1);
-by (case_tac "n" 1);
-by (Clarify_tac 1); 
-by (Asm_full_simp_tac 1);
-by (Asm_full_simp_tac 1);
-by (rtac ccontr 1);
-by (Asm_full_simp_tac 1);
-by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1);
-by (arith_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
-qed "Maclaurin_sin_expansion2";
-
-Goal "[| 0 < n; 0 < x |] ==> \
-\      EX t. 0 < t & t < x & \
-\      sin x = \
-\      (sumr 0 n (%m. (if even m then 0 \
-\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
-\                      x ^ m)) \
-\     + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
-       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
-       Maclaurin_objl 1);
-by (Step_tac 1);
-by (Asm_full_simp_tac 1);
-by (Simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1 THEN rtac conjI 2);
-by (assume_tac 1 THEN assume_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
-qed "Maclaurin_sin_expansion3";
-
-Goal "0 < x ==> \
-\      EX t. 0 < t & t <= x & \
-\      sin x = \
-\      (sumr 0 n (%m. (if even m then 0 \
-\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
-\                      x ^ m)) \
-\     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
-       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
-       Maclaurin2_objl 1);
-by (Step_tac 1);
-by (Asm_full_simp_tac 1);
-by (Simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1 THEN rtac conjI 2);
-by (assume_tac 1 THEN assume_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
-qed "Maclaurin_sin_expansion4";
-
-(*-----------------------------------------------------------------------------*)
-(* Maclaurin expansion for cos                                                 *)
-(*-----------------------------------------------------------------------------*)
-
-Goal "sumr 0 (Suc n) \
-\        (%m. (if even m \
-\              then (- 1) ^ (m div 2)/(real  (fact m)) \
-\              else 0) * \
-\             0 ^ m) = 1";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed "sumr_cos_zero_one";
-Addsimps [sumr_cos_zero_one];
-
-Goal "EX t. abs t <= abs x & \
-\      cos x = \
-\      (sumr 0 n (%m. (if even m \
-\                      then (- 1) ^ (m div 2)/(real (fact m)) \
-\                      else 0) * \
-\                      x ^ m)) \
-\     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","cos"),("n","n"),("x","x"),
-       ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
-       Maclaurin_all_lt_objl 1);
-by (Step_tac 1);
-by (Simp_tac 1);
-by (Simp_tac 1);
-by (case_tac "n" 1);
-by (Asm_full_simp_tac 1);
-by (asm_full_simp_tac (simpset() delsimps [sumr_Suc]) 1);
-by (rtac ccontr 1);
-by (Asm_full_simp_tac 1);
-by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1);
-by (arith_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add]  delsimps 
-    [fact_Suc,realpow_Suc]));
-by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
-qed "Maclaurin_cos_expansion";
-
-Goal "[| 0 < x; 0 < n |] ==> \
-\      EX t. 0 < t & t < x & \
-\      cos x = \
-\      (sumr 0 n (%m. (if even m \
-\                      then (- 1) ^ (m div 2)/(real (fact m)) \
-\                      else 0) * \
-\                      x ^ m)) \
-\     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
-       ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
-       Maclaurin_objl 1);
-by (Step_tac 1);
-by (Asm_full_simp_tac 1);
-by (Simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1 THEN rtac conjI 2);
-by (assume_tac 1 THEN assume_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add]  delsimps [fact_Suc,realpow_Suc]));
-by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
-qed "Maclaurin_cos_expansion2";
-
-Goal "[| x < 0; 0 < n |] ==> \
-\      EX t. x < t & t < 0 & \
-\      cos x = \
-\      (sumr 0 n (%m. (if even m \
-\                      then (- 1) ^ (m div 2)/(real (fact m)) \
-\                      else 0) * \
-\                      x ^ m)) \
-\     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
-       ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
-       Maclaurin_minus_objl 1);
-by (Step_tac 1);
-by (Asm_full_simp_tac 1);
-by (Simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1 THEN rtac conjI 2);
-by (assume_tac 1 THEN assume_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add]  delsimps [fact_Suc,realpow_Suc]));
-by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
-qed "Maclaurin_minus_cos_expansion";
-
-(* ------------------------------------------------------------------------- *)
-(* Version for ln(1 +/- x). Where is it??                                    *)
-(* ------------------------------------------------------------------------- *)
-
--- a/src/HOL/Hyperreal/MacLaurin.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Hyperreal/MacLaurin.thy	Tue May 11 20:11:08 2004 +0200
@@ -4,4 +4,46 @@
     Description : MacLaurin series
 *)
 
-MacLaurin = Log
+theory MacLaurin = Log
+files ("MacLaurin_lemmas.ML"):
+
+use "MacLaurin_lemmas.ML"
+
+lemma Maclaurin_sin_bound: 
+  "abs(sin x - sumr 0 n (%m. (if even m then 0 else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * 
+  x ^ m))  <= inverse(real (fact n)) * abs(x) ^ n"
+proof -
+  have "!! x (y::real). x <= 1 \<Longrightarrow> 0 <= y \<Longrightarrow> x * y \<le> 1 * y" 
+    by (rule_tac mult_right_mono,simp_all)
+  note est = this[simplified]
+  show ?thesis
+    apply (cut_tac f=sin and n=n and x=x and 
+      diff = "%n x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)"
+      in Maclaurin_all_le_objl)
+    apply (tactic{* (Step_tac 1) *})
+    apply (simp)
+    apply (subst mod_Suc_eq_Suc_mod)
+    apply (tactic{* cut_inst_tac [("m1","m")] (CLAIM "0 < (4::nat)" RS mod_less_divisor RS lemma_exhaust_less_4) 1*})
+    apply (tactic{* Step_tac 1 *})
+    apply (simp)+
+    apply (rule DERIV_minus, simp+)
+    apply (rule lemma_DERIV_subst, rule DERIV_minus, rule DERIV_cos, simp)
+    apply (tactic{* dtac ssubst 1 THEN assume_tac 2 *})
+    apply (tactic {* rtac (ARITH_PROVE "[|x = y; abs u <= (v::real) |] ==> abs ((x + u) - y) <= v") 1 *})
+    apply (rule sumr_fun_eq)
+    apply (tactic{* Step_tac 1 *})
+    apply (tactic{*rtac (CLAIM "x = y ==> x * z = y * (z::real)") 1*})
+    apply (subst even_even_mod_4_iff)
+    apply (tactic{* cut_inst_tac [("m1","r")] (CLAIM "0 < (4::nat)" RS mod_less_divisor RS lemma_exhaust_less_4) 1 *})
+    apply (tactic{* Step_tac 1 *})
+    apply (simp)
+    apply (simp_all add:even_num_iff)
+    apply (drule lemma_even_mod_4_div_2[simplified])
+    apply(simp add: numeral_2_eq_2 real_divide_def)
+    apply (drule lemma_odd_mod_4_div_2 );
+    apply (simp add: numeral_2_eq_2 real_divide_def)
+    apply (auto intro: real_mult_le_lemma mult_right_mono simp add: est mult_pos_le mult_ac real_divide_def abs_mult abs_inverse power_abs[symmetric])
+    done
+qed
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Hyperreal/MacLaurin_lemmas.ML	Tue May 11 20:11:08 2004 +0200
@@ -0,0 +1,672 @@
+(*  Title       : MacLaurin.thy
+    Author      : Jacques D. Fleuriot
+    Copyright   : 2001 University of Edinburgh
+    Description : MacLaurin series
+*)
+
+Goal "sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
+by (induct_tac "n" 1);
+by Auto_tac;
+qed "sumr_offset";
+
+Goal "ALL f. sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
+by (induct_tac "n" 1);
+by Auto_tac;
+qed "sumr_offset2";
+
+Goal "sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
+by (simp_tac (simpset() addsimps [sumr_offset]) 1);
+qed "sumr_offset3";
+
+Goal "ALL n f. sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
+by (simp_tac (simpset() addsimps [sumr_offset]) 1);
+qed "sumr_offset4";
+
+Goal "0 < n ==> \
+\     sumr (Suc 0) (Suc n) (%n. (if even(n) then 0 else \
+\            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n) = \
+\     sumr 0 (Suc n) (%n. (if even(n) then 0 else \
+\            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n)";
+by (res_inst_tac [("n1","1")] (sumr_split_add RS subst) 1);
+by Auto_tac;
+qed "sumr_from_1_from_0";
+
+(*---------------------------------------------------------------------------*)
+(* Maclaurin's theorem with Lagrange form of remainder                       *)
+(*---------------------------------------------------------------------------*)
+
+(* Annoying: Proof is now even longer due mostly to 
+   change in behaviour of simplifier  since Isabelle99 *)
+Goal " [| 0 < h; 0 < n; diff 0 = f; \
+\      ALL m t. \
+\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
+\   ==> EX t. 0 < t & \
+\             t < h & \
+\             f h = \
+\             sumr 0 n (%m. (diff m 0 / real (fact m)) * h ^ m) + \
+\             (diff n t / real (fact n)) * h ^ n";
+by (case_tac "n = 0" 1);
+by (Force_tac 1);
+by (dtac not0_implies_Suc 1);
+by (etac exE 1);
+by (subgoal_tac 
+     "EX B. f h = sumr 0 n (%m. (diff m 0 / real (fact m)) * (h ^ m)) \
+\                  + (B * ((h ^ n) / real (fact n)))" 1);
+
+by (simp_tac (HOL_ss addsimps [real_add_commute, real_divide_def,
+    ARITH_PROVE "(x = z + (y::real)) = (x - y = z)"]) 2);
+by (res_inst_tac 
+  [("x","(f(h) - sumr 0 n (%m. (diff(m)(0) / real (fact m)) * (h ^ m))) \
+\        * real (fact n) / (h ^ n)")] exI 2);
+by (simp_tac (HOL_ss addsimps [real_mult_assoc,real_divide_def]) 2);
+ by (rtac (CLAIM "x = (1::real) ==>  a = a * (x::real)") 2);
+by (asm_simp_tac (HOL_ss addsimps 
+    [CLAIM "(a::real) * (b * (c * d)) = (d * a) * (b * c)"]
+     delsimps [realpow_Suc]) 2);
+by (stac left_inverse 2);
+by (stac left_inverse 3);
+by (rtac (real_not_refl2 RS not_sym) 2);
+by (etac zero_less_power 2);
+by (rtac real_of_nat_fact_not_zero 2);
+by (Simp_tac 2);
+by (etac exE 1);
+by (cut_inst_tac [("b","%t. f t - \
+\      (sumr 0 n (%m. (diff m 0 / real (fact m)) * (t ^ m)) + \
+\                       (B * ((t ^ n) / real (fact n))))")] 
+    (CLAIM "EX g. g = b") 1);
+by (etac exE 1);
+by (subgoal_tac "g 0 = 0 & g h =0" 1);
+by (asm_simp_tac (simpset() addsimps 
+    [ARITH_PROVE "(x - y = z) = (x = z + (y::real))"]
+    delsimps [sumr_Suc]) 2);
+by (cut_inst_tac [("n","m"),("k","1")] sumr_offset2 2);
+by (asm_full_simp_tac (simpset() addsimps 
+    [ARITH_PROVE "(x = y - z) = (y = x + (z::real))"]
+    delsimps [sumr_Suc]) 2);
+by (cut_inst_tac [("b","%m t. diff m t - \
+\      (sumr 0 (n - m) (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) \
+\       + (B * ((t ^ (n - m)) / real (fact(n - m)))))")] 
+    (CLAIM "EX difg. difg = b") 1);
+by (etac exE 1);
+by (subgoal_tac "difg 0 = g" 1);
+by (asm_simp_tac (simpset() delsimps [realpow_Suc,fact_Suc]) 2);
+by (subgoal_tac "ALL m t. m < n & 0 <= t & t <= h --> \
+\                   DERIV (difg m) t :> difg (Suc m) t" 1);
+by (Clarify_tac 2);
+by (rtac DERIV_diff 2);
+by (Asm_simp_tac 2);
+by DERIV_tac;
+by DERIV_tac;
+by (rtac lemma_DERIV_subst 3);
+by (rtac DERIV_quotient 3);
+by (rtac DERIV_const 4);
+by (rtac DERIV_pow 3);
+by (asm_simp_tac (simpset() addsimps [inverse_mult_distrib,
+    CLAIM_SIMP "(a::real) * b * c * (d * e) = a * b * (c * d) * e" 
+    mult_ac,fact_diff_Suc]) 4);
+by (Asm_simp_tac 3);
+by (forw_inst_tac [("m","ma")] less_add_one 2);
+by (Clarify_tac 2);
+by (asm_simp_tac (simpset() addsimps 
+    [CLAIM "Suc m = ma + d + 1 ==> m - ma = d"]
+    delsimps [sumr_Suc]) 2);
+by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
+          (read_instantiate [("k","1")] sumr_offset4))] 
+    delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
+by (rtac lemma_DERIV_subst 2);
+by (rtac DERIV_add 2);
+by (rtac DERIV_const 3);
+by (rtac DERIV_sumr 2);
+by (Clarify_tac 2);
+by (Simp_tac 3);
+by (simp_tac (simpset() addsimps [real_divide_def,real_mult_assoc] 
+    delsimps [fact_Suc,realpow_Suc]) 2);
+by (rtac DERIV_cmult 2);
+by (rtac lemma_DERIV_subst 2);
+by DERIV_tac;
+by (stac fact_Suc 2);
+by (stac real_of_nat_mult 2);
+by (simp_tac (simpset() addsimps [inverse_mult_distrib] @
+    mult_ac) 2);
+by (subgoal_tac "ALL ma. ma < n --> \
+\        (EX t. 0 < t & t < h & difg (Suc ma) t = 0)" 1);
+by (rotate_tac 11 1);
+by (dres_inst_tac [("x","m")] spec 1);
+by (etac impE 1);
+by (Asm_simp_tac 1);
+by (etac exE 1);
+by (res_inst_tac [("x","t")] exI 1);
+by (asm_full_simp_tac (simpset() addsimps 
+     [ARITH_PROVE "(x - y = 0) = (y = (x::real))"] 
+      delsimps [realpow_Suc,fact_Suc]) 1);
+by (subgoal_tac "ALL m. m < n --> difg m 0 = 0" 1);
+by (Clarify_tac 2);
+by (Asm_simp_tac 2);
+by (forw_inst_tac [("m","ma")] less_add_one 2);
+by (Clarify_tac 2);
+by (asm_simp_tac (simpset() delsimps [sumr_Suc]) 2);
+by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
+          (read_instantiate [("k","1")] sumr_offset4))] 
+    delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
+by (subgoal_tac "ALL m. m < n --> (EX t. 0 < t & t < h & \
+\                DERIV (difg m) t :> 0)" 1);
+by (rtac allI 1 THEN rtac impI 1);
+by (rotate_tac 12 1);
+by (dres_inst_tac [("x","ma")] spec 1);
+by (etac impE 1 THEN assume_tac 1);
+by (etac exE 1);
+by (res_inst_tac [("x","t")] exI 1);
+(* do some tidying up *)
+by (ALLGOALS(thin_tac "difg = \
+\          (%m t. diff m t - \
+\                 (sumr 0 (n - m) \
+\                   (%p. diff (m + p) 0 / real (fact p) * t ^ p) + \
+\                  B * (t ^ (n - m) / real (fact (n - m)))))"));
+by (ALLGOALS(thin_tac "g = \
+\          (%t. f t - \
+\               (sumr 0 n (%m. diff m 0 / real  (fact m) * t ^ m) + \
+\                B * (t ^ n / real (fact n))))"));
+by (ALLGOALS(thin_tac "f h = \
+\          sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
+\          B * (h ^ n / real (fact n))"));
+(* back to business *)
+by (Asm_simp_tac 1);
+by (rtac DERIV_unique 1);
+by (Blast_tac 2);
+by (Force_tac 1);
+by (rtac allI 1 THEN induct_tac "ma" 1);
+by (rtac impI 1 THEN rtac Rolle 1);
+by (assume_tac 1);
+by (Asm_full_simp_tac 1);
+by (Asm_full_simp_tac 1);
+by (subgoal_tac "ALL t. 0 <= t & t <= h --> g differentiable t" 1);
+by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
+by (blast_tac (claset() addDs [DERIV_isCont]) 1);
+by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
+by (Clarify_tac 1);
+by (res_inst_tac [("x","difg (Suc 0) t")] exI 1);
+by (Force_tac 1);
+by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
+by (Clarify_tac 1);
+by (res_inst_tac [("x","difg (Suc 0) x")] exI 1);
+by (Force_tac 1);
+by (Step_tac 1);
+by (Force_tac 1);
+by (subgoal_tac "EX ta. 0 < ta & ta < t & \
+\                DERIV difg (Suc n) ta :> 0" 1);
+by (rtac Rolle 2 THEN assume_tac 2);
+by (Asm_full_simp_tac 2);
+by (rotate_tac 2 2);
+by (dres_inst_tac [("x","n")] spec 2);
+by (ftac (ARITH_PROVE "n < m  ==> n < Suc m") 2);
+by (rtac DERIV_unique 2);
+by (assume_tac 3);
+by (Force_tac 2);
+by (subgoal_tac 
+    "ALL ta. 0 <= ta & ta <= t --> (difg (Suc n)) differentiable ta" 2);
+by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
+by (blast_tac (claset() addSDs [DERIV_isCont]) 2);
+by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
+by (Clarify_tac 2);
+by (res_inst_tac [("x","difg (Suc (Suc n)) ta")] exI 2);
+by (Force_tac 2);
+by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
+by (Clarify_tac 2);
+by (res_inst_tac [("x","difg (Suc (Suc n)) x")] exI 2);
+by (Force_tac 2);
+by (Step_tac 1);
+by (res_inst_tac [("x","ta")] exI 1);
+by (Force_tac 1);
+qed "Maclaurin";
+
+Goal "0 < h & 0 < n & diff 0 = f & \
+\      (ALL m t. \
+\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
+\   --> (EX t. 0 < t & \
+\             t < h & \
+\             f h = \
+\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
+\             diff n t / real (fact n) * h ^ n)";
+by (blast_tac (claset() addIs [Maclaurin]) 1);
+qed "Maclaurin_objl";
+
+Goal " [| 0 < h; diff 0 = f; \
+\      ALL m t. \
+\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
+\   ==> EX t. 0 < t & \
+\             t <= h & \
+\             f h = \
+\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
+\             diff n t / real (fact n) * h ^ n";
+by (case_tac "n" 1);
+by Auto_tac;
+by (dtac Maclaurin 1 THEN Auto_tac);
+qed "Maclaurin2";
+
+Goal "0 < h & diff 0 = f & \
+\      (ALL m t. \
+\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
+\   --> (EX t. 0 < t & \
+\             t <= h & \
+\             f h = \
+\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
+\             diff n t / real (fact n) * h ^ n)";
+by (blast_tac (claset() addIs [Maclaurin2]) 1);
+qed "Maclaurin2_objl";
+
+Goal " [| h < 0; 0 < n; diff 0 = f; \
+\      ALL m t. \
+\         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t |] \
+\   ==> EX t. h < t & \
+\             t < 0 & \
+\             f h = \
+\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
+\             diff n t / real (fact n) * h ^ n";
+by (cut_inst_tac [("f","%x. f (-x)"),
+                 ("diff","%n x. ((- 1) ^ n) * diff n (-x)"),
+                 ("h","-h"),("n","n")] Maclaurin_objl 1);
+by (Asm_full_simp_tac 1);
+by (etac impE 1 THEN Step_tac 1);
+by (stac minus_mult_right 1);
+by (rtac DERIV_cmult 1);
+by (rtac lemma_DERIV_subst 1);
+by (rtac (read_instantiate [("g","uminus")] DERIV_chain2) 1);
+by (rtac DERIV_minus 2 THEN rtac DERIV_Id 2);
+by (Force_tac 2);
+by (Force_tac 1);
+by (res_inst_tac [("x","-t")] exI 1);
+by Auto_tac;
+by (rtac (CLAIM "[| x = x'; y = y' |] ==> x + y = x' + (y'::real)") 1);
+by (rtac sumr_fun_eq 1);
+by (Asm_full_simp_tac 1);
+by (auto_tac (claset(),simpset() addsimps [real_divide_def,
+    CLAIM "((a * b) * c) * d = (b * c) * (a * (d::real))",
+    power_mult_distrib RS sym]));
+qed "Maclaurin_minus";
+
+Goal "(h < 0 & 0 < n & diff 0 = f & \
+\      (ALL m t. \
+\         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t))\
+\   --> (EX t. h < t & \
+\             t < 0 & \
+\             f h = \
+\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
+\             diff n t / real (fact n) * h ^ n)";
+by (blast_tac (claset() addIs [Maclaurin_minus]) 1);
+qed "Maclaurin_minus_objl";
+
+(* ------------------------------------------------------------------------- *)
+(* More convenient "bidirectional" version.                                  *)
+(* ------------------------------------------------------------------------- *)
+
+(* not good for PVS sin_approx, cos_approx *)
+Goal " [| diff 0 = f; \
+\      ALL m t. \
+\         m < n & abs t <= abs x --> DERIV (diff m) t :> diff (Suc m) t |] \
+\   ==> EX t. abs t <= abs x & \
+\             f x = \
+\             sumr 0 n (%m. diff m 0 / real (fact m) * x ^ m) + \
+\             diff n t / real (fact n) * x ^ n";
+by (case_tac "n = 0" 1);
+by (Force_tac 1);
+by (case_tac "x = 0" 1);
+by (res_inst_tac [("x","0")] exI 1);
+by (Asm_full_simp_tac 1);
+by (res_inst_tac [("P","0 < n")] impE 1);
+by (assume_tac 2 THEN assume_tac 2);
+by (induct_tac "n" 1);
+by (Simp_tac 1);
+by Auto_tac;
+by (cut_inst_tac [("x","x"),("y","0")] linorder_less_linear 1);
+by Auto_tac;
+by (cut_inst_tac [("f","diff 0"),
+                 ("diff","diff"),
+                 ("h","x"),("n","n")] Maclaurin_objl 2);
+by (Step_tac 2);
+by (blast_tac (claset() addDs 
+    [ARITH_PROVE "[|(0::real) <= t;t <= x |] ==> abs t <= abs x"]) 2);
+by (res_inst_tac [("x","t")] exI 2);
+by (force_tac (claset() addIs 
+    [ARITH_PROVE "[| 0 < t; (t::real) < x|] ==> abs t <= abs x"],simpset()) 2);
+by (cut_inst_tac [("f","diff 0"),
+                 ("diff","diff"),
+                 ("h","x"),("n","n")] Maclaurin_minus_objl 1);
+by (Step_tac 1);
+by (blast_tac (claset() addDs 
+    [ARITH_PROVE "[|x <= t;t <= (0::real) |] ==> abs t <= abs x"]) 1);
+by (res_inst_tac [("x","t")] exI 1);
+by (force_tac (claset() addIs 
+    [ARITH_PROVE "[| x < t; (t::real) < 0|] ==> abs t <= abs x"],simpset()) 1);
+qed "Maclaurin_bi_le";
+
+Goal "[| diff 0 = f; \
+\        ALL m x. DERIV (diff m) x :> diff(Suc m) x; \ 
+\       x ~= 0; 0 < n \
+\     |] ==> EX t. 0 < abs t & abs t < abs x & \
+\              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
+\                    (diff n t / real (fact n)) * x ^ n";
+by (res_inst_tac [("x","x"),("y","0")] linorder_cases 1);
+by (Blast_tac 2);
+by (dtac Maclaurin_minus 1);
+by (dtac Maclaurin 5);
+by (TRYALL(assume_tac));
+by (Blast_tac 1);
+by (Blast_tac 2);
+by (Step_tac 1);
+by (ALLGOALS(res_inst_tac [("x","t")] exI));
+by (Step_tac 1);
+by (ALLGOALS(arith_tac));
+qed "Maclaurin_all_lt";
+
+Goal "diff 0 = f & \
+\     (ALL m x. DERIV (diff m) x :> diff(Suc m) x) & \
+\     x ~= 0 & 0 < n \
+\     --> (EX t. 0 < abs t & abs t < abs x & \
+\              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
+\                    (diff n t / real (fact n)) * x ^ n)";
+by (blast_tac (claset() addIs [Maclaurin_all_lt]) 1);
+qed "Maclaurin_all_lt_objl";
+
+Goal "x = (0::real)  \
+\     ==> 0 < n --> \
+\         sumr 0 n (%m. (diff m (0::real) / real (fact m)) * x ^ m) = \
+\         diff 0 0";
+by (Asm_simp_tac 1);
+by (induct_tac "n" 1);
+by Auto_tac; 
+qed_spec_mp "Maclaurin_zero";
+
+Goal "[| diff 0 = f; \
+\       ALL m x. DERIV (diff m) x :> diff (Suc m) x \
+\     |] ==> EX t. abs t <= abs x & \
+\             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
+\                   (diff n t / real (fact n)) * x ^ n";
+by (cut_inst_tac [("n","n"),("m","0")] 
+       (ARITH_PROVE "n <= m | m < (n::nat)") 1);
+by (etac disjE 1);
+by (Force_tac 1);
+by (case_tac "x = 0" 1);
+by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_zero 1);
+by (assume_tac 1);
+by (dtac (gr_implies_not0 RS  not0_implies_Suc) 1);
+by (res_inst_tac [("x","0")] exI 1);
+by (Force_tac 1);
+by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_all_lt 1);
+by (TRYALL(assume_tac));
+by (Step_tac 1);
+by (res_inst_tac [("x","t")] exI 1);
+by Auto_tac;
+qed "Maclaurin_all_le";
+
+Goal "diff 0 = f & \
+\     (ALL m x. DERIV (diff m) x :> diff (Suc m) x)  \
+\     --> (EX t. abs t <= abs x & \
+\             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
+\                   (diff n t / real (fact n)) * x ^ n)";
+by (blast_tac (claset() addIs [Maclaurin_all_le]) 1);
+qed "Maclaurin_all_le_objl";
+
+(* ------------------------------------------------------------------------- *)
+(* Version for exp.                                                          *)
+(* ------------------------------------------------------------------------- *)
+
+Goal "[| x ~= 0; 0 < n |] \
+\     ==> (EX t. 0 < abs t & \
+\               abs t < abs x & \
+\               exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
+\                       (exp t / real (fact n)) * x ^ n)";
+by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
+    Maclaurin_all_lt_objl 1);
+by Auto_tac;
+qed "Maclaurin_exp_lt";
+
+Goal "EX t. abs t <= abs x & \
+\           exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
+\                      (exp t / real (fact n)) * x ^ n";
+by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
+    Maclaurin_all_le_objl 1);
+by Auto_tac;
+qed "Maclaurin_exp_le";
+
+(* ------------------------------------------------------------------------- *)
+(* Version for sin function                                                  *)
+(* ------------------------------------------------------------------------- *)
+
+Goal "[| a < b; ALL x. a <= x & x <= b --> DERIV f x :> f'(x) |] \
+\     ==> EX z. a < z & z < b & (f b - f a = (b - a) * f'(z))";
+by (dtac MVT 1);
+by (blast_tac (claset() addIs [DERIV_isCont]) 1);
+by (force_tac (claset() addDs [order_less_imp_le],
+    simpset() addsimps [differentiable_def]) 1);
+by (blast_tac (claset() addDs [DERIV_unique,order_less_imp_le]) 1);
+qed "MVT2";
+
+Goal "d < (4::nat) ==> d = 0 | d = 1 | d = 2 | d = 3";
+by (case_tac "d" 1 THEN Auto_tac);
+qed "lemma_exhaust_less_4";
+
+bind_thm ("real_mult_le_lemma",
+          simplify (simpset()) (inst "b" "1" mult_right_mono));
+
+
+Goal "0 < n --> Suc (Suc (2 * n - 2)) = 2*n";
+by (induct_tac "n" 1);
+by Auto_tac;
+qed_spec_mp "Suc_Suc_mult_two_diff_two";
+Addsimps [Suc_Suc_mult_two_diff_two];
+
+Goal "0 < n --> Suc (Suc (4*n - 2)) = 4*n";
+by (induct_tac "n" 1);
+by Auto_tac;
+qed_spec_mp "lemma_Suc_Suc_4n_diff_2";
+Addsimps [lemma_Suc_Suc_4n_diff_2];
+
+Goal "0 < n --> Suc (2 * n - 1) = 2*n";
+by (induct_tac "n" 1);
+by Auto_tac;
+qed_spec_mp "Suc_mult_two_diff_one";
+Addsimps [Suc_mult_two_diff_one];
+
+Goal "EX t. sin x = \
+\      (sumr 0 n (%m. (if even m then 0 \
+\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
+\                      x ^ m)) \
+\     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
+by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
+       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
+       Maclaurin_all_lt_objl 1);
+by (Safe_tac);
+by (Simp_tac 1);
+by (Simp_tac 1);
+by (case_tac "n" 1);
+by (Clarify_tac 1); 
+by (Asm_full_simp_tac 1);
+by (dres_inst_tac [("x","0")] spec 1 THEN Asm_full_simp_tac 1);
+by (Asm_full_simp_tac 1);
+by (rtac ccontr 1);
+by (Asm_full_simp_tac 1);
+by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
+by (dtac ssubst 1 THEN assume_tac 2);
+by (res_inst_tac [("x","t")] exI 1);
+by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
+by (rtac sumr_fun_eq 1);
+by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
+by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
+(*Could sin_zero_iff help?*)
+qed "Maclaurin_sin_expansion";
+
+Goal "EX t. abs t <= abs x &  \
+\      sin x = \
+\      (sumr 0 n (%m. (if even m then 0 \
+\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
+\                      x ^ m)) \
+\     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
+
+by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
+       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
+       Maclaurin_all_lt_objl 1);
+by (Step_tac 1);
+by (Simp_tac 1);
+by (Simp_tac 1);
+by (case_tac "n" 1);
+by (Clarify_tac 1); 
+by (Asm_full_simp_tac 1);
+by (Asm_full_simp_tac 1);
+by (rtac ccontr 1);
+by (Asm_full_simp_tac 1);
+by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
+by (dtac ssubst 1 THEN assume_tac 2);
+by (res_inst_tac [("x","t")] exI 1);
+by (rtac conjI 1);
+by (arith_tac 1);
+by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
+by (rtac sumr_fun_eq 1);
+by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
+by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
+qed "Maclaurin_sin_expansion2";
+
+Goal "[| 0 < n; 0 < x |] ==> \
+\      EX t. 0 < t & t < x & \
+\      sin x = \
+\      (sumr 0 n (%m. (if even m then 0 \
+\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
+\                      x ^ m)) \
+\     + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)";
+by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
+       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
+       Maclaurin_objl 1);
+by (Step_tac 1);
+by (Asm_full_simp_tac 1);
+by (Simp_tac 1);
+by (dtac ssubst 1 THEN assume_tac 2);
+by (res_inst_tac [("x","t")] exI 1);
+by (rtac conjI 1 THEN rtac conjI 2);
+by (assume_tac 1 THEN assume_tac 1);
+by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
+by (rtac sumr_fun_eq 1);
+by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
+by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
+qed "Maclaurin_sin_expansion3";
+
+Goal "0 < x ==> \
+\      EX t. 0 < t & t <= x & \
+\      sin x = \
+\      (sumr 0 n (%m. (if even m then 0 \
+\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
+\                      x ^ m)) \
+\     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
+by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
+       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
+       Maclaurin2_objl 1);
+by (Step_tac 1);
+by (Asm_full_simp_tac 1);
+by (Simp_tac 1);
+by (dtac ssubst 1 THEN assume_tac 2);
+by (res_inst_tac [("x","t")] exI 1);
+by (rtac conjI 1 THEN rtac conjI 2);
+by (assume_tac 1 THEN assume_tac 1);
+by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
+by (rtac sumr_fun_eq 1);
+by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
+by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
+qed "Maclaurin_sin_expansion4";
+
+(*-----------------------------------------------------------------------------*)
+(* Maclaurin expansion for cos                                                 *)
+(*-----------------------------------------------------------------------------*)
+
+Goal "sumr 0 (Suc n) \
+\        (%m. (if even m \
+\              then (- 1) ^ (m div 2)/(real  (fact m)) \
+\              else 0) * \
+\             0 ^ m) = 1";
+by (induct_tac "n" 1);
+by Auto_tac;
+qed "sumr_cos_zero_one";
+Addsimps [sumr_cos_zero_one];
+
+Goal "EX t. abs t <= abs x & \
+\      cos x = \
+\      (sumr 0 n (%m. (if even m \
+\                      then (- 1) ^ (m div 2)/(real (fact m)) \
+\                      else 0) * \
+\                      x ^ m)) \
+\     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
+by (cut_inst_tac [("f","cos"),("n","n"),("x","x"),
+       ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
+       Maclaurin_all_lt_objl 1);
+by (Step_tac 1);
+by (Simp_tac 1);
+by (Simp_tac 1);
+by (case_tac "n" 1);
+by (Asm_full_simp_tac 1);
+by (asm_full_simp_tac (simpset() delsimps [sumr_Suc]) 1);
+by (rtac ccontr 1);
+by (Asm_full_simp_tac 1);
+by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
+by (dtac ssubst 1 THEN assume_tac 2);
+by (res_inst_tac [("x","t")] exI 1);
+by (rtac conjI 1);
+by (arith_tac 1);
+by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
+by (rtac sumr_fun_eq 1);
+by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
+by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add]  delsimps 
+    [fact_Suc,realpow_Suc]));
+by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
+qed "Maclaurin_cos_expansion";
+
+Goal "[| 0 < x; 0 < n |] ==> \
+\      EX t. 0 < t & t < x & \
+\      cos x = \
+\      (sumr 0 n (%m. (if even m \
+\                      then (- 1) ^ (m div 2)/(real (fact m)) \
+\                      else 0) * \
+\                      x ^ m)) \
+\     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
+by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
+       ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
+       Maclaurin_objl 1);
+by (Step_tac 1);
+by (Asm_full_simp_tac 1);
+by (Simp_tac 1);
+by (dtac ssubst 1 THEN assume_tac 2);
+by (res_inst_tac [("x","t")] exI 1);
+by (rtac conjI 1 THEN rtac conjI 2);
+by (assume_tac 1 THEN assume_tac 1);
+by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
+by (rtac sumr_fun_eq 1);
+by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
+by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add]  delsimps [fact_Suc,realpow_Suc]));
+by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
+qed "Maclaurin_cos_expansion2";
+
+Goal "[| x < 0; 0 < n |] ==> \
+\      EX t. x < t & t < 0 & \
+\      cos x = \
+\      (sumr 0 n (%m. (if even m \
+\                      then (- 1) ^ (m div 2)/(real (fact m)) \
+\                      else 0) * \
+\                      x ^ m)) \
+\     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
+by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
+       ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
+       Maclaurin_minus_objl 1);
+by (Step_tac 1);
+by (Asm_full_simp_tac 1);
+by (Simp_tac 1);
+by (dtac ssubst 1 THEN assume_tac 2);
+by (res_inst_tac [("x","t")] exI 1);
+by (rtac conjI 1 THEN rtac conjI 2);
+by (assume_tac 1 THEN assume_tac 1);
+by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
+by (rtac sumr_fun_eq 1);
+by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
+by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add]  delsimps [fact_Suc,realpow_Suc]));
+by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
+qed "Maclaurin_minus_cos_expansion";
+
+(* ------------------------------------------------------------------------- *)
+(* Version for ln(1 +/- x). Where is it??                                    *)
+(* ------------------------------------------------------------------------- *)
+
--- a/src/HOL/IMP/Compiler.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/IMP/Compiler.thy	Tue May 11 20:11:08 2004 +0200
@@ -86,7 +86,7 @@
 lemma [simp]:
  "\<And>m n. closed m n (C1@C2) =
          (closed m (n+size C2) C1 \<and> closed (m+size C1) n C2)"
-by(induct C1, simp, simp add:plus_ac0)
+by(induct C1, simp, simp add:add_ac)
 
 theorem [simp]: "\<And>m n. closed m n (compile c)"
 by(induct c, simp_all add:backws_def forws_def)
--- a/src/HOL/Integ/Bin.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Integ/Bin.thy	Tue May 11 20:11:08 2004 +0200
@@ -10,7 +10,7 @@
 
 theory Bin = IntDef + Numeral:
 
-axclass number_ring \<subseteq> number, ring
+axclass number_ring \<subseteq> number, comm_ring_1
   number_of_Pls: "number_of bin.Pls = 0"
   number_of_Min: "number_of bin.Min = - 1"
   number_of_BIT: "number_of(w BIT x) = (if x then 1 else 0) +
@@ -118,7 +118,7 @@
 
 subsection{*Comparisons, for Ordered Rings*}
 
-lemma double_eq_0_iff: "(a + a = 0) = (a = (0::'a::ordered_ring))"
+lemma double_eq_0_iff: "(a + a = 0) = (a = (0::'a::ordered_idom))"
 proof -
   have "a + a = (1+1)*a" by (simp add: left_distrib)
   with zero_less_two [where 'a = 'a]
@@ -157,7 +157,7 @@
 
 
 text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*}
-lemma Ints_odd_nonzero: "a \<in> Ints ==> 1 + a + a \<noteq> (0::'a::ordered_ring)"
+lemma Ints_odd_nonzero: "a \<in> Ints ==> 1 + a + a \<noteq> (0::'a::ordered_idom)"
 proof (unfold Ints_def) 
   assume "a \<in> range of_int"
   then obtain z where a: "a = of_int z" ..
@@ -175,17 +175,17 @@
 
 lemma iszero_number_of_BIT:
      "iszero (number_of (w BIT x)::'a) = 
-      (~x & iszero (number_of w::'a::{ordered_ring,number_ring}))"
+      (~x & iszero (number_of w::'a::{ordered_idom,number_ring}))"
 by (simp add: iszero_def compare_rls zero_reorient double_eq_0_iff 
               number_of Ints_odd_nonzero [OF Ints_number_of])
 
 lemma iszero_number_of_0:
-     "iszero (number_of (w BIT False) :: 'a::{ordered_ring,number_ring}) = 
+     "iszero (number_of (w BIT False) :: 'a::{ordered_idom,number_ring}) = 
       iszero (number_of w :: 'a)"
 by (simp only: iszero_number_of_BIT simp_thms)
 
 lemma iszero_number_of_1:
-     "~ iszero (number_of (w BIT True)::'a::{ordered_ring,number_ring})"
+     "~ iszero (number_of (w BIT True)::'a::{ordered_idom,number_ring})"
 by (simp only: iszero_number_of_BIT simp_thms)
 
 
@@ -193,7 +193,7 @@
 subsection{*The Less-Than Relation*}
 
 lemma less_number_of_eq_neg:
-    "((number_of x::'a::{ordered_ring,number_ring}) < number_of y)
+    "((number_of x::'a::{ordered_idom,number_ring}) < number_of y)
      = neg (number_of (bin_add x (bin_minus y)) :: 'a)"
 apply (subst less_iff_diff_less_0) 
 apply (simp add: neg_def diff_minus number_of_add number_of_minus)
@@ -202,14 +202,14 @@
 text{*If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
   @{term Numeral0} IS @{term "number_of Pls"} *}
 lemma not_neg_number_of_Pls:
-     "~ neg (number_of bin.Pls ::'a::{ordered_ring,number_ring})"
+     "~ neg (number_of bin.Pls ::'a::{ordered_idom,number_ring})"
 by (simp add: neg_def numeral_0_eq_0)
 
 lemma neg_number_of_Min:
-     "neg (number_of bin.Min ::'a::{ordered_ring,number_ring})"
+     "neg (number_of bin.Min ::'a::{ordered_idom,number_ring})"
 by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1)
 
-lemma double_less_0_iff: "(a + a < 0) = (a < (0::'a::ordered_ring))"
+lemma double_less_0_iff: "(a + a < 0) = (a < (0::'a::ordered_idom))"
 proof -
   have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib)
   also have "... = (a < 0)"
@@ -231,7 +231,7 @@
 
 text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*}
 lemma Ints_odd_less_0: 
-     "a \<in> Ints ==> (1 + a + a < 0) = (a < (0::'a::ordered_ring))";
+     "a \<in> Ints ==> (1 + a + a < 0) = (a < (0::'a::ordered_idom))";
 proof (unfold Ints_def) 
   assume "a \<in> range of_int"
   then obtain z where a: "a = of_int z" ..
@@ -244,7 +244,7 @@
 
 lemma neg_number_of_BIT:
      "neg (number_of (w BIT x)::'a) = 
-      neg (number_of w :: 'a::{ordered_ring,number_ring})"
+      neg (number_of w :: 'a::{ordered_idom,number_ring})"
 by (simp add: number_of neg_def double_less_0_iff
               Ints_odd_less_0 [OF Ints_number_of])
 
@@ -257,7 +257,7 @@
                           standard]
 
 lemma le_number_of_eq:
-    "((number_of x::'a::{ordered_ring,number_ring}) \<le> number_of y)
+    "((number_of x::'a::{ordered_idom,number_ring}) \<le> number_of y)
      = (~ (neg (number_of (bin_add y (bin_minus x)) :: 'a)))"
 by (simp add: le_number_of_eq_not_less less_number_of_eq_neg)
 
@@ -265,7 +265,7 @@
 text{*Absolute value (@{term abs})*}
 
 lemma abs_number_of:
-     "abs(number_of x::'a::{ordered_ring,number_ring}) =
+     "abs(number_of x::'a::{ordered_idom,number_ring}) =
       (if number_of x < (0::'a) then -number_of x else number_of x)"
 by (simp add: abs_if)
 
--- a/src/HOL/Integ/IntArith.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Integ/IntArith.thy	Tue May 11 20:11:08 2004 +0200
@@ -126,11 +126,11 @@
   finally show ?thesis .
 qed
 
-lemma abs_minus_one [simp]: "abs (-1) = (1::'a::{ordered_ring,number_ring})"
+lemma abs_minus_one [simp]: "abs (-1) = (1::'a::{ordered_idom,number_ring})"
 by (simp add: abs_if)
 
 lemma abs_power_minus_one [simp]:
-     "abs(-1 ^ n) = (1::'a::{ordered_ring,number_ring,ringpower})"
+     "abs(-1 ^ n) = (1::'a::{ordered_idom,number_ring,ringpower})"
 by (simp add: power_abs)
 
 lemma of_int_number_of_eq:
--- a/src/HOL/Integ/IntDef.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Integ/IntDef.thy	Tue May 11 20:11:08 2004 +0200
@@ -153,7 +153,7 @@
 
 lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute
 
-lemmas zmult_ac = Ring_and_Field.mult_ac
+lemmas zmult_ac = OrderedGroup.mult_ac
 
 lemma zadd_int: "(int m) + (int n) = int (m + n)"
 by (simp add: int_def add)
@@ -164,7 +164,7 @@
 lemma int_Suc: "int (Suc m) = 1 + (int m)"
 by (simp add: One_int_def zadd_int)
 
-(*also for the instance declaration int :: plus_ac0*)
+(*also for the instance declaration int :: comm_monoid_add*)
 lemma zadd_0: "(0::int) + z = z"
 apply (simp add: Zero_int_def int_def)
 apply (cases z, simp add: add)
@@ -235,8 +235,8 @@
 by (rule trans [OF zmult_commute zmult_1])
 
 
-text{*The Integers Form A Ring*}
-instance int :: ring
+text{*The Integers Form A comm_ring_1*}
+instance int :: comm_ring_1
 proof
   fix i j k :: int
   show "(i + j) + k = i + (j + k)" by (simp add: zadd_assoc)
@@ -368,8 +368,8 @@
     zabs_def:  "abs(i::int) == if i < 0 then -i else i"
 
 
-text{*The Integers Form an Ordered Ring*}
-instance int :: ordered_ring
+text{*The Integers Form an Ordered comm_ring_1*}
+instance int :: ordered_idom
 proof
   fix i j k :: int
   show "i \<le> j ==> k + i \<le> k + j" by (rule zadd_left_mono)
@@ -510,7 +510,7 @@
       in theory @{text Ring_and_Field}.
       But is it really better than just rewriting with @{text abs_if}?*}
 lemma abs_split [arith_split]:
-     "P(abs(a::'a::ordered_ring)) = ((0 \<le> a --> P a) & (a < 0 --> P(-a)))"
+     "P(abs(a::'a::ordered_idom)) = ((0 \<le> a --> P a) & (a < 0 --> P(-a)))"
 by (force dest: order_less_le_trans simp add: abs_if linorder_not_less)
 
 
@@ -519,11 +519,11 @@
 
 constdefs
 
-  neg   :: "'a::ordered_ring => bool"
+  neg   :: "'a::ordered_idom => bool"
   "neg(Z) == Z < 0"
 
   (*For simplifying equalities*)
-  iszero :: "'a::semiring => bool"
+  iszero :: "'a::comm_semiring_1_cancel => bool"
   "iszero z == z = (0)"
 
 
@@ -560,9 +560,9 @@
 by (simp add: linorder_not_less neg_def)
 
 
-subsection{*Embedding of the Naturals into any Semiring: @{term of_nat}*}
+subsection{*Embedding of the Naturals into any comm_semiring_1_cancel: @{term of_nat}*}
 
-consts of_nat :: "nat => 'a::semiring"
+consts of_nat :: "nat => 'a::comm_semiring_1_cancel"
 
 primrec
   of_nat_0:   "of_nat 0 = 0"
@@ -581,27 +581,27 @@
 apply (simp_all add: mult_ac add_ac right_distrib)
 done
 
-lemma zero_le_imp_of_nat: "0 \<le> (of_nat m::'a::ordered_semiring)"
+lemma zero_le_imp_of_nat: "0 \<le> (of_nat m::'a::ordered_semidom)"
 apply (induct m, simp_all)
 apply (erule order_trans)
 apply (rule less_add_one [THEN order_less_imp_le])
 done
 
 lemma less_imp_of_nat_less:
-     "m < n ==> of_nat m < (of_nat n::'a::ordered_semiring)"
+     "m < n ==> of_nat m < (of_nat n::'a::ordered_semidom)"
 apply (induct m n rule: diff_induct, simp_all)
 apply (insert add_le_less_mono [OF zero_le_imp_of_nat zero_less_one], force)
 done
 
 lemma of_nat_less_imp_less:
-     "of_nat m < (of_nat n::'a::ordered_semiring) ==> m < n"
+     "of_nat m < (of_nat n::'a::ordered_semidom) ==> m < n"
 apply (induct m n rule: diff_induct, simp_all)
 apply (insert zero_le_imp_of_nat)
 apply (force simp add: linorder_not_less [symmetric])
 done
 
 lemma of_nat_less_iff [simp]:
-     "(of_nat m < (of_nat n::'a::ordered_semiring)) = (m<n)"
+     "(of_nat m < (of_nat n::'a::ordered_semidom)) = (m<n)"
 by (blast intro: of_nat_less_imp_less less_imp_of_nat_less)
 
 text{*Special cases where either operand is zero*}
@@ -609,17 +609,17 @@
 declare of_nat_less_iff [of _ 0, simplified, simp]
 
 lemma of_nat_le_iff [simp]:
-     "(of_nat m \<le> (of_nat n::'a::ordered_semiring)) = (m \<le> n)"
+     "(of_nat m \<le> (of_nat n::'a::ordered_semidom)) = (m \<le> n)"
 by (simp add: linorder_not_less [symmetric])
 
 text{*Special cases where either operand is zero*}
 declare of_nat_le_iff [of 0, simplified, simp]
 declare of_nat_le_iff [of _ 0, simplified, simp]
 
-text{*The ordering on the semiring is necessary to exclude the possibility of
+text{*The ordering on the comm_semiring_1_cancel is necessary to exclude the possibility of
 a finite field, which indeed wraps back to zero.*}
 lemma of_nat_eq_iff [simp]:
-     "(of_nat m = (of_nat n::'a::ordered_semiring)) = (m = n)"
+     "(of_nat m = (of_nat n::'a::ordered_semidom)) = (m = n)"
 by (simp add: order_eq_iff)
 
 text{*Special cases where either operand is zero*}
@@ -627,7 +627,7 @@
 declare of_nat_eq_iff [of _ 0, simplified, simp]
 
 lemma of_nat_diff [simp]:
-     "n \<le> m ==> of_nat (m - n) = of_nat m - (of_nat n :: 'a::ring)"
+     "n \<le> m ==> of_nat (m - n) = of_nat m - (of_nat n :: 'a::comm_ring_1)"
 by (simp del: of_nat_add
 	 add: compare_rls of_nat_add [symmetric] split add: nat_diff_split)
 
@@ -635,7 +635,7 @@
 subsection{*The Set of Natural Numbers*}
 
 constdefs
-   Nats  :: "'a::semiring set"
+   Nats  :: "'a::comm_semiring_1_cancel set"
     "Nats == range of_nat"
 
 syntax (xsymbols)    Nats :: "'a set"   ("\<nat>")
@@ -681,10 +681,10 @@
 qed
 
 
-subsection{*Embedding of the Integers into any Ring: @{term of_int}*}
+subsection{*Embedding of the Integers into any comm_ring_1: @{term of_int}*}
 
 constdefs
-   of_int :: "int => 'a::ring"
+   of_int :: "int => 'a::comm_ring_1"
    "of_int z == contents (\<Union>(i,j) \<in> Rep_Integ z. { of_nat i - of_nat j })"
 
 
@@ -719,7 +719,7 @@
 done
 
 lemma of_int_le_iff [simp]:
-     "(of_int w \<le> (of_int z::'a::ordered_ring)) = (w \<le> z)"
+     "(of_int w \<le> (of_int z::'a::ordered_idom)) = (w \<le> z)"
 apply (cases w)
 apply (cases z)
 apply (simp add: compare_rls of_int le diff_int_def add minus
@@ -731,16 +731,16 @@
 declare of_int_le_iff [of _ 0, simplified, simp]
 
 lemma of_int_less_iff [simp]:
-     "(of_int w < (of_int z::'a::ordered_ring)) = (w < z)"
+     "(of_int w < (of_int z::'a::ordered_idom)) = (w < z)"
 by (simp add: linorder_not_le [symmetric])
 
 text{*Special cases where either operand is zero*}
 declare of_int_less_iff [of 0, simplified, simp]
 declare of_int_less_iff [of _ 0, simplified, simp]
 
-text{*The ordering on the ring is necessary. See @{text of_nat_eq_iff} above.*}
+text{*The ordering on the comm_ring_1 is necessary. See @{text of_nat_eq_iff} above.*}
 lemma of_int_eq_iff [simp]:
-     "(of_int w = (of_int z::'a::ordered_ring)) = (w = z)"
+     "(of_int w = (of_int z::'a::ordered_idom)) = (w = z)"
 by (simp add: order_eq_iff)
 
 text{*Special cases where either operand is zero*}
@@ -759,7 +759,7 @@
 subsection{*The Set of Integers*}
 
 constdefs
-   Ints  :: "'a::ring set"
+   Ints  :: "'a::comm_ring_1 set"
     "Ints == range of_int"
 
 
--- a/src/HOL/Integ/NatBin.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Integ/NatBin.thy	Tue May 11 20:11:08 2004 +0200
@@ -256,42 +256,42 @@
 We cannot prove general results about the numeral @{term "-1"}, so we have to
 use @{term "- 1"} instead.*}
 
-lemma power2_eq_square: "(a::'a::{semiring,ringpower})\<twosuperior> = a * a"
+lemma power2_eq_square: "(a::'a::{comm_semiring_1_cancel,ringpower})\<twosuperior> = a * a"
   by (simp add: numeral_2_eq_2 Power.power_Suc)
 
-lemma [simp]: "(0::'a::{semiring,ringpower})\<twosuperior> = 0"
+lemma [simp]: "(0::'a::{comm_semiring_1_cancel,ringpower})\<twosuperior> = 0"
   by (simp add: power2_eq_square)
 
-lemma [simp]: "(1::'a::{semiring,ringpower})\<twosuperior> = 1"
+lemma [simp]: "(1::'a::{comm_semiring_1_cancel,ringpower})\<twosuperior> = 1"
   by (simp add: power2_eq_square)
 
 text{*Squares of literal numerals will be evaluated.*}
 declare power2_eq_square [of "number_of w", standard, simp]
 
-lemma zero_le_power2 [simp]: "0 \<le> (a\<twosuperior>::'a::{ordered_ring,ringpower})"
+lemma zero_le_power2 [simp]: "0 \<le> (a\<twosuperior>::'a::{ordered_idom,ringpower})"
   by (simp add: power2_eq_square zero_le_square)
 
 lemma zero_less_power2 [simp]:
-     "(0 < a\<twosuperior>) = (a \<noteq> (0::'a::{ordered_ring,ringpower}))"
+     "(0 < a\<twosuperior>) = (a \<noteq> (0::'a::{ordered_idom,ringpower}))"
   by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)
 
 lemma zero_eq_power2 [simp]:
-     "(a\<twosuperior> = 0) = (a = (0::'a::{ordered_ring,ringpower}))"
+     "(a\<twosuperior> = 0) = (a = (0::'a::{ordered_idom,ringpower}))"
   by (force simp add: power2_eq_square mult_eq_0_iff)
 
 lemma abs_power2 [simp]:
-     "abs(a\<twosuperior>) = (a\<twosuperior>::'a::{ordered_ring,ringpower})"
+     "abs(a\<twosuperior>) = (a\<twosuperior>::'a::{ordered_idom,ringpower})"
   by (simp add: power2_eq_square abs_mult abs_mult_self)
 
 lemma power2_abs [simp]:
-     "(abs a)\<twosuperior> = (a\<twosuperior>::'a::{ordered_ring,ringpower})"
+     "(abs a)\<twosuperior> = (a\<twosuperior>::'a::{ordered_idom,ringpower})"
   by (simp add: power2_eq_square abs_mult_self)
 
 lemma power2_minus [simp]:
-     "(- a)\<twosuperior> = (a\<twosuperior>::'a::{ring,ringpower})"
+     "(- a)\<twosuperior> = (a\<twosuperior>::'a::{comm_ring_1,ringpower})"
   by (simp add: power2_eq_square)
 
