--- a/src/HOL/Library/Code_Set.thy Sat Jun 27 22:28:07 2009 +0200
+++ b/src/HOL/Library/Code_Set.thy Sun Jun 28 10:33:36 2009 +0200
@@ -12,6 +12,8 @@
shows "foldl f (g s) xs = g (foldl (\<lambda>s x. h (f (g s) x)) s xs)"
by (rule sym, induct xs arbitrary: s) (simp_all add: assms)
+declare mem_def [simp]
+
subsection {* Lifting *}
datatype 'a fset = Fset "'a set"
@@ -36,66 +38,98 @@
subsection {* Basic operations *}
definition is_empty :: "'a fset \<Rightarrow> bool" where
- "is_empty A \<longleftrightarrow> List_Set.is_empty (member A)"
+ [simp]: "is_empty A \<longleftrightarrow> List_Set.is_empty (member A)"
lemma is_empty_Set [code]:
"is_empty (Set xs) \<longleftrightarrow> null xs"
- by (simp add: is_empty_def is_empty_set)
+ by (simp add: is_empty_set)
definition empty :: "'a fset" where
- "empty = Fset {}"
+ [simp]: "empty = Fset {}"
lemma empty_Set [code]:
"empty = Set []"
- by (simp add: empty_def Set_def)
+ by (simp add: Set_def)
definition insert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- "insert x A = Fset (Set.insert x (member A))"
+ [simp]: "insert x A = Fset (Set.insert x (member A))"
lemma insert_Set [code]:
"insert x (Set xs) = Set (List_Set.insert x xs)"
- by (simp add: insert_def Set_def insert_set)
+ by (simp add: Set_def insert_set)
definition remove :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- "remove x A = Fset (List_Set.remove x (member A))"
+ [simp]: "remove x A = Fset (List_Set.remove x (member A))"
lemma remove_Set [code]:
"remove x (Set xs) = Set (remove_all x xs)"
- by (simp add: remove_def Set_def remove_set)
+ by (simp add: Set_def remove_set)
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" where
- "map f A = Fset (image f (member A))"
+ [simp]: "map f A = Fset (image f (member A))"
lemma map_Set [code]:
"map f (Set xs) = Set (remdups (List.map f xs))"
- by (simp add: map_def Set_def)
+ by (simp add: Set_def)
definition project :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- "project P A = Fset (List_Set.project P (member A))"
+ [simp]: "project P A = Fset (List_Set.project P (member A))"
lemma project_Set [code]:
"project P (Set xs) = Set (filter P xs)"
- by (simp add: project_def Set_def project_set)
+ by (simp add: Set_def project_set)
definition forall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
- "forall P A \<longleftrightarrow> Ball (member A) P"
+ [simp]: "forall P A \<longleftrightarrow> Ball (member A) P"
lemma forall_Set [code]:
"forall P (Set xs) \<longleftrightarrow> list_all P xs"
- by (simp add: forall_def Set_def ball_set)
+ by (simp add: Set_def ball_set)
definition exists :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
- "exists P A \<longleftrightarrow> Bex (member A) P"
+ [simp]: "exists P A \<longleftrightarrow> Bex (member A) P"
lemma exists_Set [code]:
"exists P (Set xs) \<longleftrightarrow> list_ex P xs"
- by (simp add: exists_def Set_def bex_set)
+ by (simp add: Set_def bex_set)
+
+
+subsection {* Derived operations *}
+
+lemma member_exists [code]:
+ "member A y \<longleftrightarrow> exists (\<lambda>x. y = x) A"
+ by simp
+
+definition subfset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
+ [simp]: "subfset_eq A B \<longleftrightarrow> member A \<subseteq> member B"
+
+lemma subfset_eq_forall [code]:
+ "subfset_eq A B \<longleftrightarrow> forall (\<lambda>x. member B x) A"
+ by (simp add: subset_eq)
+
+definition subfset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
+ [simp]: "subfset A B \<longleftrightarrow> member A \<subset> member B"
+
+lemma subfset_subfset_eq [code]:
+ "subfset A B \<longleftrightarrow> subfset_eq A B \<and> \<not> subfset_eq B A"
+ by (simp add: subset)
+
+lemma eq_fset_subfset_eq [code]:
+ "eq_class.eq A B \<longleftrightarrow> subfset_eq A B \<and> subfset_eq B A"
+ by (cases A, cases B) (simp add: eq set_eq)
+
+definition inter :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
+ [simp]: "inter A B = Fset (List_Set.project (member A) (member B))"
+
+lemma inter_project [code]:
+ "inter A B = project (member A) B"
+ by (simp add: inter)
subsection {* Functorial operations *}
definition union :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- "union A B = Fset (member A \<union> member B)"
+ [simp]: "union A B = Fset (member A \<union> member B)"
lemma union_insert [code]:
