moved 'Ctr_Sugar' files out of BNF, so that it can become a general-purpose abstraction
authorblanchet
Tue, 12 Nov 2013 13:47:24 +0100
changeset 54396 8baee6b04a7c
parent 54395 1a58413a8cc0
child 54397 f4b4fa25ce56
moved 'Ctr_Sugar' files out of BNF, so that it can become a general-purpose abstraction
src/HOL/BNF/Ctr_Sugar.thy
src/HOL/BNF/Tools/ctr_sugar.ML
src/HOL/BNF/Tools/ctr_sugar_tactics.ML
src/HOL/BNF/Tools/ctr_sugar_util.ML
src/HOL/Ctr_Sugar.thy
src/HOL/Tools/ctr_sugar.ML
src/HOL/Tools/ctr_sugar_tactics.ML
src/HOL/Tools/ctr_sugar_util.ML
--- a/src/HOL/BNF/Ctr_Sugar.thy	Tue Nov 12 12:04:17 2013 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,30 +0,0 @@
-(*  Title:      HOL/BNF/Ctr_Sugar.thy
-    Author:     Jasmin Blanchette, TU Muenchen
-    Copyright   2012
-
-Wrapping existing freely generated type's constructors.
-*)
-
-header {* Wrapping Existing Freely Generated Type's Constructors *}
-
-theory Ctr_Sugar
-imports Main
-keywords
-  "wrap_free_constructors" :: thy_goal and
-  "no_discs_sels" and
-  "rep_compat"
-begin
-
-lemma iffI_np: "\<lbrakk>x \<Longrightarrow> \<not> y; \<not> x \<Longrightarrow> y\<rbrakk> \<Longrightarrow> \<not> x \<longleftrightarrow> y"
-by (erule iffI) (erule contrapos_pn)
-
-lemma iff_contradict:
-"\<not> P \<Longrightarrow> P \<longleftrightarrow> Q \<Longrightarrow> Q \<Longrightarrow> R"
-"\<not> Q \<Longrightarrow> P \<longleftrightarrow> Q \<Longrightarrow> P \<Longrightarrow> R"
-by blast+
-
-ML_file "Tools/ctr_sugar_util.ML"
-ML_file "Tools/ctr_sugar_tactics.ML"
-ML_file "Tools/ctr_sugar.ML"
-
-end
--- a/src/HOL/BNF/Tools/ctr_sugar.ML	Tue Nov 12 12:04:17 2013 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,962 +0,0 @@
-(*  Title:      HOL/BNF/Tools/ctr_sugar.ML
-    Author:     Jasmin Blanchette, TU Muenchen
-    Copyright   2012
-
-Wrapping existing freely generated type's constructors.
-*)
-
-signature CTR_SUGAR =
-sig
-  type ctr_sugar =
-    {ctrs: term list,
-     casex: term,
-     discs: term list,
-     selss: term list list,
-     exhaust: thm,
-     nchotomy: thm,
-     injects: thm list,
-     distincts: thm list,
-     case_thms: thm list,
-     case_cong: thm,
-     weak_case_cong: thm,
-     split: thm,
-     split_asm: thm,
-     disc_thmss: thm list list,
-     discIs: thm list,
-     sel_thmss: thm list list,
-     disc_exhausts: thm list,
-     sel_exhausts: thm list,
-     collapses: thm list,
-     expands: thm list,
-     sel_splits: thm list,
-     sel_split_asms: thm list,
-     case_conv_ifs: thm list};
-
-  val morph_ctr_sugar: morphism -> ctr_sugar -> ctr_sugar
-  val transfer_ctr_sugar: Proof.context -> ctr_sugar -> ctr_sugar
-  val ctr_sugar_of: Proof.context -> string -> ctr_sugar option
-  val ctr_sugars_of: Proof.context -> ctr_sugar list
-
-  val rep_compat_prefix: string
-
-  val mk_half_pairss: 'a list * 'a list -> ('a * 'a) list list
-  val join_halves: int -> 'a list list -> 'a list list -> 'a list * 'a list list list
-
-  val mk_ctr: typ list -> term -> term
-  val mk_case: typ list -> typ -> term -> term
-  val mk_disc_or_sel: typ list -> term -> term
-  val name_of_ctr: term -> string
-  val name_of_disc: term -> string
-  val dest_ctr: Proof.context -> string -> term -> term * term list
-  val dest_case: Proof.context -> string -> typ list -> term -> (term list * term list) option
-
-  val wrap_free_constructors: ({prems: thm list, context: Proof.context} -> tactic) list list ->
-    (((bool * bool) * term list) * binding) *
-      (binding list * (binding list list * (binding * term) list list)) -> local_theory ->
-    ctr_sugar * local_theory
-  val parse_wrap_free_constructors_options: (bool * bool) parser
-  val parse_bound_term: (binding * string) parser
-end;
-
-structure Ctr_Sugar : CTR_SUGAR =
-struct
-
-open Ctr_Sugar_Util
-open Ctr_Sugar_Tactics
-
-type ctr_sugar =
-  {ctrs: term list,
-   casex: term,
-   discs: term list,
-   selss: term list list,
-   exhaust: thm,
-   nchotomy: thm,
-   injects: thm list,
-   distincts: thm list,
-   case_thms: thm list,
-   case_cong: thm,
-   weak_case_cong: thm,
-   split: thm,
-   split_asm: thm,
-   disc_thmss: thm list list,
-   discIs: thm list,
-   sel_thmss: thm list list,
-   disc_exhausts: thm list,
-   sel_exhausts: thm list,
-   collapses: thm list,
-   expands: thm list,
-   sel_splits: thm list,
-   sel_split_asms: thm list,
-   case_conv_ifs: thm list};
-
-fun eq_ctr_sugar ({ctrs = ctrs1, casex = case1, discs = discs1, selss = selss1, ...} : ctr_sugar,
-    {ctrs = ctrs2, casex = case2, discs = discs2, selss = selss2, ...} : ctr_sugar) =
-  ctrs1 = ctrs2 andalso case1 = case2 andalso discs1 = discs2 andalso selss1 = selss2;
-
-fun morph_ctr_sugar phi {ctrs, casex, discs, selss, exhaust, nchotomy, injects, distincts,
-    case_thms, case_cong, weak_case_cong, split, split_asm, disc_thmss, discIs, sel_thmss,
-    disc_exhausts, sel_exhausts, collapses, expands, sel_splits, sel_split_asms, case_conv_ifs} =
-  {ctrs = map (Morphism.term phi) ctrs,
-   casex = Morphism.term phi casex,
-   discs = map (Morphism.term phi) discs,
-   selss = map (map (Morphism.term phi)) selss,
-   exhaust = Morphism.thm phi exhaust,
-   nchotomy = Morphism.thm phi nchotomy,
-   injects = map (Morphism.thm phi) injects,
-   distincts = map (Morphism.thm phi) distincts,
-   case_thms = map (Morphism.thm phi) case_thms,
-   case_cong = Morphism.thm phi case_cong,
-   weak_case_cong = Morphism.thm phi weak_case_cong,
-   split = Morphism.thm phi split,
-   split_asm = Morphism.thm phi split_asm,
-   disc_thmss = map (map (Morphism.thm phi)) disc_thmss,
-   discIs = map (Morphism.thm phi) discIs,
-   sel_thmss = map (map (Morphism.thm phi)) sel_thmss,
-   disc_exhausts = map (Morphism.thm phi) disc_exhausts,
-   sel_exhausts = map (Morphism.thm phi) sel_exhausts,
-   collapses = map (Morphism.thm phi) collapses,
-   expands = map (Morphism.thm phi) expands,
-   sel_splits = map (Morphism.thm phi) sel_splits,
-   sel_split_asms = map (Morphism.thm phi) sel_split_asms,
-   case_conv_ifs = map (Morphism.thm phi) case_conv_ifs};
-
-val transfer_ctr_sugar =
-  morph_ctr_sugar o Morphism.thm_morphism o Thm.transfer o Proof_Context.theory_of;
-
-structure Data = Generic_Data
-(
-  type T = ctr_sugar Symtab.table;
-  val empty = Symtab.empty;
-  val extend = I;
-  val merge = Symtab.merge eq_ctr_sugar;
-);
-
-fun ctr_sugar_of ctxt =
-  Symtab.lookup (Data.get (Context.Proof ctxt))
-  #> Option.map (transfer_ctr_sugar ctxt);
-
-fun ctr_sugars_of ctxt =
-  Symtab.fold (cons o transfer_ctr_sugar ctxt o snd) (Data.get (Context.Proof ctxt)) [];
-
-fun register_ctr_sugar key ctr_sugar =
-  Local_Theory.declaration {syntax = false, pervasive = true}
-    (fn phi => Data.map (Symtab.default (key, morph_ctr_sugar phi ctr_sugar)));
-
-val rep_compat_prefix = "new";
-
-val isN = "is_";
-val unN = "un_";
-fun mk_unN 1 1 suf = unN ^ suf
-  | mk_unN _ l suf = unN ^ suf ^ string_of_int l;
-
-val caseN = "case";
-val case_congN = "case_cong";
-val case_conv_ifN = "case_conv_if";
-val collapseN = "collapse";
-val disc_excludeN = "disc_exclude";
-val disc_exhaustN = "disc_exhaust";
-val discN = "disc";
-val discIN = "discI";
-val distinctN = "distinct";
-val exhaustN = "exhaust";
-val expandN = "expand";
-val injectN = "inject";
-val nchotomyN = "nchotomy";
-val selN = "sel";
-val sel_exhaustN = "sel_exhaust";
-val sel_splitN = "sel_split";
-val sel_split_asmN = "sel_split_asm";
-val splitN = "split";
-val splitsN = "splits";
-val split_asmN = "split_asm";
-val weak_case_cong_thmsN = "weak_case_cong";
-
-val cong_attrs = @{attributes [cong]};
-val dest_attrs = @{attributes [dest]};
-val safe_elim_attrs = @{attributes [elim!]};
-val iff_attrs = @{attributes [iff]};
-val inductsimp_attrs = @{attributes [induct_simp]};
-val nitpicksimp_attrs = @{attributes [nitpick_simp]};
-val simp_attrs = @{attributes [simp]};
-val code_nitpicksimp_attrs = Code.add_default_eqn_attrib :: nitpicksimp_attrs;
-val code_nitpicksimp_simp_attrs = code_nitpicksimp_attrs @ simp_attrs;
-
-fun unflat_lookup eq xs ys = map (fn xs' => permute_like eq xs xs' ys);
-
-fun mk_half_pairss' _ ([], []) = []
-  | mk_half_pairss' indent (x :: xs, _ :: ys) =
-    indent @ fold_rev (cons o single o pair x) ys (mk_half_pairss' ([] :: indent) (xs, ys));
-
-fun mk_half_pairss p = mk_half_pairss' [[]] p;
-
-fun join_halves n half_xss other_half_xss =
-  let
-    val xsss =
-      map2 (map2 append) (Library.chop_groups n half_xss)
-        (transpose (Library.chop_groups n other_half_xss))
-    val xs = splice (flat half_xss) (flat other_half_xss);
-  in (xs, xsss) end;
-
-fun mk_undefined T = Const (@{const_name undefined}, T);
-
-fun mk_ctr Ts t =
-  let val Type (_, Ts0) = body_type (fastype_of t) in
-    Term.subst_atomic_types (Ts0 ~~ Ts) t
-  end;
-
-fun mk_case Ts T t =
-  let val (Type (_, Ts0), body) = strip_type (fastype_of t) |>> List.last in
-    Term.subst_atomic_types ((body, T) :: (Ts0 ~~ Ts)) t
-  end;
-
-fun mk_disc_or_sel Ts t =
-  Term.subst_atomic_types (snd (Term.dest_Type (domain_type (fastype_of t))) ~~ Ts) t;
-
-fun name_of_const what t =
-  (case head_of t of
-    Const (s, _) => s
-  | Free (s, _) => s
-  | _ => error ("Cannot extract name of " ^ what));
-
-val name_of_ctr = name_of_const "constructor";
-
-val notN = "not_";
-val eqN = "eq_";
-val neqN = "neq_";
-
-fun name_of_disc t =
-  (case head_of t of
-    Abs (_, _, @{const Not} $ (t' $ Bound 0)) =>
-    Long_Name.map_base_name (prefix notN) (name_of_disc t')
-  | Abs (_, _, Const (@{const_name HOL.eq}, _) $ Bound 0 $ t') =>
-    Long_Name.map_base_name (prefix eqN) (name_of_disc t')
-  | Abs (_, _, @{const Not} $ (Const (@{const_name HOL.eq}, _) $ Bound 0 $ t')) =>
-    Long_Name.map_base_name (prefix neqN) (name_of_disc t')
-  | t' => name_of_const "destructor" t');
-
-val base_name_of_ctr = Long_Name.base_name o name_of_ctr;
-
-fun dest_ctr ctxt s t =
-  let
-    val (f, args) = Term.strip_comb t;
-  in
-    (case ctr_sugar_of ctxt s of
-      SOME {ctrs, ...} =>
-      (case find_first (can (fo_match ctxt f)) ctrs of
-        SOME f' => (f', args)
-      | NONE => raise Fail "dest_ctr")
-    | NONE => raise Fail "dest_ctr")
-  end;
-
-fun dest_case ctxt s Ts t =
-  (case Term.strip_comb t of
-    (Const (c, _), args as _ :: _) =>
-    (case ctr_sugar_of ctxt s of
-      SOME {casex = Const (case_name, _), discs = discs0, selss = selss0, ...} =>
-      if case_name = c then
-        let val n = length discs0 in
-          if n < length args then
-            let
-              val (branches, obj :: leftovers) = chop n args;
-              val discs = map (mk_disc_or_sel Ts) discs0;
-              val selss = map (map (mk_disc_or_sel Ts)) selss0;
-              val conds = map (rapp obj) discs;
-              val branch_argss = map (fn sels => map (rapp obj) sels @ leftovers) selss;
-              val branches' = map2 (curry Term.betapplys) branches branch_argss;
-            in
-              SOME (conds, branches')
-            end
-          else
-            NONE
-        end
-      else
-        NONE
-    | _ => NONE)
-  | _ => NONE);
-
-fun eta_expand_arg xs f_xs = fold_rev Term.lambda xs f_xs;
-
-fun prepare_wrap_free_constructors prep_term ((((no_discs_sels, rep_compat), raw_ctrs),
-    raw_case_binding), (raw_disc_bindings, (raw_sel_bindingss, raw_sel_defaultss))) no_defs_lthy =
-  let
-    (* TODO: sanity checks on arguments *)
-
-    val n = length raw_ctrs;
-    val ks = 1 upto n;
-
-    val _ = if n > 0 then () else error "No constructors specified";
-
-    val ctrs0 = map (prep_term no_defs_lthy) raw_ctrs;
-    val sel_defaultss =
-      pad_list [] n (map (map (apsnd (prep_term no_defs_lthy))) raw_sel_defaultss);
-
-    val Type (fcT_name, As0) = body_type (fastype_of (hd ctrs0));
-    val fc_b_name = Long_Name.base_name fcT_name;
-    val fc_b = Binding.name fc_b_name;
-
-    fun qualify mandatory =
-      Binding.qualify mandatory fc_b_name o (rep_compat ? Binding.qualify false rep_compat_prefix);
-
-    fun dest_TFree_or_TVar (TFree sS) = sS
-      | dest_TFree_or_TVar (TVar ((s, _), S)) = (s, S)
-      | dest_TFree_or_TVar _ = error "Invalid type argument";
-
-    val (unsorted_As, B) =
-      no_defs_lthy
-      |> variant_tfrees (map (fst o dest_TFree_or_TVar) As0)
-      ||> the_single o fst o mk_TFrees 1;
-
-    val As = map2 (resort_tfree o snd o dest_TFree_or_TVar) As0 unsorted_As;
-
-    val fcT = Type (fcT_name, As);
-    val ctrs = map (mk_ctr As) ctrs0;
-    val ctr_Tss = map (binder_types o fastype_of) ctrs;
-
-    val ms = map length ctr_Tss;
-
-    val raw_disc_bindings' = pad_list Binding.empty n raw_disc_bindings;
-
-    fun can_definitely_rely_on_disc k = not (Binding.is_empty (nth raw_disc_bindings' (k - 1)));
-    fun can_rely_on_disc k =
-      can_definitely_rely_on_disc k orelse (k = 1 andalso not (can_definitely_rely_on_disc 2));
-    fun should_omit_disc_binding k = n = 1 orelse (n = 2 andalso can_rely_on_disc (3 - k));
-
-    fun is_disc_binding_valid b =
-      not (Binding.is_empty b orelse Binding.eq_name (b, equal_binding));
-
-    val standard_disc_binding = Binding.name o prefix isN o base_name_of_ctr;
-
-    val disc_bindings =
-      raw_disc_bindings'
-      |> map4 (fn k => fn m => fn ctr => fn disc =>
-        qualify false
-          (if Binding.is_empty disc then
-             if should_omit_disc_binding k then disc else standard_disc_binding ctr
-           else if Binding.eq_name (disc, equal_binding) then
-             if m = 0 then disc
-             else error "Cannot use \"=\" syntax for discriminating nonnullary constructor"
-           else if Binding.eq_name (disc, standard_binding) then
-             standard_disc_binding ctr
-           else
-             disc)) ks ms ctrs0;
-
-    fun standard_sel_binding m l = Binding.name o mk_unN m l o base_name_of_ctr;
-
-    val sel_bindingss =
-      pad_list [] n raw_sel_bindingss
-      |> map3 (fn ctr => fn m => map2 (fn l => fn sel =>
-        qualify false
-          (if Binding.is_empty sel orelse Binding.eq_name (sel, standard_binding) then
-            standard_sel_binding m l ctr
-          else
-            sel)) (1 upto m) o pad_list Binding.empty m) ctrs0 ms;
-
-    val case_Ts = map (fn Ts => Ts ---> B) ctr_Tss;
-
-    val ((((((((xss, xss'), yss), fs), gs), [u', v']), [w]), (p, p')), names_lthy) = no_defs_lthy |>
-      mk_Freess' "x" ctr_Tss
-      ||>> mk_Freess "y" ctr_Tss
-      ||>> mk_Frees "f" case_Ts
-      ||>> mk_Frees "g" case_Ts
-      ||>> (apfst (map (rpair fcT)) oo Variable.variant_fixes) [fc_b_name, fc_b_name ^ "'"]
-      ||>> mk_Frees "z" [B]
-      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "P") HOLogic.boolT;
-
-    val u = Free u';
-    val v = Free v';
-    val q = Free (fst p', mk_pred1T B);
-
-    val xctrs = map2 (curry Term.list_comb) ctrs xss;
-    val yctrs = map2 (curry Term.list_comb) ctrs yss;
-
-    val xfs = map2 (curry Term.list_comb) fs xss;
-    val xgs = map2 (curry Term.list_comb) gs xss;
-
-    (* TODO: Eta-expension is for compatibility with the old datatype package (but it also provides
-       nicer names). Consider removing. *)
-    val eta_fs = map2 eta_expand_arg xss xfs;
-    val eta_gs = map2 eta_expand_arg xss xgs;
-
-    val case_binding =
-      qualify false
-        (if Binding.is_empty raw_case_binding orelse
-            Binding.eq_name (raw_case_binding, standard_binding) then
-           Binding.suffix_name ("_" ^ caseN) fc_b
-         else
-           raw_case_binding);
-
-    fun mk_case_disj xctr xf xs =
-      list_exists_free xs (HOLogic.mk_conj (HOLogic.mk_eq (u, xctr), HOLogic.mk_eq (w, xf)));
-
-    val case_rhs = fold_rev (fold_rev Term.lambda) [fs, [u]]
-      (Const (@{const_name The}, (B --> HOLogic.boolT) --> B) $
-         Term.lambda w (Library.foldr1 HOLogic.mk_disj (map3 mk_case_disj xctrs xfs xss)));
-
-    val ((raw_case, (_, raw_case_def)), (lthy', lthy)) = no_defs_lthy
-      |> Local_Theory.define ((case_binding, NoSyn),
-        ((Binding.conceal (Thm.def_binding case_binding), []), case_rhs))
-      ||> `Local_Theory.restore;
-
-    val phi = Proof_Context.export_morphism lthy lthy';
-
-    val case_def = Morphism.thm phi raw_case_def;
-
-    val case0 = Morphism.term phi raw_case;
-    val casex = mk_case As B case0;
-
-    val fcase = Term.list_comb (casex, fs);
-
-    val ufcase = fcase $ u;
-    val vfcase = fcase $ v;
-
-    val eta_fcase = Term.list_comb (casex, eta_fs);
-    val eta_gcase = Term.list_comb (casex, eta_gs);
-
-    val eta_ufcase = eta_fcase $ u;
-    val eta_vgcase = eta_gcase $ v;
-
-    fun mk_uu_eq () = HOLogic.mk_eq (u, u);
-
-    val uv_eq = mk_Trueprop_eq (u, v);
-
-    val exist_xs_u_eq_ctrs =
-      map2 (fn xctr => fn xs => list_exists_free xs (HOLogic.mk_eq (u, xctr))) xctrs xss;
-
-    val unique_disc_no_def = TrueI; (*arbitrary marker*)
-    val alternate_disc_no_def = FalseE; (*arbitrary marker*)
-
-    fun alternate_disc_lhs get_udisc k =
-      HOLogic.mk_not
-        (let val b = nth disc_bindings (k - 1) in
-           if is_disc_binding_valid b then get_udisc b (k - 1) else nth exist_xs_u_eq_ctrs (k - 1)
-         end);
-
-    val (all_sels_distinct, discs, selss, disc_defs, sel_defs, sel_defss, lthy') =
-      if no_discs_sels then
-        (true, [], [], [], [], [], lthy)
-      else
-        let
-          fun disc_free b = Free (Binding.name_of b, mk_pred1T fcT);
-
-          fun disc_spec b exist_xs_u_eq_ctr = mk_Trueprop_eq (disc_free b $ u, exist_xs_u_eq_ctr);
-
-          fun alternate_disc k =
-            Term.lambda u (alternate_disc_lhs (K o rapp u o disc_free) (3 - k));
-
-          fun mk_sel_case_args b proto_sels T =
-            map2 (fn Ts => fn k =>
-              (case AList.lookup (op =) proto_sels k of
-                NONE =>
-                (case AList.lookup Binding.eq_name (rev (nth sel_defaultss (k - 1))) b of
-                  NONE => fold_rev (Term.lambda o curry Free Name.uu) Ts (mk_undefined T)
-                | SOME t => t |> Type.constraint (Ts ---> T) |> Syntax.check_term lthy)
-              | SOME (xs, x) => fold_rev Term.lambda xs x)) ctr_Tss ks;
-
-          fun sel_spec b proto_sels =
-            let
-              val _ =
-                (case duplicates (op =) (map fst proto_sels) of
-                   k :: _ => error ("Duplicate selector name " ^ quote (Binding.name_of b) ^
-                     " for constructor " ^
-                     quote (Syntax.string_of_term lthy (nth ctrs (k - 1))))
-                 | [] => ())
-              val T =
-                (case distinct (op =) (map (fastype_of o snd o snd) proto_sels) of
-                  [T] => T
-                | T :: T' :: _ => error ("Inconsistent range type for selector " ^
-                    quote (Binding.name_of b) ^ ": " ^ quote (Syntax.string_of_typ lthy T) ^ " vs. "
-                    ^ quote (Syntax.string_of_typ lthy T')));
-            in
-              mk_Trueprop_eq (Free (Binding.name_of b, fcT --> T) $ u,
-                Term.list_comb (mk_case As T case0, mk_sel_case_args b proto_sels T) $ u)
-            end;
-
-          val sel_bindings = flat sel_bindingss;
-          val uniq_sel_bindings = distinct Binding.eq_name sel_bindings;
-          val all_sels_distinct = (length uniq_sel_bindings = length sel_bindings);
-
-          val sel_binding_index =
-            if all_sels_distinct then 1 upto length sel_bindings
-            else map (fn b => find_index (curry Binding.eq_name b) uniq_sel_bindings) sel_bindings;
-
-          val proto_sels = flat (map3 (fn k => fn xs => map (fn x => (k, (xs, x)))) ks xss xss);
-          val sel_infos =
-            AList.group (op =) (sel_binding_index ~~ proto_sels)
-            |> sort (int_ord o pairself fst)
-            |> map snd |> curry (op ~~) uniq_sel_bindings;
-          val sel_bindings = map fst sel_infos;
-
-          fun unflat_selss xs = unflat_lookup Binding.eq_name sel_bindings xs sel_bindingss;
-
-          val (((raw_discs, raw_disc_defs), (raw_sels, raw_sel_defs)), (lthy', lthy)) =
-            lthy
-            |> apfst split_list o fold_map3 (fn k => fn exist_xs_u_eq_ctr => fn b =>
-                if Binding.is_empty b then
-                  if n = 1 then pair (Term.lambda u (mk_uu_eq ()), unique_disc_no_def)
-                  else pair (alternate_disc k, alternate_disc_no_def)
-                else if Binding.eq_name (b, equal_binding) then
-                  pair (Term.lambda u exist_xs_u_eq_ctr, refl)
-                else
-                  Specification.definition (SOME (b, NONE, NoSyn),
-                    ((Thm.def_binding b, []), disc_spec b exist_xs_u_eq_ctr)) #>> apsnd snd)
-              ks exist_xs_u_eq_ctrs disc_bindings
-            ||>> apfst split_list o fold_map (fn (b, proto_sels) =>
-              Specification.definition (SOME (b, NONE, NoSyn),
-                ((Thm.def_binding b, []), sel_spec b proto_sels)) #>> apsnd snd) sel_infos
-            ||> `Local_Theory.restore;
-
-          val phi = Proof_Context.export_morphism lthy lthy';
-
-          val disc_defs = map (Morphism.thm phi) raw_disc_defs;
-          val sel_defs = map (Morphism.thm phi) raw_sel_defs;
-          val sel_defss = unflat_selss sel_defs;
-
-          val discs0 = map (Morphism.term phi) raw_discs;
-          val selss0 = unflat_selss (map (Morphism.term phi) raw_sels);
-
-          val discs = map (mk_disc_or_sel As) discs0;
-          val selss = map (map (mk_disc_or_sel As)) selss0;
-        in
-          (all_sels_distinct, discs, selss, disc_defs, sel_defs, sel_defss, lthy')
-        end;
-
-    fun mk_imp_p Qs = Logic.list_implies (Qs, HOLogic.mk_Trueprop p);
-
-    val exhaust_goal =
-      let fun mk_prem xctr xs = fold_rev Logic.all xs (mk_imp_p [mk_Trueprop_eq (u, xctr)]) in
-        fold_rev Logic.all [p, u] (mk_imp_p (map2 mk_prem xctrs xss))
-      end;
-
-    val inject_goalss =
-      let
-        fun mk_goal _ _ [] [] = []
-          | mk_goal xctr yctr xs ys =
-            [fold_rev Logic.all (xs @ ys) (mk_Trueprop_eq (HOLogic.mk_eq (xctr, yctr),
-              Library.foldr1 HOLogic.mk_conj (map2 (curry HOLogic.mk_eq) xs ys)))];
-      in
-        map4 mk_goal xctrs yctrs xss yss
-      end;
-
-    val half_distinct_goalss =
-      let
-        fun mk_goal ((xs, xc), (xs', xc')) =
-          fold_rev Logic.all (xs @ xs')
-            (HOLogic.mk_Trueprop (HOLogic.mk_not (HOLogic.mk_eq (xc, xc'))));
-      in
-        map (map mk_goal) (mk_half_pairss (`I (xss ~~ xctrs)))
-      end;
-
-    val goalss = [exhaust_goal] :: inject_goalss @ half_distinct_goalss;
-
-    fun after_qed thmss lthy =
-      let
-        val ([exhaust_thm], (inject_thmss, half_distinct_thmss)) = (hd thmss, chop n (tl thmss));
-
-        val inject_thms = flat inject_thmss;
-
-        val rho_As = map (pairself (certifyT lthy)) (map Logic.varifyT_global As ~~ As);
-
-        fun inst_thm t thm =
-          Drule.instantiate' [] [SOME (certify lthy t)]
-            (Thm.instantiate (rho_As, []) (Drule.zero_var_indexes thm));
-
-        val uexhaust_thm = inst_thm u exhaust_thm;
-
-        val exhaust_cases = map base_name_of_ctr ctrs;
-
-        val other_half_distinct_thmss = map (map (fn thm => thm RS not_sym)) half_distinct_thmss;
-
-        val (distinct_thms, (distinct_thmsss', distinct_thmsss)) =
-          join_halves n half_distinct_thmss other_half_distinct_thmss ||> `transpose;
-
-        val nchotomy_thm =
-          let
-            val goal =
-              HOLogic.mk_Trueprop (HOLogic.mk_all (fst u', snd u',
-                Library.foldr1 HOLogic.mk_disj exist_xs_u_eq_ctrs));
-          in
-            Goal.prove_sorry lthy [] [] goal (fn _ => mk_nchotomy_tac n exhaust_thm)
-            |> Thm.close_derivation
-          end;
-
-        val case_thms =
-          let
-            val goals =
-              map3 (fn xctr => fn xf => fn xs =>
-                fold_rev Logic.all (fs @ xs) (mk_Trueprop_eq (fcase $ xctr, xf))) xctrs xfs xss;
-          in
-            map4 (fn k => fn goal => fn injects => fn distinctss =>
-                Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
-                  mk_case_tac ctxt n k case_def injects distinctss)
-                |> Thm.close_derivation)
-              ks goals inject_thmss distinct_thmsss
-          end;
-
-        val (case_cong_thm, weak_case_cong_thm) =
-          let
-            fun mk_prem xctr xs xf xg =
-              fold_rev Logic.all xs (Logic.mk_implies (mk_Trueprop_eq (v, xctr),
-                mk_Trueprop_eq (xf, xg)));
-
-            val goal =
-              Logic.list_implies (uv_eq :: map4 mk_prem xctrs xss xfs xgs,
-                 mk_Trueprop_eq (eta_ufcase, eta_vgcase));
-            val weak_goal = Logic.mk_implies (uv_eq, mk_Trueprop_eq (ufcase, vfcase));
-          in
-            (Goal.prove_sorry lthy [] [] goal (fn _ => mk_case_cong_tac lthy uexhaust_thm case_thms),
-             Goal.prove_sorry lthy [] [] weak_goal (K (etac arg_cong 1)))
-            |> pairself (Thm.close_derivation #> singleton (Proof_Context.export names_lthy lthy))
-          end;
-
-        val split_lhs = q $ ufcase;
-
-        fun mk_split_conjunct xctr xs f_xs =
-          list_all_free xs (HOLogic.mk_imp (HOLogic.mk_eq (u, xctr), q $ f_xs));
-        fun mk_split_disjunct xctr xs f_xs =
-          list_exists_free xs (HOLogic.mk_conj (HOLogic.mk_eq (u, xctr),
-            HOLogic.mk_not (q $ f_xs)));
-
-        fun mk_split_goal xctrs xss xfs =
-          mk_Trueprop_eq (split_lhs, Library.foldr1 HOLogic.mk_conj
-            (map3 mk_split_conjunct xctrs xss xfs));
-        fun mk_split_asm_goal xctrs xss xfs =
-          mk_Trueprop_eq (split_lhs, HOLogic.mk_not (Library.foldr1 HOLogic.mk_disj
-            (map3 mk_split_disjunct xctrs xss xfs)));
-
-        fun prove_split selss goal =
-          Goal.prove_sorry lthy [] [] goal (fn _ =>
-            mk_split_tac lthy uexhaust_thm case_thms selss inject_thmss distinct_thmsss)
-          |> Thm.close_derivation
-          |> singleton (Proof_Context.export names_lthy lthy);
-
-        fun prove_split_asm asm_goal split_thm =
-          Goal.prove_sorry lthy [] [] asm_goal (fn {context = ctxt, ...} =>
-            mk_split_asm_tac ctxt split_thm)
-          |> Thm.close_derivation
-          |> singleton (Proof_Context.export names_lthy lthy);
-
-        val (split_thm, split_asm_thm) =
-          let
-            val goal = mk_split_goal xctrs xss xfs;
-            val asm_goal = mk_split_asm_goal xctrs xss xfs;
-
-            val thm = prove_split (replicate n []) goal;
-            val asm_thm = prove_split_asm asm_goal thm;
-          in
-            (thm, asm_thm)
-          end;
-
-        val (all_sel_thms, sel_thmss, disc_thmss, nontriv_disc_thms, discI_thms, nontriv_discI_thms,
-             disc_exclude_thms, disc_exhaust_thms, sel_exhaust_thms, all_collapse_thms,
-             safe_collapse_thms, expand_thms, sel_split_thms, sel_split_asm_thms,
-             case_conv_if_thms) =
-          if no_discs_sels then
-            ([], [], [], [], [], [], [], [], [], [], [], [], [], [], [])
-          else
-            let
-              val udiscs = map (rapp u) discs;
-              val uselss = map (map (rapp u)) selss;
-              val usel_ctrs = map2 (curry Term.list_comb) ctrs uselss;
-              val usel_fs = map2 (curry Term.list_comb) fs uselss;
-
-              val vdiscs = map (rapp v) discs;
-              val vselss = map (map (rapp v)) selss;
-
-              fun make_sel_thm xs' case_thm sel_def =
-                zero_var_indexes (Drule.gen_all (Drule.rename_bvars' (map (SOME o fst) xs')
-                    (Drule.forall_intr_vars (case_thm RS (sel_def RS trans)))));
-
-              val sel_thmss = map3 (map oo make_sel_thm) xss' case_thms sel_defss;
-
-              fun has_undefined_rhs thm =
-                (case snd (HOLogic.dest_eq (HOLogic.dest_Trueprop (prop_of thm))) of
-                  Const (@{const_name undefined}, _) => true
-                | _ => false);
-
-              val all_sel_thms =
-                (if all_sels_distinct andalso forall null sel_defaultss then
-                   flat sel_thmss
-                 else
-                   map_product (fn s => fn (xs', c) => make_sel_thm xs' c s) sel_defs
-                     (xss' ~~ case_thms))
-                |> filter_out has_undefined_rhs;
-
-              fun mk_unique_disc_def () =
-                let
-                  val m = the_single ms;
-                  val goal = mk_Trueprop_eq (mk_uu_eq (), the_single exist_xs_u_eq_ctrs);
-                in
-                  Goal.prove_sorry lthy [] [] goal (fn _ => mk_unique_disc_def_tac m uexhaust_thm)
-                  |> Thm.close_derivation
-                  |> singleton (Proof_Context.export names_lthy lthy)
-                end;
-
-              fun mk_alternate_disc_def k =
-                let
-                  val goal =
-                    mk_Trueprop_eq (alternate_disc_lhs (K (nth udiscs)) (3 - k),
-                      nth exist_xs_u_eq_ctrs (k - 1));
-                in
-                  Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
-                    mk_alternate_disc_def_tac ctxt k (nth disc_defs (2 - k))
-                      (nth distinct_thms (2 - k)) uexhaust_thm)
-                  |> Thm.close_derivation
-                  |> singleton (Proof_Context.export names_lthy lthy)
-                end;
-
-              val has_alternate_disc_def =
-                exists (fn def => Thm.eq_thm_prop (def, alternate_disc_no_def)) disc_defs;
-
-              val disc_defs' =
-                map2 (fn k => fn def =>
-                  if Thm.eq_thm_prop (def, unique_disc_no_def) then mk_unique_disc_def ()
-                  else if Thm.eq_thm_prop (def, alternate_disc_no_def) then mk_alternate_disc_def k
-                  else def) ks disc_defs;
-
-              val discD_thms = map (fn def => def RS iffD1) disc_defs';
-              val discI_thms =
-                map2 (fn m => fn def => funpow m (fn thm => exI RS thm) (def RS iffD2)) ms
-                  disc_defs';
-              val not_discI_thms =
-                map2 (fn m => fn def => funpow m (fn thm => allI RS thm)
-                    (unfold_thms lthy @{thms not_ex} (def RS @{thm ssubst[of _ _ Not]})))
-                  ms disc_defs';
-
-              val (disc_thmss', disc_thmss) =
-                let
-                  fun mk_thm discI _ [] = refl RS discI
-                    | mk_thm _ not_discI [distinct] = distinct RS not_discI;
-                  fun mk_thms discI not_discI distinctss = map (mk_thm discI not_discI) distinctss;
-                in
-                  map3 mk_thms discI_thms not_discI_thms distinct_thmsss' |> `transpose
-                end;
-
-              val nontriv_disc_thms =
-                flat (map2 (fn b => if is_disc_binding_valid b then I else K [])
-                  disc_bindings disc_thmss);
-
-              fun is_discI_boring b =
-                (n = 1 andalso Binding.is_empty b) orelse Binding.eq_name (b, equal_binding);
-
-              val nontriv_discI_thms =
-                flat (map2 (fn b => if is_discI_boring b then K [] else single) disc_bindings
-                  discI_thms);
-
-              val (disc_exclude_thms, (disc_exclude_thmsss', disc_exclude_thmsss)) =
-                let
-                  fun mk_goal [] = []
-                    | mk_goal [((_, udisc), (_, udisc'))] =
-                      [Logic.all u (Logic.mk_implies (HOLogic.mk_Trueprop udisc,
-                         HOLogic.mk_Trueprop (HOLogic.mk_not udisc')))];
-
-                  fun prove tac goal =
-                    Goal.prove_sorry lthy [] [] goal (K tac)
-                    |> Thm.close_derivation;
-
-                  val half_pairss = mk_half_pairss (`I (ms ~~ discD_thms ~~ udiscs));
-
-                  val half_goalss = map mk_goal half_pairss;
-                  val half_thmss =
-                    map3 (fn [] => K (K []) | [goal] => fn [(((m, discD), _), _)] =>
-                        fn disc_thm => [prove (mk_half_disc_exclude_tac lthy m discD disc_thm) goal])
-                      half_goalss half_pairss (flat disc_thmss');
-
-                  val other_half_goalss = map (mk_goal o map swap) half_pairss;
-                  val other_half_thmss =
-                    map2 (map2 (prove o mk_other_half_disc_exclude_tac)) half_thmss
-                      other_half_goalss;
-                in
-                  join_halves n half_thmss other_half_thmss ||> `transpose
-                  |>> has_alternate_disc_def ? K []
-                end;
-
-              val disc_exhaust_thm =
-                let
-                  fun mk_prem udisc = mk_imp_p [HOLogic.mk_Trueprop udisc];
-                  val goal = fold_rev Logic.all [p, u] (mk_imp_p (map mk_prem udiscs));
-                in
-                  Goal.prove_sorry lthy [] [] goal (fn _ =>
-                    mk_disc_exhaust_tac n exhaust_thm discI_thms)
-                  |> Thm.close_derivation
-                end;
-
-              val (safe_collapse_thms, all_collapse_thms) =
-                let
-                  fun mk_goal m udisc usel_ctr =
-                    let
-                      val prem = HOLogic.mk_Trueprop udisc;
-                      val concl = mk_Trueprop_eq ((usel_ctr, u) |> m = 0 ? swap);
-                    in
-                      (prem aconv concl, Logic.all u (Logic.mk_implies (prem, concl)))
-                    end;
-                  val (trivs, goals) = map3 mk_goal ms udiscs usel_ctrs |> split_list;
-                  val thms =
-                    map5 (fn m => fn discD => fn sel_thms => fn triv => fn goal =>
-                        Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
-                          mk_collapse_tac ctxt m discD sel_thms ORELSE HEADGOAL atac)
-                        |> Thm.close_derivation
-                        |> not triv ? perhaps (try (fn thm => refl RS thm)))
-                      ms discD_thms sel_thmss trivs goals;
-                in
-                  (map_filter (fn (true, _) => NONE | (false, thm) => SOME thm) (trivs ~~ thms),
-                   thms)
-                end;
-
-              val swapped_all_collapse_thms =
-                map2 (fn m => fn thm => if m = 0 then thm else thm RS sym) ms all_collapse_thms;
-
-              val sel_exhaust_thm =
-                let
-                  fun mk_prem usel_ctr = mk_imp_p [mk_Trueprop_eq (u, usel_ctr)];
-                  val goal = fold_rev Logic.all [p, u] (mk_imp_p (map mk_prem usel_ctrs));
-                in
-                  Goal.prove_sorry lthy [] [] goal (fn _ =>
-                    mk_sel_exhaust_tac n disc_exhaust_thm swapped_all_collapse_thms)
-                  |> Thm.close_derivation
-                end;
-
-              val expand_thm =
-                let
-                  fun mk_prems k udisc usels vdisc vsels =
-                    (if k = n then [] else [mk_Trueprop_eq (udisc, vdisc)]) @
-                    (if null usels then
-                       []
-                     else
-                       [Logic.list_implies
-                          (if n = 1 then [] else map HOLogic.mk_Trueprop [udisc, vdisc],
-                             HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
-                               (map2 (curry HOLogic.mk_eq) usels vsels)))]);
-
-                  val goal =
-                    Library.foldr Logic.list_implies
-                      (map5 mk_prems ks udiscs uselss vdiscs vselss, uv_eq);
-                  val uncollapse_thms =
-                    map2 (fn thm => fn [] => thm | _ => thm RS sym) all_collapse_thms uselss;
-                in
-                  Goal.prove_sorry lthy [] [] goal (fn _ =>
-                    mk_expand_tac lthy n ms (inst_thm u disc_exhaust_thm)
-                      (inst_thm v disc_exhaust_thm) uncollapse_thms disc_exclude_thmsss
-                      disc_exclude_thmsss')
-                  |> Thm.close_derivation
-                  |> singleton (Proof_Context.export names_lthy lthy)
-                end;
-
-              val (sel_split_thm, sel_split_asm_thm) =
-                let
-                  val zss = map (K []) xss;
-                  val goal = mk_split_goal usel_ctrs zss usel_fs;
-                  val asm_goal = mk_split_asm_goal usel_ctrs zss usel_fs;
-
-                  val thm = prove_split sel_thmss goal;
-                  val asm_thm = prove_split_asm asm_goal thm;
-                in
-                  (thm, asm_thm)
-                end;
-
-              val case_conv_if_thm =
-                let
-                  val goal = mk_Trueprop_eq (ufcase, mk_IfN B udiscs usel_fs);
-                in
-                  Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
-                    mk_case_conv_if_tac ctxt n uexhaust_thm case_thms disc_thmss' sel_thmss)
-                  |> Thm.close_derivation
-                  |> singleton (Proof_Context.export names_lthy lthy)
-                end;
-            in
-              (all_sel_thms, sel_thmss, disc_thmss, nontriv_disc_thms, discI_thms,
-               nontriv_discI_thms, disc_exclude_thms, [disc_exhaust_thm], [sel_exhaust_thm],
-               all_collapse_thms, safe_collapse_thms, [expand_thm], [sel_split_thm],
-               [sel_split_asm_thm], [case_conv_if_thm])
-            end;
-
-        val exhaust_case_names_attr = Attrib.internal (K (Rule_Cases.case_names exhaust_cases));
-        val cases_type_attr = Attrib.internal (K (Induct.cases_type fcT_name));
-
-        val anonymous_notes =
-          [(map (fn th => th RS notE) distinct_thms, safe_elim_attrs),
-           (map (fn th => th RS @{thm eq_False[THEN iffD2]}
-              handle THM _ => th RS @{thm eq_True[THEN iffD2]}) nontriv_disc_thms,
-            code_nitpicksimp_attrs)]
-          |> map (fn (thms, attrs) => ((Binding.empty, attrs), [(thms, [])]));
-
-        val notes =
-          [(caseN, case_thms, code_nitpicksimp_simp_attrs),
-           (case_congN, [case_cong_thm], []),
-           (case_conv_ifN, case_conv_if_thms, []),
-           (collapseN, safe_collapse_thms, simp_attrs),
-           (discN, nontriv_disc_thms, simp_attrs),
-           (discIN, nontriv_discI_thms, []),
-           (disc_excludeN, disc_exclude_thms, dest_attrs),
-           (disc_exhaustN, disc_exhaust_thms, [exhaust_case_names_attr]),
-           (distinctN, distinct_thms, simp_attrs @ inductsimp_attrs),
-           (exhaustN, [exhaust_thm], [exhaust_case_names_attr, cases_type_attr]),
-           (expandN, expand_thms, []),
-           (injectN, inject_thms, iff_attrs @ inductsimp_attrs),
-           (nchotomyN, [nchotomy_thm], []),
-           (selN, all_sel_thms, code_nitpicksimp_simp_attrs),
-           (sel_exhaustN, sel_exhaust_thms, [exhaust_case_names_attr]),
-           (sel_splitN, sel_split_thms, []),
-           (sel_split_asmN, sel_split_asm_thms, []),
-           (splitN, [split_thm], []),
-           (split_asmN, [split_asm_thm], []),
-           (splitsN, [split_thm, split_asm_thm], []),
-           (weak_case_cong_thmsN, [weak_case_cong_thm], cong_attrs)]
-          |> filter_out (null o #2)
-          |> map (fn (thmN, thms, attrs) =>
-            ((qualify true (Binding.name thmN), attrs), [(thms, [])]));
-
-        val ctr_sugar =
-          {ctrs = ctrs, casex = casex, discs = discs, selss = selss, exhaust = exhaust_thm,
-           nchotomy = nchotomy_thm, injects = inject_thms, distincts = distinct_thms,
-           case_thms = case_thms, case_cong = case_cong_thm, weak_case_cong = weak_case_cong_thm,
-           split = split_thm, split_asm = split_asm_thm, disc_thmss = disc_thmss,
-           discIs = discI_thms, sel_thmss = sel_thmss, disc_exhausts = disc_exhaust_thms,
-           sel_exhausts = sel_exhaust_thms, collapses = all_collapse_thms, expands = expand_thms,
-           sel_splits = sel_split_thms, sel_split_asms = sel_split_asm_thms,
-           case_conv_ifs = case_conv_if_thms};
-      in
-        (ctr_sugar,
-         lthy
-         |> not rep_compat ?
-            (Local_Theory.declaration {syntax = false, pervasive = true}
-               (fn phi => Case_Translation.register
-                  (Morphism.term phi casex) (map (Morphism.term phi) ctrs)))
-         |> Local_Theory.notes (anonymous_notes @ notes) |> snd
-         |> register_ctr_sugar fcT_name ctr_sugar)
-      end;
-  in
-    (goalss, after_qed, lthy')
-  end;
-
-fun wrap_free_constructors tacss = (fn (goalss, after_qed, lthy) =>
-  map2 (map2 (Thm.close_derivation oo Goal.prove_sorry lthy [] [])) goalss tacss
-  |> (fn thms => after_qed thms lthy)) oo prepare_wrap_free_constructors (K I);
-
-val wrap_free_constructors_cmd = (fn (goalss, after_qed, lthy) =>
-  Proof.theorem NONE (snd oo after_qed) (map (map (rpair [])) goalss) lthy) oo
-  prepare_wrap_free_constructors Syntax.read_term;
-
-fun parse_bracket_list parser = @{keyword "["} |-- Parse.list parser --|  @{keyword "]"};
-
-val parse_bindings = parse_bracket_list parse_binding;
-val parse_bindingss = parse_bracket_list parse_bindings;
-
-val parse_bound_term = (parse_binding --| @{keyword ":"}) -- Parse.term;
-val parse_bound_terms = parse_bracket_list parse_bound_term;
-val parse_bound_termss = parse_bracket_list parse_bound_terms;
-
-val parse_wrap_free_constructors_options =
-  Scan.optional (@{keyword "("} |-- Parse.list1 ((@{keyword "no_discs_sels"} >> K (true, false)) ||
-      (@{keyword "rep_compat"} >> K (false, true))) --| @{keyword ")"}
-    >> (pairself (exists I) o split_list)) (false, false);
-
-val _ =
-  Outer_Syntax.local_theory_to_proof @{command_spec "wrap_free_constructors"}
-    "wrap an existing freely generated type's constructors"
-    ((parse_wrap_free_constructors_options -- (@{keyword "["} |-- Parse.list Parse.term --|
-        @{keyword "]"}) --
-      parse_binding -- Scan.optional (parse_bindings -- Scan.optional (parse_bindingss --
-        Scan.optional parse_bound_termss []) ([], [])) ([], ([], [])))
-     >> wrap_free_constructors_cmd);
-
-end;
--- a/src/HOL/BNF/Tools/ctr_sugar_tactics.ML	Tue Nov 12 12:04:17 2013 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,172 +0,0 @@
-(*  Title:      HOL/BNF/Tools/ctr_sugar_tactics.ML
-    Author:     Jasmin Blanchette, TU Muenchen
-    Copyright   2012
-
-Tactics for wrapping existing freely generated type's constructors.