-lemma power_minus1_even: "(- 1) ^ (2*n) = (1::'a::{ring,ringpower})"
+lemma power_minus1_even: "(- 1) ^ (2*n) = (1::'a::{comm_ring_1,ringpower})"
 apply (induct_tac "n")
 apply (auto simp add: power_Suc power_add)
 done
@@ -303,11 +303,11 @@
 by (simp add: power_even_eq) 
 
 lemma power_minus_even [simp]:
-     "(-a) ^ (2*n) = (a::'a::{ring,ringpower}) ^ (2*n)"
+     "(-a) ^ (2*n) = (a::'a::{comm_ring_1,ringpower}) ^ (2*n)"
 by (simp add: power_minus1_even power_minus [of a]) 
 
 lemma zero_le_even_power:
-     "0 \<le> (a::'a::{ordered_ring,ringpower}) ^ (2*n)"
+     "0 \<le> (a::'a::{ordered_idom,ringpower}) ^ (2*n)"
 proof (induct "n")
   case 0
     show ?case by (simp add: zero_le_one)
@@ -320,7 +320,7 @@
 qed
 
 lemma odd_power_less_zero:
-     "(a::'a::{ordered_ring,ringpower}) < 0 ==> a ^ Suc(2*n) < 0"
+     "(a::'a::{ordered_idom,ringpower}) < 0 ==> a ^ Suc(2*n) < 0"
 proof (induct "n")
   case 0
     show ?case by (simp add: Power.power_Suc)
@@ -333,7 +333,7 @@
 qed
 
 lemma odd_0_le_power_imp_0_le:
-     "0 \<le> a  ^ Suc(2*n) ==> 0 \<le> (a::'a::{ordered_ring,ringpower})"
+     "0 \<le> a  ^ Suc(2*n) ==> 0 \<le> (a::'a::{ordered_idom,ringpower})"
 apply (insert odd_power_less_zero [of a n]) 
 apply (force simp add: linorder_not_less [symmetric]) 
 done
@@ -473,7 +473,7 @@
      "((number_of (v BIT x) ::int) = number_of (w BIT y)) =  
       (x=y & (((number_of v) ::int) = number_of w))"
 by (simp only: simp_thms number_of_BIT lemma1 lemma2 eq_commute
-               Ring_and_Field.add_left_cancel add_assoc Ring_and_Field.add_0
+               OrderedGroup.add_left_cancel add_assoc OrderedGroup.add_0
             split add: split_if cong: imp_cong) 
 
 
--- a/src/HOL/Integ/Parity.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Integ/Parity.thy	Tue May 11 20:11:08 2004 +0200
@@ -249,7 +249,7 @@
   by (rule neg_one_even_odd_power [THEN conjunct2, THEN mp], assumption)
 
 lemma neg_power_if:
-     "(-x::'a::{ring,ringpower}) ^ n = 
+     "(-x::'a::{comm_ring_1,ringpower}) ^ n = 
       (if even n then (x ^ n) else -(x ^ n))"
   by (induct n, simp_all split: split_if_asm add: power_Suc) 
 
@@ -257,13 +257,13 @@
 subsection {* An Equivalence for @{term "0 \<le> a^n"} *}
 
 lemma even_power_le_0_imp_0:
-     "a ^ (2*k) \<le> (0::'a::{ordered_ring,ringpower}) ==> a=0"
+     "a ^ (2*k) \<le> (0::'a::{ordered_idom,ringpower}) ==> a=0"
 apply (induct k) 
 apply (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc)  
 done
 
 lemma zero_le_power_iff:
-     "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_ring,ringpower}) | even n)"
+     "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,ringpower}) | even n)"
       (is "?P n")
 proof cases
   assume even: "even n"
--- a/src/HOL/Integ/Presburger.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Integ/Presburger.thy	Tue May 11 20:11:08 2004 +0200
@@ -704,7 +704,7 @@
     have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast
     also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)"
       using minus[THEN spec, of "x - i * d"]
-      by (simp add:int_distrib Ring_and_Field.diff_diff_eq[symmetric])
+      by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric])
     ultimately show "P x \<longrightarrow> P(x - (i + 1) * d)" by blast
   qed
 qed
--- a/src/HOL/Integ/int_arith1.ML	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Integ/int_arith1.ML	Tue May 11 20:11:08 2004 +0200
@@ -383,20 +383,20 @@
       "(l::'a::number_ring) = m * n"],
      EqCancelNumerals.proc),
     ("intless_cancel_numerals",
-     ["(l::'a::{ordered_ring,number_ring}) + m < n",
-      "(l::'a::{ordered_ring,number_ring}) < m + n",
-      "(l::'a::{ordered_ring,number_ring}) - m < n",
-      "(l::'a::{ordered_ring,number_ring}) < m - n",
-      "(l::'a::{ordered_ring,number_ring}) * m < n",
-      "(l::'a::{ordered_ring,number_ring}) < m * n"],
+     ["(l::'a::{ordered_idom,number_ring}) + m < n",
+      "(l::'a::{ordered_idom,number_ring}) < m + n",
+      "(l::'a::{ordered_idom,number_ring}) - m < n",
+      "(l::'a::{ordered_idom,number_ring}) < m - n",
+      "(l::'a::{ordered_idom,number_ring}) * m < n",
+      "(l::'a::{ordered_idom,number_ring}) < m * n"],
      LessCancelNumerals.proc),
     ("intle_cancel_numerals",
-     ["(l::'a::{ordered_ring,number_ring}) + m <= n",
-      "(l::'a::{ordered_ring,number_ring}) <= m + n",
-      "(l::'a::{ordered_ring,number_ring}) - m <= n",
-      "(l::'a::{ordered_ring,number_ring}) <= m - n",
-      "(l::'a::{ordered_ring,number_ring}) * m <= n",
-      "(l::'a::{ordered_ring,number_ring}) <= m * n"],
+     ["(l::'a::{ordered_idom,number_ring}) + m <= n",
+      "(l::'a::{ordered_idom,number_ring}) <= m + n",
+      "(l::'a::{ordered_idom,number_ring}) - m <= n",
+      "(l::'a::{ordered_idom,number_ring}) <= m - n",
+      "(l::'a::{ordered_idom,number_ring}) * m <= n",
+      "(l::'a::{ordered_idom,number_ring}) <= m * n"],
      LeCancelNumerals.proc)];
 
 
@@ -488,7 +488,7 @@
 
 val assoc_fold_simproc =
   Bin_Simprocs.prep_simproc
-   ("semiring_assoc_fold", ["(a::'a::semiring) * b"],
+   ("semiring_assoc_fold", ["(a::'a::comm_semiring_1_cancel) * b"],
     Semiring_Times_Assoc.proc);
 
 Addsimprocs [assoc_fold_simproc];
@@ -545,9 +545,9 @@
 val fast_int_arith_simproc =
   Simplifier.simproc (Theory.sign_of (the_context()))
   "fast_int_arith" 
-     ["(m::'a::{ordered_ring,number_ring}) < n",
-      "(m::'a::{ordered_ring,number_ring}) <= n",
-      "(m::'a::{ordered_ring,number_ring}) = n"] Fast_Arith.lin_arith_prover;
+     ["(m::'a::{ordered_idom,number_ring}) < n",
+      "(m::'a::{ordered_idom,number_ring}) <= n",
+      "(m::'a::{ordered_idom,number_ring}) = n"] Fast_Arith.lin_arith_prover;
 
 Addsimprocs [fast_int_arith_simproc]
 
--- a/src/HOL/Integ/int_factor_simprocs.ML	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Integ/int_factor_simprocs.ML	Tue May 11 20:11:08 2004 +0200
@@ -116,16 +116,16 @@
 val ring_cancel_numeral_factors =
   map Bin_Simprocs.prep_simproc
    [("ring_eq_cancel_numeral_factor",
-     ["(l::'a::{ordered_ring,number_ring}) * m = n",
-      "(l::'a::{ordered_ring,number_ring}) = m * n"],
+     ["(l::'a::{ordered_idom,number_ring}) * m = n",
+      "(l::'a::{ordered_idom,number_ring}) = m * n"],
      EqCancelNumeralFactor.proc),
     ("ring_less_cancel_numeral_factor",
-     ["(l::'a::{ordered_ring,number_ring}) * m < n",
-      "(l::'a::{ordered_ring,number_ring}) < m * n"],
+     ["(l::'a::{ordered_idom,number_ring}) * m < n",
+      "(l::'a::{ordered_idom,number_ring}) < m * n"],
      LessCancelNumeralFactor.proc),
     ("ring_le_cancel_numeral_factor",
-     ["(l::'a::{ordered_ring,number_ring}) * m <= n",
-      "(l::'a::{ordered_ring,number_ring}) <= m * n"],
+     ["(l::'a::{ordered_idom,number_ring}) * m <= n",
+      "(l::'a::{ordered_idom,number_ring}) <= m * n"],
      LeCancelNumeralFactor.proc),
     ("int_div_cancel_numeral_factors",
      ["((l::int) * m) div n", "(l::int) div (m * n)"],
@@ -249,7 +249,7 @@
   val norm_tac = ALLGOALS (simp_tac (HOL_ss addsimps mult_1s@mult_ac))
   end;
 
-(*mult_cancel_left requires an ordered ring, such as int. The version in
+(*mult_cancel_left requires an ordered comm_ring_1, such as int. The version in
   rat_arith.ML works for all fields.*)
 structure EqCancelFactor = ExtractCommonTermFun
  (open CancelFactorCommon
--- a/src/HOL/IsaMakefile	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/IsaMakefile	Tue May 11 20:11:08 2004 +0200
@@ -151,7 +151,7 @@
   Hyperreal/HyperDef.thy Hyperreal/HyperNat.thy\
   Hyperreal/HyperPow.thy Hyperreal/Hyperreal.thy\
   Hyperreal/Lim.thy Hyperreal/Log.thy\
-  Hyperreal/MacLaurin.ML Hyperreal/MacLaurin.thy Hyperreal/NatStar.thy\
+  Hyperreal/MacLaurin_lemmas.ML Hyperreal/MacLaurin.thy Hyperreal/NatStar.thy\
   Hyperreal/NSA.thy Hyperreal/NthRoot.thy Hyperreal/Poly.thy\
   Hyperreal/SEQ.ML Hyperreal/SEQ.thy Hyperreal/Series.thy\
   Hyperreal/Star.thy Hyperreal/Transcendental.ML\
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/LOrder.thy	Tue May 11 20:11:08 2004 +0200
@@ -0,0 +1,331 @@
+(*  Title:   HOL/LOrder.thy
+    ID:      $Id$
+    Author:  Steven Obua, TU Muenchen
+    License: GPL (GNU GENERAL PUBLIC LICENSE)
+*)
+
+header {* Lattice Orders *}
+
+theory LOrder = HOL:
+
+text {*
+  The theory of lattices developed here is taken from the book:
+  \begin{itemize}
+  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979. 
+  \end{itemize}
+*}
+
+constdefs
+  is_meet :: "(('a::order) \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
+  "is_meet m == ! a b x. m a b \<le> a \<and> m a b \<le> b \<and> (x \<le> a \<and> x \<le> b \<longrightarrow> x \<le> m a b)"
+  is_join :: "(('a::order) \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
+  "is_join j == ! a b x. a \<le> j a b \<and> b \<le> j a b \<and> (a \<le> x \<and> b \<le> x \<longrightarrow> j a b \<le> x)"  
+
+lemma is_meet_unique: 
+  assumes "is_meet u" "is_meet v" shows "u = v"
+proof -
+  {
+    fix a b :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    assume a: "is_meet a"
+    assume b: "is_meet b"
+    {
+      fix x y 
+      let ?za = "a x y"
+      let ?zb = "b x y"
+      from a have za_le: "?za <= x & ?za <= y" by (auto simp add: is_meet_def)
+      with b have "?za <= ?zb" by (auto simp add: is_meet_def)
+    }
+  }
+  note f_le = this
+  show "u = v" by ((rule ext)+, simp_all add: order_antisym prems f_le) 
+qed
+
+lemma is_join_unique: 
+  assumes "is_join u" "is_join v" shows "u = v"
+proof -
+  {
+    fix a b :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    assume a: "is_join a"
+    assume b: "is_join b"
+    {
+      fix x y 
+      let ?za = "a x y"
+      let ?zb = "b x y"
+      from a have za_le: "x <= ?za & y <= ?za" by (auto simp add: is_join_def)
+      with b have "?zb <= ?za" by (auto simp add: is_join_def)
+    }
+  }
+  note f_le = this
+  show "u = v" by ((rule ext)+, simp_all add: order_antisym prems f_le) 
+qed
+
+axclass join_semilorder < order
+  join_exists: "? j. is_join j"
+
+axclass meet_semilorder < order
+  meet_exists: "? m. is_meet m"
+
+axclass lorder < join_semilorder, meet_semilorder
+
+constdefs
+  meet :: "('a::meet_semilorder) \<Rightarrow> 'a \<Rightarrow> 'a"
+  "meet == THE m. is_meet m"
+  join :: "('a::join_semilorder) \<Rightarrow> 'a \<Rightarrow> 'a"
+  "join ==  THE j. is_join j"
+
+lemma is_meet_meet: "is_meet (meet::'a \<Rightarrow> 'a \<Rightarrow> ('a::meet_semilorder))"
+proof -
+  from meet_exists obtain k::"'a \<Rightarrow> 'a \<Rightarrow> 'a" where "is_meet k" ..
+  with is_meet_unique[of _ k] show ?thesis
+    by (simp add: meet_def theI[of is_meet])    
+qed
+
+lemma meet_unique: "(is_meet m) = (m = meet)" 
+by (insert is_meet_meet, auto simp add: is_meet_unique)
+
+lemma is_join_join: "is_join (join::'a \<Rightarrow> 'a \<Rightarrow> ('a::join_semilorder))"
+proof -
+  from join_exists obtain k::"'a \<Rightarrow> 'a \<Rightarrow> 'a" where "is_join k" ..
+  with is_join_unique[of _ k] show ?thesis
+    by (simp add: join_def theI[of is_join])    
+qed
+
+lemma join_unique: "(is_join j) = (j = join)"
+by (insert is_join_join, auto simp add: is_join_unique)
+
+lemma meet_left_le: "meet a b \<le> (a::'a::meet_semilorder)"
+by (insert is_meet_meet, auto simp add: is_meet_def)
+
+lemma meet_right_le: "meet a b \<le> (b::'a::meet_semilorder)"
+by (insert is_meet_meet, auto simp add: is_meet_def)
+
+lemma meet_imp_le: "x \<le> a \<Longrightarrow> x \<le> b \<Longrightarrow> x \<le> meet a (b::'a::meet_semilorder)"
+by (insert is_meet_meet, auto simp add: is_meet_def)
+
+lemma join_left_le: "a \<le> join a (b::'a::join_semilorder)"
+by (insert is_join_join, auto simp add: is_join_def)
+
+lemma join_right_le: "b \<le> join a (b::'a::join_semilorder)"
+by (insert is_join_join, auto simp add: is_join_def)
+
+lemma join_imp_le: "a \<le> x \<Longrightarrow> b \<le> x \<Longrightarrow> join a b \<le> (x::'a::join_semilorder)"
+by (insert is_join_join, auto simp add: is_join_def)
+
+lemmas meet_join_le = meet_left_le meet_right_le join_left_le join_right_le
+
+lemma is_meet_min: "is_meet (min::'a \<Rightarrow> 'a \<Rightarrow> ('a::linorder))"
+by (auto simp add: is_meet_def min_def)
+
+lemma is_join_max: "is_join (max::'a \<Rightarrow> 'a \<Rightarrow> ('a::linorder))"
+by (auto simp add: is_join_def max_def)
+
+instance linorder \<subseteq> meet_semilorder
+proof
+  from is_meet_min show "? (m::'a\<Rightarrow>'a\<Rightarrow>('a::linorder)). is_meet m" by auto
+qed
+
+instance linorder \<subseteq> join_semilorder
+proof
+  from is_join_max show "? (j::'a\<Rightarrow>'a\<Rightarrow>('a::linorder)). is_join j" by auto 
+qed
+    
+instance linorder \<subseteq> lorder ..
+
+lemma meet_min: "meet = (min :: 'a\<Rightarrow>'a\<Rightarrow>('a::linorder))" 
+by (simp add: is_meet_meet is_meet_min is_meet_unique)
+
+lemma join_max: "join = (max :: 'a\<Rightarrow>'a\<Rightarrow>('a::linorder))"
+by (simp add: is_join_join is_join_max is_join_unique)
+
+lemma meet_idempotent[simp]: "meet x x = x"
+by (rule order_antisym, simp_all add: meet_left_le meet_imp_le)
+
+lemma join_idempotent[simp]: "join x x = x"
+by (rule order_antisym, simp_all add: join_left_le join_imp_le)
+
+lemma meet_comm: "meet x y = meet y x" 
+by (rule order_antisym, (simp add: meet_left_le meet_right_le meet_imp_le)+)
+
+lemma join_comm: "join x y = join y x"
+by (rule order_antisym, (simp add: join_right_le join_left_le join_imp_le)+)
+
+lemma meet_assoc: "meet (meet x y) z = meet x (meet y z)" (is "?l=?r")
+proof - 
+  have "?l <= meet x y & meet x y <= x & ?l <= z & meet x y <= y" by (simp add: meet_left_le meet_right_le)
+  hence "?l <= x & ?l <= y & ?l <= z" by auto
+  hence "?l <= ?r" by (simp add: meet_imp_le)
+  hence a:"?l <= meet x (meet y z)" by (simp add: meet_imp_le)
+  have "?r <= meet y z & meet y z <= y & meet y z <= z & ?r <= x" by (simp add: meet_left_le meet_right_le)  
+  hence "?r <= x & ?r <= y & ?r <= z" by (auto) 
+  hence "?r <= meet x y & ?r <= z" by (simp add: meet_imp_le)
+  hence b:"?r <= ?l" by (simp add: meet_imp_le)
+  from a b show "?l = ?r" by auto
+qed
+
+lemma join_assoc: "join (join x y) z = join x (join y z)" (is "?l=?r")
+proof -
+  have "join x y <= ?l & x <= join x y & z <= ?l & y <= join x y" by (simp add: join_left_le join_right_le)
+  hence "x <= ?l & y <= ?l & z <= ?l" by auto
+  hence "join y z <= ?l & x <= ?l" by (simp add: join_imp_le)
+  hence a:"?r <= ?l" by (simp add: join_imp_le)
+  have "join y z <= ?r & y <= join y z & z <= join y z & x <= ?r" by (simp add: join_left_le join_right_le)
+  hence "y <= ?r & z <= ?r & x <= ?r" by auto
+  hence "join x y <= ?r & z <= ?r" by (simp add: join_imp_le)
+  hence b:"?l <= ?r" by (simp add: join_imp_le)
+  from a b show "?l = ?r" by auto
+qed
+
+lemma meet_left_comm: "meet a (meet b c) = meet b (meet a c)"
+by (simp add: meet_assoc[symmetric, of a b c], simp add: meet_comm[of a b], simp add: meet_assoc)
+
+lemma meet_left_idempotent: "meet y (meet y x) = meet y x"
+by (simp add: meet_assoc meet_comm meet_left_comm)
+
+lemma join_left_comm: "join a (join b c) = join b (join a c)"
+by (simp add: join_assoc[symmetric, of a b c], simp add: join_comm[of a b], simp add: join_assoc)
+
+lemma join_left_idempotent: "join y (join y x) = join y x"
+by (simp add: join_assoc join_comm join_left_comm)
+    
+lemmas meet_aci = meet_assoc meet_comm meet_left_comm meet_left_idempotent
+
+lemmas join_aci = join_assoc join_comm join_left_comm join_left_idempotent
+
+lemma le_def_meet: "(x <= y) = (meet x y = x)" 
+proof -
+  have u: "x <= y \<longrightarrow> meet x y = x"
+  proof 
+    assume "x <= y"
+    hence "x <= meet x y & meet x y <= x" by (simp add: meet_imp_le meet_left_le)
+    thus "meet x y = x" by auto
+  qed
+  have v:"meet x y = x \<longrightarrow> x <= y" 
+  proof 
+    have a:"meet x y <= y" by (simp add: meet_right_le)
+    assume "meet x y = x"
+    hence "x = meet x y" by auto
+    with a show "x <= y" by (auto)
+  qed
+  from u v show ?thesis by blast
+qed
+
+lemma le_def_join: "(x <= y) = (join x y = y)" 
+proof -
+  have u: "x <= y \<longrightarrow> join x y = y"
+  proof 
+    assume "x <= y"
+    hence "join x y <= y & y <= join x y" by (simp add: join_imp_le join_right_le)
+    thus "join x y = y" by auto
+  qed
+  have v:"join x y = y \<longrightarrow> x <= y" 
+  proof 
+    have a:"x <= join x y" by (simp add: join_left_le)
+    assume "join x y = y"
+    hence "y = join x y" by auto
+    with a show "x <= y" by (auto)
+  qed
+  from u v show ?thesis by blast
+qed
+
+lemma meet_join_absorp: "meet x (join x y) = x"
+proof -
+  have a:"meet x (join x y) <= x" by (simp add: meet_left_le)
+  have b:"x <= meet x (join x y)" by (rule meet_imp_le, simp_all add: join_left_le)
+  from a b show ?thesis by auto
+qed
+
+lemma join_meet_absorp: "join x (meet x y) = x"
+proof - 
+  have a:"x <= join x (meet x y)" by (simp add: join_left_le)
+  have b:"join x (meet x y) <= x" by (rule join_imp_le, simp_all add: meet_left_le)
+  from a b show ?thesis by auto
+qed
+
+lemma meet_mono: "y \<le> z \<Longrightarrow> meet x y \<le> meet x z"
+proof -
+  assume a: "y <= z"
+  have "meet x y <= x & meet x y <= y" by (simp add: meet_left_le meet_right_le)
+  with a have "meet x y <= x & meet x y <= z" by auto 
+  thus "meet x y <= meet x z" by (simp add: meet_imp_le)
+qed
+
+lemma join_mono: "y \<le> z \<Longrightarrow> join x y \<le> join x z"
+proof -
+  assume a: "y \<le> z"
+  have "x <= join x z & z <= join x z" by (simp add: join_left_le join_right_le)
+  with a have "x <= join x z & y <= join x z" by auto
+  thus "join x y <= join x z" by (simp add: join_imp_le)
+qed
+
+lemma distrib_join_le: "join x (meet y z) \<le> meet (join x y) (join x z)" (is "_ <= ?r")
+proof -
+  have a: "x <= ?r" by (rule meet_imp_le, simp_all add: join_left_le)
+  from meet_join_le have b: "meet y z <= ?r" 
+    by (rule_tac meet_imp_le, (blast intro: order_trans)+)
+  from a b show ?thesis by (simp add: join_imp_le)
+qed
+  
+lemma distrib_meet_le: "join (meet x y) (meet x z) \<le> meet x (join y z)" (is "?l <= _") 
+proof -
+  have a: "?l <= x" by (rule join_imp_le, simp_all add: meet_left_le)
+  from meet_join_le have b: "?l <= join y z" 
+    by (rule_tac join_imp_le, (blast intro: order_trans)+)
+  from a b show ?thesis by (simp add: meet_imp_le)
+qed
+
+lemma meet_join_eq_imp_le: "a = c \<or> a = d \<or> b = c \<or> b = d \<Longrightarrow> meet a b \<le> join c d"
+by (insert meet_join_le, blast intro: order_trans)
+
+lemma modular_le: "x \<le> z \<Longrightarrow> join x (meet y z) \<le> meet (join x y) z" (is "_ \<Longrightarrow> ?t <= _")
+proof -
+  assume a: "x <= z"
+  have b: "?t <= join x y" by (rule join_imp_le, simp_all add: meet_join_le meet_join_eq_imp_le)
+  have c: "?t <= z" by (rule join_imp_le, simp_all add: meet_join_le a)
+  from b c show ?thesis by (simp add: meet_imp_le)
+qed
+
+ML {*
+val is_meet_unique = thm "is_meet_unique";
+val is_join_unique = thm "is_join_unique";
+val join_exists = thm "join_exists";
+val meet_exists = thm "meet_exists";
+val is_meet_meet = thm "is_meet_meet";
+val meet_unique = thm "meet_unique";
+val is_join_join = thm "is_join_join";
+val join_unique = thm "join_unique";
+val meet_left_le = thm "meet_left_le";
+val meet_right_le = thm "meet_right_le";
+val meet_imp_le = thm "meet_imp_le";
+val join_left_le = thm "join_left_le";
+val join_right_le = thm "join_right_le";
+val join_imp_le = thm "join_imp_le";
+val meet_join_le = thms "meet_join_le";
+val is_meet_min = thm "is_meet_min";
+val is_join_max = thm "is_join_max";
+val meet_min = thm "meet_min";
+val join_max = thm "join_max";
+val meet_idempotent = thm "meet_idempotent";
+val join_idempotent = thm "join_idempotent";
+val meet_comm = thm "meet_comm";
+val join_comm = thm "join_comm";
+val meet_assoc = thm "meet_assoc";
+val join_assoc = thm "join_assoc";
+val meet_left_comm = thm "meet_left_comm";
+val meet_left_idempotent = thm "meet_left_idempotent";
+val join_left_comm = thm "join_left_comm";
+val join_left_idempotent = thm "join_left_idempotent";
+val meet_aci = thms "meet_aci";
+val join_aci = thms "join_aci";
+val le_def_meet = thm "le_def_meet";
+val le_def_join = thm "le_def_join";
+val meet_join_absorp = thm "meet_join_absorp";
+val join_meet_absorp = thm "join_meet_absorp";
+val meet_mono = thm "meet_mono";
+val join_mono = thm "join_mono";
+val distrib_join_le = thm "distrib_join_le";
+val distrib_meet_le = thm "distrib_meet_le";
+val meet_join_eq_imp_le = thm "meet_join_eq_imp_le";
+val modular_le = thm "modular_le";
+*}
+
+end
\ No newline at end of file
--- a/src/HOL/Library/Multiset.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Library/Multiset.thy	Tue May 11 20:11:08 2004 +0200
@@ -108,7 +108,7 @@
 
 theorems union_ac = union_assoc union_commute union_lcomm
 
-instance multiset :: (type) plus_ac0
+instance multiset :: (type) comm_monoid_add
 proof 
   fix a b c :: "'a multiset"
   show "(a + b) + c = a + (b + c)" by (rule union_assoc)
--- a/src/HOL/Matrix/Matrix.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Matrix/Matrix.thy	Tue May 11 20:11:08 2004 +0200
@@ -195,7 +195,7 @@
 
 (*
 constdefs
-  one_matrix :: "nat \<Rightarrow> ('a::semiring) matrix"
+  one_matrix :: "nat \<Rightarrow> ('a::comm_semiring_1_cancel) matrix"
   "one_matrix n == Abs_matrix (% j i. if j = i & j < n then 1 else 0)"
 
 lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)"
@@ -235,9 +235,9 @@
 by (simp add: max_def nrows)
 
 constdefs
-  right_inverse_matrix :: "('a::semiring) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
+  right_inverse_matrix :: "('a::comm_semiring_1_cancel) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
   "right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X)))"
-  inverse_matrix :: "('a::semiring) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
+  inverse_matrix :: "('a::comm_semiring_1_cancel) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
   "inverse_matrix A X == (right_inverse_matrix A X) \<and> (right_inverse_matrix X A)"
 
 lemma right_inverse_matrix_dim: "right_inverse_matrix A X \<Longrightarrow> nrows A = ncols X"
--- a/src/HOL/Nat.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Nat.thy	Tue May 11 20:11:08 2004 +0200
@@ -712,8 +712,8 @@
   by (induct m) (simp_all add: add_mult_distrib)
 
 
-text{*The Naturals Form A Semiring*}
-instance nat :: semiring
+text{*The Naturals Form A comm_semiring_1_cancel*}
+instance nat :: comm_semiring_1_cancel
 proof
   fix i j k :: nat
   show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc)
@@ -760,8 +760,8 @@
   done
 
