make nat_cancel_sums simprocs robust in the presence of schematic variables; add regression tests
--- a/src/HOL/Tools/arith_data.ML Thu Jul 19 22:21:59 2012 +0200
+++ b/src/HOL/Tools/arith_data.ML Fri Jul 20 10:53:25 2012 +0200
@@ -112,7 +112,8 @@
fun simp_all_tac rules =
let val ss0 = HOL_ss addsimps rules
- in fn ss => ALLGOALS (simp_tac (Simplifier.inherit_context ss ss0)) end;
+ val safe_simp_tac = generic_simp_tac true (false, false, false)
+ in fn ss => ALLGOALS (safe_simp_tac (Simplifier.inherit_context ss ss0)) end;
fun simplify_meta_eq rules =
let val ss0 = HOL_basic_ss addsimps rules |> Simplifier.add_eqcong @{thm eq_cong2}
--- a/src/HOL/Tools/nat_arith.ML Thu Jul 19 22:21:59 2012 +0200
+++ b/src/HOL/Tools/nat_arith.ML Fri Jul 20 10:53:25 2012 +0200
@@ -49,13 +49,11 @@
struct
val mk_sum = mk_norm_sum;
val dest_sum = dest_sum;
- val prove_conv = Arith_Data.prove_conv2;
+ val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
val norm_tac1 = Arith_Data.simp_all_tac [@{thm add_Suc}, @{thm add_Suc_right},
@{thm Nat.add_0}, @{thm Nat.add_0_right}];
val norm_tac2 = Arith_Data.simp_all_tac @{thms add_ac};
fun norm_tac ss = norm_tac1 ss THEN norm_tac2 ss;
- fun gen_uncancel_tac rule = let val rule' = rule RS @{thm subst_equals}
- in fn ct => rtac (instantiate' [] [NONE, SOME ct] rule') 1 end;
end;
structure EqCancelSums = CancelSumsFun
@@ -63,7 +61,7 @@
open CommonCancelSums;
val mk_bal = HOLogic.mk_eq;
val dest_bal = HOLogic.dest_bin @{const_name HOL.eq} HOLogic.natT;
- val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel"};
+ val cancel_rule = mk_meta_eq @{thm nat_add_left_cancel};
end);
structure LessCancelSums = CancelSumsFun
@@ -71,7 +69,7 @@
open CommonCancelSums;
val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less};
val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} HOLogic.natT;
- val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_less"};
+ val cancel_rule = mk_meta_eq @{thm nat_add_left_cancel_less};
end);
structure LeCancelSums = CancelSumsFun
@@ -79,7 +77,7 @@
open CommonCancelSums;
val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less_eq};
val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} HOLogic.natT;
- val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_le"};
+ val cancel_rule = mk_meta_eq @{thm nat_add_left_cancel_le};
end);
structure DiffCancelSums = CancelSumsFun
@@ -87,7 +85,7 @@
open CommonCancelSums;
val mk_bal = HOLogic.mk_binop @{const_name Groups.minus};
val dest_bal = HOLogic.dest_bin @{const_name Groups.minus} HOLogic.natT;
- val uncancel_tac = gen_uncancel_tac @{thm "diff_cancel"};
+ val cancel_rule = mk_meta_eq @{thm diff_cancel};
end);
val nat_cancel_sums_add =
--- a/src/HOL/ex/Simproc_Tests.thy Thu Jul 19 22:21:59 2012 +0200
+++ b/src/HOL/ex/Simproc_Tests.thy Fri Jul 20 10:53:25 2012 +0200
@@ -5,14 +5,14 @@
header {* Testing of arithmetic simprocs *}
theory Simproc_Tests
-imports (*Main*) "../Numeral_Simprocs"
+imports Main
begin
text {*
- This theory tests the various simprocs defined in
- @{file "~~/src/HOL/Numeral_Simprocs.thy"}. Many of the tests
- are derived from commented-out code originally found in
- @{file "~~/src/HOL/Tools/numeral_simprocs.ML"}.
+ This theory tests the various simprocs defined in @{file
+ "~~/src/HOL/Nat.thy"} and @{file "~~/src/HOL/Numeral_Simprocs.thy"}.