-*)
-
-signature CTR_SUGAR_GENERAL_TACTICS =
-sig
-  val select_prem_tac: int -> (int -> tactic) -> int -> int -> tactic
-  val unfold_thms_tac: Proof.context -> thm list -> tactic
-end;
-
-signature CTR_SUGAR_TACTICS =
-sig
-  include CTR_SUGAR_GENERAL_TACTICS
-
-  val mk_alternate_disc_def_tac: Proof.context -> int -> thm -> thm -> thm -> tactic
-  val mk_case_tac: Proof.context -> int -> int -> thm -> thm list -> thm list list -> tactic
-  val mk_case_cong_tac: Proof.context -> thm -> thm list -> tactic
-  val mk_case_conv_if_tac: Proof.context -> int -> thm -> thm list -> thm list list ->
-    thm list list -> tactic
-  val mk_collapse_tac: Proof.context -> int -> thm -> thm list -> tactic
-  val mk_disc_exhaust_tac: int -> thm -> thm list -> tactic
-  val mk_expand_tac: Proof.context -> int -> int list -> thm -> thm -> thm list ->
-    thm list list list -> thm list list list -> tactic
-  val mk_half_disc_exclude_tac: Proof.context -> int -> thm -> thm -> tactic
-  val mk_nchotomy_tac: int -> thm -> tactic
-  val mk_other_half_disc_exclude_tac: thm -> tactic
-  val mk_sel_exhaust_tac: int -> thm -> thm list -> tactic
-  val mk_split_tac: Proof.context -> thm -> thm list -> thm list list -> thm list list -> thm list
-    list list -> tactic
-  val mk_split_asm_tac: Proof.context -> thm -> tactic
-  val mk_unique_disc_def_tac: int -> thm -> tactic
-end;
-
-structure Ctr_Sugar_Tactics : CTR_SUGAR_TACTICS =
-struct
-
-open Ctr_Sugar_Util
-
-val meta_mp = @{thm meta_mp};
-
-fun select_prem_tac n tac k = DETERM o (EVERY' [REPEAT_DETERM_N (k - 1) o etac thin_rl,
-  tac, REPEAT_DETERM_N (n - k) o etac thin_rl]);
-
-fun unfold_thms_tac _ [] = all_tac
-  | unfold_thms_tac ctxt thms = Local_Defs.unfold_tac ctxt (distinct Thm.eq_thm_prop thms);
-
-fun if_P_or_not_P_OF pos thm = thm RS (if pos then @{thm if_P} else @{thm if_not_P});
-
-fun mk_nchotomy_tac n exhaust =
-  HEADGOAL (rtac allI THEN' rtac exhaust THEN'
-   EVERY' (maps (fn k => [rtac (mk_disjIN n k), REPEAT_DETERM o rtac exI, atac]) (1 upto n)));
-
-fun mk_unique_disc_def_tac m uexhaust =
-  HEADGOAL (EVERY' [rtac iffI, rtac uexhaust, REPEAT_DETERM_N m o rtac exI, atac, rtac refl]);
-
-fun mk_alternate_disc_def_tac ctxt k other_disc_def distinct uexhaust =
-  HEADGOAL (EVERY' ([rtac (other_disc_def RS @{thm arg_cong[of _ _ Not]} RS trans),
-    rtac @{thm iffI_np}, REPEAT_DETERM o etac exE,
-    hyp_subst_tac ctxt, SELECT_GOAL (unfold_thms_tac ctxt [not_ex]), REPEAT_DETERM o rtac allI,
-    rtac distinct, rtac uexhaust] @
-    (([etac notE, REPEAT_DETERM o rtac exI, atac], [REPEAT_DETERM o rtac exI, atac])
-     |> k = 1 ? swap |> op @)));
-
-fun mk_half_disc_exclude_tac ctxt m discD disc' =
-  HEADGOAL (dtac discD THEN' REPEAT_DETERM_N m o etac exE THEN' hyp_subst_tac ctxt THEN'
-    rtac disc');
-
-fun mk_other_half_disc_exclude_tac half = HEADGOAL (etac @{thm contrapos_pn} THEN' etac half);
-
-fun mk_disc_or_sel_exhaust_tac n exhaust destIs =
-  HEADGOAL (rtac exhaust THEN'
-    EVERY' (map2 (fn k => fn destI => dtac destI THEN'
-      select_prem_tac n (etac meta_mp) k THEN' atac) (1 upto n) destIs));
-
-val mk_disc_exhaust_tac = mk_disc_or_sel_exhaust_tac;
-
-fun mk_sel_exhaust_tac n disc_exhaust collapses =
-  mk_disc_or_sel_exhaust_tac n disc_exhaust collapses ORELSE
-  HEADGOAL (etac meta_mp THEN' resolve_tac collapses);
-
-fun mk_collapse_tac ctxt m discD sels =
-  HEADGOAL (dtac discD THEN'
-    (if m = 0 then
-       atac
-     else
-       REPEAT_DETERM_N m o etac exE THEN' hyp_subst_tac ctxt THEN'
-       SELECT_GOAL (unfold_thms_tac ctxt sels) THEN' rtac refl));
-
-fun mk_expand_tac ctxt n ms udisc_exhaust vdisc_exhaust uncollapses disc_excludesss
-    disc_excludesss' =
-  if ms = [0] then
-    HEADGOAL (rtac (@{thm trans_sym} OF (replicate 2 (the_single uncollapses))) THEN'
-      TRY o EVERY' [rtac udisc_exhaust, atac, rtac vdisc_exhaust, atac])
-  else
-    let val ks = 1 upto n in
-      HEADGOAL (rtac udisc_exhaust THEN'
-        EVERY' (map5 (fn k => fn m => fn disc_excludess => fn disc_excludess' =>
-            fn uuncollapse =>
-          EVERY' [rtac (uuncollapse RS trans) THEN' TRY o atac,
-            rtac sym, rtac vdisc_exhaust,
-            EVERY' (map4 (fn k' => fn disc_excludes => fn disc_excludes' => fn vuncollapse =>
-              EVERY'
-                (if k' = k then
-                   [rtac (vuncollapse RS trans), TRY o atac] @
-                   (if m = 0 then
-                      [rtac refl]
-                    else
-                      [if n = 1 then K all_tac else EVERY' [dtac meta_mp, atac, dtac meta_mp, atac],
-                       REPEAT_DETERM_N (Int.max (0, m - 1)) o etac conjE,
-                       asm_simp_tac (ss_only [] ctxt)])
-                 else
-                   [dtac (the_single (if k = n then disc_excludes else disc_excludes')),
-                    etac (if k = n then @{thm iff_contradict(1)} else @{thm iff_contradict(2)}),
-                    atac, atac]))
-              ks disc_excludess disc_excludess' uncollapses)])
-          ks ms disc_excludesss disc_excludesss' uncollapses))
-    end;
-
-fun mk_case_same_ctr_tac ctxt injects =
-  REPEAT_DETERM o etac exE THEN' etac conjE THEN'
-    (case injects of
-      [] => atac
-    | [inject] => dtac (inject RS iffD1) THEN' REPEAT_DETERM o etac conjE THEN'
-        hyp_subst_tac ctxt THEN' rtac refl);
-
-fun mk_case_distinct_ctrs_tac ctxt distincts =
-  REPEAT_DETERM o etac exE THEN' etac conjE THEN' full_simp_tac (ss_only distincts ctxt);
-
-fun mk_case_tac ctxt n k case_def injects distinctss =
-  let
-    val case_def' = mk_unabs_def (n + 1) (case_def RS meta_eq_to_obj_eq);
-    val ks = 1 upto n;
-  in
-    HEADGOAL (rtac (case_def' RS trans) THEN' rtac @{thm the_equality} THEN'
-      rtac (mk_disjIN n k) THEN' REPEAT_DETERM o rtac exI THEN' rtac conjI THEN' rtac refl THEN'
-      rtac refl THEN'
-      EVERY' (map2 (fn k' => fn distincts =>
-        (if k' < n then etac disjE else K all_tac) THEN'
-        (if k' = k then mk_case_same_ctr_tac ctxt injects
-         else mk_case_distinct_ctrs_tac ctxt distincts)) ks distinctss))
-  end;
-
-fun mk_case_conv_if_tac ctxt n uexhaust cases discss' selss =
-  HEADGOAL (rtac uexhaust THEN'
-    EVERY' (map3 (fn casex => fn if_discs => fn sels =>
-        EVERY' [hyp_subst_tac ctxt, SELECT_GOAL (unfold_thms_tac ctxt (if_discs @ sels)),
-          rtac casex])
-      cases (map2 (seq_conds if_P_or_not_P_OF n) (1 upto n) discss') selss));
-
-fun mk_case_cong_tac ctxt uexhaust cases =
-  HEADGOAL (rtac uexhaust THEN'
-    EVERY' (maps (fn casex => [dtac sym, asm_simp_tac (ss_only [casex] ctxt)]) cases));
-
-fun mk_split_tac ctxt uexhaust cases selss injectss distinctsss =
-  HEADGOAL (rtac uexhaust) THEN
-  ALLGOALS (fn k => (hyp_subst_tac ctxt THEN'
-     simp_tac (ss_only (@{thms simp_thms} @ cases @ nth selss (k - 1) @ nth injectss (k - 1) @
-       flat (nth distinctsss (k - 1))) ctxt)) k) THEN
-  ALLGOALS (blast_tac (put_claset (claset_of @{theory_context HOL}) ctxt));
-
-val split_asm_thms = @{thms imp_conv_disj de_Morgan_conj de_Morgan_disj not_not not_ex};
-
-fun mk_split_asm_tac ctxt split =
-  HEADGOAL (rtac (split RS trans)) THEN unfold_thms_tac ctxt split_asm_thms THEN
-  HEADGOAL (rtac refl);
-
-end;
-
-structure Ctr_Sugar_General_Tactics: CTR_SUGAR_GENERAL_TACTICS = Ctr_Sugar_Tactics;
--- a/src/HOL/BNF/Tools/ctr_sugar_util.ML	Tue Nov 12 12:04:17 2013 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,192 +0,0 @@
-(*  Title:      HOL/BNF/Tools/ctr_sugar_util.ML
-    Author:     Jasmin Blanchette, TU Muenchen
-    Copyright   2012
-
-Library for wrapping existing freely generated type's constructors.
-*)
-
-signature CTR_SUGAR_UTIL =
-sig
-  val map3: ('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list
-  val map4: ('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list
-  val map5: ('a -> 'b -> 'c -> 'd -> 'e -> 'f) ->
-    'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list
-  val fold_map2: ('a -> 'b -> 'c -> 'd * 'c) -> 'a list -> 'b list -> 'c -> 'd list * 'c
-  val fold_map3: ('a -> 'b -> 'c -> 'd -> 'e * 'd) ->
-    'a list -> 'b list -> 'c list -> 'd -> 'e list * 'd
-  val seq_conds: (bool -> 'a -> 'b) -> int -> int -> 'a list -> 'b list
-  val transpose: 'a list list -> 'a list list
-  val pad_list: 'a -> int -> 'a list -> 'a list
-  val splice: 'a list -> 'a list -> 'a list
-  val permute_like: ('a * 'b -> bool) -> 'a list -> 'b list -> 'c list -> 'c list
-
-  val mk_names: int -> string -> string list
-  val mk_fresh_names: Proof.context -> int -> string -> string list * Proof.context
-  val mk_TFrees': sort list -> Proof.context -> typ list * Proof.context
-  val mk_TFrees: int -> Proof.context -> typ list * Proof.context
-  val mk_Frees': string -> typ list -> Proof.context ->
-    (term list * (string * typ) list) * Proof.context
-  val mk_Freess': string -> typ list list -> Proof.context ->
-    (term list list * (string * typ) list list) * Proof.context
-  val mk_Frees: string -> typ list -> Proof.context -> term list * Proof.context
-  val mk_Freess: string -> typ list list -> Proof.context -> term list list * Proof.context
-  val resort_tfree: sort -> typ -> typ
-  val variant_types: string list -> sort list -> Proof.context ->
-    (string * sort) list * Proof.context
-  val variant_tfrees: string list -> Proof.context -> typ list * Proof.context
-
-  val mk_predT: typ list -> typ
-  val mk_pred1T: typ -> typ
-
-  val mk_disjIN: int -> int -> thm
-
-  val mk_unabs_def: int -> thm -> thm
-
-  val mk_IfN: typ -> term list -> term list -> term
-  val mk_Trueprop_eq: term * term -> term
-
-  val rapp: term -> term -> term
-
-  val list_all_free: term list -> term -> term
-  val list_exists_free: term list -> term -> term
-
-  val fo_match: Proof.context -> term -> term -> Type.tyenv * Envir.tenv
-
-  val unfold_thms: Proof.context -> thm list -> thm -> thm
-
-  val certifyT: Proof.context -> typ -> ctyp
-  val certify: Proof.context -> term -> cterm
-
-  val standard_binding: binding
-  val equal_binding: binding
-  val parse_binding: binding parser
-
-  val ss_only: thm list -> Proof.context -> Proof.context
-end;
-
-structure Ctr_Sugar_Util : CTR_SUGAR_UTIL =
-struct
-
-fun map3 _ [] [] [] = []
-  | map3 f (x1::x1s) (x2::x2s) (x3::x3s) = f x1 x2 x3 :: map3 f x1s x2s x3s
-  | map3 _ _ _ _ = raise ListPair.UnequalLengths;
-
-fun map4 _ [] [] [] [] = []
-  | map4 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) = f x1 x2 x3 x4 :: map4 f x1s x2s x3s x4s
-  | map4 _ _ _ _ _ = raise ListPair.UnequalLengths;
-
-fun map5 _ [] [] [] [] [] = []
-  | map5 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) =
-    f x1 x2 x3 x4 x5 :: map5 f x1s x2s x3s x4s x5s
-  | map5 _ _ _ _ _ _ = raise ListPair.UnequalLengths;
-
-fun fold_map2 _ [] [] acc = ([], acc)
-  | fold_map2 f (x1::x1s) (x2::x2s) acc =
-    let
-      val (x, acc') = f x1 x2 acc;
-      val (xs, acc'') = fold_map2 f x1s x2s acc';
-    in (x :: xs, acc'') end
-  | fold_map2 _ _ _ _ = raise ListPair.UnequalLengths;
-
-fun fold_map3 _ [] [] [] acc = ([], acc)
-  | fold_map3 f (x1::x1s) (x2::x2s) (x3::x3s) acc =
-    let
-      val (x, acc') = f x1 x2 x3 acc;
-      val (xs, acc'') = fold_map3 f x1s x2s x3s acc';
-    in (x :: xs, acc'') end
-  | fold_map3 _ _ _ _ _ = raise ListPair.UnequalLengths;
-
-fun seq_conds f n k xs =
-  if k = n then
-    map (f false) (take (k - 1) xs)
-  else
-    let val (negs, pos) = split_last (take k xs) in
-      map (f false) negs @ [f true pos]
-    end;
-
-fun transpose [] = []
-  | transpose ([] :: xss) = transpose xss
-  | transpose xss = map hd xss :: transpose (map tl xss);
-
-fun pad_list x n xs = xs @ replicate (n - length xs) x;
-
-fun splice xs ys = flat (map2 (fn x => fn y => [x, y]) xs ys);
-
-fun permute_like eq xs xs' ys = map (nth ys o (fn y => find_index (fn x => eq (x, y)) xs)) xs';
-
-fun mk_names n x = if n = 1 then [x] else map (fn i => x ^ string_of_int i) (1 upto n);
-fun mk_fresh_names ctxt = (fn xs => Variable.variant_fixes xs ctxt) oo mk_names;
-
-val mk_TFrees' = apfst (map TFree) oo Variable.invent_types;
-
-fun mk_TFrees n = mk_TFrees' (replicate n HOLogic.typeS);
-
-fun mk_Frees' x Ts ctxt = mk_fresh_names ctxt (length Ts) x |>> (fn xs => `(map Free) (xs ~~ Ts));
-fun mk_Freess' x Tss = fold_map2 mk_Frees' (mk_names (length Tss) x) Tss #>> split_list;
-
-fun mk_Frees x Ts ctxt = mk_fresh_names ctxt (length Ts) x |>> (fn xs => map2 (curry Free) xs Ts);
-fun mk_Freess x Tss = fold_map2 mk_Frees (mk_names (length Tss) x) Tss;
-
-fun resort_tfree S (TFree (s, _)) = TFree (s, S);
-
-fun ensure_prefix pre s = s |> not (String.isPrefix pre s) ? prefix pre;
-
-fun variant_types ss Ss ctxt =
-  let
-    val (tfrees, _) =
-      fold_map2 (fn s => fn S => Name.variant s #> apfst (rpair S)) ss Ss (Variable.names_of ctxt);
-    val ctxt' = fold (Variable.declare_constraints o Logic.mk_type o TFree) tfrees ctxt;
-  in (tfrees, ctxt') end;
-
-fun variant_tfrees ss =
-  apfst (map TFree) o
-    variant_types (map (ensure_prefix "'") ss) (replicate (length ss) HOLogic.typeS);
-
-fun mk_predT Ts = Ts ---> HOLogic.boolT;
-fun mk_pred1T T = mk_predT [T];
-
-fun mk_disjIN 1 1 = @{thm TrueE[OF TrueI]}
-  | mk_disjIN _ 1 = disjI1
-  | mk_disjIN 2 2 = disjI2
-  | mk_disjIN n m = (mk_disjIN (n - 1) (m - 1)) RS disjI2;
-
-fun mk_unabs_def n = funpow n (fn thm => thm RS fun_cong);
-
-fun mk_IfN _ _ [t] = t
-  | mk_IfN T (c :: cs) (t :: ts) =
-    Const (@{const_name If}, HOLogic.boolT --> T --> T --> T) $ c $ t $ mk_IfN T cs ts;
-
-val mk_Trueprop_eq = HOLogic.mk_Trueprop o HOLogic.mk_eq;
-
-fun rapp u t = betapply (t, u);
-
-fun list_quant_free quant_const =
-  fold_rev (fn free => fn P =>
-    let val (x, T) = Term.dest_Free free;
-    in quant_const T $ Term.absfree (x, T) P end);
-
-val list_all_free = list_quant_free HOLogic.all_const;
-val list_exists_free = list_quant_free HOLogic.exists_const;
-
-fun fo_match ctxt t pat =
-  let val thy = Proof_Context.theory_of ctxt in
-    Pattern.first_order_match thy (pat, t) (Vartab.empty, Vartab.empty)
-  end;
-
-fun unfold_thms ctxt thms = Local_Defs.unfold ctxt (distinct Thm.eq_thm_prop thms);
-
-(*stolen from ~~/src/HOL/Tools/SMT/smt_utils.ML*)
-fun certifyT ctxt = Thm.ctyp_of (Proof_Context.theory_of ctxt);
-fun certify ctxt = Thm.cterm_of (Proof_Context.theory_of ctxt);
-
-(* The standard binding stands for a name generated following the canonical convention (e.g.,
-   "is_Nil" from "Nil"). In contrast, the empty binding is either the standard binding or no
-   binding at all, depending on the context. *)
-val standard_binding = @{binding _};
-val equal_binding = @{binding "="};
-
-val parse_binding = Parse.binding || @{keyword "="} >> K equal_binding;
-
-fun ss_only thms ctxt = clear_simpset (put_simpset HOL_basic_ss ctxt) addsimps thms;
-
-end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Ctr_Sugar.thy	Tue Nov 12 13:47:24 2013 +0100
@@ -0,0 +1,30 @@
+(*  Title:      HOL/BNF/Ctr_Sugar.thy
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2012
+
+Wrapping existing freely generated type's constructors.
+*)
+
+header {* Wrapping Existing Freely Generated Type's Constructors *}
+
+theory Ctr_Sugar
+imports Main
+keywords
+  "wrap_free_constructors" :: thy_goal and
+  "no_discs_sels" and
+  "rep_compat"
+begin
+
+lemma iffI_np: "\<lbrakk>x \<Longrightarrow> \<not> y; \<not> x \<Longrightarrow> y\<rbrakk> \<Longrightarrow> \<not> x \<longleftrightarrow> y"
+by (erule iffI) (erule contrapos_pn)
+
+lemma iff_contradict:
+"\<not> P \<Longrightarrow> P \<longleftrightarrow> Q \<Longrightarrow> Q \<Longrightarrow> R"
+"\<not> Q \<Longrightarrow> P \<longleftrightarrow> Q \<Longrightarrow> P \<Longrightarrow> R"
+by blast+
+
+ML_file "Tools/ctr_sugar_util.ML"
+ML_file "Tools/ctr_sugar_tactics.ML"
+ML_file "Tools/ctr_sugar.ML"
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/ctr_sugar.ML	Tue Nov 12 13:47:24 2013 +0100
@@ -0,0 +1,962 @@
+(*  Title:      HOL/BNF/Tools/ctr_sugar.ML
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2012
+
+Wrapping existing freely generated type's constructors.
+*)
+
+signature CTR_SUGAR =
+sig
+  type ctr_sugar =
+    {ctrs: term list,
+     casex: term,
+     discs: term list,
+     selss: term list list,
+     exhaust: thm,
+     nchotomy: thm,
+     injects: thm list,
+     distincts: thm list,
+     case_thms: thm list,
+     case_cong: thm,
+     weak_case_cong: thm,
+     split: thm,
+     split_asm: thm,
+     disc_thmss: thm list list,
+     discIs: thm list,
+     sel_thmss: thm list list,
+     disc_exhausts: thm list,
+     sel_exhausts: thm list,
+     collapses: thm list,
+     expands: thm list,
+     sel_splits: thm list,
+     sel_split_asms: thm list,
+     case_conv_ifs: thm list};
+
+  val morph_ctr_sugar: morphism -> ctr_sugar -> ctr_sugar
+  val transfer_ctr_sugar: Proof.context -> ctr_sugar -> ctr_sugar
+  val ctr_sugar_of: Proof.context -> string -> ctr_sugar option
+  val ctr_sugars_of: Proof.context -> ctr_sugar list
+
+  val rep_compat_prefix: string
+
+  val mk_half_pairss: 'a list * 'a list -> ('a * 'a) list list
+  val join_halves: int -> 'a list list -> 'a list list -> 'a list * 'a list list list
+
+  val mk_ctr: typ list -> term -> term
+  val mk_case: typ list -> typ -> term -> term
+  val mk_disc_or_sel: typ list -> term -> term
+  val name_of_ctr: term -> string
+  val name_of_disc: term -> string
+  val dest_ctr: Proof.context -> string -> term -> term * term list
+  val dest_case: Proof.context -> string -> typ list -> term -> (term list * term list) option
+
+  val wrap_free_constructors: ({prems: thm list, context: Proof.context} -> tactic) list list ->
+    (((bool * bool) * term list) * binding) *
+      (binding list * (binding list list * (binding * term) list list)) -> local_theory ->
+    ctr_sugar * local_theory
+  val parse_wrap_free_constructors_options: (bool * bool) parser
+  val parse_bound_term: (binding * string) parser
+end;
+
+structure Ctr_Sugar : CTR_SUGAR =
+struct
+
+open Ctr_Sugar_Util
+open Ctr_Sugar_Tactics
+
+type ctr_sugar =
+  {ctrs: term list,
+   casex: term,
+   discs: term list,
+   selss: term list list,
+   exhaust: thm,
+   nchotomy: thm,
+   injects: thm list,
+   distincts: thm list,
+   case_thms: thm list,
+   case_cong: thm,
+   weak_case_cong: thm,
+   split: thm,
+   split_asm: thm,
+   disc_thmss: thm list list,
+   discIs: thm list,
+   sel_thmss: thm list list,
+   disc_exhausts: thm list,
+   sel_exhausts: thm list,
+   collapses: thm list,
+   expands: thm list,
+   sel_splits: thm list,
+   sel_split_asms: thm list,
+   case_conv_ifs: thm list};
+
+fun eq_ctr_sugar ({ctrs = ctrs1, casex = case1, discs = discs1, selss = selss1, ...} : ctr_sugar,
+    {ctrs = ctrs2, casex = case2, discs = discs2, selss = selss2, ...} : ctr_sugar) =
+  ctrs1 = ctrs2 andalso case1 = case2 andalso discs1 = discs2 andalso selss1 = selss2;
+
+fun morph_ctr_sugar phi {ctrs, casex, discs, selss, exhaust, nchotomy, injects, distincts,
+    case_thms, case_cong, weak_case_cong, split, split_asm, disc_thmss, discIs, sel_thmss,
+    disc_exhausts, sel_exhausts, collapses, expands, sel_splits, sel_split_asms, case_conv_ifs} =
+  {ctrs = map (Morphism.term phi) ctrs,
+   casex = Morphism.term phi casex,
+   discs = map (Morphism.term phi) discs,
+   selss = map (map (Morphism.term phi)) selss,
+   exhaust = Morphism.thm phi exhaust,
+   nchotomy = Morphism.thm phi nchotomy,
+   injects = map (Morphism.thm phi) injects,
+   distincts = map (Morphism.thm phi) distincts,
+   case_thms = map (Morphism.thm phi) case_thms,
+   case_cong = Morphism.thm phi case_cong,
+   weak_case_cong = Morphism.thm phi weak_case_cong,
+   split = Morphism.thm phi split,
+   split_asm = Morphism.thm phi split_asm,
+   disc_thmss = map (map (Morphism.thm phi)) disc_thmss,
+   discIs = map (Morphism.thm phi) discIs,
+   sel_thmss = map (map (Morphism.thm phi)) sel_thmss,
+   disc_exhausts = map (Morphism.thm phi) disc_exhausts,
+   sel_exhausts = map (Morphism.thm phi) sel_exhausts,
+   collapses = map (Morphism.thm phi) collapses,
+   expands = map (Morphism.thm phi) expands,
+   sel_splits = map (Morphism.thm phi) sel_splits,
+   sel_split_asms = map (Morphism.thm phi) sel_split_asms,
+   case_conv_ifs = map (Morphism.thm phi) case_conv_ifs};
+
+val transfer_ctr_sugar =
+  morph_ctr_sugar o Morphism.thm_morphism o Thm.transfer o Proof_Context.theory_of;
+
+structure Data = Generic_Data
+(
+  type T = ctr_sugar Symtab.table;
+  val empty = Symtab.empty;
+  val extend = I;
+  val merge = Symtab.merge eq_ctr_sugar;
+);
+
+fun ctr_sugar_of ctxt =
+  Symtab.lookup (Data.get (Context.Proof ctxt))
+  #> Option.map (transfer_ctr_sugar ctxt);
+
+fun ctr_sugars_of ctxt =
+  Symtab.fold (cons o transfer_ctr_sugar ctxt o snd) (Data.get (Context.Proof ctxt)) [];
+
+fun register_ctr_sugar key ctr_sugar =
+  Local_Theory.declaration {syntax = false, pervasive = true}
+    (fn phi => Data.map (Symtab.default (key, morph_ctr_sugar phi ctr_sugar)));
+
+val rep_compat_prefix = "new";
+
+val isN = "is_";
+val unN = "un_";
+fun mk_unN 1 1 suf = unN ^ suf
+  | mk_unN _ l suf = unN ^ suf ^ string_of_int l;
+
+val caseN = "case";
+val case_congN = "case_cong";
+val case_conv_ifN = "case_conv_if";
+val collapseN = "collapse";
+val disc_excludeN = "disc_exclude";
+val disc_exhaustN = "disc_exhaust";
+val discN = "disc";
+val discIN = "discI";
+val distinctN = "distinct";
+val exhaustN = "exhaust";
+val expandN = "expand";
+val injectN = "inject";
+val nchotomyN = "nchotomy";
+val selN = "sel";
+val sel_exhaustN = "sel_exhaust";
+val sel_splitN = "sel_split";
+val sel_split_asmN = "sel_split_asm";
+val splitN = "split";
+val splitsN = "splits";
+val split_asmN = "split_asm";
+val weak_case_cong_thmsN = "weak_case_cong";
+
+val cong_attrs = @{attributes [cong]};
+val dest_attrs = @{attributes [dest]};
+val safe_elim_attrs = @{attributes [elim!]};
+val iff_attrs = @{attributes [iff]};
+val inductsimp_attrs = @{attributes [induct_simp]};
+val nitpicksimp_attrs = @{attributes [nitpick_simp]};
+val simp_attrs = @{attributes [simp]};
+val code_nitpicksimp_attrs = Code.add_default_eqn_attrib :: nitpicksimp_attrs;
+val code_nitpicksimp_simp_attrs = code_nitpicksimp_attrs @ simp_attrs;
+
+fun unflat_lookup eq xs ys = map (fn xs' => permute_like eq xs xs' ys);
+
+fun mk_half_pairss' _ ([], []) = []
+  | mk_half_pairss' indent (x :: xs, _ :: ys) =
+    indent @ fold_rev (cons o single o pair x) ys (mk_half_pairss' ([] :: indent) (xs, ys));
+
+fun mk_half_pairss p = mk_half_pairss' [[]] p;
+
+fun join_halves n half_xss other_half_xss =
+  let
+    val xsss =
+      map2 (map2 append) (Library.chop_groups n half_xss)
+        (transpose (Library.chop_groups n other_half_xss))
+    val xs = splice (flat half_xss) (flat other_half_xss);
+  in (xs, xsss) end;
+
+fun mk_undefined T = Const (@{const_name undefined}, T);
+
+fun mk_ctr Ts t =
+  let val Type (_, Ts0) = body_type (fastype_of t) in
+    Term.subst_atomic_types (Ts0 ~~ Ts) t
+  end;
+
+fun mk_case Ts T t =
+  let val (Type (_, Ts0), body) = strip_type (fastype_of t) |>> List.last in
+    Term.subst_atomic_types ((body, T) :: (Ts0 ~~ Ts)) t
+  end;
+
+fun mk_disc_or_sel Ts t =
+  Term.subst_atomic_types (snd (Term.dest_Type (domain_type (fastype_of t))) ~~ Ts) t;
+
+fun name_of_const what t =
+  (case head_of t of
+    Const (s, _) => s
+  | Free (s, _) => s
+  | _ => error ("Cannot extract name of " ^ what));
+
+val name_of_ctr = name_of_const "constructor";
+
+val notN = "not_";
+val eqN = "eq_";
+val neqN = "neq_";
+
+fun name_of_disc t =
+  (case head_of t of
+    Abs (_, _, @{const Not} $ (t' $ Bound 0)) =>
+    Long_Name.map_base_name (prefix notN) (name_of_disc t')
+  | Abs (_, _, Const (@{const_name HOL.eq}, _) $ Bound 0 $ t') =>
+    Long_Name.map_base_name (prefix eqN) (name_of_disc t')
+  | Abs (_, _, @{const Not} $ (Const (@{const_name HOL.eq}, _) $ Bound 0 $ t')) =>
+    Long_Name.map_base_name (prefix neqN) (name_of_disc t')
+  | t' => name_of_const "destructor" t');
+
+val base_name_of_ctr = Long_Name.base_name o name_of_ctr;
+
+fun dest_ctr ctxt s t =
+  let
+    val (f, args) = Term.strip_comb t;
+  in
+    (case ctr_sugar_of ctxt s of
+      SOME {ctrs, ...} =>
+      (case find_first (can (fo_match ctxt f)) ctrs of
+        SOME f' => (f', args)
+      | NONE => raise Fail "dest_ctr")
+    | NONE => raise Fail "dest_ctr")
+  end;
+
+fun dest_case ctxt s Ts t =
+  (case Term.strip_comb t of
+    (Const (c, _), args as _ :: _) =>
+    (case ctr_sugar_of ctxt s of
+      SOME {casex = Const (case_name, _), discs = discs0, selss = selss0, ...} =>
+      if case_name = c then
+        let val n = length discs0 in
+          if n < length args then
+            let
+              val (branches, obj :: leftovers) = chop n args;
+              val discs = map (mk_disc_or_sel Ts) discs0;
+              val selss = map (map (mk_disc_or_sel Ts)) selss0;
+              val conds = map (rapp obj) discs;
+              val branch_argss = map (fn sels => map (rapp obj) sels @ leftovers) selss;
+              val branches' = map2 (curry Term.betapplys) branches branch_argss;
+            in
+              SOME (conds, branches')
+            end
+          else
+            NONE
+        end
+      else
+        NONE
+    | _ => NONE)
+  | _ => NONE);
+
+fun eta_expand_arg xs f_xs = fold_rev Term.lambda xs f_xs;
+
+fun prepare_wrap_free_constructors prep_term ((((no_discs_sels, rep_compat), raw_ctrs),
+    raw_case_binding), (raw_disc_bindings, (raw_sel_bindingss, raw_sel_defaultss))) no_defs_lthy =
+  let
+    (* TODO: sanity checks on arguments *)
+
+    val n = length raw_ctrs;
+    val ks = 1 upto n;
+
+    val _ = if n > 0 then () else error "No constructors specified";
+
+    val ctrs0 = map (prep_term no_defs_lthy) raw_ctrs;
+    val sel_defaultss =
+      pad_list [] n (map (map (apsnd (prep_term no_defs_lthy))) raw_sel_defaultss);
+
+    val Type (fcT_name, As0) = body_type (fastype_of (hd ctrs0));
+    val fc_b_name = Long_Name.base_name fcT_name;
+    val fc_b = Binding.name fc_b_name;
+
+    fun qualify mandatory =
+      Binding.qualify mandatory fc_b_name o (rep_compat ? Binding.qualify false rep_compat_prefix);
+
+    fun dest_TFree_or_TVar (TFree sS) = sS
+      | dest_TFree_or_TVar (TVar ((s, _), S)) = (s, S)
+      | dest_TFree_or_TVar _ = error "Invalid type argument";
+
+    val (unsorted_As, B) =
+      no_defs_lthy
+      |> variant_tfrees (map (fst o dest_TFree_or_TVar) As0)
+      ||> the_single o fst o mk_TFrees 1;
+
+    val As = map2 (resort_tfree o snd o dest_TFree_or_TVar) As0 unsorted_As;
+
+    val fcT = Type (fcT_name, As);
+    val ctrs = map (mk_ctr As) ctrs0;
+    val ctr_Tss = map (binder_types o fastype_of) ctrs;
+
+    val ms = map length ctr_Tss;
+
+    val raw_disc_bindings' = pad_list Binding.empty n raw_disc_bindings;
+
+    fun can_definitely_rely_on_disc k = not (Binding.is_empty (nth raw_disc_bindings' (k - 1)));
+    fun can_rely_on_disc k =
+      can_definitely_rely_on_disc k orelse (k = 1 andalso not (can_definitely_rely_on_disc 2));
+    fun should_omit_disc_binding k = n = 1 orelse (n = 2 andalso can_rely_on_disc (3 - k));
+
+    fun is_disc_binding_valid b =
+      not (Binding.is_empty b orelse Binding.eq_name (b, equal_binding));
+
+    val standard_disc_binding = Binding.name o prefix isN o base_name_of_ctr;
+
+    val disc_bindings =
+      raw_disc_bindings'
+      |> map4 (fn k => fn m => fn ctr => fn disc =>
+        qualify false
+          (if Binding.is_empty disc then
+             if should_omit_disc_binding k then disc else standard_disc_binding ctr
+           else if Binding.eq_name (disc, equal_binding) then
+             if m = 0 then disc
+             else error "Cannot use \"=\" syntax for discriminating nonnullary constructor"
+           else if Binding.eq_name (disc, standard_binding) then
+             standard_disc_binding ctr
+           else
+             disc)) ks ms ctrs0;
+
+    fun standard_sel_binding m l = Binding.name o mk_unN m l o base_name_of_ctr;
+
+    val sel_bindingss =
+      pad_list [] n raw_sel_bindingss
+      |> map3 (fn ctr => fn m => map2 (fn l => fn sel =>
+        qualify false
+          (if Binding.is_empty sel orelse Binding.eq_name (sel, standard_binding) then
+            standard_sel_binding m l ctr
+          else
+            sel)) (1 upto m) o pad_list Binding.empty m) ctrs0 ms;
+
+    val case_Ts = map (fn Ts => Ts ---> B) ctr_Tss;
+
+    val ((((((((xss, xss'), yss), fs), gs), [u', v']), [w]), (p, p')), names_lthy) = no_defs_lthy |>
+      mk_Freess' "x" ctr_Tss
+      ||>> mk_Freess "y" ctr_Tss
+      ||>> mk_Frees "f" case_Ts
+      ||>> mk_Frees "g" case_Ts
+      ||>> (apfst (map (rpair fcT)) oo Variable.variant_fixes) [fc_b_name, fc_b_name ^ "'"]
+      ||>> mk_Frees "z" [B]
+      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "P") HOLogic.boolT;
+
+    val u = Free u';
+    val v = Free v';
+    val q = Free (fst p', mk_pred1T B);
+
+    val xctrs = map2 (curry Term.list_comb) ctrs xss;
+    val yctrs = map2 (curry Term.list_comb) ctrs yss;
+
+    val xfs = map2 (curry Term.list_comb) fs xss;
+    val xgs = map2 (curry Term.list_comb) gs xss;
+
+    (* TODO: Eta-expension is for compatibility with the old datatype package (but it also provides
+       nicer names). Consider removing. *)
+    val eta_fs = map2 eta_expand_arg xss xfs;
+    val eta_gs = map2 eta_expand_arg xss xgs;
+
+    val case_binding =
+      qualify false
+        (if Binding.is_empty raw_case_binding orelse
+            Binding.eq_name (raw_case_binding, standard_binding) then
+           Binding.suffix_name ("_" ^ caseN) fc_b
+         else
+           raw_case_binding);
+
+    fun mk_case_disj xctr xf xs =
+      list_exists_free xs (HOLogic.mk_conj (HOLogic.mk_eq (u, xctr), HOLogic.mk_eq (w, xf)));
+
+    val case_rhs = fold_rev (fold_rev Term.lambda) [fs, [u]]
+      (Const (@{const_name The}, (B --> HOLogic.boolT) --> B) $
+         Term.lambda w (Library.foldr1 HOLogic.mk_disj (map3 mk_case_disj xctrs xfs xss)));
+
+    val ((raw_case, (_, raw_case_def)), (lthy', lthy)) = no_defs_lthy
+      |> Local_Theory.define ((case_binding, NoSyn),
+        ((Binding.conceal (Thm.def_binding case_binding), []), case_rhs))
+      ||> `Local_Theory.restore;
+
+    val phi = Proof_Context.export_morphism lthy lthy';
+
+    val case_def = Morphism.thm phi raw_case_def;
+
+    val case0 = Morphism.term phi raw_case;
+    val casex = mk_case As B case0;
+
+    val fcase = Term.list_comb (casex, fs);
+
+    val ufcase = fcase $ u;
+    val vfcase = fcase $ v;
+
+    val eta_fcase = Term.list_comb (casex, eta_fs);
+    val eta_gcase = Term.list_comb (casex, eta_gs);
+
+    val eta_ufcase = eta_fcase $ u;
+    val eta_vgcase = eta_gcase $ v;
+
+    fun mk_uu_eq () = HOLogic.mk_eq (u, u);
+
+    val uv_eq = mk_Trueprop_eq (u, v);
+
+    val exist_xs_u_eq_ctrs =
+      map2 (fn xctr => fn xs => list_exists_free xs (HOLogic.mk_eq (u, xctr))) xctrs xss;
+
+    val unique_disc_no_def = TrueI; (*arbitrary marker*)
+    val alternate_disc_no_def = FalseE; (*arbitrary marker*)
+
+    fun alternate_disc_lhs get_udisc k =
+      HOLogic.mk_not
+        (let val b = nth disc_bindings (k - 1) in
+           if is_disc_binding_valid b then get_udisc b (k - 1) else nth exist_xs_u_eq_ctrs (k - 1)
+         end);
+
+    val (all_sels_distinct, discs, selss, disc_defs, sel_defs, sel_defss, lthy') =
+      if no_discs_sels then
+        (true, [], [], [], [], [], lthy)
+      else
+        let
+          fun disc_free b = Free (Binding.name_of b, mk_pred1T fcT);
+
+          fun disc_spec b exist_xs_u_eq_ctr = mk_Trueprop_eq (disc_free b $ u, exist_xs_u_eq_ctr);
+
+          fun alternate_disc k =
+            Term.lambda u (alternate_disc_lhs (K o rapp u o disc_free) (3 - k));
+
+          fun mk_sel_case_args b proto_sels T =
+            map2 (fn Ts => fn k =>
+              (case AList.lookup (op =) proto_sels k of
+                NONE =>
+                (case AList.lookup Binding.eq_name (rev (nth sel_defaultss (k - 1))) b of
+                  NONE => fold_rev (Term.lambda o curry Free Name.uu) Ts (mk_undefined T)
+                | SOME t => t |> Type.constraint (Ts ---> T) |> Syntax.check_term lthy)
+              | SOME (xs, x) => fold_rev Term.lambda xs x)) ctr_Tss ks;
+
+          fun sel_spec b proto_sels =
+            let
+              val _ =
+                (case duplicates (op =) (map fst proto_sels) of
+                   k :: _ => error ("Duplicate selector name " ^ quote (Binding.name_of b) ^
+                     " for constructor " ^
+                     quote (Syntax.string_of_term lthy (nth ctrs (k - 1))))
+                 | [] => ())
+              val T =
+                (case distinct (op =) (map (fastype_of o snd o snd) proto_sels) of
+                  [T] => T
+                | T :: T' :: _ => error ("Inconsistent range type for selector " ^
+                    quote (Binding.name_of b) ^ ": " ^ quote (Syntax.string_of_typ lthy T) ^ " vs. "
+                    ^ quote (Syntax.string_of_typ lthy T')));
+            in
+              mk_Trueprop_eq (Free (Binding.name_of b, fcT --> T) $ u,
+                Term.list_comb (mk_case As T case0, mk_sel_case_args b proto_sels T) $ u)
+            end;
+
+          val sel_bindings = flat sel_bindingss;
+          val uniq_sel_bindings = distinct Binding.eq_name sel_bindings;
+          val all_sels_distinct = (length uniq_sel_bindings = length sel_bindings);
+
+          val sel_binding_index =
+            if all_sels_distinct then 1 upto length sel_bindings
+            else map (fn b => find_index (curry Binding.eq_name b) uniq_sel_bindings) sel_bindings;
+
+          val proto_sels = flat (map3 (fn k => fn xs => map (fn x => (k, (xs, x)))) ks xss xss);
+          val sel_infos =
+            AList.group (op =) (sel_binding_index ~~ proto_sels)
+            |> sort (int_ord o pairself fst)
+            |> map snd |> curry (op ~~) uniq_sel_bindings;
+          val sel_bindings = map fst sel_infos;
+
+          fun unflat_selss xs = unflat_lookup Binding.eq_name sel_bindings xs sel_bindingss;
+
+          val (((raw_discs, raw_disc_defs), (raw_sels, raw_sel_defs)), (lthy', lthy)) =
+            lthy
+            |> apfst split_list o fold_map3 (fn k => fn exist_xs_u_eq_ctr => fn b =>
+                if Binding.is_empty b then
+                  if n = 1 then pair (Term.lambda u (mk_uu_eq ()), unique_disc_no_def)
+                  else pair (alternate_disc k, alternate_disc_no_def)
+                else if Binding.eq_name (b, equal_binding) then
+                  pair (Term.lambda u exist_xs_u_eq_ctr, refl)
+                else
+                  Specification.definition (SOME (b, NONE, NoSyn),
+                    ((Thm.def_binding b, []), disc_spec b exist_xs_u_eq_ctr)) #>> apsnd snd)
+              ks exist_xs_u_eq_ctrs disc_bindings
+            ||>> apfst split_list o fold_map (fn (b, proto_sels) =>
+              Specification.definition (SOME (b, NONE, NoSyn),
+                ((Thm.def_binding b, []), sel_spec b proto_sels)) #>> apsnd snd) sel_infos
+            ||> `Local_Theory.restore;
+
+          val phi = Proof_Context.export_morphism lthy lthy';
+
+          val disc_defs = map (Morphism.thm phi) raw_disc_defs;
+          val sel_defs = map (Morphism.thm phi) raw_sel_defs;
+          val sel_defss = unflat_selss sel_defs;
+
+          val discs0 = map (Morphism.term phi) raw_discs;
+          val selss0 = unflat_selss (map (Morphism.term phi) raw_sels);
+
+          val discs = map (mk_disc_or_sel As) discs0;
+          val selss = map (map (mk_disc_or_sel As)) selss0;
+        in
+          (all_sels_distinct, discs, selss, disc_defs, sel_defs, sel_defss, lthy')
+        end;
+
+    fun mk_imp_p Qs = Logic.list_implies (Qs, HOLogic.mk_Trueprop p);
+
+    val exhaust_goal =
+      let fun mk_prem xctr xs = fold_rev Logic.all xs (mk_imp_p [mk_Trueprop_eq (u, xctr)]) in
+        fold_rev Logic.all [p, u] (mk_imp_p (map2 mk_prem xctrs xss))
+      end;
+
+    val inject_goalss =
+      let
+        fun mk_goal _ _ [] [] = []
+          | mk_goal xctr yctr xs ys =
+            [fold_rev Logic.all (xs @ ys) (mk_Trueprop_eq (HOLogic.mk_eq (xctr, yctr),
+              Library.foldr1 HOLogic.mk_conj (map2 (curry HOLogic.mk_eq) xs ys)))];
+      in
+        map4 mk_goal xctrs yctrs xss yss
+      end;
+
+    val half_distinct_goalss =
+      let
+        fun mk_goal ((xs, xc), (xs', xc')) =
+          fold_rev Logic.all (xs @ xs')
+            (HOLogic.mk_Trueprop (HOLogic.mk_not (HOLogic.mk_eq (xc, xc'))));
+      in
+        map (map mk_goal) (mk_half_pairss (`I (xss ~~ xctrs)))
+      end;
+
+    val goalss = [exhaust_goal] :: inject_goalss @ half_distinct_goalss;
+
+    fun after_qed thmss lthy =
+      let
+        val ([exhaust_thm], (inject_thmss, half_distinct_thmss)) = (hd thmss, chop n (tl thmss));
+
+        val inject_thms = flat inject_thmss;
+
+        val rho_As = map (pairself (certifyT lthy)) (map Logic.varifyT_global As ~~ As);
+
+        fun inst_thm t thm =
+          Drule.instantiate' [] [SOME (certify lthy t)]
+            (Thm.instantiate (rho_As, []) (Drule.zero_var_indexes thm));
+
+        val uexhaust_thm = inst_thm u exhaust_thm;
+
+        val exhaust_cases = map base_name_of_ctr ctrs;
+
+        val other_half_distinct_thmss = map (map (fn thm => thm RS not_sym)) half_distinct_thmss;
+
+        val (distinct_thms, (distinct_thmsss', distinct_thmsss)) =
+          join_halves n half_distinct_thmss other_half_distinct_thmss ||> `transpose;
+
+        val nchotomy_thm =
+          let
+            val goal =
+              HOLogic.mk_Trueprop (HOLogic.mk_all (fst u', snd u',
+                Library.foldr1 HOLogic.mk_disj exist_xs_u_eq_ctrs));
+          in
+            Goal.prove_sorry lthy [] [] goal (fn _ => mk_nchotomy_tac n exhaust_thm)
+            |> Thm.close_derivation
+          end;
+
+        val case_thms =
+          let
+            val goals =
+              map3 (fn xctr => fn xf => fn xs =>
+                fold_rev Logic.all (fs @ xs) (mk_Trueprop_eq (fcase $ xctr, xf))) xctrs xfs xss;
+          in
+            map4 (fn k => fn goal => fn injects => fn distinctss =>
+                Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
+                  mk_case_tac ctxt n k case_def injects distinctss)
+                |> Thm.close_derivation)
+              ks goals inject_thmss distinct_thmsss
+          end;
+
+        val (case_cong_thm, weak_case_cong_thm) =
+          let
+            fun mk_prem xctr xs xf xg =
+              fold_rev Logic.all xs (Logic.mk_implies (mk_Trueprop_eq (v, xctr),
+                mk_Trueprop_eq (xf, xg)));
+
+            val goal =