 
-text{*The Naturals Form an Ordered Semiring*}
-instance nat :: ordered_semiring
+text{*The Naturals Form an Ordered comm_semiring_1_cancel*}
+instance nat :: ordered_semidom
 proof
   fix i j k :: nat
   show "0 < (1::nat)" by simp
--- a/src/HOL/NumberTheory/WilsonBij.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/NumberTheory/WilsonBij.thy	Tue May 11 20:11:08 2004 +0200
@@ -75,7 +75,7 @@
 lemma aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)"
   -- {* same as @{text WilsonRuss} *}
   apply (unfold zcong_def)
-  apply (simp add: Ring_and_Field.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
+  apply (simp add: OrderedGroup.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
   apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans)
    apply (simp add: mult_commute)
   apply (subst zdvd_zminus_iff)
--- a/src/HOL/NumberTheory/WilsonRuss.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/NumberTheory/WilsonRuss.thy	Tue May 11 20:11:08 2004 +0200
@@ -86,7 +86,7 @@
 
 lemma inv_not_p_minus_1_aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)"
   apply (unfold zcong_def)
-  apply (simp add: Ring_and_Field.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
+  apply (simp add: OrderedGroup.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
   apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans)
    apply (simp add: mult_commute)
   apply (subst zdvd_zminus_iff)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/OrderedGroup.thy	Tue May 11 20:11:08 2004 +0200
@@ -0,0 +1,950 @@
+(*  Title:   HOL/Group.thy
+    ID:      $Id$
+    Author:  Gertrud Bauer and Markus Wenzel, TU Muenchen
+             Lawrence C Paulson, University of Cambridge
+             Revised and decoupled from Ring_and_Field.thy 
+             by Steven Obua, TU Muenchen, in May 2004
+    License: GPL (GNU GENERAL PUBLIC LICENSE)
+*)
+
+header {* Ordered Groups *}
+
+theory OrderedGroup = Inductive + LOrder:
+
+text {*
+  The theory of partially ordered groups is taken from the books:
+  \begin{itemize}
+  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
+  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
+  \end{itemize}
+  Most of the used notions can also be looked up in 
+  \begin{itemize}
+  \item \emph{www.mathworld.com} by Eric Weisstein et. al.
+  \item \emph{Algebra I} by van der Waerden, Springer.
+  \end{itemize}
+*}
+
+subsection {* Semigroups, Groups *}
+ 
+axclass semigroup_add \<subseteq> plus
+  add_assoc: "(a + b) + c = a + (b + c)"
+
+axclass ab_semigroup_add \<subseteq> semigroup_add
+  add_commute: "a + b = b + a"
+
+lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::ab_semigroup_add))"
+  by (rule mk_left_commute [of "op +", OF add_assoc add_commute])
+
+theorems add_ac = add_assoc add_commute add_left_commute
+
+axclass semigroup_mult \<subseteq> times
+  mult_assoc: "(a * b) * c = a * (b * c)"
+
+axclass ab_semigroup_mult \<subseteq> semigroup_mult
+  mult_commute: "a * b = b * a"
+
+lemma mult_left_commute: "a * (b * c) = b * (a * (c::'a::ab_semigroup_mult))"
+  by (rule mk_left_commute [of "op *", OF mult_assoc mult_commute])
+
+theorems mult_ac = mult_assoc mult_commute mult_left_commute
+
+axclass comm_monoid_add \<subseteq> zero, ab_semigroup_add
+  add_0[simp]: "0 + a = a"
+
+axclass monoid_mult \<subseteq> one, semigroup_mult
+  mult_1_left[simp]: "1 * a  = a"
+  mult_1_right[simp]: "a * 1 = a"
+
+axclass comm_monoid_mult \<subseteq> one, ab_semigroup_mult
+  mult_1: "1 * a = a"
+
+instance comm_monoid_mult \<subseteq> monoid_mult
+by (intro_classes, insert mult_1, simp_all add: mult_commute, auto)
+
+axclass cancel_semigroup_add \<subseteq> semigroup_add
+  add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
+  add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
+
+axclass cancel_ab_semigroup_add \<subseteq> ab_semigroup_add
+  add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
+
+instance cancel_ab_semigroup_add \<subseteq> cancel_semigroup_add
+proof
+  {
+    fix a b c :: 'a
+    assume "a + b = a + c"
+    thus "b = c" by (rule add_imp_eq)
+  }
+  note f = this
+  fix a b c :: 'a
+  assume "b + a = c + a"
+  hence "a + b = a + c" by (simp only: add_commute)
+  thus "b = c" by (rule f)
+qed
+
+axclass ab_group_add \<subseteq> minus, comm_monoid_add
+  left_minus[simp]: " - a + a = 0"
+  diff_minus: "a - b = a + (-b)"
+
+instance ab_group_add \<subseteq> cancel_ab_semigroup_add
+proof 
+  fix a b c :: 'a
+  assume "a + b = a + c"
+  hence "-a + a + b = -a + a + c" by (simp only: add_assoc)
+  thus "b = c" by simp 
+qed
+
+lemma add_0_right [simp]: "a + 0 = (a::'a::comm_monoid_add)"
+proof -
+  have "a + 0 = 0 + a" by (simp only: add_commute)
+  also have "... = a" by simp
+  finally show ?thesis .
+qed
+
+lemma add_left_cancel [simp]:
+     "(a + b = a + c) = (b = (c::'a::cancel_semigroup_add))"
+by (blast dest: add_left_imp_eq) 
+
+lemma add_right_cancel [simp]:
+     "(b + a = c + a) = (b = (c::'a::cancel_semigroup_add))"
+  by (blast dest: add_right_imp_eq)
+
+lemma right_minus [simp]: "a + -(a::'a::ab_group_add) = 0"
+proof -
+  have "a + -a = -a + a" by (simp add: add_ac)
+  also have "... = 0" by simp
+  finally show ?thesis .
+qed
+
+lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::ab_group_add))"
+proof
+  have "a = a - b + b" by (simp add: diff_minus add_ac)
+  also assume "a - b = 0"
+  finally show "a = b" by simp
+next
+  assume "a = b"
+  thus "a - b = 0" by (simp add: diff_minus)
+qed
+
+lemma minus_minus [simp]: "- (- (a::'a::ab_group_add)) = a"
+proof (rule add_left_cancel [of "-a", THEN iffD1])
+  show "(-a + -(-a) = -a + a)"
+  by simp
+qed
+
+lemma equals_zero_I: "a+b = 0 ==> -a = (b::'a::ab_group_add)"
+apply (rule right_minus_eq [THEN iffD1, symmetric])
+apply (simp add: diff_minus add_commute) 
+done
+
+lemma minus_zero [simp]: "- 0 = (0::'a::ab_group_add)"
+by (simp add: equals_zero_I)
+
+lemma diff_self [simp]: "a - (a::'a::ab_group_add) = 0"
+  by (simp add: diff_minus)
+
+lemma diff_0 [simp]: "(0::'a::ab_group_add) - a = -a"
+by (simp add: diff_minus)
+
+lemma diff_0_right [simp]: "a - (0::'a::ab_group_add) = a" 
+by (simp add: diff_minus)
+
+lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::ab_group_add)"
+by (simp add: diff_minus)
+
+lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::ab_group_add))" 
+proof 
+  assume "- a = - b"
+  hence "- (- a) = - (- b)"
+    by simp
+  thus "a=b" by simp
+next
+  assume "a=b"
+  thus "-a = -b" by simp
+qed
+
+lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::ab_group_add))"
+by (subst neg_equal_iff_equal [symmetric], simp)
+
+lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::ab_group_add))"
+by (subst neg_equal_iff_equal [symmetric], simp)
+
+text{*The next two equations can make the simplifier loop!*}
+
+lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::ab_group_add))"
+proof -
+  have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal)
+  thus ?thesis by (simp add: eq_commute)
+qed
+
+lemma minus_equation_iff: "(- a = b) = (- (b::'a::ab_group_add) = a)"
+proof -
+  have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal)
+  thus ?thesis by (simp add: eq_commute)
+qed
+
+lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::ab_group_add)"
+apply (rule equals_zero_I)
+apply (simp add: add_ac) 
+done
+
+lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ab_group_add)"
+by (simp add: diff_minus add_commute)
+
+subsection {* (Partially) Ordered Groups *} 
+
+axclass pordered_ab_semigroup_add \<subseteq> order, ab_semigroup_add
+  add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
+
+axclass pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add, cancel_ab_semigroup_add
+
+instance pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add ..
+
+axclass pordered_ab_semigroup_add_imp_le \<subseteq> pordered_cancel_ab_semigroup_add
+  add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
+
+axclass pordered_ab_group_add \<subseteq> ab_group_add, pordered_ab_semigroup_add
+
+instance pordered_ab_group_add \<subseteq> pordered_ab_semigroup_add_imp_le
+proof
+  fix a b c :: 'a
+  assume "c + a \<le> c + b"
+  hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
+  hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
+  thus "a \<le> b" by simp
+qed
+
+axclass ordered_cancel_ab_semigroup_add \<subseteq> pordered_cancel_ab_semigroup_add, linorder
+
+instance ordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add_imp_le
+proof
+  fix a b c :: 'a
+  assume le: "c + a <= c + b"  
+  show "a <= b"
+  proof (rule ccontr)
+    assume w: "~ a \<le> b"
+    hence "b <= a" by (simp add: linorder_not_le)
+    hence le2: "c+b <= c+a" by (rule add_left_mono)
+    have "a = b" 
+      apply (insert le)
+      apply (insert le2)
+      apply (drule order_antisym, simp_all)
+      done
+    with w  show False 
+      by (simp add: linorder_not_le [symmetric])
+  qed
+qed
+
+lemma add_right_mono: "a \<le> (b::'a::pordered_ab_semigroup_add) ==> a + c \<le> b + c"
+by (simp add: add_commute[of _ c] add_left_mono)
+
+text {* non-strict, in both arguments *}
+lemma add_mono:
+     "[|a \<le> b;  c \<le> d|] ==> a + c \<le> b + (d::'a::pordered_ab_semigroup_add)"
+  apply (erule add_right_mono [THEN order_trans])
+  apply (simp add: add_commute add_left_mono)
+  done
+
+lemma add_strict_left_mono:
+     "a < b ==> c + a < c + (b::'a::pordered_cancel_ab_semigroup_add)"
+ by (simp add: order_less_le add_left_mono) 
+
+lemma add_strict_right_mono:
+     "a < b ==> a + c < b + (c::'a::pordered_cancel_ab_semigroup_add)"
+ by (simp add: add_commute [of _ c] add_strict_left_mono)
+
+text{*Strict monotonicity in both arguments*}
+lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
+apply (erule add_strict_right_mono [THEN order_less_trans])
+apply (erule add_strict_left_mono)
+done
+
+lemma add_less_le_mono:
+     "[| a<b; c\<le>d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
+apply (erule add_strict_right_mono [THEN order_less_le_trans])
+apply (erule add_left_mono) 
+done
+
+lemma add_le_less_mono:
+     "[| a\<le>b; c<d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
+apply (erule add_right_mono [THEN order_le_less_trans])
+apply (erule add_strict_left_mono) 
+done
+
+lemma add_less_imp_less_left:
+      assumes less: "c + a < c + b"  shows "a < (b::'a::pordered_ab_semigroup_add_imp_le)"
+proof -
+  from less have le: "c + a <= c + b" by (simp add: order_le_less)
+  have "a <= b" 
+    apply (insert le)
+    apply (drule add_le_imp_le_left)
+    by (insert le, drule add_le_imp_le_left, assumption)
+  moreover have "a \<noteq> b"
+  proof (rule ccontr)
+    assume "~(a \<noteq> b)"
+    then have "a = b" by simp
+    then have "c + a = c + b" by simp
+    with less show "False"by simp
+  qed
+  ultimately show "a < b" by (simp add: order_le_less)
+qed
+
+lemma add_less_imp_less_right:
+      "a + c < b + c ==> a < (b::'a::pordered_ab_semigroup_add_imp_le)"
+apply (rule add_less_imp_less_left [of c])
+apply (simp add: add_commute)  
+done
+
+lemma add_less_cancel_left [simp]:
+    "(c+a < c+b) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"
+by (blast intro: add_less_imp_less_left add_strict_left_mono) 
+
+lemma add_less_cancel_right [simp]:
+    "(a+c < b+c) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"
+by (blast intro: add_less_imp_less_right add_strict_right_mono)
+
+lemma add_le_cancel_left [simp]:
+    "(c+a \<le> c+b) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"
+by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
+
+lemma add_le_cancel_right [simp]:
+    "(a+c \<le> b+c) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"
+by (simp add: add_commute[of a c] add_commute[of b c])
+
+lemma add_le_imp_le_right:
+      "a + c \<le> b + c ==> a \<le> (b::'a::pordered_ab_semigroup_add_imp_le)"
+by simp
+
+lemma add_increasing: "[|0\<le>a; b\<le>c|] ==> b \<le> a + (c::'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add})"
+by (insert add_mono [of 0 a b c], simp)
+
+subsection {* Ordering Rules for Unary Minus *}
+
+lemma le_imp_neg_le:
+      assumes "a \<le> (b::'a::{pordered_ab_semigroup_add_imp_le, ab_group_add})" shows "-b \<le> -a"
+proof -
+  have "-a+a \<le> -a+b"
+    by (rule add_left_mono) 
+  hence "0 \<le> -a+b"
+    by simp
+  hence "0 + (-b) \<le> (-a + b) + (-b)"
+    by (rule add_right_mono) 
+  thus ?thesis
+    by (simp add: add_assoc)
+qed
+
+lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::pordered_ab_group_add))"
+proof 
+  assume "- b \<le> - a"
+  hence "- (- a) \<le> - (- b)"
+    by (rule le_imp_neg_le)
+  thus "a\<le>b" by simp
+next
+  assume "a\<le>b"
+  thus "-b \<le> -a" by (rule le_imp_neg_le)
+qed
+
+lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::pordered_ab_group_add))"
+by (subst neg_le_iff_le [symmetric], simp)
+
+lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::pordered_ab_group_add))"
+by (subst neg_le_iff_le [symmetric], simp)
+
+lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::pordered_ab_group_add))"
+by (force simp add: order_less_le) 
+
+lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::pordered_ab_group_add))"
+by (subst neg_less_iff_less [symmetric], simp)
+
+lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::pordered_ab_group_add))"
+by (subst neg_less_iff_less [symmetric], simp)
+
+text{*The next several equations can make the simplifier loop!*}
+
+lemma less_minus_iff: "(a < - b) = (b < - (a::'a::pordered_ab_group_add))"
+proof -
+  have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
+  thus ?thesis by simp
+qed
+
+lemma minus_less_iff: "(- a < b) = (- b < (a::'a::pordered_ab_group_add))"
+proof -
+  have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
+  thus ?thesis by simp
+qed
+
+lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::pordered_ab_group_add))"
+proof -
+  have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
+  have "(- (- a) <= -b) = (b <= - a)" 
+    apply (auto simp only: order_le_less)
+    apply (drule mm)
+    apply (simp_all)
+    apply (drule mm[simplified], assumption)
+    done
+  then show ?thesis by simp
+qed
+
+lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::pordered_ab_group_add))"
+by (auto simp add: order_le_less minus_less_iff)
+
+lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::ab_group_add)"
+by (simp add: diff_minus add_ac)
+
+lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::ab_group_add)"
+by (simp add: diff_minus add_ac)
+
+lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::ab_group_add))"
+by (auto simp add: diff_minus add_assoc)
+
+lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::ab_group_add) = c)"
+by (auto simp add: diff_minus add_assoc)
+
+lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::ab_group_add))"
+by (simp add: diff_minus add_ac)
+
+lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::ab_group_add)"
+by (simp add: diff_minus add_ac)
+
+lemma diff_add_cancel: "a - b + b = (a::'a::ab_group_add)"
+by (simp add: diff_minus add_ac)
+
+lemma add_diff_cancel: "a + b - b = (a::'a::ab_group_add)"
+by (simp add: diff_minus add_ac)
+
+text{*Further subtraction laws for ordered rings*}
+
+lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::pordered_ab_group_add))"
+proof -
+  have  "(a < b) = (a + (- b) < b + (-b))"  
+    by (simp only: add_less_cancel_right)
+  also have "... =  (a - b < 0)" by (simp add: diff_minus)
+  finally show ?thesis .
+qed
+
+lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::pordered_ab_group_add))"
+apply (subst less_iff_diff_less_0)
+apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
+apply (simp add: diff_minus add_ac)
+done
+
+lemma less_diff_eq: "(a < c-b) = (a + (b::'a::pordered_ab_group_add) < c)"
+apply (subst less_iff_diff_less_0)
+apply (rule less_iff_diff_less_0 [of _ "c-b", THEN ssubst])
+apply (simp add: diff_minus add_ac)
+done
+
+lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::pordered_ab_group_add))"
+by (auto simp add: order_le_less diff_less_eq diff_add_cancel add_diff_cancel)
+
+lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::pordered_ab_group_add) \<le> c)"
+by (auto simp add: order_le_less less_diff_eq diff_add_cancel add_diff_cancel)
+
+text{*This list of rewrites simplifies (in)equalities by bringing subtractions
+  to the top and then moving negative terms to the other side.
+  Use with @{text add_ac}*}
+lemmas compare_rls =
+       diff_minus [symmetric]
+       add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
+       diff_less_eq less_diff_eq diff_le_eq le_diff_eq
+       diff_eq_eq eq_diff_eq
+
+
+subsection{*Lemmas for the @{text cancel_numerals} simproc*}
+
+lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::ab_group_add))"
+by (simp add: compare_rls)
+
+lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::pordered_ab_group_add))"
+by (simp add: compare_rls)
+
+subsection {* Lattice Ordered (Abelian) Groups *}
+
+axclass lordered_ab_group_meet < pordered_ab_group_add, meet_semilorder
+
+axclass lordered_ab_group_join < pordered_ab_group_add, join_semilorder
+
+lemma add_meet_distrib_left: "a + (meet b c) = meet (a + b) (a + (c::'a::{pordered_ab_group_add, meet_semilorder}))"
+apply (rule order_antisym)
+apply (rule meet_imp_le, simp_all add: meet_join_le)
+apply (rule add_le_imp_le_left [of "-a"])
+apply (simp only: add_assoc[symmetric], simp)
+apply (rule meet_imp_le)
+apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+
+done
+
+lemma add_join_distrib_left: "a + (join b c) = join (a + b) (a+ (c::'a::{pordered_ab_group_add, join_semilorder}))" 
+apply (rule order_antisym)
+apply (rule add_le_imp_le_left [of "-a"])
+apply (simp only: add_assoc[symmetric], simp)
+apply (rule join_imp_le)
+apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+
+apply (rule join_imp_le)
+apply (simp_all add: meet_join_le)
+done
+
+lemma is_join_neg_meet: "is_join (% (a::'a::{pordered_ab_group_add, meet_semilorder}) b. - (meet (-a) (-b)))"
+apply (auto simp add: is_join_def)
+apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le)
+apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le)
+apply (subst neg_le_iff_le[symmetric]) 
+apply (simp add: meet_imp_le)
+done
+
+lemma is_meet_neg_join: "is_meet (% (a::'a::{pordered_ab_group_add, join_semilorder}) b. - (join (-a) (-b)))"
+apply (auto simp add: is_meet_def)
+apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le)
+apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le)
+apply (subst neg_le_iff_le[symmetric]) 
+apply (simp add: join_imp_le)
+done
+
+axclass lordered_ab_group \<subseteq> pordered_ab_group_add, lorder
+
+instance lordered_ab_group_meet \<subseteq> lordered_ab_group
+proof 
+  show "? j. is_join (j::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_meet))" by (blast intro: is_join_neg_meet)
+qed
+
+instance lordered_ab_group_join \<subseteq> lordered_ab_group
+proof
+  show "? m. is_meet (m::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_join))" by (blast intro: is_meet_neg_join)
+qed
+
+lemma add_join_distrib_right: "(join a b) + (c::'a::lordered_ab_group) = join (a+c) (b+c)"
+proof -
+  have "c + (join a b) = join (c+a) (c+b)" by (simp add: add_join_distrib_left)
+  thus ?thesis by (simp add: add_commute)
+qed
+
+lemma add_meet_distrib_right: "(meet a b) + (c::'a::lordered_ab_group) = meet (a+c) (b+c)"
+proof -
+  have "c + (meet a b) = meet (c+a) (c+b)" by (simp add: add_meet_distrib_left)
+  thus ?thesis by (simp add: add_commute)
+qed
+
+lemmas add_meet_join_distribs = add_meet_distrib_right add_meet_distrib_left add_join_distrib_right add_join_distrib_left
+
+lemma join_eq_neg_meet: "join a (b::'a::lordered_ab_group) = - meet (-a) (-b)"
+by (simp add: is_join_unique[OF is_join_join is_join_neg_meet])
+
+lemma meet_eq_neg_join: "meet a (b::'a::lordered_ab_group) = - join (-a) (-b)"
+by (simp add: is_meet_unique[OF is_meet_meet is_meet_neg_join])
+
+lemma add_eq_meet_join: "a + b = (join a b) + (meet a (b::'a::lordered_ab_group))"
+proof -
+  have "0 = - meet 0 (a-b) + meet (a-b) 0" by (simp add: meet_comm)
+  hence "0 = join 0 (b-a) + meet (a-b) 0" by (simp add: meet_eq_neg_join)
+  hence "0 = (-a + join a b) + (meet a b + (-b))"
+    apply (simp add: add_join_distrib_left add_meet_distrib_right)
+    by (simp add: diff_minus add_commute)
+  thus ?thesis
+    apply (simp add: compare_rls)
+    apply (subst add_left_cancel[symmetric, of "a+b" "join a b + meet a b" "-a"])
+    apply (simp only: add_assoc, simp add: add_assoc[symmetric])
+    done
+qed
+
+subsection {* Positive Part, Negative Part, Absolute Value *}
+
+constdefs
+  pprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
+  "pprt x == join x 0"
+  nprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
+  "nprt x == meet x 0"
+
+lemma prts: "a = pprt a + nprt a"
+by (simp add: pprt_def nprt_def add_eq_meet_join[symmetric])
+
+lemma zero_le_pprt[simp]: "0 \<le> pprt a"
+by (simp add: pprt_def meet_join_le)
+
+lemma nprt_le_zero[simp]: "nprt a \<le> 0"
+by (simp add: nprt_def meet_join_le)
+
+lemma le_eq_neg: "(a \<le> -b) = (a + b \<le> (0::_::lordered_ab_group))" (is "?l = ?r")
+proof -
+  have a: "?l \<longrightarrow> ?r"
+    apply (auto)
+    apply (rule add_le_imp_le_right[of _ "-b" _])
+    apply (simp add: add_assoc)
+    done
+  have b: "?r \<longrightarrow> ?l"
+    apply (auto)
+    apply (rule add_le_imp_le_right[of _ "b" _])
+    apply (simp)
+    done
+  from a b show ?thesis by blast
+qed
+
+lemma join_0_imp_0: "join a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
+proof -
+  {
+    fix a::'a
+    assume hyp: "join a (-a) = 0"
+    hence "join a (-a) + a = a" by (simp)
+    hence "join (a+a) 0 = a" by (simp add: add_join_distrib_right) 
+    hence "join (a+a) 0 <= a" by (simp)
+    hence "0 <= a" by (blast intro: order_trans meet_join_le)
+  }
+  note p = this
+  thm p
+  assume hyp:"join a (-a) = 0"
+  hence hyp2:"join (-a) (-(-a)) = 0" by (simp add: join_comm)
+  from p[OF hyp] p[OF hyp2] show "a = 0" by simp
+qed
+
+lemma meet_0_imp_0: "meet a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
+apply (simp add: meet_eq_neg_join)
+apply (simp add: join_comm)
+apply (subst join_0_imp_0)
+by auto
+
+lemma join_0_eq_0[simp]: "(join a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
+by (auto, erule join_0_imp_0)
+
+lemma meet_0_eq_0[simp]: "(meet a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
+by (auto, erule meet_0_imp_0)
+
+lemma zero_le_double_add_iff_zero_le_single_add[simp]: "(0 \<le> a + a) = (0 \<le> (a::'a::lordered_ab_group))"
+proof
+  assume "0 <= a + a"
+  hence a:"meet (a+a) 0 = 0" by (simp add: le_def_meet meet_comm)
+  have "(meet a 0)+(meet a 0) = meet (meet (a+a) 0) a" (is "?l=_") by (simp add: add_meet_join_distribs meet_aci)
+  hence "?l = 0 + meet a 0" by (simp add: a, simp add: meet_comm)
+  hence "meet a 0 = 0" by (simp only: add_right_cancel)
+  then show "0 <= a" by (simp add: le_def_meet meet_comm)    
+next  
+  assume a: "0 <= a"
+  show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
+qed
+
+lemma double_add_le_zero_iff_single_add_le_zero[simp]: "(a + a <= 0) = ((a::'a::lordered_ab_group) <= 0)" 
+proof -
+  have "(a + a <= 0) = (0 <= -(a+a))" by (subst le_minus_iff, simp)
+  moreover have "\<dots> = (a <= 0)" by (simp add: zero_le_double_add_iff_zero_le_single_add)
+  ultimately show ?thesis by blast
+qed
+
+lemma double_add_less_zero_iff_single_less_zero[simp]: "(a+a<0) = ((a::'a::{pordered_ab_group_add,linorder}) < 0)" (is ?s)
+proof cases
+  assume a: "a < 0"
+  thus ?s by (simp add:  add_strict_mono[OF a a, simplified])
+next
+  assume "~(a < 0)" 
+  hence a:"0 <= a" by (simp)
+  hence "0 <= a+a" by (simp add: add_mono[OF a a, simplified])
+  hence "~(a+a < 0)" by simp
+  with a show ?thesis by simp 
+qed
+
+axclass lordered_ab_group_abs \<subseteq> lordered_ab_group
+  abs_lattice: "abs x = join x (-x)"
+
+lemma abs_zero[simp]: "abs 0 = (0::'a::lordered_ab_group_abs)"
+by (simp add: abs_lattice)
+
+lemma abs_eq_0[simp]: "(abs a = 0) = (a = (0::'a::lordered_ab_group_abs))"
+by (simp add: abs_lattice)
+
+lemma abs_0_eq[simp]: "(0 = abs a) = (a = (0::'a::lordered_ab_group_abs))"
+proof -
+  have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac)
+  thus ?thesis by simp
+qed
+
+lemma neg_meet_eq_join[simp]: "- meet a (b::_::lordered_ab_group) = join (-a) (-b)"
+by (simp add: meet_eq_neg_join)
+
+lemma neg_join_eq_meet[simp]: "- join a (b::_::lordered_ab_group) = meet (-a) (-b)"
+by (simp del: neg_meet_eq_join add: join_eq_neg_meet)
+
+lemma join_eq_if: "join a (-a) = (if a < 0 then -a else (a::'a::{lordered_ab_group, linorder}))"
+proof -
+  note b = add_le_cancel_right[of a a "-a",symmetric,simplified]
+  have c: "a + a = 0 \<Longrightarrow> -a = a" by (rule add_right_imp_eq[of _ a], simp)
+  show ?thesis
+    apply (auto simp add: join_max max_def b linorder_not_less)
+    apply (drule order_antisym, auto)
+    done
+qed
+
+lemma abs_if_lattice: "\<bar>a\<bar> = (if a < 0 then -a else (a::'a::{lordered_ab_group_abs, linorder}))"
+proof -
+  show ?thesis by (simp add: abs_lattice join_eq_if)
+qed
+
+lemma abs_ge_zero[simp]: "0 \<le> abs (a::'a::lordered_ab_group_abs)"
+proof -
+  have a:"a <= abs a" and b:"-a <= abs a" by (auto simp add: abs_lattice meet_join_le)
+  show ?thesis by (rule add_mono[OF a b, simplified])
+qed
+  
+lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::lordered_ab_group_abs)) = (a = 0)" 
+proof
+  assume "abs a <= 0"
+  hence "abs a = 0" by (auto dest: order_antisym)
+  thus "a = 0" by simp
+next
+  assume "a = 0"
+  thus "abs a <= 0" by simp
+qed
+
+lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::lordered_ab_group_abs))"
+by (simp add: order_less_le)
+
+lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::lordered_ab_group_abs)"
+proof -
+  have a:"!! x (y::_::order). x <= y \<Longrightarrow> ~(y < x)" by auto
+  show ?thesis by (simp add: a)
+qed
+
+lemma abs_ge_self: "a \<le> abs (a::'a::lordered_ab_group_abs)"
+by (simp add: abs_lattice meet_join_le)
+
+lemma abs_ge_minus_self: "-a \<le> abs (a::'a::lordered_ab_group_abs)"
+by (simp add: abs_lattice meet_join_le)
+
+lemma le_imp_join_eq: "a \<le> b \<Longrightarrow> join a b = b" 
+by (simp add: le_def_join)
+
+lemma ge_imp_join_eq: "b \<le> a \<Longrightarrow> join a b = a"
+by (simp add: le_def_join join_aci)
+
+lemma le_imp_meet_eq: "a \<le> b \<Longrightarrow> meet a b = a"
+by (simp add: le_def_meet)
+
+lemma ge_imp_meet_eq: "b \<le> a \<Longrightarrow> meet a b = b"
+by (simp add: le_def_meet meet_aci)
+
+lemma abs_prts: "abs (a::_::lordered_ab_group_abs) = pprt a - nprt a"
+apply (simp add: pprt_def nprt_def diff_minus)
+apply (simp add: add_meet_join_distribs join_aci abs_lattice[symmetric])
+apply (subst le_imp_join_eq, auto)
+done
+
+lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::lordered_ab_group_abs)"
+by (simp add: abs_lattice join_comm)
+
+lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::lordered_ab_group_abs)"
+apply (simp add: abs_lattice[of "abs a"])
+apply (subst ge_imp_join_eq)
+apply (rule order_trans[of _ 0])
+by auto
+
+lemma zero_le_iff_zero_nprt: "(0 \<le> a) = (nprt a = 0)"
+by (simp add: le_def_meet nprt_def meet_comm)
+
+lemma le_zero_iff_zero_pprt: "(a \<le> 0) = (pprt a = 0)"
+by (simp add: le_def_join pprt_def join_comm)
+
+lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)"
+by (simp add: le_def_join pprt_def join_comm)
+
+lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)"
+by (simp add: le_def_meet nprt_def meet_comm)
+
+lemma iff2imp: "(A=B) \<Longrightarrow> (A \<Longrightarrow> B)"
+by (simp)
+
+lemma imp_abs_id: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)"
+by (simp add: iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_pprt_id] abs_prts)
+
+lemma imp_abs_neg_id: "a \<le> 0 \<Longrightarrow> abs a = -(a::'a::lordered_ab_group_abs)"
+by (simp add: iff2imp[OF le_zero_iff_zero_pprt] iff2imp[OF zero_le_iff_nprt_id] abs_prts)
+
+lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::lordered_ab_group_abs)"
+by (simp add: abs_lattice join_imp_le)
+
+lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::lordered_ab_group))"
+proof -
+  from add_le_cancel_left[of "-a" "a+a" "0"] have "(a <= -a) = (a+a <= 0)" 
+    by (simp add: add_assoc[symmetric])
+  thus ?thesis by simp
+qed
+
+lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::lordered_ab_group))"
+proof -
+  from add_le_cancel_left[of "-a" "0" "a+a"] have "(-a <= a) = (0 <= a+a)" 
+    by (simp add: add_assoc[symmetric])
+  thus ?thesis by simp
+qed
+
+lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::lordered_ab_group_abs)"
+by (insert abs_ge_self, blast intro: order_trans)
+
+lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::lordered_ab_group_abs)"
+by (insert abs_le_D1 [of "-a"], simp)
+
+lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::lordered_ab_group_abs))"
+by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
+
+lemma abs_triangle_ineq: "abs (a+b) \<le> abs a + abs (b::'a::lordered_ab_group_abs)"
+proof -
+  have g:"abs a + abs b = join (a+b) (join (-a-b) (join (-a+b) (a + (-b))))" (is "_=join ?m ?n")
+    apply (simp add: abs_lattice add_meet_join_distribs join_aci)
+    by (simp only: diff_minus)
+  have a:"a+b <= join ?m ?n" by (simp add: meet_join_le)
+  have b:"-a-b <= ?n" by (simp add: meet_join_le) 
+  have c:"?n <= join ?m ?n" by (simp add: meet_join_le)
+  from b c have d: "-a-b <= join ?m ?n" by simp
+  have e:"-a-b = -(a+b)" by (simp add: diff_minus)
+  from a d e have "abs(a+b) <= join ?m ?n" 
+    by (drule_tac abs_leI, auto)
+  with g[symmetric] show ?thesis by simp
+qed
+
+lemma abs_diff_triangle_ineq:
+     "\<bar>(a::'a::lordered_ab_group_abs) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>"
+proof -
+  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
+  also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
+  finally show ?thesis .
+qed
+
+ML {*
+val add_zero_left = thm"add_0";
+val add_zero_right = thm"add_0_right";
+*}
+
+ML {*
+val add_assoc = thm "add_assoc";
+val add_commute = thm "add_commute";
+val add_left_commute = thm "add_left_commute";
+val add_ac = thms "add_ac";
+val mult_assoc = thm "mult_assoc";
+val mult_commute = thm "mult_commute";
+val mult_left_commute = thm "mult_left_commute";
+val mult_ac = thms "mult_ac";
+val add_0 = thm "add_0";
+val mult_1_left = thm "mult_1_left";
+val mult_1_right = thm "mult_1_right";
+val mult_1 = thm "mult_1";
+val add_left_imp_eq = thm "add_left_imp_eq";
+val add_right_imp_eq = thm "add_right_imp_eq";
+val add_imp_eq = thm "add_imp_eq";
+val left_minus = thm "left_minus";
+val diff_minus = thm "diff_minus";
+val add_0_right = thm "add_0_right";
+val add_left_cancel = thm "add_left_cancel";
+val add_right_cancel = thm "add_right_cancel";
+val right_minus = thm "right_minus";
+val right_minus_eq = thm "right_minus_eq";
+val minus_minus = thm "minus_minus";
+val equals_zero_I = thm "equals_zero_I";
+val minus_zero = thm "minus_zero";
+val diff_self = thm "diff_self";
+val diff_0 = thm "diff_0";
+val diff_0_right = thm "diff_0_right";
+val diff_minus_eq_add = thm "diff_minus_eq_add";
+val neg_equal_iff_equal = thm "neg_equal_iff_equal";
+val neg_equal_0_iff_equal = thm "neg_equal_0_iff_equal";
+val neg_0_equal_iff_equal = thm "neg_0_equal_iff_equal";
+val equation_minus_iff = thm "equation_minus_iff";
+val minus_equation_iff = thm "minus_equation_iff";
+val minus_add_distrib = thm "minus_add_distrib";
+val minus_diff_eq = thm "minus_diff_eq";
+val add_left_mono = thm "add_left_mono";
+val add_le_imp_le_left = thm "add_le_imp_le_left";
+val add_right_mono = thm "add_right_mono";
+val add_mono = thm "add_mono";
+val add_strict_left_mono = thm "add_strict_left_mono";
+val add_strict_right_mono = thm "add_strict_right_mono";
+val add_strict_mono = thm "add_strict_mono";
+val add_less_le_mono = thm "add_less_le_mono";
+val add_le_less_mono = thm "add_le_less_mono";
+val add_less_imp_less_left = thm "add_less_imp_less_left";
+val add_less_imp_less_right = thm "add_less_imp_less_right";
+val add_less_cancel_left = thm "add_less_cancel_left";
+val add_less_cancel_right = thm "add_less_cancel_right";
+val add_le_cancel_left = thm "add_le_cancel_left";
+val add_le_cancel_right = thm "add_le_cancel_right";
+val add_le_imp_le_right = thm "add_le_imp_le_right";
+val add_increasing = thm "add_increasing";
+val le_imp_neg_le = thm "le_imp_neg_le";
+val neg_le_iff_le = thm "neg_le_iff_le";
+val neg_le_0_iff_le = thm "neg_le_0_iff_le";
+val neg_0_le_iff_le = thm "neg_0_le_iff_le";
+val neg_less_iff_less = thm "neg_less_iff_less";
+val neg_less_0_iff_less = thm "neg_less_0_iff_less";
+val neg_0_less_iff_less = thm "neg_0_less_iff_less";
+val less_minus_iff = thm "less_minus_iff";
+val minus_less_iff = thm "minus_less_iff";
+val le_minus_iff = thm "le_minus_iff";
+val minus_le_iff = thm "minus_le_iff";
+val add_diff_eq = thm "add_diff_eq";
+val diff_add_eq = thm "diff_add_eq";
+val diff_eq_eq = thm "diff_eq_eq";
+val eq_diff_eq = thm "eq_diff_eq";
+val diff_diff_eq = thm "diff_diff_eq";
+val diff_diff_eq2 = thm "diff_diff_eq2";
+val diff_add_cancel = thm "diff_add_cancel";
+val add_diff_cancel = thm "add_diff_cancel";
+val less_iff_diff_less_0 = thm "less_iff_diff_less_0";
+val diff_less_eq = thm "diff_less_eq";
+val less_diff_eq = thm "less_diff_eq";
+val diff_le_eq = thm "diff_le_eq";
+val le_diff_eq = thm "le_diff_eq";
+val compare_rls = thms "compare_rls";
+val eq_iff_diff_eq_0 = thm "eq_iff_diff_eq_0";
+val le_iff_diff_le_0 = thm "le_iff_diff_le_0";
+val add_meet_distrib_left = thm "add_meet_distrib_left";
+val add_join_distrib_left = thm "add_join_distrib_left";
+val is_join_neg_meet = thm "is_join_neg_meet";
+val is_meet_neg_join = thm "is_meet_neg_join";
+val add_join_distrib_right = thm "add_join_distrib_right";
+val add_meet_distrib_right = thm "add_meet_distrib_right";
+val add_meet_join_distribs = thms "add_meet_join_distribs";
+val join_eq_neg_meet = thm "join_eq_neg_meet";
+val meet_eq_neg_join = thm "meet_eq_neg_join";
+val add_eq_meet_join = thm "add_eq_meet_join";
+val prts = thm "prts";
+val zero_le_pprt = thm "zero_le_pprt";
+val nprt_le_zero = thm "nprt_le_zero";
+val le_eq_neg = thm "le_eq_neg";
+val join_0_imp_0 = thm "join_0_imp_0";
+val meet_0_imp_0 = thm "meet_0_imp_0";
+val join_0_eq_0 = thm "join_0_eq_0";
+val meet_0_eq_0 = thm "meet_0_eq_0";
+val zero_le_double_add_iff_zero_le_single_add = thm "zero_le_double_add_iff_zero_le_single_add";
+val double_add_le_zero_iff_single_add_le_zero = thm "double_add_le_zero_iff_single_add_le_zero";
+val double_add_less_zero_iff_single_less_zero = thm "double_add_less_zero_iff_single_less_zero";
+val abs_lattice = thm "abs_lattice";
+val abs_zero = thm "abs_zero";
+val abs_eq_0 = thm "abs_eq_0";
+val abs_0_eq = thm "abs_0_eq";
+val neg_meet_eq_join = thm "neg_meet_eq_join";
+val neg_join_eq_meet = thm "neg_join_eq_meet";
+val join_eq_if = thm "join_eq_if";
+val abs_if_lattice = thm "abs_if_lattice";
+val abs_ge_zero = thm "abs_ge_zero";
+val abs_le_zero_iff = thm "abs_le_zero_iff";
+val zero_less_abs_iff = thm "zero_less_abs_iff";
+val abs_not_less_zero = thm "abs_not_less_zero";
+val abs_ge_self = thm "abs_ge_self";
+val abs_ge_minus_self = thm "abs_ge_minus_self";
+val le_imp_join_eq = thm "le_imp_join_eq";
+val ge_imp_join_eq = thm "ge_imp_join_eq";
+val le_imp_meet_eq = thm "le_imp_meet_eq";
+val ge_imp_meet_eq = thm "ge_imp_meet_eq";
+val abs_prts = thm "abs_prts";
+val abs_minus_cancel = thm "abs_minus_cancel";
+val abs_idempotent = thm "abs_idempotent";
+val zero_le_iff_zero_nprt = thm "zero_le_iff_zero_nprt";
+val le_zero_iff_zero_pprt = thm "le_zero_iff_zero_pprt";
+val le_zero_iff_pprt_id = thm "le_zero_iff_pprt_id";
+val zero_le_iff_nprt_id = thm "zero_le_iff_nprt_id";
+val iff2imp = thm "iff2imp";
+val imp_abs_id = thm "imp_abs_id";
+val imp_abs_neg_id = thm "imp_abs_neg_id";
+val abs_leI = thm "abs_leI";
+val le_minus_self_iff = thm "le_minus_self_iff";
+val minus_le_self_iff = thm "minus_le_self_iff";
+val abs_le_D1 = thm "abs_le_D1";
+val abs_le_D2 = thm "abs_le_D2";
+val abs_le_iff = thm "abs_le_iff";
+val abs_triangle_ineq = thm "abs_triangle_ineq";
+val abs_diff_triangle_ineq = thm "abs_diff_triangle_ineq";
+*}
+
+end
--- a/src/HOL/Power.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Power.thy	Tue May 11 20:11:08 2004 +0200
@@ -11,7 +11,7 @@
 
