--- a/src/HOL/Lattices_Big.thy Wed Aug 06 08:18:35 2014 +0200
+++ b/src/HOL/Lattices_Big.thy Wed Aug 06 18:03:43 2014 +0200
@@ -633,6 +633,16 @@
end
+lemma Max_eq_if:
+ assumes "finite A" "finite B" "\<forall>a\<in>A. \<exists>b\<in>B. a \<le> b" "\<forall>b\<in>B. \<exists>a\<in>A. b \<le> a"
+ shows "Max A = Max B"
+proof cases
+ assume "A = {}" thus ?thesis using assms by simp
+next
+ assume "A \<noteq> {}" thus ?thesis using assms
+ by(blast intro: antisym Max_in Max_ge_iff[THEN iffD2])
+qed
+
lemma Min_antimono:
assumes "M \<subseteq> N" and "M \<noteq> {}" and "finite N"
shows "Min N \<le> Min M"