+              Logic.list_implies (uv_eq :: map4 mk_prem xctrs xss xfs xgs,
+                 mk_Trueprop_eq (eta_ufcase, eta_vgcase));
+            val weak_goal = Logic.mk_implies (uv_eq, mk_Trueprop_eq (ufcase, vfcase));
+          in
+            (Goal.prove_sorry lthy [] [] goal (fn _ => mk_case_cong_tac lthy uexhaust_thm case_thms),
+             Goal.prove_sorry lthy [] [] weak_goal (K (etac arg_cong 1)))
+            |> pairself (Thm.close_derivation #> singleton (Proof_Context.export names_lthy lthy))
+          end;
+
+        val split_lhs = q $ ufcase;
+
+        fun mk_split_conjunct xctr xs f_xs =
+          list_all_free xs (HOLogic.mk_imp (HOLogic.mk_eq (u, xctr), q $ f_xs));
+        fun mk_split_disjunct xctr xs f_xs =
+          list_exists_free xs (HOLogic.mk_conj (HOLogic.mk_eq (u, xctr),
+            HOLogic.mk_not (q $ f_xs)));
+
+        fun mk_split_goal xctrs xss xfs =
+          mk_Trueprop_eq (split_lhs, Library.foldr1 HOLogic.mk_conj
+            (map3 mk_split_conjunct xctrs xss xfs));
+        fun mk_split_asm_goal xctrs xss xfs =
+          mk_Trueprop_eq (split_lhs, HOLogic.mk_not (Library.foldr1 HOLogic.mk_disj
+            (map3 mk_split_disjunct xctrs xss xfs)));
+
+        fun prove_split selss goal =
+          Goal.prove_sorry lthy [] [] goal (fn _ =>
+            mk_split_tac lthy uexhaust_thm case_thms selss inject_thmss distinct_thmsss)
+          |> Thm.close_derivation
+          |> singleton (Proof_Context.export names_lthy lthy);
+
+        fun prove_split_asm asm_goal split_thm =
+          Goal.prove_sorry lthy [] [] asm_goal (fn {context = ctxt, ...} =>
+            mk_split_asm_tac ctxt split_thm)
+          |> Thm.close_derivation
+          |> singleton (Proof_Context.export names_lthy lthy);
+
+        val (split_thm, split_asm_thm) =
+          let
+            val goal = mk_split_goal xctrs xss xfs;
+            val asm_goal = mk_split_asm_goal xctrs xss xfs;
+
+            val thm = prove_split (replicate n []) goal;
+            val asm_thm = prove_split_asm asm_goal thm;
+          in
+            (thm, asm_thm)
+          end;
+
+        val (all_sel_thms, sel_thmss, disc_thmss, nontriv_disc_thms, discI_thms, nontriv_discI_thms,
+             disc_exclude_thms, disc_exhaust_thms, sel_exhaust_thms, all_collapse_thms,
+             safe_collapse_thms, expand_thms, sel_split_thms, sel_split_asm_thms,
+             case_conv_if_thms) =
+          if no_discs_sels then
+            ([], [], [], [], [], [], [], [], [], [], [], [], [], [], [])
+          else
+            let
+              val udiscs = map (rapp u) discs;
+              val uselss = map (map (rapp u)) selss;
+              val usel_ctrs = map2 (curry Term.list_comb) ctrs uselss;
+              val usel_fs = map2 (curry Term.list_comb) fs uselss;
+
+              val vdiscs = map (rapp v) discs;
+              val vselss = map (map (rapp v)) selss;
+
+              fun make_sel_thm xs' case_thm sel_def =
+                zero_var_indexes (Drule.gen_all (Drule.rename_bvars' (map (SOME o fst) xs')
+                    (Drule.forall_intr_vars (case_thm RS (sel_def RS trans)))));
+
+              val sel_thmss = map3 (map oo make_sel_thm) xss' case_thms sel_defss;
+
+              fun has_undefined_rhs thm =
+                (case snd (HOLogic.dest_eq (HOLogic.dest_Trueprop (prop_of thm))) of
+                  Const (@{const_name undefined}, _) => true
+                | _ => false);
+
+              val all_sel_thms =
+                (if all_sels_distinct andalso forall null sel_defaultss then
+                   flat sel_thmss
+                 else
+                   map_product (fn s => fn (xs', c) => make_sel_thm xs' c s) sel_defs
+                     (xss' ~~ case_thms))
+                |> filter_out has_undefined_rhs;
+
+              fun mk_unique_disc_def () =
+                let
+                  val m = the_single ms;
+                  val goal = mk_Trueprop_eq (mk_uu_eq (), the_single exist_xs_u_eq_ctrs);
+                in
+                  Goal.prove_sorry lthy [] [] goal (fn _ => mk_unique_disc_def_tac m uexhaust_thm)
+                  |> Thm.close_derivation
+                  |> singleton (Proof_Context.export names_lthy lthy)
+                end;
+
+              fun mk_alternate_disc_def k =
+                let
+                  val goal =
+                    mk_Trueprop_eq (alternate_disc_lhs (K (nth udiscs)) (3 - k),
+                      nth exist_xs_u_eq_ctrs (k - 1));
+                in
+                  Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
+                    mk_alternate_disc_def_tac ctxt k (nth disc_defs (2 - k))
+                      (nth distinct_thms (2 - k)) uexhaust_thm)
+                  |> Thm.close_derivation
+                  |> singleton (Proof_Context.export names_lthy lthy)
+                end;
+
+              val has_alternate_disc_def =
+                exists (fn def => Thm.eq_thm_prop (def, alternate_disc_no_def)) disc_defs;
+
+              val disc_defs' =
+                map2 (fn k => fn def =>
+                  if Thm.eq_thm_prop (def, unique_disc_no_def) then mk_unique_disc_def ()
+                  else if Thm.eq_thm_prop (def, alternate_disc_no_def) then mk_alternate_disc_def k
+                  else def) ks disc_defs;
+
+              val discD_thms = map (fn def => def RS iffD1) disc_defs';
+              val discI_thms =
+                map2 (fn m => fn def => funpow m (fn thm => exI RS thm) (def RS iffD2)) ms
+                  disc_defs';
+              val not_discI_thms =
+                map2 (fn m => fn def => funpow m (fn thm => allI RS thm)
+                    (unfold_thms lthy @{thms not_ex} (def RS @{thm ssubst[of _ _ Not]})))
+                  ms disc_defs';
+
+              val (disc_thmss', disc_thmss) =
+                let
+                  fun mk_thm discI _ [] = refl RS discI
+                    | mk_thm _ not_discI [distinct] = distinct RS not_discI;
+                  fun mk_thms discI not_discI distinctss = map (mk_thm discI not_discI) distinctss;
+                in
+                  map3 mk_thms discI_thms not_discI_thms distinct_thmsss' |> `transpose
+                end;
+
+              val nontriv_disc_thms =
+                flat (map2 (fn b => if is_disc_binding_valid b then I else K [])
+                  disc_bindings disc_thmss);
+
+              fun is_discI_boring b =
+                (n = 1 andalso Binding.is_empty b) orelse Binding.eq_name (b, equal_binding);
+
+              val nontriv_discI_thms =
+                flat (map2 (fn b => if is_discI_boring b then K [] else single) disc_bindings
+                  discI_thms);
+
+              val (disc_exclude_thms, (disc_exclude_thmsss', disc_exclude_thmsss)) =
+                let
+                  fun mk_goal [] = []
+                    | mk_goal [((_, udisc), (_, udisc'))] =
+                      [Logic.all u (Logic.mk_implies (HOLogic.mk_Trueprop udisc,
+                         HOLogic.mk_Trueprop (HOLogic.mk_not udisc')))];
+
+                  fun prove tac goal =
+                    Goal.prove_sorry lthy [] [] goal (K tac)
+                    |> Thm.close_derivation;
+
+                  val half_pairss = mk_half_pairss (`I (ms ~~ discD_thms ~~ udiscs));
+
+                  val half_goalss = map mk_goal half_pairss;
+                  val half_thmss =
+                    map3 (fn [] => K (K []) | [goal] => fn [(((m, discD), _), _)] =>
+                        fn disc_thm => [prove (mk_half_disc_exclude_tac lthy m discD disc_thm) goal])
+                      half_goalss half_pairss (flat disc_thmss');
+
+                  val other_half_goalss = map (mk_goal o map swap) half_pairss;
+                  val other_half_thmss =
+                    map2 (map2 (prove o mk_other_half_disc_exclude_tac)) half_thmss
+                      other_half_goalss;
+                in
+                  join_halves n half_thmss other_half_thmss ||> `transpose
+                  |>> has_alternate_disc_def ? K []
+                end;
+
+              val disc_exhaust_thm =
+                let
+                  fun mk_prem udisc = mk_imp_p [HOLogic.mk_Trueprop udisc];
+                  val goal = fold_rev Logic.all [p, u] (mk_imp_p (map mk_prem udiscs));
+                in
+                  Goal.prove_sorry lthy [] [] goal (fn _ =>
+                    mk_disc_exhaust_tac n exhaust_thm discI_thms)
+                  |> Thm.close_derivation
+                end;
+
+              val (safe_collapse_thms, all_collapse_thms) =
+                let
+                  fun mk_goal m udisc usel_ctr =
+                    let
+                      val prem = HOLogic.mk_Trueprop udisc;
+                      val concl = mk_Trueprop_eq ((usel_ctr, u) |> m = 0 ? swap);
+                    in
+                      (prem aconv concl, Logic.all u (Logic.mk_implies (prem, concl)))
+                    end;
+                  val (trivs, goals) = map3 mk_goal ms udiscs usel_ctrs |> split_list;
+                  val thms =
+                    map5 (fn m => fn discD => fn sel_thms => fn triv => fn goal =>
+                        Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
+                          mk_collapse_tac ctxt m discD sel_thms ORELSE HEADGOAL atac)
+                        |> Thm.close_derivation
+                        |> not triv ? perhaps (try (fn thm => refl RS thm)))
+                      ms discD_thms sel_thmss trivs goals;
+                in
+                  (map_filter (fn (true, _) => NONE | (false, thm) => SOME thm) (trivs ~~ thms),
+                   thms)
+                end;
+
+              val swapped_all_collapse_thms =
+                map2 (fn m => fn thm => if m = 0 then thm else thm RS sym) ms all_collapse_thms;
+
+              val sel_exhaust_thm =
+                let
+                  fun mk_prem usel_ctr = mk_imp_p [mk_Trueprop_eq (u, usel_ctr)];
+                  val goal = fold_rev Logic.all [p, u] (mk_imp_p (map mk_prem usel_ctrs));
+                in
+                  Goal.prove_sorry lthy [] [] goal (fn _ =>
+                    mk_sel_exhaust_tac n disc_exhaust_thm swapped_all_collapse_thms)
+                  |> Thm.close_derivation
+                end;
+
+              val expand_thm =
+                let
+                  fun mk_prems k udisc usels vdisc vsels =
+                    (if k = n then [] else [mk_Trueprop_eq (udisc, vdisc)]) @
+                    (if null usels then
+                       []
+                     else
+                       [Logic.list_implies
+                          (if n = 1 then [] else map HOLogic.mk_Trueprop [udisc, vdisc],
+                             HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
+                               (map2 (curry HOLogic.mk_eq) usels vsels)))]);
+
+                  val goal =
+                    Library.foldr Logic.list_implies
+                      (map5 mk_prems ks udiscs uselss vdiscs vselss, uv_eq);
+                  val uncollapse_thms =
+                    map2 (fn thm => fn [] => thm | _ => thm RS sym) all_collapse_thms uselss;
+                in
+                  Goal.prove_sorry lthy [] [] goal (fn _ =>
+                    mk_expand_tac lthy n ms (inst_thm u disc_exhaust_thm)
+                      (inst_thm v disc_exhaust_thm) uncollapse_thms disc_exclude_thmsss
+                      disc_exclude_thmsss')
+                  |> Thm.close_derivation
+                  |> singleton (Proof_Context.export names_lthy lthy)
+                end;
+
+              val (sel_split_thm, sel_split_asm_thm) =
+                let
+                  val zss = map (K []) xss;
+                  val goal = mk_split_goal usel_ctrs zss usel_fs;
+                  val asm_goal = mk_split_asm_goal usel_ctrs zss usel_fs;
+
+                  val thm = prove_split sel_thmss goal;
+                  val asm_thm = prove_split_asm asm_goal thm;
+                in
+                  (thm, asm_thm)
+                end;
+
+              val case_conv_if_thm =
+                let
+                  val goal = mk_Trueprop_eq (ufcase, mk_IfN B udiscs usel_fs);
+                in
+                  Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, ...} =>
+                    mk_case_conv_if_tac ctxt n uexhaust_thm case_thms disc_thmss' sel_thmss)
+                  |> Thm.close_derivation
+                  |> singleton (Proof_Context.export names_lthy lthy)
+                end;
+            in
+              (all_sel_thms, sel_thmss, disc_thmss, nontriv_disc_thms, discI_thms,
+               nontriv_discI_thms, disc_exclude_thms, [disc_exhaust_thm], [sel_exhaust_thm],
+               all_collapse_thms, safe_collapse_thms, [expand_thm], [sel_split_thm],
+               [sel_split_asm_thm], [case_conv_if_thm])
+            end;
+
+        val exhaust_case_names_attr = Attrib.internal (K (Rule_Cases.case_names exhaust_cases));
+        val cases_type_attr = Attrib.internal (K (Induct.cases_type fcT_name));
+
+        val anonymous_notes =
+          [(map (fn th => th RS notE) distinct_thms, safe_elim_attrs),
+           (map (fn th => th RS @{thm eq_False[THEN iffD2]}
+              handle THM _ => th RS @{thm eq_True[THEN iffD2]}) nontriv_disc_thms,
+            code_nitpicksimp_attrs)]
+          |> map (fn (thms, attrs) => ((Binding.empty, attrs), [(thms, [])]));
+
+        val notes =
+          [(caseN, case_thms, code_nitpicksimp_simp_attrs),
+           (case_congN, [case_cong_thm], []),
+           (case_conv_ifN, case_conv_if_thms, []),
+           (collapseN, safe_collapse_thms, simp_attrs),
+           (discN, nontriv_disc_thms, simp_attrs),
+           (discIN, nontriv_discI_thms, []),
+           (disc_excludeN, disc_exclude_thms, dest_attrs),
+           (disc_exhaustN, disc_exhaust_thms, [exhaust_case_names_attr]),
+           (distinctN, distinct_thms, simp_attrs @ inductsimp_attrs),
+           (exhaustN, [exhaust_thm], [exhaust_case_names_attr, cases_type_attr]),
+           (expandN, expand_thms, []),
+           (injectN, inject_thms, iff_attrs @ inductsimp_attrs),
+           (nchotomyN, [nchotomy_thm], []),
+           (selN, all_sel_thms, code_nitpicksimp_simp_attrs),
+           (sel_exhaustN, sel_exhaust_thms, [exhaust_case_names_attr]),
+           (sel_splitN, sel_split_thms, []),
+           (sel_split_asmN, sel_split_asm_thms, []),
+           (splitN, [split_thm], []),
+           (split_asmN, [split_asm_thm], []),
+           (splitsN, [split_thm, split_asm_thm], []),
+           (weak_case_cong_thmsN, [weak_case_cong_thm], cong_attrs)]
+          |> filter_out (null o #2)
+          |> map (fn (thmN, thms, attrs) =>
+            ((qualify true (Binding.name thmN), attrs), [(thms, [])]));
+
+        val ctr_sugar =
+          {ctrs = ctrs, casex = casex, discs = discs, selss = selss, exhaust = exhaust_thm,
+           nchotomy = nchotomy_thm, injects = inject_thms, distincts = distinct_thms,
+           case_thms = case_thms, case_cong = case_cong_thm, weak_case_cong = weak_case_cong_thm,
+           split = split_thm, split_asm = split_asm_thm, disc_thmss = disc_thmss,
+           discIs = discI_thms, sel_thmss = sel_thmss, disc_exhausts = disc_exhaust_thms,
+           sel_exhausts = sel_exhaust_thms, collapses = all_collapse_thms, expands = expand_thms,
+           sel_splits = sel_split_thms, sel_split_asms = sel_split_asm_thms,
+           case_conv_ifs = case_conv_if_thms};
+      in
+        (ctr_sugar,
+         lthy
+         |> not rep_compat ?