 subsection{*Powers for Arbitrary (Semi)Rings*}
 
-axclass ringpower \<subseteq> semiring, power
+axclass ringpower \<subseteq> comm_semiring_1_cancel, power
   power_0 [simp]:   "a ^ 0       = 1"
   power_Suc: "a ^ (Suc n) = a * (a ^ n)"
 
@@ -46,31 +46,31 @@
 done
 
 lemma zero_less_power:
-     "0 < (a::'a::{ordered_semiring,ringpower}) ==> 0 < a^n"
+     "0 < (a::'a::{ordered_semidom,ringpower}) ==> 0 < a^n"
 apply (induct_tac "n")
 apply (simp_all add: power_Suc zero_less_one mult_pos)
 done
 
 lemma zero_le_power:
-     "0 \<le> (a::'a::{ordered_semiring,ringpower}) ==> 0 \<le> a^n"
+     "0 \<le> (a::'a::{ordered_semidom,ringpower}) ==> 0 \<le> a^n"
 apply (simp add: order_le_less)
 apply (erule disjE)
 apply (simp_all add: zero_less_power zero_less_one power_0_left)
 done
 
 lemma one_le_power:
-     "1 \<le> (a::'a::{ordered_semiring,ringpower}) ==> 1 \<le> a^n"
+     "1 \<le> (a::'a::{ordered_semidom,ringpower}) ==> 1 \<le> a^n"
 apply (induct_tac "n")
 apply (simp_all add: power_Suc)
 apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
 apply (simp_all add: zero_le_one order_trans [OF zero_le_one])
 done
 
-lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semiring)"
+lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semidom)"
   by (simp add: order_trans [OF zero_le_one order_less_imp_le])
 
 lemma power_gt1_lemma:
-  assumes gt1: "1 < (a::'a::{ordered_semiring,ringpower})"
+  assumes gt1: "1 < (a::'a::{ordered_semidom,ringpower})"
   shows "1 < a * a^n"
 proof -
   have "1*1 < a*1" using gt1 by simp
@@ -81,11 +81,11 @@
 qed
 
 lemma power_gt1:
-     "1 < (a::'a::{ordered_semiring,ringpower}) ==> 1 < a ^ (Suc n)"
+     "1 < (a::'a::{ordered_semidom,ringpower}) ==> 1 < a ^ (Suc n)"
 by (simp add: power_gt1_lemma power_Suc)
 
 lemma power_le_imp_le_exp:
-  assumes gt1: "(1::'a::{ringpower,ordered_semiring}) < a"
+  assumes gt1: "(1::'a::{ringpower,ordered_semidom}) < a"
   shows "!!n. a^m \<le> a^n ==> m \<le> n"
 proof (induct m)
   case 0
@@ -109,26 +109,26 @@
 
 text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
 lemma power_inject_exp [simp]:
-     "1 < (a::'a::{ordered_semiring,ringpower}) ==> (a^m = a^n) = (m=n)"
+     "1 < (a::'a::{ordered_semidom,ringpower}) ==> (a^m = a^n) = (m=n)"
   by (force simp add: order_antisym power_le_imp_le_exp)
 
 text{*Can relax the first premise to @{term "0<a"} in the case of the
 natural numbers.*}
 lemma power_less_imp_less_exp:
-     "[| (1::'a::{ringpower,ordered_semiring}) < a; a^m < a^n |] ==> m < n"
+     "[| (1::'a::{ringpower,ordered_semidom}) < a; a^m < a^n |] ==> m < n"
 by (simp add: order_less_le [of m n] order_less_le [of "a^m" "a^n"]
               power_le_imp_le_exp)
 
 
 lemma power_mono:
-     "[|a \<le> b; (0::'a::{ringpower,ordered_semiring}) \<le> a|] ==> a^n \<le> b^n"
+     "[|a \<le> b; (0::'a::{ringpower,ordered_semidom}) \<le> a|] ==> a^n \<le> b^n"
 apply (induct_tac "n")
 apply (simp_all add: power_Suc)
 apply (auto intro: mult_mono zero_le_power order_trans [of 0 a b])
 done
 
 lemma power_strict_mono [rule_format]:
-     "[|a < b; (0::'a::{ringpower,ordered_semiring}) \<le> a|]
+     "[|a < b; (0::'a::{ringpower,ordered_semidom}) \<le> a|]
       ==> 0 < n --> a^n < b^n"
 apply (induct_tac "n")
 apply (auto simp add: mult_strict_mono zero_le_power power_Suc
@@ -136,7 +136,7 @@
 done
 
 lemma power_eq_0_iff [simp]:
-     "(a^n = 0) = (a = (0::'a::{ordered_ring,ringpower}) & 0<n)"
+     "(a^n = 0) = (a = (0::'a::{ordered_idom,ringpower}) & 0<n)"
 apply (induct_tac "n")
 apply (auto simp add: power_Suc zero_neq_one [THEN not_sym])
 done
@@ -174,13 +174,13 @@
 apply assumption
 done
 
-lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_ring,ringpower}) ^ n"
+lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_idom,ringpower}) ^ n"
 apply (induct_tac "n")
 apply (auto simp add: power_Suc abs_mult)
 done
 
 lemma zero_less_power_abs_iff [simp]:
-     "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_ring,ringpower}) | n=0)"
+     "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_idom,ringpower}) | n=0)"
 proof (induct "n")
   case 0
     show ?case by (simp add: zero_less_one)
@@ -190,12 +190,12 @@
 qed
 
 lemma zero_le_power_abs [simp]:
-     "(0::'a::{ordered_ring,ringpower}) \<le> (abs a)^n"
+     "(0::'a::{ordered_idom,ringpower}) \<le> (abs a)^n"
 apply (induct_tac "n")
 apply (auto simp add: zero_le_one zero_le_power)
 done
 
-lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{ring,ringpower}) ^ n"
+lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{comm_ring_1,ringpower}) ^ n"
 proof -
   have "-a = (- 1) * a"  by (simp add: minus_mult_left [symmetric])
   thus ?thesis by (simp only: power_mult_distrib)
@@ -203,14 +203,14 @@
 
 text{*Lemma for @{text power_strict_decreasing}*}
 lemma power_Suc_less:
-     "[|(0::'a::{ordered_semiring,ringpower}) < a; a < 1|]
+     "[|(0::'a::{ordered_semidom,ringpower}) < a; a < 1|]
       ==> a * a^n < a^n"
 apply (induct_tac n)
 apply (auto simp add: power_Suc mult_strict_left_mono)
 done
 
 lemma power_strict_decreasing:
-     "[|n < N; 0 < a; a < (1::'a::{ordered_semiring,ringpower})|]
+     "[|n < N; 0 < a; a < (1::'a::{ordered_semidom,ringpower})|]
       ==> a^N < a^n"
 apply (erule rev_mp)
 apply (induct_tac "N")
@@ -223,7 +223,7 @@
 
 text{*Proof resembles that of @{text power_strict_decreasing}*}
 lemma power_decreasing:
-     "[|n \<le> N; 0 \<le> a; a \<le> (1::'a::{ordered_semiring,ringpower})|]
+     "[|n \<le> N; 0 \<le> a; a \<le> (1::'a::{ordered_semidom,ringpower})|]
       ==> a^N \<le> a^n"
 apply (erule rev_mp)
 apply (induct_tac "N")
@@ -235,13 +235,13 @@
 done
 
 lemma power_Suc_less_one:
-     "[| 0 < a; a < (1::'a::{ordered_semiring,ringpower}) |] ==> a ^ Suc n < 1"
+     "[| 0 < a; a < (1::'a::{ordered_semidom,ringpower}) |] ==> a ^ Suc n < 1"
 apply (insert power_strict_decreasing [of 0 "Suc n" a], simp)
 done
 
 text{*Proof again resembles that of @{text power_strict_decreasing}*}
 lemma power_increasing:
-     "[|n \<le> N; (1::'a::{ordered_semiring,ringpower}) \<le> a|] ==> a^n \<le> a^N"
+     "[|n \<le> N; (1::'a::{ordered_semidom,ringpower}) \<le> a|] ==> a^n \<le> a^N"
 apply (erule rev_mp)
 apply (induct_tac "N")
 apply (auto simp add: power_Suc le_Suc_eq)
@@ -253,13 +253,13 @@
 
 text{*Lemma for @{text power_strict_increasing}*}
 lemma power_less_power_Suc:
-     "(1::'a::{ordered_semiring,ringpower}) < a ==> a^n < a * a^n"
+     "(1::'a::{ordered_semidom,ringpower}) < a ==> a^n < a * a^n"
 apply (induct_tac n)
 apply (auto simp add: power_Suc mult_strict_left_mono order_less_trans [OF zero_less_one])
 done
 
 lemma power_strict_increasing:
-     "[|n < N; (1::'a::{ordered_semiring,ringpower}) < a|] ==> a^n < a^N"
+     "[|n < N; (1::'a::{ordered_semidom,ringpower}) < a|] ==> a^n < a^N"
 apply (erule rev_mp)
 apply (induct_tac "N")
 apply (auto simp add: power_less_power_Suc power_Suc less_Suc_eq)
@@ -272,7 +272,7 @@
 
 lemma power_le_imp_le_base:
   assumes le: "a ^ Suc n \<le> b ^ Suc n"
-      and xnonneg: "(0::'a::{ordered_semiring,ringpower}) \<le> a"
+      and xnonneg: "(0::'a::{ordered_semidom,ringpower}) \<le> a"
       and ynonneg: "0 \<le> b"
   shows "a \<le> b"
  proof (rule ccontr)
@@ -286,7 +286,7 @@
 
 lemma power_inject_base:
      "[| a ^ Suc n = b ^ Suc n; 0 \<le> a; 0 \<le> b |]
-      ==> a = (b::'a::{ordered_semiring,ringpower})"
+      ==> a = (b::'a::{ordered_semidom,ringpower})"
 by (blast intro: power_le_imp_le_base order_antisym order_eq_refl sym)
 
 
--- a/src/HOL/Presburger.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Presburger.thy	Tue May 11 20:11:08 2004 +0200
@@ -704,7 +704,7 @@
     have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast
     also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)"
       using minus[THEN spec, of "x - i * d"]
-      by (simp add:int_distrib Ring_and_Field.diff_diff_eq[symmetric])
+      by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric])
     ultimately show "P x \<longrightarrow> P(x - (i + 1) * d)" by blast
   qed
 qed
--- a/src/HOL/Real/PReal.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Real/PReal.thy	Tue May 11 20:11:08 2004 +0200
@@ -15,7 +15,7 @@
 
 text{*As a special case, the sum of two positives is positive.  One of the
 premises could be weakened to the relation @{text "\<le>"}.*}
-lemma pos_add_strict: "[|0<a; b<c|] ==> b < a + (c::'a::ordered_semiring)"
+lemma pos_add_strict: "[|0<a; b<c|] ==> b < a + (c::'a::ordered_semidom)"
 by (insert add_strict_mono [of 0 a b c], simp)
 
 lemma interval_empty_iff:
--- a/src/HOL/Real/RealDef.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Real/RealDef.thy	Tue May 11 20:11:08 2004 +0200
@@ -169,7 +169,7 @@
 lemma real_add_zero_left: "(0::real) + z = z"
 by (cases z, simp add: real_add real_zero_def preal_add_ac)
 
-instance real :: plus_ac0
+instance real :: comm_monoid_add
   by (intro_classes,
       (assumption | 
        rule real_add_commute real_add_assoc real_add_zero_left)+)
@@ -281,9 +281,6 @@
 instance real :: field
 proof
   fix x y z :: real
-  show "(x + y) + z = x + (y + z)" by (rule real_add_assoc)
-  show "x + y = y + x" by (rule real_add_commute)
-  show "0 + x = x" by simp
   show "- x + x = 0" by (rule real_add_minus_left)
   show "x - y = x + (-y)" by (simp add: real_diff_def)
   show "(x * y) * z = x * (y * z)" by (rule real_mult_assoc)
@@ -312,7 +309,7 @@
         minus_mult_left [symmetric, simp]
 
 lemma real_mult_1_right: "z * (1::real) = z"
-  by (rule Ring_and_Field.mult_1_right)
+  by (rule OrderedGroup.mult_1_right)
 
 
 subsection{*The @{text "\<le>"} Ordering*}
@@ -554,11 +551,11 @@
 by (blast intro!: real_less_all_preal linorder_not_less [THEN iffD1])
 
 lemma real_add_less_le_mono: "[| w'<w; z'\<le>z |] ==> w' + z' < w + (z::real)"
-  by (rule Ring_and_Field.add_less_le_mono)
+  by (rule OrderedGroup.add_less_le_mono)
 
 lemma real_add_le_less_mono:
      "!!z z'::real. [| w'\<le>w; z'<z |] ==> w' + z' < w + z"
-  by (rule Ring_and_Field.add_le_less_mono)
+  by (rule OrderedGroup.add_le_less_mono)
 
 lemma real_le_square [simp]: "(0::real) \<le> x*x"
  by (rule Ring_and_Field.zero_le_square)
@@ -597,7 +594,7 @@
 
 text{*FIXME: delete or at least combine the next two lemmas*}
 lemma real_sum_squares_cancel: "x * x + y * y = 0 ==> x = (0::real)"
-apply (drule Ring_and_Field.equals_zero_I [THEN sym])
+apply (drule OrderedGroup.equals_zero_I [THEN sym])
 apply (cut_tac x = y in real_le_square) 
 apply (auto, drule order_antisym, auto)
 done
@@ -848,7 +845,7 @@
 by (force simp add: Ring_and_Field.abs_less_iff)
 
 lemma abs_le_interval_iff: "(abs x \<le> r) = (-r\<le>x & x\<le>(r::real))"
-by (force simp add: Ring_and_Field.abs_le_iff)
+by (force simp add: OrderedGroup.abs_le_iff)
 
 (*FIXME: used only once, in SEQ.ML*)
 lemma abs_add_one_gt_zero [simp]: "(0::real) < 1 + abs(x)"
@@ -892,7 +889,7 @@
 val abs_minus_eqI2 = thm"abs_minus_eqI2";
 val abs_ge_zero = thm"abs_ge_zero";
 val abs_idempotent = thm"abs_idempotent";
-val abs_zero_iff = thm"abs_zero_iff";
+val abs_eq_0 = thm"abs_eq_0";
 val abs_ge_self = thm"abs_ge_self";
 val abs_ge_minus_self = thm"abs_ge_minus_self";
 val abs_mult = thm"abs_mult";
--- a/src/HOL/Ring_and_Field.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/Ring_and_Field.thy	Tue May 11 20:11:08 2004 +0200
@@ -2,286 +2,132 @@
     ID:      $Id$
     Author:  Gertrud Bauer and Markus Wenzel, TU Muenchen
              Lawrence C Paulson, University of Cambridge
+             Revised and splitted into Ring_and_Field.thy and Group.thy 
+             by Steven Obua, TU Muenchen, in May 2004
     License: GPL (GNU GENERAL PUBLIC LICENSE)
 *)
 
-header {* Ring and field structures *}
-
-theory Ring_and_Field = Inductive:
+header {* (Ordered) Rings and Fields *}
 
-subsection {* Abstract algebraic structures *}
-
-subsection {* Types Classes @{text plus_ac0} and @{text times_ac1} *}
+theory Ring_and_Field = OrderedGroup:
 
-axclass plus_ac0 \<subseteq> plus, zero
-  commute:     "x + y = y + x"
-  assoc:       "(x + y) + z = x + (y + z)"
-  zero [simp]: "0 + x = x"
-
-lemma plus_ac0_left_commute: "x + (y+z) = y + ((x+z)::'a::plus_ac0)"
-by(rule mk_left_commute[of "op +",OF plus_ac0.assoc plus_ac0.commute])
+text {*
+  The theory of partially ordered rings is taken from the books:
+  \begin{itemize}
+  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
+  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
+  \end{itemize}
+  Most of the used notions can also be looked up in 
+  \begin{itemize}
+  \item \emph{www.mathworld.com} by Eric Weisstein et. al.
+  \item \emph{Algebra I} by van der Waerden, Springer.
+  \end{itemize}
+*}
 
-lemma plus_ac0_zero_right [simp]: "x + 0 = (x ::'a::plus_ac0)"
-apply (rule plus_ac0.commute [THEN trans])
-apply (rule plus_ac0.zero)
-done
+axclass semiring \<subseteq> ab_semigroup_add, semigroup_mult
+  left_distrib: "(a + b) * c = a * c + b * c"
+  right_distrib: "a * (b + c) = a * b + a * c"
 
-lemmas plus_ac0 = plus_ac0.assoc plus_ac0.commute plus_ac0_left_commute
-                  plus_ac0.zero plus_ac0_zero_right
+axclass semiring_0 \<subseteq> semiring, comm_monoid_add
 
-axclass times_ac1 \<subseteq> times, one
-  commute:     "x * y = y * x"
-  assoc:       "(x * y) * z = x * (y * z)"
-  one [simp]:  "1 * x = x"
+axclass comm_semiring \<subseteq> ab_semigroup_add, ab_semigroup_mult  
+  mult_commute: "a * b = b * a"
+  distrib: "(a + b) * c = a * c + b * c"
 
-theorem times_ac1_left_commute: "(x::'a::times_ac1) * ((y::'a) * z) =
-  y * (x * z)"
-by(rule mk_left_commute[of "op *",OF times_ac1.assoc times_ac1.commute])
-
-theorem times_ac1_one_right [simp]: "(x::'a::times_ac1) * 1 = x"
-proof -
-  have "x * 1 = 1 * x"
-    by (rule times_ac1.commute)
-  also have "... = x"
-    by (rule times_ac1.one)
-  finally show ?thesis .
+instance comm_semiring \<subseteq> semiring
+proof
+  fix a b c :: 'a
+  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
+  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
+  also have "... = b * a + c * a" by (simp only: distrib)
+  also have "... = a * b + a * c" by (simp add: mult_ac)
+  finally show "a * (b + c) = a * b + a * c" by blast
 qed
 
-theorems times_ac1 = times_ac1.assoc times_ac1.commute times_ac1_left_commute
-  times_ac1.one times_ac1_one_right
-
+axclass comm_semiring_0 \<subseteq> comm_semiring, comm_monoid_add
 
-text{*This class is the same as @{text plus_ac0}, while using the same axiom
-names as the other axclasses.*}
-axclass abelian_semigroup \<subseteq> zero, plus
-  add_assoc: "(a + b) + c = a + (b + c)"
-  add_commute: "a + b = b + a"
-  add_0 [simp]: "0 + a = a"
+instance comm_semiring_0 \<subseteq> semiring_0 ..
 
