--- a/src/HOL/ex/Numeral.thy Tue Feb 17 21:51:52 2009 +0100
+++ b/src/HOL/ex/Numeral.thy Tue Feb 17 20:45:23 2009 -0800
@@ -210,16 +210,18 @@
lemma one_plus_DigM: "One + DigM n = Dig0 n"
unfolding add_One_commute DigM_plus_one ..
-text {* A squaring function *}
+text {* Squaring and exponentiation *}
primrec square :: "num \<Rightarrow> num" where
"square One = One"
| "square (Dig0 n) = Dig0 (Dig0 (square n))"
| "square (Dig1 n) = Dig1 (Dig0 (square n + n))"
-lemma nat_of_num_square:
- "nat_of_num (square n) = nat_of_num n * nat_of_num n"
- by (induct n) (simp_all add: nat_of_num_add algebra_simps)
+primrec pow :: "num \<Rightarrow> num \<Rightarrow> num"
+where
+ "pow x One = x"
+| "pow x (Dig0 y) = square (pow x y)"
+| "pow x (Dig1 y) = x * square (pow x y)"
subsection {* Binary numerals *}
@@ -620,6 +622,48 @@
end
subsubsection {*
+ Structures with exponentiation
+*}
+
+lemma of_num_square: "of_num (square x) = of_num x * of_num x"
+by (induct x)
+ (simp_all add: of_num.simps of_num_plus [symmetric] algebra_simps)
+
+lemma of_num_pow:
+ "(of_num (pow x y)::'a::{semiring_numeral,recpower}) = of_num x ^ of_num y"
+by (induct y)
+ (simp_all add: of_num.simps of_num_square of_num_times [symmetric]
+ power_Suc power_add)
+
+lemma power_of_num [numeral]:
+ "of_num x ^ of_num y = (of_num (pow x y)::'a::{semiring_numeral,recpower})"
+ by (rule of_num_pow [symmetric])
+
+lemma power_zero_of_num [numeral]:
+ "0 ^ of_num n = (0::'a::{semiring_0,recpower})"
+ using of_num_pos [where n=n and ?'a=nat]
+ by (simp add: power_0_left)
+
+lemma power_minus_one_double:
+ "(- 1) ^ (n + n) = (1::'a::{ring_1,recpower})"
+ by (induct n) (simp_all add: power_Suc)
+
+lemma power_minus_Dig0 [numeral]:
+ fixes x :: "'a::{ring_1,recpower}"
+ shows "(- x) ^ of_num (Dig0 n) = x ^ of_num (Dig0 n)"
+ by (subst power_minus)
+ (simp add: of_num.simps power_minus_one_double)
+
+lemma power_minus_Dig1 [numeral]:
+ fixes x :: "'a::{ring_1,recpower}"
+ shows "(- x) ^ of_num (Dig1 n) = - (x ^ of_num (Dig1 n))"
+ by (subst power_minus)
+ (simp add: of_num.simps power_Suc power_minus_one_double)
+
+declare power_one [numeral]
+
+
+subsubsection {*
Greetings to @{typ nat}.
*}