+ Many of the tests are derived from commented-out code originally
+ found in @{file "~~/src/HOL/Tools/numeral_simprocs.ML"}.
*}
subsection {* ML bindings *}
@@ -21,6 +21,29 @@
fun test ps = CHANGED (asm_simp_tac (HOL_basic_ss addsimprocs ps) 1)
*}
+subsection {* Cancellation simprocs from @{text Nat.thy} *}
+
+notepad begin
+ fix a b c d :: nat
+ {
+ assume "b = Suc c" have "a + b = Suc (c + a)"
+ by (tactic {* test [nth Nat_Arith.nat_cancel_sums 0] *}) fact
+ next
+ assume "b < Suc c" have "a + b < Suc (c + a)"
+ by (tactic {* test [nth Nat_Arith.nat_cancel_sums 1] *}) fact
+ next
+ assume "b \<le> Suc c" have "a + b \<le> Suc (c + a)"
+ by (tactic {* test [nth Nat_Arith.nat_cancel_sums 2] *}) fact
+ next
+ assume "b - Suc c = d" have "a + b - Suc (c + a) = d"
+ by (tactic {* test [nth Nat_Arith.nat_cancel_sums 3] *}) fact
+ }
+end
+
+schematic_lemma "\<And>(y::?'b::size). size (?x::?'a::size) \<le> size y + size ?x"
+ by (tactic {* test [nth Nat_Arith.nat_cancel_sums 2] *}) (rule le0)
+(* TODO: test more simprocs with schematic variables *)
+
subsection {* Abelian group cancellation simprocs *}
notepad begin
--- a/src/Provers/Arith/cancel_sums.ML Thu Jul 19 22:21:59 2012 +0200
+++ b/src/Provers/Arith/cancel_sums.ML Fri Jul 20 10:53:25 2012 +0200
@@ -13,12 +13,12 @@
(*abstract syntax*)
val mk_sum: term list -> term
val dest_sum: term -> term list
+ val mk_plus: term * term -> term
val mk_bal: term * term -> term
val dest_bal: term -> term * term
(*rules*)
- val prove_conv: tactic -> (simpset -> tactic) -> simpset -> term * term -> thm
val norm_tac: simpset -> tactic (*AC0 etc.*)
- val uncancel_tac: cterm -> tactic (*apply A ~~ B == x + A ~~ x + B*)
+ val cancel_rule: thm (* x + A ~~ x + B == A ~~ B *)
end;
signature CANCEL_SUMS =
@@ -46,14 +46,6 @@
| GREATER => cons2 u (cancel (t :: ts) us vs));
-(* uncancel *)
-
-fun uncancel_sums_tac _ [] = all_tac
- | uncancel_sums_tac thy (t :: ts) =
- Data.uncancel_tac (Thm.cterm_of thy t) THEN
- uncancel_sums_tac thy ts;
-
-
(* the simplification procedure *)
fun proc ss t =
@@ -66,9 +58,21 @@
val (ts', us', vs) = cancel ts us [];
in
if null vs then NONE
- else SOME
- (Data.prove_conv (uncancel_sums_tac thy vs) Data.norm_tac ss
- (t, Data.mk_bal (Data.mk_sum ts', Data.mk_sum us')))
+ else
+ let
+ val cert = Thm.cterm_of thy
+ val t' = Data.mk_sum ts'
+ val u' = Data.mk_sum us'
+ val v = Data.mk_sum vs
+ val t1 = Data.mk_bal (Data.mk_plus (v, t'), Data.mk_plus (v, u'))
+ val t2 = Data.mk_bal (t', u')
+ val goal1 = Thm.cterm_of thy (Logic.mk_equals (t, t1))
+ val goal2 = Thm.cterm_of thy (Logic.mk_equals (t1, t2))
+ val thm1 = Goal.prove_internal [] goal1 (K (Data.norm_tac ss))
+ val thm2 = Goal.prove_internal [] goal2 (K (rtac Data.cancel_rule 1))
+ in
+ SOME (Thm.transitive thm1 thm2)
+ end
end);
end;