-text{*This class underlies both @{text semiring} and @{text ring}*}
-axclass almost_semiring \<subseteq> abelian_semigroup, one, times
-  mult_assoc: "(a * b) * c = a * (b * c)"
-  mult_commute: "a * b = b * a"
-  mult_1 [simp]: "1 * a = a"
-
-  left_distrib: "(a + b) * c = a * c + b * c"
+axclass axclass_0_neq_1 \<subseteq> zero, one
   zero_neq_one [simp]: "0 \<noteq> 1"
 
+axclass semiring_1 \<subseteq> axclass_0_neq_1, semiring_0, monoid_mult
 
-axclass semiring \<subseteq> almost_semiring
-  add_left_imp_eq: "a + b = a + c ==> b=c"
-    --{*This axiom is needed for semirings only: for rings, etc., it is
-        redundant. Including it allows many more of the following results
-        to be proved for semirings too.*}
+axclass comm_semiring_1 \<subseteq> axclass_0_neq_1, comm_semiring_0, comm_monoid_mult (* previously almost_semiring *)
+
+instance comm_semiring_1 \<subseteq> semiring_1 ..
 
-instance abelian_semigroup \<subseteq> plus_ac0
-proof
-  fix x y z :: 'a
-  show "x + y = y + x" by (rule add_commute)
-  show "x + y + z = x + (y + z)" by (rule add_assoc)
-  show "0+x = x" by (rule add_0)
-qed
+axclass axclass_no_zero_divisors \<subseteq> zero, times
+  no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
 
-instance almost_semiring \<subseteq> times_ac1
-proof
-  fix x y z :: 'a
-  show "x * y = y * x" by (rule mult_commute)
-  show "x * y * z = x * (y * z)" by (rule mult_assoc)
-  show "1*x = x" by simp
-qed
+axclass comm_semiring_1_cancel \<subseteq> comm_semiring_1, cancel_ab_semigroup_add (* previously semiring *)
+
+axclass ring \<subseteq> semiring, ab_group_add
+
+instance ring \<subseteq> semiring_0 ..
 
-axclass abelian_group \<subseteq> abelian_semigroup, minus
-   left_minus [simp]: "-a + a = 0"
-   diff_minus: "a - b = a + -b"
+axclass comm_ring \<subseteq> comm_semiring_0, ab_group_add
+
+instance comm_ring \<subseteq> ring ..
 
-axclass ring \<subseteq> almost_semiring, abelian_group
+instance comm_ring \<subseteq> comm_semiring_0 ..
+
+axclass ring_1 \<subseteq> ring, semiring_1
 
-text{*Proving axiom @{text add_left_imp_eq} makes all @{text semiring}
-      theorems available to members of @{term ring} *}
-instance ring \<subseteq> semiring
-proof
-  fix a b c :: 'a
-  assume "a + b = a + c"
-  hence  "-a + a + b = -a + a + c" by (simp only: add_assoc)
-  thus "b = c" by simp
-qed
+axclass comm_ring_1 \<subseteq> comm_ring, comm_semiring_1 (* previously ring *)
+
+instance comm_ring_1 \<subseteq> ring_1 ..
 
-text{*This class underlies @{text ordered_semiring} and @{text ordered_ring}*}
-axclass almost_ordered_semiring \<subseteq> semiring, linorder
-  add_left_mono: "a \<le> b ==> c + a \<le> c + b"
-  mult_strict_left_mono: "a < b ==> 0 < c ==> c * a < c * b"
+instance comm_ring_1 \<subseteq> comm_semiring_1_cancel ..
 
-axclass ordered_semiring \<subseteq> almost_ordered_semiring
-  zero_less_one [simp]: "0 < 1" --{*This too is needed for semirings only.*}
+axclass idom \<subseteq> comm_ring_1, axclass_no_zero_divisors
 
-axclass ordered_ring \<subseteq> almost_ordered_semiring, ring
-  abs_if: "\<bar>a\<bar> = (if a < 0 then -a else a)"
-
-axclass field \<subseteq> ring, inverse
+axclass field \<subseteq> comm_ring_1, inverse
   left_inverse [simp]: "a \<noteq> 0 ==> inverse a * a = 1"
   divide_inverse:      "a / b = a * inverse b"
 
-axclass ordered_field \<subseteq> ordered_ring, field
+lemma mult_zero_left [simp]: "0 * a = (0::'a::{semiring_0, cancel_semigroup_add})"
+proof -
+  have "0*a + 0*a = 0*a + 0"
+    by (simp add: left_distrib [symmetric])
+  thus ?thesis 
+    by (simp only: add_left_cancel)
+qed
 
+lemma mult_zero_right [simp]: "a * 0 = (0::'a::{semiring_0, cancel_semigroup_add})"
+proof -
+  have "a*0 + a*0 = a*0 + 0"
+    by (simp add: right_distrib [symmetric])
+  thus ?thesis 
+    by (simp only: add_left_cancel)
+qed
+
+lemma field_mult_eq_0_iff [simp]: "(a*b = (0::'a::field)) = (a = 0 | b = 0)"
+proof cases
+  assume "a=0" thus ?thesis by simp
+next
+  assume anz [simp]: "a\<noteq>0"
+  { assume "a * b = 0"
+    hence "inverse a * (a * b) = 0" by simp
+    hence "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])}
+  thus ?thesis by force
+qed
+
+instance field \<subseteq> idom
+by (intro_classes, simp)
+  
 axclass division_by_zero \<subseteq> zero, inverse
   inverse_zero [simp]: "inverse 0 = 0"
 
-
-subsection {* Derived Rules for Addition *}
-
-lemma add_0_right [simp]: "a + 0 = (a::'a::plus_ac0)"
-proof -
-  have "a + 0 = 0 + a" by (rule plus_ac0.commute)
-  also have "... = a" by simp
-  finally show ?thesis .
-qed
-
-lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::plus_ac0))"
-  by (rule mk_left_commute [of "op +", OF plus_ac0.assoc plus_ac0.commute])
-
-theorems add_ac = add_assoc add_commute add_left_commute
-
-lemma right_minus [simp]: "a + -(a::'a::abelian_group) = 0"
-proof -
-  have "a + -a = -a + a" by (simp add: add_ac)
-  also have "... = 0" by simp
-  finally show ?thesis .
-qed
-
-lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::abelian_group))"
-proof
-  have "a = a - b + b" by (simp add: diff_minus add_ac)
-  also assume "a - b = 0"
-  finally show "a = b" by simp
-next
-  assume "a = b"
-  thus "a - b = 0" by (simp add: diff_minus)
-qed
-
-lemma add_left_cancel [simp]:
-     "(a + b = a + c) = (b = (c::'a::semiring))"
-by (blast dest: add_left_imp_eq) 
-
-lemma add_right_cancel [simp]:
-     "(b + a = c + a) = (b = (c::'a::semiring))"
-  by (simp add: add_commute)
-
-lemma minus_minus [simp]: "- (- (a::'a::abelian_group)) = a" 
-apply (rule right_minus_eq [THEN iffD1]) 
-apply (simp add: diff_minus) 
-done
-
-lemma equals_zero_I: "a+b = 0 ==> -a = (b::'a::abelian_group)"
-apply (rule right_minus_eq [THEN iffD1, symmetric])
-apply (simp add: diff_minus add_commute) 
-done
-
-lemma minus_zero [simp]: "- 0 = (0::'a::abelian_group)"
-by (simp add: equals_zero_I)
-
-lemma diff_self [simp]: "a - (a::'a::abelian_group) = 0"
-  by (simp add: diff_minus)
-
-lemma diff_0 [simp]: "(0::'a::abelian_group) - a = -a"
-by (simp add: diff_minus)
-
-lemma diff_0_right [simp]: "a - (0::'a::abelian_group) = a" 
-by (simp add: diff_minus)
-
-lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::abelian_group)"
-by (simp add: diff_minus)
-
-lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::abelian_group))" 
-proof 
-  assume "- a = - b"
-  hence "- (- a) = - (- b)"
-    by simp
-  thus "a=b" by simp
-next
-  assume "a=b"
-  thus "-a = -b" by simp
-qed
-
-lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::abelian_group))"
-by (subst neg_equal_iff_equal [symmetric], simp)
-
-lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::abelian_group))"
-by (subst neg_equal_iff_equal [symmetric], simp)
-
-lemma add_minus_self [simp]: "a + b - b = (a::'a::abelian_group)"; 
-  by (simp add: diff_minus add_assoc)
-
-lemma add_minus_self_left [simp]:  "a + (b - a)  = (b::'a::abelian_group)";
-by (simp add: diff_minus add_left_commute [of a]) 
-
-lemma add_minus_self_right  [simp]:  "a + b - a  = (b::'a::abelian_group)";
-by (simp add: diff_minus add_left_commute [of a] add_assoc) 
-
-lemma minus_add_self [simp]: "a - b + b = (a::'a::abelian_group)"; 
-by (simp add: diff_minus add_assoc) 
-
-text{*The next two equations can make the simplifier loop!*}
-
-lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::abelian_group))"
-proof -
-  have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal)
-  thus ?thesis by (simp add: eq_commute)
-qed
-
-lemma minus_equation_iff: "(- a = b) = (- (b::'a::abelian_group) = a)"
-proof -
-  have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal)
-  thus ?thesis by (simp add: eq_commute)
-qed
-
-
-subsection {* Derived rules for multiplication *}
-
-lemma mult_1_right [simp]: "a * (1::'a::almost_semiring) = a"
-proof -
-  have "a * 1 = 1 * a" by (simp add: mult_commute)
-  also have "... = a" by simp
-  finally show ?thesis .
-qed
-
-lemma mult_left_commute: "a * (b * c) = b * (a * (c::'a::almost_semiring))"
-  by (rule mk_left_commute [of "op *", OF mult_assoc mult_commute])
-
-theorems mult_ac = mult_assoc mult_commute mult_left_commute
-
-lemma mult_zero_left [simp]: "0 * a = (0::'a::semiring)"
-proof -
-  have "0*a + 0*a = 0*a + 0"
-    by (simp add: left_distrib [symmetric])
-  thus ?thesis by (simp only: add_left_cancel)
-qed
-
-lemma mult_zero_right [simp]: "a * 0 = (0::'a::semiring)"
-  by (simp add: mult_commute)
-
-
 subsection {* Distribution rules *}
 
-lemma right_distrib: "a * (b + c) = a * b + a * (c::'a::almost_semiring)"
-proof -
-  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
-  also have "... = b * a + c * a" by (simp only: left_distrib)
-  also have "... = a * b + a * c" by (simp add: mult_ac)
-  finally show ?thesis .
-qed
-
 theorems ring_distrib = right_distrib left_distrib
 
 text{*For the @{text combine_numerals} simproc*}
 lemma combine_common_factor:
-     "a*e + (b*e + c) = (a+b)*e + (c::'a::almost_semiring)"
+     "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)"
 by (simp add: left_distrib add_ac)
 
-lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::abelian_group)"
-apply (rule equals_zero_I)
-apply (simp add: plus_ac0) 
-done
-
 lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
 apply (rule equals_zero_I)
 apply (simp add: left_distrib [symmetric]) 
@@ -303,237 +149,86 @@
               minus_mult_left [symmetric] minus_mult_right [symmetric]) 
 
 lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
-by (simp add: mult_commute [of _ c] right_diff_distrib) 
-
-lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ring)"
-by (simp add: diff_minus add_commute) 
-
-
-subsection {* Ordering Rules for Addition *}
-
-lemma add_right_mono: "a \<le> (b::'a::almost_ordered_semiring) ==> a + c \<le> b + c"
-by (simp add: add_commute [of _ c] add_left_mono)
+by (simp add: left_distrib diff_minus 
+              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
 
-text {* non-strict, in both arguments *}
-lemma add_mono:
-     "[|a \<le> b;  c \<le> d|] ==> a + c \<le> b + (d::'a::almost_ordered_semiring)"
-  apply (erule add_right_mono [THEN order_trans])
-  apply (simp add: add_commute add_left_mono)
-  done
+axclass pordered_semiring \<subseteq> semiring_0, pordered_ab_semigroup_add 
+  mult_left_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
+  mult_right_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> a * c <= b * c"
 
-lemma add_strict_left_mono:
-     "a < b ==> c + a < c + (b::'a::almost_ordered_semiring)"
- by (simp add: order_less_le add_left_mono) 
-
-lemma add_strict_right_mono:
-     "a < b ==> a + c < b + (c::'a::almost_ordered_semiring)"
- by (simp add: add_commute [of _ c] add_strict_left_mono)
+axclass pordered_cancel_semiring \<subseteq> pordered_semiring, cancel_ab_semigroup_add
 
-text{*Strict monotonicity in both arguments*}
-lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::almost_ordered_semiring)"
-apply (erule add_strict_right_mono [THEN order_less_trans])
-apply (erule add_strict_left_mono)
-done
-
-lemma add_less_le_mono:
-     "[| a<b; c\<le>d |] ==> a + c < b + (d::'a::almost_ordered_semiring)"
-apply (erule add_strict_right_mono [THEN order_less_le_trans])
-apply (erule add_left_mono) 
-done
+axclass ordered_semiring_strict \<subseteq> semiring_0, ordered_cancel_ab_semigroup_add
+  mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
+  mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
 
-lemma add_le_less_mono:
-     "[| a\<le>b; c<d |] ==> a + c < b + (d::'a::almost_ordered_semiring)"
-apply (erule add_right_mono [THEN order_le_less_trans])
-apply (erule add_strict_left_mono) 
-done
-
-lemma add_less_imp_less_left:
-      assumes less: "c + a < c + b"  shows "a < (b::'a::almost_ordered_semiring)"
-proof (rule ccontr)
-  assume "~ a < b"
-  hence "b \<le> a" by (simp add: linorder_not_less)
-  hence "c+b \<le> c+a" by (rule add_left_mono)
-  with this and less show False 
-    by (simp add: linorder_not_less [symmetric])
-qed
-
-lemma add_less_imp_less_right:
-      "a + c < b + c ==> a < (b::'a::almost_ordered_semiring)"
-apply (rule add_less_imp_less_left [of c])
-apply (simp add: add_commute)  
+instance ordered_semiring_strict \<subseteq> pordered_cancel_semiring
+apply intro_classes
+apply (case_tac "a < b & 0 < c")
+apply (auto simp add: mult_strict_left_mono order_less_le)
+apply (auto simp add: mult_strict_left_mono order_le_less)
+apply (simp add: mult_strict_right_mono)
 done
 
-lemma add_less_cancel_left [simp]:
-    "(c+a < c+b) = (a < (b::'a::almost_ordered_semiring))"
-by (blast intro: add_less_imp_less_left add_strict_left_mono) 
-
-lemma add_less_cancel_right [simp]:
-    "(a+c < b+c) = (a < (b::'a::almost_ordered_semiring))"
-by (blast intro: add_less_imp_less_right add_strict_right_mono)
+axclass pordered_comm_semiring \<subseteq> comm_semiring_0, pordered_ab_semigroup_add
+  mult_mono: "a <= b \<Longrightarrow> 0 <= c \<Longrightarrow> c * a <= c * b"
 
-lemma add_le_cancel_left [simp]:
-    "(c+a \<le> c+b) = (a \<le> (b::'a::almost_ordered_semiring))"
-by (simp add: linorder_not_less [symmetric]) 
-
-lemma add_le_cancel_right [simp]:
-    "(a+c \<le> b+c) = (a \<le> (b::'a::almost_ordered_semiring))"
-by (simp add: linorder_not_less [symmetric]) 
-
-lemma add_le_imp_le_left:
-      "c + a \<le> c + b ==> a \<le> (b::'a::almost_ordered_semiring)"
-by simp
+axclass pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring, cancel_ab_semigroup_add
 
-lemma add_le_imp_le_right:
-      "a + c \<le> b + c ==> a \<le> (b::'a::almost_ordered_semiring)"
-by simp
-
-lemma add_increasing: "[|0\<le>a; b\<le>c|] ==> b \<le> a + (c::'a::almost_ordered_semiring)"
-by (insert add_mono [of 0 a b c], simp)
-
-
-subsection {* Ordering Rules for Unary Minus *}
+instance pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring ..
 
-lemma le_imp_neg_le:
-      assumes "a \<le> (b::'a::ordered_ring)" shows "-b \<le> -a"
-proof -
-  have "-a+a \<le> -a+b"
-    by (rule add_left_mono) 
-  hence "0 \<le> -a+b"
-    by simp
-  hence "0 + (-b) \<le> (-a + b) + (-b)"
-    by (rule add_right_mono) 
-  thus ?thesis
-    by (simp add: add_assoc)
-qed
+axclass ordered_comm_semiring_strict \<subseteq> comm_semiring_0, ordered_cancel_ab_semigroup_add
+  mult_strict_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
 
-lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::ordered_ring))"
-proof 
-  assume "- b \<le> - a"
-  hence "- (- a) \<le> - (- b)"
-    by (rule le_imp_neg_le)
-  thus "a\<le>b" by simp
-next
-  assume "a\<le>b"
-  thus "-b \<le> -a" by (rule le_imp_neg_le)
-qed
+instance pordered_comm_semiring \<subseteq> pordered_semiring
+by (intro_classes, insert mult_mono, simp_all add: mult_commute, blast+)
 
-lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::ordered_ring))"
-by (subst neg_le_iff_le [symmetric], simp)
-
-lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::ordered_ring))"
-by (subst neg_le_iff_le [symmetric], simp)
-
-lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::ordered_ring))"
-by (force simp add: order_less_le) 
+instance pordered_cancel_comm_semiring \<subseteq> pordered_cancel_semiring ..
 
-lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::ordered_ring))"
-by (subst neg_less_iff_less [symmetric], simp)
-
-lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::ordered_ring))"
-by (subst neg_less_iff_less [symmetric], simp)
-
-text{*The next several equations can make the simplifier loop!*}
+instance ordered_comm_semiring_strict \<subseteq> ordered_semiring_strict
+by (intro_classes, insert mult_strict_mono, simp_all add: mult_commute, blast+)
 
-lemma less_minus_iff: "(a < - b) = (b < - (a::'a::ordered_ring))"
-proof -
-  have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
-  thus ?thesis by simp
-qed
-
-lemma minus_less_iff: "(- a < b) = (- b < (a::'a::ordered_ring))"
-proof -
-  have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
-  thus ?thesis by simp
-qed
-
-lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::ordered_ring))"
-apply (simp add: linorder_not_less [symmetric])
-apply (rule minus_less_iff) 
+instance ordered_comm_semiring_strict \<subseteq> pordered_cancel_comm_semiring
+apply (intro_classes)
+apply (case_tac "a < b & 0 < c")
+apply (auto simp add: mult_strict_left_mono order_less_le)
+apply (auto simp add: mult_strict_left_mono order_le_less)
 done
 
-lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::ordered_ring))"
-apply (simp add: linorder_not_less [symmetric])
-apply (rule less_minus_iff) 
-done
-
-
-subsection{*Subtraction Laws*}
+axclass pordered_ring \<subseteq> ring, pordered_semiring 
 
-lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::abelian_group)"
-by (simp add: diff_minus plus_ac0)
+instance pordered_ring \<subseteq> pordered_ab_group_add ..
 
-lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::abelian_group)"
-by (simp add: diff_minus plus_ac0)
-
-lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::abelian_group))"
-by (auto simp add: diff_minus add_assoc)
+instance pordered_ring \<subseteq> pordered_cancel_semiring ..
 
-lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::abelian_group) = c)"
-by (auto simp add: diff_minus add_assoc)
-
-lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::abelian_group))"
-by (simp add: diff_minus plus_ac0)
-
-lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::abelian_group)"
-by (simp add: diff_minus plus_ac0)
+axclass lordered_ring \<subseteq> pordered_ring, lordered_ab_group_abs
 
-text{*Further subtraction laws for ordered rings*}
+axclass axclass_abs_if \<subseteq> minus, ord, zero
+  abs_if: "abs a = (if (a < 0) then (-a) else a)"
 
-lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::ordered_ring))"
-proof -
-  have  "(a < b) = (a + (- b) < b + (-b))"  
-    by (simp only: add_less_cancel_right)
-  also have "... =  (a - b < 0)" by (simp add: diff_minus)
-  finally show ?thesis .
-qed
+axclass ordered_ring_strict \<subseteq> ring, ordered_semiring_strict, axclass_abs_if
 
-lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::ordered_ring))"
-apply (subst less_iff_diff_less_0)
-apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
-apply (simp add: diff_minus add_ac)
-done
+instance ordered_ring_strict \<subseteq> lordered_ab_group ..
 
-lemma less_diff_eq: "(a < c-b) = (a + (b::'a::ordered_ring) < c)"
-apply (subst less_iff_diff_less_0)
-apply (rule less_iff_diff_less_0 [of _ "c-b", THEN ssubst])
-apply (simp add: diff_minus add_ac)
-done
+instance ordered_ring_strict \<subseteq> lordered_ring
+by (intro_classes, simp add: abs_if join_eq_if)
 
-lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::ordered_ring))"
-by (simp add: linorder_not_less [symmetric] less_diff_eq)
-
-lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::ordered_ring) \<le> c)"
-by (simp add: linorder_not_less [symmetric] diff_less_eq)
+axclass pordered_comm_ring \<subseteq> comm_ring, pordered_comm_semiring
 
-text{*This list of rewrites simplifies (in)equalities by bringing subtractions
-  to the top and then moving negative terms to the other side.
-  Use with @{text add_ac}*}
-lemmas compare_rls =
-       diff_minus [symmetric]
-       add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
-       diff_less_eq less_diff_eq diff_le_eq le_diff_eq
-       diff_eq_eq eq_diff_eq
+axclass ordered_semidom \<subseteq> comm_semiring_1_cancel, ordered_comm_semiring_strict (* previously ordered_semiring *)
+  zero_less_one [simp]: "0 < 1"
 
-text{*This list of rewrites decides ring equalities by ordered rewriting.*}
-lemmas ring_eq_simps =
-  times_ac1.assoc times_ac1.commute times_ac1_left_commute
-  left_distrib right_distrib left_diff_distrib right_diff_distrib
-  plus_ac0.assoc plus_ac0.commute plus_ac0_left_commute
-  add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
-  diff_eq_eq eq_diff_eq
+axclass ordered_idom \<subseteq> comm_ring_1, ordered_comm_semiring_strict, axclass_abs_if (* previously ordered_ring *)
 
-subsection{*Lemmas for the @{text cancel_numerals} simproc*}
+instance ordered_idom \<subseteq> ordered_ring_strict ..
 
-lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::abelian_group))"
-by (simp add: compare_rls)
-
-lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::ordered_ring))"
-by (simp add: compare_rls)
+axclass ordered_field \<subseteq> field, ordered_idom
 
 lemma eq_add_iff1:
      "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
+apply (simp add: diff_minus left_distrib)
 apply (simp add: diff_minus left_distrib add_ac)
-apply (simp add: compare_rls minus_mult_left [symmetric]) 
+apply (simp add: compare_rls minus_mult_left [symmetric])
 done
 
 lemma eq_add_iff2:
@@ -543,167 +238,199 @@
 done
 
 lemma less_add_iff1:
-     "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::ordered_ring))"
+     "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::pordered_ring))"
 apply (simp add: diff_minus left_distrib add_ac)
 apply (simp add: compare_rls minus_mult_left [symmetric]) 
 done
 
 lemma less_add_iff2:
-     "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::ordered_ring))"
+     "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::pordered_ring))"
 apply (simp add: diff_minus left_distrib add_ac)
 apply (simp add: compare_rls minus_mult_left [symmetric]) 
 done
 
 lemma le_add_iff1:
-     "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::ordered_ring))"
+     "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::pordered_ring))"
 apply (simp add: diff_minus left_distrib add_ac)
 apply (simp add: compare_rls minus_mult_left [symmetric]) 
 done
 
 lemma le_add_iff2:
-     "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::ordered_ring))"
+     "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::pordered_ring))"
 apply (simp add: diff_minus left_distrib add_ac)
 apply (simp add: compare_rls minus_mult_left [symmetric]) 
 done
 
-
 subsection {* Ordering Rules for Multiplication *}
 
-lemma mult_strict_right_mono:
-     "[|a < b; 0 < c|] ==> a * c < b * (c::'a::almost_ordered_semiring)"
-by (simp add: mult_commute [of _ c] mult_strict_left_mono)
-
-lemma mult_left_mono:
-     "[|a \<le> b; 0 \<le> c|] ==> c * a \<le> c * (b::'a::almost_ordered_semiring)"
-  apply (case_tac "c=0", simp)
-  apply (force simp add: mult_strict_left_mono order_le_less) 
-  done
-
-lemma mult_right_mono:
-     "[|a \<le> b; 0 \<le> c|] ==> a*c \<le> b * (c::'a::almost_ordered_semiring)"
-  by (simp add: mult_left_mono mult_commute [of _ c]) 
-
 lemma mult_left_le_imp_le:
-     "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::almost_ordered_semiring)"
+     "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
   by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
  
 lemma mult_right_le_imp_le:
-     "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::almost_ordered_semiring)"
+     "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
   by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
 
 lemma mult_left_less_imp_less:
-     "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::almost_ordered_semiring)"
+     "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
   by (force simp add: mult_left_mono linorder_not_le [symmetric])
  
 lemma mult_right_less_imp_less:
-     "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::almost_ordered_semiring)"
+     "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
   by (force simp add: mult_right_mono linorder_not_le [symmetric])
 
 lemma mult_strict_left_mono_neg:
-     "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring)"
+     "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring_strict)"
 apply (drule mult_strict_left_mono [of _ _ "-c"])
 apply (simp_all add: minus_mult_left [symmetric]) 
 done
 
+lemma mult_left_mono_neg:
+     "[|b \<le> a; c \<le> 0|] ==> c * a \<le>  c * (b::'a::pordered_ring)"
+apply (drule mult_left_mono [of _ _ "-c"])
+apply (simp_all add: minus_mult_left [symmetric]) 
+done
+
 lemma mult_strict_right_mono_neg:
-     "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring)"
+     "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring_strict)"
 apply (drule mult_strict_right_mono [of _ _ "-c"])
 apply (simp_all add: minus_mult_right [symmetric]) 
 done
 
+lemma mult_right_mono_neg:
+     "[|b \<le> a; c \<le> 0|] ==> a * c \<le>  (b::'a::pordered_ring) * c"
+apply (drule mult_right_mono [of _ _ "-c"])
+apply (simp)
+apply (simp_all add: minus_mult_right [symmetric]) 
+done
 
 subsection{* Products of Signs *}
 
-lemma mult_pos: "[| (0::'a::almost_ordered_semiring) < a; 0 < b |] ==> 0 < a*b"
+lemma mult_pos: "[| (0::'a::ordered_semiring_strict) < a; 0 < b |] ==> 0 < a*b"
 by (drule mult_strict_left_mono [of 0 b], auto)
 
-lemma mult_pos_neg: "[| (0::'a::almost_ordered_semiring) < a; b < 0 |] ==> a*b < 0"
+lemma mult_pos_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; 0 \<le> b |] ==> 0 \<le> a*b"
+by (drule mult_left_mono [of 0 b], auto)
+
+lemma mult_pos_neg: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> a*b < 0"
 by (drule mult_strict_left_mono [of b 0], auto)
 
-lemma mult_neg: "[| a < (0::'a::ordered_ring); b < 0 |] ==> 0 < a*b"
+lemma mult_pos_neg_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> a*b \<le> 0"
+by (drule mult_left_mono [of b 0], auto)
+
+lemma mult_pos_neg2: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> b*a < 0" 
+by (drule mult_strict_right_mono[of b 0], auto)
+
+lemma mult_pos_neg2_le: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> b*a \<le> 0" 
+by (drule mult_right_mono[of b 0], auto)
+
+lemma mult_neg: "[| a < (0::'a::ordered_ring_strict); b < 0 |] ==> 0 < a*b"
 by (drule mult_strict_right_mono_neg, auto)
 
+lemma mult_neg_le: "[| a \<le> (0::'a::pordered_ring); b \<le> 0 |] ==> 0 \<le> a*b"
+by (drule mult_right_mono_neg[of a 0 b ], auto)
+
 lemma zero_less_mult_pos:
-     "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::almost_ordered_semiring)"
+     "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
 apply (case_tac "b\<le>0") 
  apply (auto simp add: order_le_less linorder_not_less)
 apply (drule_tac mult_pos_neg [of a b]) 
  apply (auto dest: order_less_not_sym)
 done
 
+lemma zero_less_mult_pos2:
+     "[| 0 < b*a; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
+apply (case_tac "b\<le>0") 
+ apply (auto simp add: order_le_less linorder_not_less)
+apply (drule_tac mult_pos_neg2 [of a b]) 
+ apply (auto dest: order_less_not_sym)
+done
+
 lemma zero_less_mult_iff:
-     "((0::'a::ordered_ring) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
+     "((0::'a::ordered_ring_strict) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
 apply (auto simp add: order_le_less linorder_not_less mult_pos mult_neg)
 apply (blast dest: zero_less_mult_pos) 
-apply (simp add: mult_commute [of a b]) 
-apply (blast dest: zero_less_mult_pos) 
+apply (blast dest: zero_less_mult_pos2)
 done
 
 text{*A field has no "zero divisors", and this theorem holds without the
       assumption of an ordering.  See @{text field_mult_eq_0_iff} below.*}
-lemma mult_eq_0_iff [simp]: "(a*b = (0::'a::ordered_ring)) = (a = 0 | b = 0)"
+lemma mult_eq_0_iff [simp]: "(a*b = (0::'a::ordered_ring_strict)) = (a = 0 | b = 0)"
 apply (case_tac "a < 0")
 apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
 apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
 done
 
 lemma zero_le_mult_iff:
-     "((0::'a::ordered_ring) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
+     "((0::'a::ordered_ring_strict) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
 by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
                    zero_less_mult_iff)
 
 lemma mult_less_0_iff:
-     "(a*b < (0::'a::ordered_ring)) = (0 < a & b < 0 | a < 0 & 0 < b)"
+     "(a*b < (0::'a::ordered_ring_strict)) = (0 < a & b < 0 | a < 0 & 0 < b)"
 apply (insert zero_less_mult_iff [of "-a" b]) 
 apply (force simp add: minus_mult_left[symmetric]) 
 done
 
 lemma mult_le_0_iff:
-     "(a*b \<le> (0::'a::ordered_ring)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
+     "(a*b \<le> (0::'a::ordered_ring_strict)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
 apply (insert zero_le_mult_iff [of "-a" b]) 
 apply (force simp add: minus_mult_left[symmetric]) 
 done
 
-lemma zero_le_square: "(0::'a::ordered_ring) \<le> a*a"
+lemma split_mult_pos_le: "(0 \<le> a & 0 \<le> b) | (a \<le> 0 & b \<le> 0) \<Longrightarrow> 0 \<le> a * (b::_::pordered_ring)"
+by (auto simp add: mult_pos_le mult_neg_le)
+
+lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> (0::_::pordered_cancel_semiring)" 
+by (auto simp add: mult_pos_neg_le mult_pos_neg2_le)
+
+lemma zero_le_square: "(0::'a::ordered_ring_strict) \<le> a*a"
 by (simp add: zero_le_mult_iff linorder_linear) 
 
-text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semiring}
-      theorems available to members of @{term ordered_ring} *}
-instance ordered_ring \<subseteq> ordered_semiring
+text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semidom}
+      theorems available to members of @{term ordered_idom} *}
+
+instance ordered_idom \<subseteq> ordered_semidom
 proof
   have "(0::'a) \<le> 1*1" by (rule zero_le_square)
   thus "(0::'a) < 1" by (simp add: order_le_less) 
 qed
 
+instance ordered_ring_strict \<subseteq> axclass_no_zero_divisors 
+by (intro_classes, simp)
+
+instance ordered_idom \<subseteq> idom ..
+
 text{*All three types of comparision involving 0 and 1 are covered.*}
 
 declare zero_neq_one [THEN not_sym, simp]
 
-lemma zero_le_one [simp]: "(0::'a::ordered_semiring) \<le> 1"
+lemma zero_le_one [simp]: "(0::'a::ordered_semidom) \<le> 1"
   by (rule zero_less_one [THEN order_less_imp_le]) 
 
-lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semiring) \<le> 0"
-by (simp add: linorder_not_le zero_less_one) 
+lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semidom) \<le> 0"
+by (simp add: linorder_not_le) 
 
-lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semiring) < 0"
-by (simp add: linorder_not_less zero_le_one) 
-
+lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semidom) < 0"
+by (simp add: linorder_not_less) 
 
 subsection{*More Monotonicity*}
 
 lemma mult_left_mono_neg:
-     "[|b \<le> a; c \<le> 0|] ==> c * a \<le> c * (b::'a::ordered_ring)"
+     "[|b \<le> a; c \<le> 0|] ==> c * a \<le> c * (b::'a::pordered_ring)"
 apply (drule mult_left_mono [of _ _ "-c"]) 
 apply (simp_all add: minus_mult_left [symmetric]) 
 done
 
 lemma mult_right_mono_neg:
-     "[|b \<le> a; c \<le> 0|] ==> a * c \<le> b * (c::'a::ordered_ring)"
-  by (simp add: mult_left_mono_neg mult_commute [of _ c]) 
+     "[|b \<le> a; c \<le> 0|] ==> a * c \<le> b * (c::'a::pordered_ring)"
+apply (drule mult_right_mono [of _ _ "-c"]) 
+apply (simp_all add: minus_mult_right [symmetric]) 
+done  
 
 text{*Strict monotonicity in both arguments*}
 lemma mult_strict_mono:
-     "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring)"
+     "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
 apply (case_tac "c=0")
  apply (simp add: mult_pos) 
 apply (erule mult_strict_right_mono [THEN order_less_trans])
@@ -713,31 +440,30 @@
 
 text{*This weaker variant has more natural premises*}
 lemma mult_strict_mono':
-     "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring)"
+     "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
 apply (rule mult_strict_mono)
 apply (blast intro: order_le_less_trans)+
 done
 
 lemma mult_mono:
      "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
-      ==> a * c  \<le>  b * (d::'a::ordered_semiring)"
+      ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
 apply (erule mult_right_mono [THEN order_trans], assumption)
 apply (erule mult_left_mono, assumption)
 done
 
-lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semiring)"
+lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semidom)"
 apply (insert mult_strict_mono [of 1 m 1 n]) 
 apply (simp add:  order_less_trans [OF zero_less_one]) 
 done
 
-
 subsection{*Cancellation Laws for Relationships With a Common Factor*}
 
 text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
    also with the relations @{text "\<le>"} and equality.*}
 
 lemma mult_less_cancel_right:
-    "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring)))"
+    "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
 apply (case_tac "c = 0")
 apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
                       mult_strict_right_mono_neg)
@@ -750,20 +476,29 @@
 done
 
 lemma mult_less_cancel_left:
-    "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring)))"
-by (simp add: mult_commute [of c] mult_less_cancel_right)
+    "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
+apply (case_tac "c = 0")
+apply (auto simp add: linorder_neq_iff mult_strict_left_mono 
+                      mult_strict_left_mono_neg)
+apply (auto simp add: linorder_not_less 
+                      linorder_not_le [symmetric, of "c*a"]
+                      linorder_not_le [symmetric, of a])
+apply (erule_tac [!] notE)
+apply (auto simp add: order_less_imp_le mult_left_mono 
+                      mult_left_mono_neg)
+done
 
 lemma mult_le_cancel_right:
-     "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring)))"
+     "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
 by (simp add: linorder_not_less [symmetric] mult_less_cancel_right)
 
 lemma mult_le_cancel_left:
-     "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring)))"
-by (simp add: mult_commute [of c] mult_le_cancel_right)
+     "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
+by (simp add: linorder_not_less [symmetric] mult_less_cancel_left)
 
 lemma mult_less_imp_less_left:
       assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
-      shows "a < (b::'a::ordered_semiring)"
+      shows "a < (b::'a::ordered_semiring_strict)"
 proof (rule ccontr)
   assume "~ a < b"
   hence "b \<le> a" by (simp add: linorder_not_less)
@@ -773,12 +508,19 @@
 qed
 
 lemma mult_less_imp_less_right:
-    "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring)"
-  by (rule mult_less_imp_less_left, simp add: mult_commute)
+  assumes less: "a*c < b*c" and nonneg: "0 <= c"
+  shows "a < (b::'a::ordered_semiring_strict)"
+proof (rule ccontr)
+  assume "~ a < b"
+  hence "b \<le> a" by (simp add: linorder_not_less)
+  hence "b*c \<le> a*c" by (rule mult_right_mono)
+  with this and less show False 
+    by (simp add: linorder_not_less [symmetric])
+qed  
 
 text{*Cancellation of equalities with a common factor*}
 lemma mult_cancel_right [simp]:
-     "(a*c = b*c) = (c = (0::'a::ordered_ring) | a=b)"
+     "(a*c = b*c) = (c = (0::'a::ordered_ring_strict) | a=b)"
 apply (cut_tac linorder_less_linear [of 0 c])
 apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono
              simp add: linorder_neq_iff)
@@ -787,10 +529,21 @@
 text{*These cancellation theorems require an ordering. Versions are proved
       below that work for fields without an ordering.*}
 lemma mult_cancel_left [simp]:
-     "(c*a = c*b) = (c = (0::'a::ordered_ring) | a=b)"
-by (simp add: mult_commute [of c] mult_cancel_right)
+     "(c*a = c*b) = (c = (0::'a::ordered_ring_strict) | a=b)"
+apply (cut_tac linorder_less_linear [of 0 c])
+apply (force dest: mult_strict_left_mono_neg mult_strict_left_mono
+             simp add: linorder_neq_iff)
+done
 
-
+text{*This list of rewrites decides ring equalities by ordered rewriting.*}
+lemmas ring_eq_simps =
+  mult_ac
+  left_distrib right_distrib left_diff_distrib right_diff_distrib
+  add_ac
+  add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
+  diff_eq_eq eq_diff_eq
+    
+thm ring_eq_simps
 subsection {* Fields *}
 
 lemma right_inverse [simp]:
@@ -1571,14 +1324,14 @@
 
 subsection {* Ordered Fields are Dense *}
 
-lemma less_add_one: "a < (a+1::'a::ordered_semiring)"
+lemma less_add_one: "a < (a+1::'a::ordered_semidom)"
 proof -
-  have "a+0 < (a+1::'a::ordered_semiring)"
+  have "a+0 < (a+1::'a::ordered_semidom)"
     by (blast intro: zero_less_one add_strict_left_mono) 
   thus ?thesis by simp
 qed
 
-lemma zero_less_two: "0 < (1+1::'a::ordered_semiring)"
+lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)"
   by (blast intro: order_less_trans zero_less_one less_add_one) 
 
 lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
@@ -1590,61 +1343,101 @@
 lemma dense: "a < b ==> \<exists>r::'a::ordered_field. a < r & r < b"
 by (blast intro!: less_half_sum gt_half_sum)
 
-
 subsection {* Absolute Value *}
 
-lemma abs_zero [simp]: "abs 0 = (0::'a::ordered_ring)"
-by (simp add: abs_if)
-
-lemma abs_one [simp]: "abs 1 = (1::'a::ordered_ring)"
+lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
   by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) 
 
-lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_ring)" 
-apply (case_tac "a=0 | b=0", force) 
-apply (auto elim: order_less_asym
-            simp add: abs_if mult_less_0_iff linorder_neq_iff
-                  minus_mult_left [symmetric] minus_mult_right [symmetric])  
-done
-
-lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_ring)"
-by (simp add: abs_if) 
-
-lemma abs_eq_0 [simp]: "(abs a = 0) = (a = (0::'a::ordered_ring))"
-by (simp add: abs_if)
-
-lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::ordered_ring))"
-by (simp add: abs_if linorder_neq_iff)
-
-lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::ordered_ring)"
-apply (simp add: abs_if)
-by (simp add: abs_if  order_less_not_sym [of a 0])
-
-lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::ordered_ring)) = (a = 0)" 
-by (simp add: order_le_less) 
+lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
+proof -
+  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
+  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
+  have a: "(abs a) * (abs b) = ?x"
+    by (simp only: abs_prts[of a] abs_prts[of b] ring_eq_simps)
+  {
+    fix u v :: 'a
+    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> u * v = ?y"
+      apply (subst prts[of u], subst prts[of v])
+      apply (simp add: left_distrib right_distrib add_ac) 
+      done
+  }
+  note b = this[OF refl[of a] refl[of b]]
+  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
+  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
+  have xy: "- ?x <= ?y"
+    apply (simp add: compare_rls)
+    apply (rule add_le_imp_le_left[of "-(pprt a * nprt b + nprt a * pprt b)"])
+    apply (simp add: add_ac)
+    proof -
+      let ?r = "nprt a * nprt b +(nprt a * nprt b + (nprt a * pprt b + (pprt a * nprt b + (pprt a * pprt b + (pprt a * pprt b +
+	(- (nprt a * pprt b) + - (pprt a * nprt b)))))))"
+      let ?rr = "nprt a * nprt b + nprt a * nprt b + ((nprt a * pprt b) + (- (nprt a * pprt b))) + ((pprt a * nprt b) + - (pprt a * nprt b))
+	+ pprt a * pprt b + pprt a * pprt b"
+      have a:"?r = ?rr" by (simp only: add_ac)      
+      have "0 <= ?rr"
+	apply (simp)
+	apply (rule addm)+
+	apply (simp_all add: mult_neg_le mult_pos_le)
+	done
+      with a show "0 <= ?r" by simp
+    qed
+  have yx: "?y <= ?x"
+    apply (simp add: add_ac)
+    apply (simp add: compare_rls)
+    apply (rule add_le_imp_le_right[of _ "-(pprt a * pprt b)"])
+    apply (simp add: add_ac)
+    apply (rule addm2, (simp add: mult_pos_neg_le mult_pos_neg2_le)+)+
+    done
+  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
+  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
+  show ?thesis
+    apply (rule abs_leI)
+    apply (simp add: i1)
+    apply (simp add: i2[simplified minus_le_iff])
+    done
+qed
 
-lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::ordered_ring)"
-apply (auto simp add: abs_if linorder_not_less order_less_not_sym [of 0 a])  
-apply (drule order_antisym, assumption, simp) 
-done
-
-lemma abs_ge_zero [simp]: "(0::'a::ordered_ring) \<le> abs a"
-apply (simp add: abs_if order_less_imp_le)
-apply (simp add: linorder_not_less) 
-done
+lemma abs_eq_mult: 
+  assumes "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
+  shows "abs (a*b) = abs a * abs (b::'a::lordered_ring)"
+proof -
+  have s: "(0 <= a*b) | (a*b <= 0)"
+    apply (auto)    
+    apply (rule_tac split_mult_pos_le)
+    apply (rule_tac contrapos_np[of "a*b <= 0"])
+    apply (simp)
+    apply (rule_tac split_mult_neg_le)
+    apply (insert prems)
+    apply (blast)
+    done
+  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
+    by (simp add: prts[symmetric])
+  show ?thesis
+  proof cases
+    assume "0 <= a * b"
+    then show ?thesis
+      apply (simp_all add: mulprts abs_prts)
+      apply (insert prems)
+      apply (auto simp add: ring_eq_simps iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
+	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id] order_antisym mult_pos_neg_le[of a b] mult_pos_neg2_le[of b a])
+      done
+  next
+    assume "~(0 <= a*b)"
+    with s have "a*b <= 0" by simp
+    then show ?thesis
+      apply (simp_all add: mulprts abs_prts)
+      apply (insert prems)
+      apply (auto simp add: ring_eq_simps iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
+	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id] order_antisym mult_pos_le[of a b] mult_neg_le[of a b])
+      done
+  qed
+qed
 
-lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::ordered_ring)"
-  by (force elim: order_less_asym simp add: abs_if)
-
-lemma abs_zero_iff [simp]: "(abs a = 0) = (a = (0::'a::ordered_ring))"
-by (simp add: abs_if)
+lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
+by (simp add: abs_eq_mult linorder_linear)
 
-lemma abs_ge_self: "a \<le> abs (a::'a::ordered_ring)"
-apply (simp add: abs_if)
-apply (simp add: order_less_imp_le order_trans [of _ 0])
-done
-
-lemma abs_ge_minus_self: "-a \<le> abs (a::'a::ordered_ring)"
-by (insert abs_ge_self [of "-a"], simp)
+lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
+by (simp add: abs_if) 
 
 lemma nonzero_abs_inverse:
      "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
@@ -1670,72 +1463,8 @@
 apply (simp add: nonzero_abs_divide) 
 done
 
-lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::ordered_ring)"
-by (simp add: abs_if)
-
-lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::ordered_ring))"
-proof 
-  assume ale: "a \<le> -a"
-  show "a\<le>0"
-    apply (rule classical) 
-    apply (simp add: linorder_not_le) 
-    apply (blast intro: ale order_trans order_less_imp_le
-                        neg_0_le_iff_le [THEN iffD1]) 
-    done
-next
-  assume "a\<le>0"
-  hence "0 \<le> -a" by (simp only: neg_0_le_iff_le)
-  thus "a \<le> -a"  by (blast intro: prems order_trans) 
-qed
-
-lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::ordered_ring))"
-by (insert le_minus_self_iff [of "-a"], simp)
-
-lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_ring))"
-by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
-
-lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_ring))"
-by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
-
-lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::ordered_ring)"
-apply (simp add: abs_if split: split_if_asm)
-apply (rule order_trans [of _ "-a"]) 
- apply (simp add: less_minus_self_iff order_less_imp_le, assumption)
-done
-
-lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::ordered_ring)"
-by (insert abs_le_D1 [of "-a"], simp)
-
-lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::ordered_ring))"
-by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
-
-lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_ring))" 
-apply (simp add: order_less_le abs_le_iff)  
-apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
-apply (simp add: le_minus_self_iff linorder_neq_iff) 
-done
-(*
-apply (simp add: order_less_le abs_le_iff)  
-apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff) 
- apply (simp add:  linorder_not_less [symmetric])
-apply (simp add: le_minus_self_iff linorder_neq_iff) 
-apply (simp add:  linorder_not_less [symmetric]) 
-done
-*)
-
-lemma abs_triangle_ineq: "abs (a+b) \<le> abs a + abs (b::'a::ordered_ring)"
-by (force simp add: abs_le_iff abs_ge_self abs_ge_minus_self add_mono)
-
-lemma abs_diff_triangle_ineq:
-     "\<bar>(a::'a::ordered_ring) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>"
-proof -
-  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
-  also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
-  finally show ?thesis .
-qed
-
 lemma abs_mult_less:
-     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_ring)"
+     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
 proof -
   assume ac: "abs a < c"
   hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
@@ -1743,272 +1472,221 @@
   thus ?thesis by (simp add: ac cpos mult_strict_mono) 
 qed
 
+lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_idom))"
+by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
+
+lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
+by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
+
+lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
+apply (simp add: order_less_le abs_le_iff)  
+apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
+apply (simp add: le_minus_self_iff linorder_neq_iff) 
+done
+
 text{*Moving this up spoils many proofs using @{text mult_le_cancel_right}*}
 declare times_divide_eq_left [simp]
 
