--- a/src/ZF/ex/misc.thy Tue Oct 12 21:30:44 2010 +0200
+++ b/src/ZF/ex/misc.thy Wed Oct 13 09:56:00 2010 +0200
@@ -39,19 +39,19 @@
lemma "(X = Y Un Z) <-> (Y \<subseteq> X & Z \<subseteq> X & (\<forall>V. Y \<subseteq> V & Z \<subseteq> V --> X \<subseteq> V))"
by (blast intro!: equalityI)
-text{*the dual of the previous one}
+text{*the dual of the previous one*}
lemma "(X = Y Int Z) <-> (X \<subseteq> Y & X \<subseteq> Z & (\<forall>V. V \<subseteq> Y & V \<subseteq> Z --> V \<subseteq> X))"
by (blast intro!: equalityI)
-text{*trivial example of term synthesis: apparently hard for some provers!}
-lemma "a \<noteq> b ==> a:?X & b \<notin> ?X"
+text{*trivial example of term synthesis: apparently hard for some provers!*}
+schematic_lemma "a \<noteq> b ==> a:?X & b \<notin> ?X"
by blast
-text{*Nice Blast_tac benchmark. Proved in 0.3s; old tactics can't manage it!}
+text{*Nice blast benchmark. Proved in 0.3s; old tactics can't manage it!*}
lemma "\<forall>x \<in> S. \<forall>y \<in> S. x \<subseteq> y ==> \<exists>z. S \<subseteq> {z}"
by blast
-text{*variant of the benchmark above}
+text{*variant of the benchmark above*}
lemma "\<forall>x \<in> S. Union(S) \<subseteq> x ==> \<exists>z. S \<subseteq> {z}"
by blast
@@ -74,7 +74,7 @@
Set Theory in First-Order Logic: Clauses for G\"odel's Axioms,
JAR 2 (1986), 287-327 *}
-text{*collecting the relevant lemmas}
+text{*collecting the relevant lemmas*}
declare comp_fun [simp] SigmaI [simp] apply_funtype [simp]
(*Force helps prove conditions of rewrites such as comp_fun_apply, since
@@ -86,7 +86,7 @@
(K O J) \<in> hom(A,f,C,h)"
by force
-text{*Another version, with meta-level rewriting}
+text{*Another version, with meta-level rewriting*}
lemma "(!! A f B g. hom(A,f,B,g) ==
{H \<in> A->B. f \<in> A*A->A & g \<in> B*B->B &
(\<forall>x \<in> A. \<forall>y \<in> A. H`(f`<x,y>) = g`<H`x,H`y>)})
@@ -108,7 +108,7 @@
"[| (h O g O f) \<in> inj(A,A);
(f O h O g) \<in> surj(B,B);
(g O f O h) \<in> surj(C,C);
- f \<in> A->B; g \<in> B->C; h \<in> C->A |] ==> h \<in> bij(C,A)";
+ f \<in> A->B; g \<in> B->C; h \<in> C->A |] ==> h \<in> bij(C,A)"
by (unfold bij_def, blast)
lemma pastre3: