--- a/src/HOL/Finite_Set.thy Tue Aug 14 19:23:27 2007 +0200
+++ b/src/HOL/Finite_Set.thy Tue Aug 14 23:03:42 2007 +0200
@@ -1776,7 +1776,7 @@
done
text {* Relates to equivalence classes. Based on a theorem of
-F. Kammüller's. *}
+F. Kamm�ller's. *}
lemma dvd_partition:
"finite (Union C) ==>
@@ -2276,7 +2276,7 @@
subsection {* Finiteness and quotients *}
-text {*Suggested by Florian Kammüller*}
+text {*Suggested by Florian Kamm�ller*}
lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)"
-- {* recall @{thm equiv_type} *}
@@ -2710,12 +2710,12 @@
setup {* Sign.add_path "finite" *} -- {*FIXME: name tweaking*}
class finite (attach UNIV) = type +
- assumes finite: "finite UNIV"
+ assumes finite_UNIV: "finite UNIV"
setup {* Sign.parent_path *}
hide const finite
-lemma finite_set: "finite (A::'a::finite set)"
- by (rule finite_subset [OF subset_UNIV finite])
+lemma finite [simp]: "finite (A::'a::finite set)"
+ by (rule finite_subset [OF subset_UNIV finite_UNIV])
lemma univ_unit:
"UNIV = {()}" by auto
@@ -2802,7 +2802,7 @@
show "finite (UNIV :: ('a => 'b) set)"
proof (rule finite_imageD)
let ?graph = "%f::'a => 'b. {(x, y). y = f x}"
- show "finite (range ?graph)" by (rule finite_set)
+ show "finite (range ?graph)" by (rule finite)
show "inj ?graph" by (rule inj_graph)
qed
qed