-ML
-{*
-val add_assoc = thm"add_assoc";
-val add_commute = thm"add_commute";
-val mult_assoc = thm"mult_assoc";
-val mult_commute = thm"mult_commute";
-val zero_neq_one = thm"zero_neq_one";
-val diff_minus = thm"diff_minus";
-val abs_if = thm"abs_if";
-val divide_inverse = thm"divide_inverse";
-val inverse_zero = thm"inverse_zero";
-val divide_zero = thm"divide_zero";
-
-val add_0 = thm"add_0";
-val add_0_right = thm"add_0_right";
-val add_zero_left = thm"add_0";
-val add_zero_right = thm"add_0_right";
-
-val add_left_commute = thm"add_left_commute";
-val left_minus = thm"left_minus";
-val right_minus = thm"right_minus";
-val right_minus_eq = thm"right_minus_eq";
-val add_left_cancel = thm"add_left_cancel";
-val add_right_cancel = thm"add_right_cancel";
-val minus_minus = thm"minus_minus";
-val equals_zero_I = thm"equals_zero_I";
-val minus_zero = thm"minus_zero";
-val diff_self = thm"diff_self";
-val diff_0 = thm"diff_0";
-val diff_0_right = thm"diff_0_right";
-val diff_minus_eq_add = thm"diff_minus_eq_add";
-val neg_equal_iff_equal = thm"neg_equal_iff_equal";
-val neg_equal_0_iff_equal = thm"neg_equal_0_iff_equal";
-val neg_0_equal_iff_equal = thm"neg_0_equal_iff_equal";
-val equation_minus_iff = thm"equation_minus_iff";
-val minus_equation_iff = thm"minus_equation_iff";
-val mult_1 = thm"mult_1";
-val mult_1_right = thm"mult_1_right";
-val mult_left_commute = thm"mult_left_commute";
-val mult_zero_left = thm"mult_zero_left";
-val mult_zero_right = thm"mult_zero_right";
+ML {*
 val left_distrib = thm "left_distrib";
-val right_distrib = thm"right_distrib";
-val combine_common_factor = thm"combine_common_factor";
-val minus_add_distrib = thm"minus_add_distrib";
-val minus_mult_left = thm"minus_mult_left";
-val minus_mult_right = thm"minus_mult_right";
-val minus_mult_minus = thm"minus_mult_minus";
-val minus_mult_commute = thm"minus_mult_commute";
-val right_diff_distrib = thm"right_diff_distrib";
-val left_diff_distrib = thm"left_diff_distrib";
-val minus_diff_eq = thm"minus_diff_eq";
-val add_left_mono = thm"add_left_mono";
-val add_right_mono = thm"add_right_mono";
-val add_mono = thm"add_mono";
-val add_strict_left_mono = thm"add_strict_left_mono";
-val add_strict_right_mono = thm"add_strict_right_mono";
-val add_strict_mono = thm"add_strict_mono";
-val add_less_le_mono = thm"add_less_le_mono";
-val add_le_less_mono = thm"add_le_less_mono";
-val add_less_imp_less_left = thm"add_less_imp_less_left";
-val add_less_imp_less_right = thm"add_less_imp_less_right";
-val add_less_cancel_left = thm"add_less_cancel_left";
-val add_less_cancel_right = thm"add_less_cancel_right";
-val add_le_cancel_left = thm"add_le_cancel_left";
-val add_le_cancel_right = thm"add_le_cancel_right";
-val add_le_imp_le_left = thm"add_le_imp_le_left";
-val add_le_imp_le_right = thm"add_le_imp_le_right";
-val le_imp_neg_le = thm"le_imp_neg_le";
-val neg_le_iff_le = thm"neg_le_iff_le";
-val neg_le_0_iff_le = thm"neg_le_0_iff_le";
-val neg_0_le_iff_le = thm"neg_0_le_iff_le";
-val neg_less_iff_less = thm"neg_less_iff_less";
-val neg_less_0_iff_less = thm"neg_less_0_iff_less";
-val neg_0_less_iff_less = thm"neg_0_less_iff_less";
-val less_minus_iff = thm"less_minus_iff";
-val minus_less_iff = thm"minus_less_iff";
-val le_minus_iff = thm"le_minus_iff";
-val minus_le_iff = thm"minus_le_iff";
-val add_diff_eq = thm"add_diff_eq";
-val diff_add_eq = thm"diff_add_eq";
-val diff_eq_eq = thm"diff_eq_eq";
-val eq_diff_eq = thm"eq_diff_eq";
-val diff_diff_eq = thm"diff_diff_eq";
-val diff_diff_eq2 = thm"diff_diff_eq2";
-val less_iff_diff_less_0 = thm"less_iff_diff_less_0";
-val diff_less_eq = thm"diff_less_eq";
-val less_diff_eq = thm"less_diff_eq";
-val diff_le_eq = thm"diff_le_eq";
-val le_diff_eq = thm"le_diff_eq";
-val eq_iff_diff_eq_0 = thm"eq_iff_diff_eq_0";
-val le_iff_diff_le_0 = thm"le_iff_diff_le_0";
-val eq_add_iff1 = thm"eq_add_iff1";
-val eq_add_iff2 = thm"eq_add_iff2";
-val less_add_iff1 = thm"less_add_iff1";
-val less_add_iff2 = thm"less_add_iff2";
-val le_add_iff1 = thm"le_add_iff1";
-val le_add_iff2 = thm"le_add_iff2";
-val mult_strict_left_mono = thm"mult_strict_left_mono";
-val mult_strict_right_mono = thm"mult_strict_right_mono";
-val mult_left_mono = thm"mult_left_mono";
-val mult_right_mono = thm"mult_right_mono";
-val mult_left_le_imp_le = thm"mult_left_le_imp_le";
-val mult_right_le_imp_le = thm"mult_right_le_imp_le";
-val mult_left_less_imp_less = thm"mult_left_less_imp_less";
-val mult_right_less_imp_less = thm"mult_right_less_imp_less";
-val mult_strict_left_mono_neg = thm"mult_strict_left_mono_neg";
-val mult_strict_right_mono_neg = thm"mult_strict_right_mono_neg";
-val mult_pos = thm"mult_pos";
-val mult_pos_neg = thm"mult_pos_neg";
-val mult_neg = thm"mult_neg";
-val zero_less_mult_pos = thm"zero_less_mult_pos";
-val zero_less_mult_iff = thm"zero_less_mult_iff";
-val mult_eq_0_iff = thm"mult_eq_0_iff";
-val zero_le_mult_iff = thm"zero_le_mult_iff";
-val mult_less_0_iff = thm"mult_less_0_iff";
-val mult_le_0_iff = thm"mult_le_0_iff";
-val zero_le_square = thm"zero_le_square";
-val zero_less_one = thm"zero_less_one";
-val zero_le_one = thm"zero_le_one";
-val not_one_less_zero = thm"not_one_less_zero";
-val not_one_le_zero = thm"not_one_le_zero";
-val mult_left_mono_neg = thm"mult_left_mono_neg";
-val mult_right_mono_neg = thm"mult_right_mono_neg";
-val mult_strict_mono = thm"mult_strict_mono";
-val mult_strict_mono' = thm"mult_strict_mono'";
-val mult_mono = thm"mult_mono";
-val mult_less_cancel_right = thm"mult_less_cancel_right";
-val mult_less_cancel_left = thm"mult_less_cancel_left";
-val mult_le_cancel_right = thm"mult_le_cancel_right";
-val mult_le_cancel_left = thm"mult_le_cancel_left";
-val mult_less_imp_less_left = thm"mult_less_imp_less_left";
-val mult_less_imp_less_right = thm"mult_less_imp_less_right";
-val mult_cancel_right = thm"mult_cancel_right";
-val mult_cancel_left = thm"mult_cancel_left";
+val right_distrib = thm "right_distrib";
+val mult_commute = thm "mult_commute";
+val distrib = thm "distrib";
+val zero_neq_one = thm "zero_neq_one";
+val no_zero_divisors = thm "no_zero_divisors";
 val left_inverse = thm "left_inverse";
-val right_inverse = thm"right_inverse";
-val right_inverse_eq = thm"right_inverse_eq";
-val nonzero_inverse_eq_divide = thm"nonzero_inverse_eq_divide";
-val divide_self = thm"divide_self";
-val inverse_divide = thm"inverse_divide";
-val divide_zero_left = thm"divide_zero_left";
-val inverse_eq_divide = thm"inverse_eq_divide";
-val add_divide_distrib = thm"add_divide_distrib";
-val field_mult_eq_0_iff = thm"field_mult_eq_0_iff";
-val field_mult_cancel_right = thm"field_mult_cancel_right";
-val field_mult_cancel_left = thm"field_mult_cancel_left";
-val nonzero_imp_inverse_nonzero = thm"nonzero_imp_inverse_nonzero";
-val inverse_zero_imp_zero = thm"inverse_zero_imp_zero";
-val inverse_nonzero_imp_nonzero = thm"inverse_nonzero_imp_nonzero";
-val inverse_nonzero_iff_nonzero = thm"inverse_nonzero_iff_nonzero";
-val nonzero_inverse_minus_eq = thm"nonzero_inverse_minus_eq";
-val inverse_minus_eq = thm"inverse_minus_eq";
-val nonzero_inverse_eq_imp_eq = thm"nonzero_inverse_eq_imp_eq";
-val inverse_eq_imp_eq = thm"inverse_eq_imp_eq";
-val inverse_eq_iff_eq = thm"inverse_eq_iff_eq";
-val nonzero_inverse_inverse_eq = thm"nonzero_inverse_inverse_eq";
-val inverse_inverse_eq = thm"inverse_inverse_eq";
-val inverse_1 = thm"inverse_1";
-val nonzero_inverse_mult_distrib = thm"nonzero_inverse_mult_distrib";
-val inverse_mult_distrib = thm"inverse_mult_distrib";
-val inverse_add = thm"inverse_add";
-val nonzero_mult_divide_cancel_left = thm"nonzero_mult_divide_cancel_left";
-val mult_divide_cancel_left = thm"mult_divide_cancel_left";
-val nonzero_mult_divide_cancel_right = thm"nonzero_mult_divide_cancel_right";
-val mult_divide_cancel_right = thm"mult_divide_cancel_right";
-val mult_divide_cancel_eq_if = thm"mult_divide_cancel_eq_if";
-val divide_1 = thm"divide_1";
-val times_divide_eq_right = thm"times_divide_eq_right";
-val times_divide_eq_left = thm"times_divide_eq_left";
-val divide_divide_eq_right = thm"divide_divide_eq_right";
-val divide_divide_eq_left = thm"divide_divide_eq_left";
-val nonzero_minus_divide_left = thm"nonzero_minus_divide_left";
-val nonzero_minus_divide_right = thm"nonzero_minus_divide_right";
-val nonzero_minus_divide_divide = thm"nonzero_minus_divide_divide";
-val minus_divide_left = thm"minus_divide_left";
-val minus_divide_right = thm"minus_divide_right";
-val minus_divide_divide = thm"minus_divide_divide";
-val positive_imp_inverse_positive = thm"positive_imp_inverse_positive";
-val negative_imp_inverse_negative = thm"negative_imp_inverse_negative";
-val inverse_le_imp_le = thm"inverse_le_imp_le";
-val inverse_positive_imp_positive = thm"inverse_positive_imp_positive";
-val inverse_positive_iff_positive = thm"inverse_positive_iff_positive";
-val inverse_negative_imp_negative = thm"inverse_negative_imp_negative";
-val inverse_negative_iff_negative = thm"inverse_negative_iff_negative";
-val inverse_nonnegative_iff_nonnegative = thm"inverse_nonnegative_iff_nonnegative";
-val inverse_nonpositive_iff_nonpositive = thm"inverse_nonpositive_iff_nonpositive";
-val less_imp_inverse_less = thm"less_imp_inverse_less";
-val inverse_less_imp_less = thm"inverse_less_imp_less";
-val inverse_less_iff_less = thm"inverse_less_iff_less";
-val le_imp_inverse_le = thm"le_imp_inverse_le";
-val inverse_le_iff_le = thm"inverse_le_iff_le";
-val inverse_le_imp_le_neg = thm"inverse_le_imp_le_neg";
-val less_imp_inverse_less_neg = thm"less_imp_inverse_less_neg";
-val inverse_less_imp_less_neg = thm"inverse_less_imp_less_neg";
-val inverse_less_iff_less_neg = thm"inverse_less_iff_less_neg";
-val le_imp_inverse_le_neg = thm"le_imp_inverse_le_neg";
-val inverse_le_iff_le_neg = thm"inverse_le_iff_le_neg";
-val zero_less_divide_iff = thm"zero_less_divide_iff";
-val divide_less_0_iff = thm"divide_less_0_iff";
-val zero_le_divide_iff = thm"zero_le_divide_iff";
-val divide_le_0_iff = thm"divide_le_0_iff";
-val divide_eq_0_iff = thm"divide_eq_0_iff";
-val pos_le_divide_eq = thm"pos_le_divide_eq";
-val neg_le_divide_eq = thm"neg_le_divide_eq";
-val le_divide_eq = thm"le_divide_eq";
-val pos_divide_le_eq = thm"pos_divide_le_eq";
-val neg_divide_le_eq = thm"neg_divide_le_eq";
-val divide_le_eq = thm"divide_le_eq";
-val pos_less_divide_eq = thm"pos_less_divide_eq";
-val neg_less_divide_eq = thm"neg_less_divide_eq";
-val less_divide_eq = thm"less_divide_eq";
-val pos_divide_less_eq = thm"pos_divide_less_eq";
-val neg_divide_less_eq = thm"neg_divide_less_eq";
-val divide_less_eq = thm"divide_less_eq";
-val nonzero_eq_divide_eq = thm"nonzero_eq_divide_eq";
-val eq_divide_eq = thm"eq_divide_eq";
-val nonzero_divide_eq_eq = thm"nonzero_divide_eq_eq";
-val divide_eq_eq = thm"divide_eq_eq";
-val divide_cancel_right = thm"divide_cancel_right";
-val divide_cancel_left = thm"divide_cancel_left";
-val divide_strict_right_mono = thm"divide_strict_right_mono";
-val divide_right_mono = thm"divide_right_mono";
-val divide_strict_left_mono = thm"divide_strict_left_mono";
-val divide_left_mono = thm"divide_left_mono";
-val divide_strict_left_mono_neg = thm"divide_strict_left_mono_neg";
-val divide_strict_right_mono_neg = thm"divide_strict_right_mono_neg";
-val zero_less_two = thm"zero_less_two";
-val less_half_sum = thm"less_half_sum";
-val gt_half_sum = thm"gt_half_sum";
-val dense = thm"dense";
-val abs_zero = thm"abs_zero";
-val abs_one = thm"abs_one";
-val abs_mult = thm"abs_mult";
-val abs_mult_self = thm"abs_mult_self";
-val abs_eq_0 = thm"abs_eq_0";
-val zero_less_abs_iff = thm"zero_less_abs_iff";
-val abs_not_less_zero = thm"abs_not_less_zero";
-val abs_le_zero_iff = thm"abs_le_zero_iff";
-val abs_minus_cancel = thm"abs_minus_cancel";
-val abs_ge_zero = thm"abs_ge_zero";
-val abs_idempotent = thm"abs_idempotent";
-val abs_zero_iff = thm"abs_zero_iff";
-val abs_ge_self = thm"abs_ge_self";
-val abs_ge_minus_self = thm"abs_ge_minus_self";
-val nonzero_abs_inverse = thm"nonzero_abs_inverse";
-val abs_inverse = thm"abs_inverse";
-val nonzero_abs_divide = thm"nonzero_abs_divide";
-val abs_divide = thm"abs_divide";
-val abs_leI = thm"abs_leI";
-val le_minus_self_iff = thm"le_minus_self_iff";
-val minus_le_self_iff = thm"minus_le_self_iff";
-val eq_minus_self_iff = thm"eq_minus_self_iff";
-val less_minus_self_iff = thm"less_minus_self_iff";
-val abs_le_D1 = thm"abs_le_D1";
-val abs_le_D2 = thm"abs_le_D2";
-val abs_le_iff = thm"abs_le_iff";
-val abs_less_iff = thm"abs_less_iff";
-val abs_triangle_ineq = thm"abs_triangle_ineq";
-val abs_mult_less = thm"abs_mult_less";
-
-val compare_rls = thms"compare_rls";
+val divide_inverse = thm "divide_inverse";
+val mult_zero_left = thm "mult_zero_left";
+val mult_zero_right = thm "mult_zero_right";
+val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
+val inverse_zero = thm "inverse_zero";
+val ring_distrib = thms "ring_distrib";
+val combine_common_factor = thm "combine_common_factor";
+val minus_mult_left = thm "minus_mult_left";
+val minus_mult_right = thm "minus_mult_right";
+val minus_mult_minus = thm "minus_mult_minus";
+val minus_mult_commute = thm "minus_mult_commute";
+val right_diff_distrib = thm "right_diff_distrib";
+val left_diff_distrib = thm "left_diff_distrib";
+val mult_left_mono = thm "mult_left_mono";
+val mult_right_mono = thm "mult_right_mono";
+val mult_strict_left_mono = thm "mult_strict_left_mono";
+val mult_strict_right_mono = thm "mult_strict_right_mono";
+val mult_mono = thm "mult_mono";
+val mult_strict_mono = thm "mult_strict_mono";
+val abs_if = thm "abs_if";
+val zero_less_one = thm "zero_less_one";
+val eq_add_iff1 = thm "eq_add_iff1";
+val eq_add_iff2 = thm "eq_add_iff2";
+val less_add_iff1 = thm "less_add_iff1";
+val less_add_iff2 = thm "less_add_iff2";
+val le_add_iff1 = thm "le_add_iff1";
+val le_add_iff2 = thm "le_add_iff2";
+val mult_left_le_imp_le = thm "mult_left_le_imp_le";
+val mult_right_le_imp_le = thm "mult_right_le_imp_le";
+val mult_left_less_imp_less = thm "mult_left_less_imp_less";
+val mult_right_less_imp_less = thm "mult_right_less_imp_less";
+val mult_strict_left_mono_neg = thm "mult_strict_left_mono_neg";
+val mult_left_mono_neg = thm "mult_left_mono_neg";
+val mult_strict_right_mono_neg = thm "mult_strict_right_mono_neg";
+val mult_right_mono_neg = thm "mult_right_mono_neg";
+val mult_pos = thm "mult_pos";
+val mult_pos_le = thm "mult_pos_le";
+val mult_pos_neg = thm "mult_pos_neg";
+val mult_pos_neg_le = thm "mult_pos_neg_le";
+val mult_pos_neg2 = thm "mult_pos_neg2";
+val mult_pos_neg2_le = thm "mult_pos_neg2_le";
+val mult_neg = thm "mult_neg";
+val mult_neg_le = thm "mult_neg_le";
+val zero_less_mult_pos = thm "zero_less_mult_pos";
+val zero_less_mult_pos2 = thm "zero_less_mult_pos2";
+val zero_less_mult_iff = thm "zero_less_mult_iff";
+val mult_eq_0_iff = thm "mult_eq_0_iff";
+val zero_le_mult_iff = thm "zero_le_mult_iff";
+val mult_less_0_iff = thm "mult_less_0_iff";
+val mult_le_0_iff = thm "mult_le_0_iff";
+val split_mult_pos_le = thm "split_mult_pos_le";
+val split_mult_neg_le = thm "split_mult_neg_le";
+val zero_le_square = thm "zero_le_square";
+val zero_le_one = thm "zero_le_one";
+val not_one_le_zero = thm "not_one_le_zero";
+val not_one_less_zero = thm "not_one_less_zero";
+val mult_left_mono_neg = thm "mult_left_mono_neg";
+val mult_right_mono_neg = thm "mult_right_mono_neg";
+val mult_strict_mono = thm "mult_strict_mono";
+val mult_strict_mono' = thm "mult_strict_mono'";
+val mult_mono = thm "mult_mono";
+val less_1_mult = thm "less_1_mult";
+val mult_less_cancel_right = thm "mult_less_cancel_right";
+val mult_less_cancel_left = thm "mult_less_cancel_left";
+val mult_le_cancel_right = thm "mult_le_cancel_right";
+val mult_le_cancel_left = thm "mult_le_cancel_left";
+val mult_less_imp_less_left = thm "mult_less_imp_less_left";
+val mult_less_imp_less_right = thm "mult_less_imp_less_right";
+val mult_cancel_right = thm "mult_cancel_right";
+val mult_cancel_left = thm "mult_cancel_left";
+val ring_eq_simps = thms "ring_eq_simps";
+val right_inverse = thm "right_inverse";
+val right_inverse_eq = thm "right_inverse_eq";
+val nonzero_inverse_eq_divide = thm "nonzero_inverse_eq_divide";
+val divide_self = thm "divide_self";
+val divide_zero = thm "divide_zero";
+val divide_zero_left = thm "divide_zero_left";
+val inverse_eq_divide = thm "inverse_eq_divide";
+val add_divide_distrib = thm "add_divide_distrib";
+val field_mult_eq_0_iff = thm "field_mult_eq_0_iff";
+val field_mult_cancel_right_lemma = thm "field_mult_cancel_right_lemma";
+val field_mult_cancel_right = thm "field_mult_cancel_right";
+val field_mult_cancel_left = thm "field_mult_cancel_left";
+val nonzero_imp_inverse_nonzero = thm "nonzero_imp_inverse_nonzero";
+val inverse_zero_imp_zero = thm "inverse_zero_imp_zero";
+val inverse_nonzero_imp_nonzero = thm "inverse_nonzero_imp_nonzero";
+val inverse_nonzero_iff_nonzero = thm "inverse_nonzero_iff_nonzero";
+val nonzero_inverse_minus_eq = thm "nonzero_inverse_minus_eq";
+val inverse_minus_eq = thm "inverse_minus_eq";
+val nonzero_inverse_eq_imp_eq = thm "nonzero_inverse_eq_imp_eq";
+val inverse_eq_imp_eq = thm "inverse_eq_imp_eq";
+val inverse_eq_iff_eq = thm "inverse_eq_iff_eq";
+val nonzero_inverse_inverse_eq = thm "nonzero_inverse_inverse_eq";
+val inverse_inverse_eq = thm "inverse_inverse_eq";
+val inverse_1 = thm "inverse_1";
+val nonzero_inverse_mult_distrib = thm "nonzero_inverse_mult_distrib";
+val inverse_mult_distrib = thm "inverse_mult_distrib";
+val inverse_add = thm "inverse_add";
+val inverse_divide = thm "inverse_divide";
+val nonzero_mult_divide_cancel_left = thm "nonzero_mult_divide_cancel_left";
+val mult_divide_cancel_left = thm "mult_divide_cancel_left";
+val nonzero_mult_divide_cancel_right = thm "nonzero_mult_divide_cancel_right";
+val mult_divide_cancel_right = thm "mult_divide_cancel_right";
+val mult_divide_cancel_eq_if = thm "mult_divide_cancel_eq_if";
+val divide_1 = thm "divide_1";
+val times_divide_eq_right = thm "times_divide_eq_right";
+val times_divide_eq_left = thm "times_divide_eq_left";
+val divide_divide_eq_right = thm "divide_divide_eq_right";
+val divide_divide_eq_left = thm "divide_divide_eq_left";
+val nonzero_minus_divide_left = thm "nonzero_minus_divide_left";
+val nonzero_minus_divide_right = thm "nonzero_minus_divide_right";
+val nonzero_minus_divide_divide = thm "nonzero_minus_divide_divide";
+val minus_divide_left = thm "minus_divide_left";
+val minus_divide_right = thm "minus_divide_right";
+val minus_divide_divide = thm "minus_divide_divide";
+val diff_divide_distrib = thm "diff_divide_distrib";
+val positive_imp_inverse_positive = thm "positive_imp_inverse_positive";
+val negative_imp_inverse_negative = thm "negative_imp_inverse_negative";
+val inverse_le_imp_le = thm "inverse_le_imp_le";
+val inverse_positive_imp_positive = thm "inverse_positive_imp_positive";
+val inverse_positive_iff_positive = thm "inverse_positive_iff_positive";
+val inverse_negative_imp_negative = thm "inverse_negative_imp_negative";
+val inverse_negative_iff_negative = thm "inverse_negative_iff_negative";
+val inverse_nonnegative_iff_nonnegative = thm "inverse_nonnegative_iff_nonnegative";
+val inverse_nonpositive_iff_nonpositive = thm "inverse_nonpositive_iff_nonpositive";
+val less_imp_inverse_less = thm "less_imp_inverse_less";
+val inverse_less_imp_less = thm "inverse_less_imp_less";
+val inverse_less_iff_less = thm "inverse_less_iff_less";
+val le_imp_inverse_le = thm "le_imp_inverse_le";
+val inverse_le_iff_le = thm "inverse_le_iff_le";
+val inverse_le_imp_le_neg = thm "inverse_le_imp_le_neg";
+val less_imp_inverse_less_neg = thm "less_imp_inverse_less_neg";
+val inverse_less_imp_less_neg = thm "inverse_less_imp_less_neg";
+val inverse_less_iff_less_neg = thm "inverse_less_iff_less_neg";
+val le_imp_inverse_le_neg = thm "le_imp_inverse_le_neg";
+val inverse_le_iff_le_neg = thm "inverse_le_iff_le_neg";
+val one_less_inverse_iff = thm "one_less_inverse_iff";
+val inverse_eq_1_iff = thm "inverse_eq_1_iff";
+val one_le_inverse_iff = thm "one_le_inverse_iff";
+val inverse_less_1_iff = thm "inverse_less_1_iff";
+val inverse_le_1_iff = thm "inverse_le_1_iff";
+val zero_less_divide_iff = thm "zero_less_divide_iff";
+val divide_less_0_iff = thm "divide_less_0_iff";
+val zero_le_divide_iff = thm "zero_le_divide_iff";
+val divide_le_0_iff = thm "divide_le_0_iff";
+val divide_eq_0_iff = thm "divide_eq_0_iff";
+val pos_le_divide_eq = thm "pos_le_divide_eq";
+val neg_le_divide_eq = thm "neg_le_divide_eq";
+val le_divide_eq = thm "le_divide_eq";
+val pos_divide_le_eq = thm "pos_divide_le_eq";
+val neg_divide_le_eq = thm "neg_divide_le_eq";
+val divide_le_eq = thm "divide_le_eq";
+val pos_less_divide_eq = thm "pos_less_divide_eq";
+val neg_less_divide_eq = thm "neg_less_divide_eq";
+val less_divide_eq = thm "less_divide_eq";
+val pos_divide_less_eq = thm "pos_divide_less_eq";
+val neg_divide_less_eq = thm "neg_divide_less_eq";
+val divide_less_eq = thm "divide_less_eq";
+val nonzero_eq_divide_eq = thm "nonzero_eq_divide_eq";
+val eq_divide_eq = thm "eq_divide_eq";
+val nonzero_divide_eq_eq = thm "nonzero_divide_eq_eq";
+val divide_eq_eq = thm "divide_eq_eq";
+val divide_cancel_right = thm "divide_cancel_right";
+val divide_cancel_left = thm "divide_cancel_left";
+val divide_eq_1_iff = thm "divide_eq_1_iff";
+val one_eq_divide_iff = thm "one_eq_divide_iff";
+val zero_eq_1_divide_iff = thm "zero_eq_1_divide_iff";
+val one_divide_eq_0_iff = thm "one_divide_eq_0_iff";
+val divide_strict_right_mono = thm "divide_strict_right_mono";
+val divide_right_mono = thm "divide_right_mono";
+val divide_strict_left_mono = thm "divide_strict_left_mono";
+val divide_left_mono = thm "divide_left_mono";
+val divide_strict_left_mono_neg = thm "divide_strict_left_mono_neg";
+val divide_strict_right_mono_neg = thm "divide_strict_right_mono_neg";
+val less_add_one = thm "less_add_one";
+val zero_less_two = thm "zero_less_two";
+val less_half_sum = thm "less_half_sum";
+val gt_half_sum = thm "gt_half_sum";
+val dense = thm "dense";
+val abs_one = thm "abs_one";
+val abs_le_mult = thm "abs_le_mult";
+val abs_eq_mult = thm "abs_eq_mult";
+val abs_mult = thm "abs_mult";
+val abs_mult_self = thm "abs_mult_self";
+val nonzero_abs_inverse = thm "nonzero_abs_inverse";
+val abs_inverse = thm "abs_inverse";
+val nonzero_abs_divide = thm "nonzero_abs_divide";
+val abs_divide = thm "abs_divide";
+val abs_mult_less = thm "abs_mult_less";
+val eq_minus_self_iff = thm "eq_minus_self_iff";
+val less_minus_self_iff = thm "less_minus_self_iff";
+val abs_less_iff = thm "abs_less_iff";
 *}
 
-
 end
--- a/src/HOL/UNITY/Comp/AllocBase.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/UNITY/Comp/AllocBase.thy	Tue May 11 20:11:08 2004 +0200
@@ -54,7 +54,7 @@
 
 lemma bag_of_append [simp]: "bag_of (l@l') = bag_of l + bag_of l'"
 apply (induct_tac "l", simp)
- apply (simp add: plus_ac0)
+ apply (simp add: add_ac)
 done
 
 lemma mono_bag_of: "mono (bag_of :: 'a list => ('a::order) multiset)"
@@ -80,7 +80,7 @@
       (\<Sum>i: A Int lessThan (length l). {# l!i #})"
 apply (rule_tac xs = l in rev_induct, simp)
 apply (simp add: sublist_append Int_insert_right lessThan_Suc nth_append 
-                 bag_of_sublist_lemma plus_ac0)
+                 bag_of_sublist_lemma add_ac)
 done
 
 
--- a/src/HOL/arith_data.ML	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/arith_data.ML	Tue May 11 20:11:08 2004 +0200
@@ -386,10 +386,10 @@
 val add_mono_thms_ordered_semiring = map (fn s => prove_goal (the_context ()) s
  (fn prems => [cut_facts_tac prems 1,
                blast_tac (claset() addIs [add_mono]) 1]))
-["(i <= j) & (k <= l) ==> i + k <= j + (l::'a::ordered_semiring)",
- "(i  = j) & (k <= l) ==> i + k <= j + (l::'a::ordered_semiring)",
- "(i <= j) & (k  = l) ==> i + k <= j + (l::'a::ordered_semiring)",
- "(i  = j) & (k  = l) ==> i + k  = j + (l::'a::ordered_semiring)"
+["(i <= j) & (k <= l) ==> i + k <= j + (l::'a::ordered_semidom)",
+ "(i  = j) & (k <= l) ==> i + k <= j + (l::'a::ordered_semidom)",
+ "(i <= j) & (k  = l) ==> i + k <= j + (l::'a::ordered_semidom)",
+ "(i  = j) & (k  = l) ==> i + k  = j + (l::'a::ordered_semidom)"
 ];
 
 in
--- a/src/HOL/ex/Lagrange.thy	Tue May 11 14:00:02 2004 +0200
+++ b/src/HOL/ex/Lagrange.thy	Tue May 11 20:11:08 2004 +0200
@@ -23,7 +23,7 @@
 
 (*once a slow step, but now (2001) just three seconds!*)
 lemma Lagrange_lemma:
- "!!x1::'a::ring.
+ "!!x1::'a::comm_ring_1.
   (sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
   sq(x1*y1 - x2*y2 - x3*y3 - x4*y4)  +
   sq(x1*y2 + x2*y1 + x3*y4 - x4*y3)  +
@@ -34,7 +34,7 @@
 
 (* A challenge by John Harrison. Takes about 4 mins on a 3GHz machine.
 
-lemma "!!p1::'a::ring.
+lemma "!!p1::'a::comm_ring_1.
  (sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * 
  (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) 
   = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) +