"union (Set xs) A = foldl (\<lambda>A x. insert x A) A xs"
@@ -103,11 +137,11 @@
have "foldl (\<lambda>A x. Set.insert x A) (member A) xs =
member (foldl (\<lambda>A x. Fset (Set.insert x (member A))) A xs)"
by (rule foldl_apply_inv) simp
- then show ?thesis by (simp add: union_def union_set insert_def)
+ then show ?thesis by (simp add: union_set)
qed
definition subtract :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- "subtract A B = Fset (member B - member A)"
+ [simp]: "subtract A B = Fset (member B - member A)"
lemma subtract_remove [code]:
"subtract (Set xs) A = foldl (\<lambda>A x. remove x A) A xs"
@@ -115,40 +149,36 @@
have "foldl (\<lambda>A x. List_Set.remove x A) (member A) xs =
member (foldl (\<lambda>A x. Fset (List_Set.remove x (member A))) A xs)"
by (rule foldl_apply_inv) simp
- then show ?thesis by (simp add: subtract_def minus_set remove_def)
+ then show ?thesis by (simp add: minus_set)
qed
-
-subsection {* Derived operations *}
-
-lemma member_exists [code]:
- "member A y \<longleftrightarrow> exists (\<lambda>x. y = x) A"
- by (simp add: exists_def mem_def)
+definition Inter :: "'a fset fset \<Rightarrow> 'a fset" where
+ [simp]: "Inter A = Fset (Set.Inter (member ` member A))"
-definition subfset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
- "subfset_eq A B \<longleftrightarrow> member A \<subseteq> member B"
-
-lemma subfset_eq_forall [code]:
- "subfset_eq A B \<longleftrightarrow> forall (\<lambda>x. member B x) A"
- by (simp add: subfset_eq_def subset_eq forall_def mem_def)
+lemma Inter_inter [code]:
+ "Inter (Set (A # As)) = foldl inter A As"
+proof -
+ note Inter_image_eq [simp del] set_map [simp del] set.simps [simp del]
+ have "foldl (op \<inter>) (member A) (List.map member As) =
+ member (foldl (\<lambda>B A. Fset (member B \<inter> A)) A (List.map member As))"
+ by (rule foldl_apply_inv) simp
+ then show ?thesis
+ by (simp add: Inter_set image_set inter_def_raw inter foldl_map)
+qed
-definition subfset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
- "subfset A B \<longleftrightarrow> member A \<subset> member B"
-
-lemma subfset_subfset_eq [code]:
- "subfset A B \<longleftrightarrow> subfset_eq A B \<and> \<not> subfset_eq B A"
- by (simp add: subfset_def subfset_eq_def subset)
+definition Union :: "'a fset fset \<Rightarrow> 'a fset" where
+ [simp]: "Union A = Fset (Set.Union (member ` member A))"
-lemma eq_fset_subfset_eq [code]:
- "eq_class.eq A B \<longleftrightarrow> subfset_eq A B \<and> subfset_eq B A"
- by (cases A, cases B) (simp add: eq subfset_eq_def set_eq)
-
-definition inter :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
- "inter A B = Fset (List_Set.project (member A) (member B))"
-
-lemma inter_project [code]:
- "inter A B = project (member A) B"
- by (simp add: inter_def project_def inter)
+lemma Union_union [code]:
+ "Union (Set As) = foldl union empty As"
+proof -
+ note Union_image_eq [simp del] set_map [simp del]
+ have "foldl (op \<union>) (member empty) (List.map member As) =
+ member (foldl (\<lambda>B A. Fset (member B \<union> A)) empty (List.map member As))"
+ by (rule foldl_apply_inv) simp
+ then show ?thesis
+ by (simp add: Union_set image_set union_def_raw foldl_map)
+qed
subsection {* Misc operations *}
@@ -166,4 +196,29 @@
"fset_rec f A = f (member A)"
by (cases A) simp
+
+subsection {* Simplified simprules *}
+
+lemma is_empty_simp [simp]:
+ "is_empty A \<longleftrightarrow> member A = {}"
+ by (simp add: List_Set.is_empty_def)
+declare is_empty_def [simp del]
+
+lemma remove_simp [simp]:
+ "remove x A = Fset (member A - {x})"
+ by (simp add: List_Set.remove_def)
+declare remove_def [simp del]
+
+lemma project_simp [simp]:
+ "project P A = Fset {x \<in> member A. P x}"
+ by (simp add: List_Set.project_def)
+declare project_def [simp del]
+
+lemma inter_simp [simp]:
+ "inter A B = Fset (member A \<inter> member B)"
+ by (simp add: inter)
+declare inter_def [simp del]
+
+declare mem_def [simp del]
+
end
--- a/src/HOL/Library/List_Set.thy Sat Jun 27 22:28:07 2009 +0200
+++ b/src/HOL/Library/List_Set.thy Sun Jun 28 10:33:36 2009 +0200
@@ -70,7 +70,7 @@
by (auto simp add: remove_def remove_all_def)
lemma image_set:
- "image f (set xs) = set (remdups (map f xs))"
+ "image f (set xs) = set (map f xs)"
by simp
lemma project_set: