--- a/src/HOL/Algebra/Multiplicative_Group.thy Fri Jan 08 15:07:25 2021 +0100
+++ b/src/HOL/Algebra/Multiplicative_Group.thy Fri Jan 08 15:13:23 2021 +0100
@@ -668,7 +668,7 @@
unfolding subgroup_generated_def
using a by simp
then show ?thesis
- using `ord a = 0` by auto
+ using \<open>ord a = 0\<close> by auto
next
case False
note finite_subgroup = this
--- a/src/HOL/Lattices_Big.thy Fri Jan 08 15:07:25 2021 +0100
+++ b/src/HOL/Lattices_Big.thy Fri Jan 08 15:13:23 2021 +0100
@@ -744,7 +744,7 @@
assumes "P {}"
assumes "\<And>x S. finite S \<Longrightarrow> (\<And>y. y \<in> S \<Longrightarrow> f y \<le> f x) \<Longrightarrow> P S \<Longrightarrow> P (insert x S)"
shows "P S"
- using `finite S`
+ using \<open>finite S\<close>
proof (induction rule: finite_psubset_induct)
case (psubset A)
{