+            (Local_Theory.declaration {syntax = false, pervasive = true}
+               (fn phi => Case_Translation.register
+                  (Morphism.term phi casex) (map (Morphism.term phi) ctrs)))
+         |> Local_Theory.notes (anonymous_notes @ notes) |> snd
+         |> register_ctr_sugar fcT_name ctr_sugar)
+      end;
+  in
+    (goalss, after_qed, lthy')
+  end;
+
+fun wrap_free_constructors tacss = (fn (goalss, after_qed, lthy) =>
+  map2 (map2 (Thm.close_derivation oo Goal.prove_sorry lthy [] [])) goalss tacss
+  |> (fn thms => after_qed thms lthy)) oo prepare_wrap_free_constructors (K I);
+
+val wrap_free_constructors_cmd = (fn (goalss, after_qed, lthy) =>
+  Proof.theorem NONE (snd oo after_qed) (map (map (rpair [])) goalss) lthy) oo
+  prepare_wrap_free_constructors Syntax.read_term;
+
+fun parse_bracket_list parser = @{keyword "["} |-- Parse.list parser --|  @{keyword "]"};
+
+val parse_bindings = parse_bracket_list parse_binding;
+val parse_bindingss = parse_bracket_list parse_bindings;
+
+val parse_bound_term = (parse_binding --| @{keyword ":"}) -- Parse.term;
+val parse_bound_terms = parse_bracket_list parse_bound_term;
+val parse_bound_termss = parse_bracket_list parse_bound_terms;
+
+val parse_wrap_free_constructors_options =
+  Scan.optional (@{keyword "("} |-- Parse.list1 ((@{keyword "no_discs_sels"} >> K (true, false)) ||
+      (@{keyword "rep_compat"} >> K (false, true))) --| @{keyword ")"}
+    >> (pairself (exists I) o split_list)) (false, false);
+
+val _ =
+  Outer_Syntax.local_theory_to_proof @{command_spec "wrap_free_constructors"}
+    "wrap an existing freely generated type's constructors"
+    ((parse_wrap_free_constructors_options -- (@{keyword "["} |-- Parse.list Parse.term --|
+        @{keyword "]"}) --
+      parse_binding -- Scan.optional (parse_bindings -- Scan.optional (parse_bindingss --
+        Scan.optional parse_bound_termss []) ([], [])) ([], ([], [])))
+     >> wrap_free_constructors_cmd);
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/ctr_sugar_tactics.ML	Tue Nov 12 13:47:24 2013 +0100
@@ -0,0 +1,172 @@
+(*  Title:      HOL/BNF/Tools/ctr_sugar_tactics.ML
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2012
+
+Tactics for wrapping existing freely generated type's constructors.
+*)
+
+signature CTR_SUGAR_GENERAL_TACTICS =
+sig
+  val select_prem_tac: int -> (int -> tactic) -> int -> int -> tactic
+  val unfold_thms_tac: Proof.context -> thm list -> tactic
+end;
+
+signature CTR_SUGAR_TACTICS =
+sig
+  include CTR_SUGAR_GENERAL_TACTICS
+
+  val mk_alternate_disc_def_tac: Proof.context -> int -> thm -> thm -> thm -> tactic
+  val mk_case_tac: Proof.context -> int -> int -> thm -> thm list -> thm list list -> tactic
+  val mk_case_cong_tac: Proof.context -> thm -> thm list -> tactic
+  val mk_case_conv_if_tac: Proof.context -> int -> thm -> thm list -> thm list list ->
+    thm list list -> tactic
+  val mk_collapse_tac: Proof.context -> int -> thm -> thm list -> tactic
+  val mk_disc_exhaust_tac: int -> thm -> thm list -> tactic
+  val mk_expand_tac: Proof.context -> int -> int list -> thm -> thm -> thm list ->
+    thm list list list -> thm list list list -> tactic
+  val mk_half_disc_exclude_tac: Proof.context -> int -> thm -> thm -> tactic
+  val mk_nchotomy_tac: int -> thm -> tactic
+  val mk_other_half_disc_exclude_tac: thm -> tactic
+  val mk_sel_exhaust_tac: int -> thm -> thm list -> tactic
+  val mk_split_tac: Proof.context -> thm -> thm list -> thm list list -> thm list list -> thm list
+    list list -> tactic
+  val mk_split_asm_tac: Proof.context -> thm -> tactic
+  val mk_unique_disc_def_tac: int -> thm -> tactic
+end;
+
+structure Ctr_Sugar_Tactics : CTR_SUGAR_TACTICS =
+struct
+
+open Ctr_Sugar_Util
+
+val meta_mp = @{thm meta_mp};
+
+fun select_prem_tac n tac k = DETERM o (EVERY' [REPEAT_DETERM_N (k - 1) o etac thin_rl,
+  tac, REPEAT_DETERM_N (n - k) o etac thin_rl]);
+
+fun unfold_thms_tac _ [] = all_tac
+  | unfold_thms_tac ctxt thms = Local_Defs.unfold_tac ctxt (distinct Thm.eq_thm_prop thms);
+
+fun if_P_or_not_P_OF pos thm = thm RS (if pos then @{thm if_P} else @{thm if_not_P});
+
+fun mk_nchotomy_tac n exhaust =
+  HEADGOAL (rtac allI THEN' rtac exhaust THEN'
+   EVERY' (maps (fn k => [rtac (mk_disjIN n k), REPEAT_DETERM o rtac exI, atac]) (1 upto n)));
+
+fun mk_unique_disc_def_tac m uexhaust =
+  HEADGOAL (EVERY' [rtac iffI, rtac uexhaust, REPEAT_DETERM_N m o rtac exI, atac, rtac refl]);
+
+fun mk_alternate_disc_def_tac ctxt k other_disc_def distinct uexhaust =
+  HEADGOAL (EVERY' ([rtac (other_disc_def RS @{thm arg_cong[of _ _ Not]} RS trans),
+    rtac @{thm iffI_np}, REPEAT_DETERM o etac exE,
+    hyp_subst_tac ctxt, SELECT_GOAL (unfold_thms_tac ctxt [not_ex]), REPEAT_DETERM o rtac allI,
+    rtac distinct, rtac uexhaust] @
+    (([etac notE, REPEAT_DETERM o rtac exI, atac], [REPEAT_DETERM o rtac exI, atac])
+     |> k = 1 ? swap |> op @)));
+
+fun mk_half_disc_exclude_tac ctxt m discD disc' =
+  HEADGOAL (dtac discD THEN' REPEAT_DETERM_N m o etac exE THEN' hyp_subst_tac ctxt THEN'
+    rtac disc');
+
+fun mk_other_half_disc_exclude_tac half = HEADGOAL (etac @{thm contrapos_pn} THEN' etac half);
+
+fun mk_disc_or_sel_exhaust_tac n exhaust destIs =
+  HEADGOAL (rtac exhaust THEN'
+    EVERY' (map2 (fn k => fn destI => dtac destI THEN'
+      select_prem_tac n (etac meta_mp) k THEN' atac) (1 upto n) destIs));
+
+val mk_disc_exhaust_tac = mk_disc_or_sel_exhaust_tac;
+
+fun mk_sel_exhaust_tac n disc_exhaust collapses =
+  mk_disc_or_sel_exhaust_tac n disc_exhaust collapses ORELSE
+  HEADGOAL (etac meta_mp THEN' resolve_tac collapses);
+
+fun mk_collapse_tac ctxt m discD sels =
+  HEADGOAL (dtac discD THEN'
+    (if m = 0 then
+       atac
+     else
+       REPEAT_DETERM_N m o etac exE THEN' hyp_subst_tac ctxt THEN'
+       SELECT_GOAL (unfold_thms_tac ctxt sels) THEN' rtac refl));
+
+fun mk_expand_tac ctxt n ms udisc_exhaust vdisc_exhaust uncollapses disc_excludesss
+    disc_excludesss' =
+  if ms = [0] then
+    HEADGOAL (rtac (@{thm trans_sym} OF (replicate 2 (the_single uncollapses))) THEN'
+      TRY o EVERY' [rtac udisc_exhaust, atac, rtac vdisc_exhaust, atac])
+  else
+    let val ks = 1 upto n in
+      HEADGOAL (rtac udisc_exhaust THEN'
+        EVERY' (map5 (fn k => fn m => fn disc_excludess => fn disc_excludess' =>
+            fn uuncollapse =>
+          EVERY' [rtac (uuncollapse RS trans) THEN' TRY o atac,
+            rtac sym, rtac vdisc_exhaust,
+            EVERY' (map4 (fn k' => fn disc_excludes => fn disc_excludes' => fn vuncollapse =>
+              EVERY'
+                (if k' = k then
+                   [rtac (vuncollapse RS trans), TRY o atac] @
+                   (if m = 0 then
+                      [rtac refl]
+                    else
+                      [if n = 1 then K all_tac else EVERY' [dtac meta_mp, atac, dtac meta_mp, atac],
+                       REPEAT_DETERM_N (Int.max (0, m - 1)) o etac conjE,
+                       asm_simp_tac (ss_only [] ctxt)])
+                 else
+                   [dtac (the_single (if k = n then disc_excludes else disc_excludes')),
+                    etac (if k = n then @{thm iff_contradict(1)} else @{thm iff_contradict(2)}),
+                    atac, atac]))
+              ks disc_excludess disc_excludess' uncollapses)])
+          ks ms disc_excludesss disc_excludesss' uncollapses))
+    end;
+
+fun mk_case_same_ctr_tac ctxt injects =
+  REPEAT_DETERM o etac exE THEN' etac conjE THEN'
+    (case injects of
+      [] => atac
+    | [inject] => dtac (inject RS iffD1) THEN' REPEAT_DETERM o etac conjE THEN'
+        hyp_subst_tac ctxt THEN' rtac refl);
+
+fun mk_case_distinct_ctrs_tac ctxt distincts =
+  REPEAT_DETERM o etac exE THEN' etac conjE THEN' full_simp_tac (ss_only distincts ctxt);
+
+fun mk_case_tac ctxt n k case_def injects distinctss =
+  let
+    val case_def' = mk_unabs_def (n + 1) (case_def RS meta_eq_to_obj_eq);
+    val ks = 1 upto n;
+  in
+    HEADGOAL (rtac (case_def' RS trans) THEN' rtac @{thm the_equality} THEN'
+      rtac (mk_disjIN n k) THEN' REPEAT_DETERM o rtac exI THEN' rtac conjI THEN' rtac refl THEN'
+      rtac refl THEN'
+      EVERY' (map2 (fn k' => fn distincts =>
+        (if k' < n then etac disjE else K all_tac) THEN'
+        (if k' = k then mk_case_same_ctr_tac ctxt injects
+         else mk_case_distinct_ctrs_tac ctxt distincts)) ks distinctss))
+  end;
+
+fun mk_case_conv_if_tac ctxt n uexhaust cases discss' selss =
+  HEADGOAL (rtac uexhaust THEN'
+    EVERY' (map3 (fn casex => fn if_discs => fn sels =>
+        EVERY' [hyp_subst_tac ctxt, SELECT_GOAL (unfold_thms_tac ctxt (if_discs @ sels)),
+          rtac casex])
+      cases (map2 (seq_conds if_P_or_not_P_OF n) (1 upto n) discss') selss));
+
+fun mk_case_cong_tac ctxt uexhaust cases =
+  HEADGOAL (rtac uexhaust THEN'
+    EVERY' (maps (fn casex => [dtac sym, asm_simp_tac (ss_only [casex] ctxt)]) cases));
+
+fun mk_split_tac ctxt uexhaust cases selss injectss distinctsss =
+  HEADGOAL (rtac uexhaust) THEN
+  ALLGOALS (fn k => (hyp_subst_tac ctxt THEN'
+     simp_tac (ss_only (@{thms simp_thms} @ cases @ nth selss (k - 1) @ nth injectss (k - 1) @
+       flat (nth distinctsss (k - 1))) ctxt)) k) THEN
+  ALLGOALS (blast_tac (put_claset (claset_of @{theory_context HOL}) ctxt));
+
+val split_asm_thms = @{thms imp_conv_disj de_Morgan_conj de_Morgan_disj not_not not_ex};
+
+fun mk_split_asm_tac ctxt split =
+  HEADGOAL (rtac (split RS trans)) THEN unfold_thms_tac ctxt split_asm_thms THEN
+  HEADGOAL (rtac refl);
+
+end;
+
+structure Ctr_Sugar_General_Tactics: CTR_SUGAR_GENERAL_TACTICS = Ctr_Sugar_Tactics;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/ctr_sugar_util.ML	Tue Nov 12 13:47:24 2013 +0100
@@ -0,0 +1,192 @@
+(*  Title:      HOL/BNF/Tools/ctr_sugar_util.ML
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2012
+
+Library for wrapping existing freely generated type's constructors.
+*)
+
+signature CTR_SUGAR_UTIL =
+sig
+  val map3: ('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list
+  val map4: ('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list
+  val map5: ('a -> 'b -> 'c -> 'd -> 'e -> 'f) ->
+    'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list
+  val fold_map2: ('a -> 'b -> 'c -> 'd * 'c) -> 'a list -> 'b list -> 'c -> 'd list * 'c
+  val fold_map3: ('a -> 'b -> 'c -> 'd -> 'e * 'd) ->
+    'a list -> 'b list -> 'c list -> 'd -> 'e list * 'd
+  val seq_conds: (bool -> 'a -> 'b) -> int -> int -> 'a list -> 'b list
+  val transpose: 'a list list -> 'a list list
+  val pad_list: 'a -> int -> 'a list -> 'a list
+  val splice: 'a list -> 'a list -> 'a list
+  val permute_like: ('a * 'b -> bool) -> 'a list -> 'b list -> 'c list -> 'c list
+
+  val mk_names: int -> string -> string list
+  val mk_fresh_names: Proof.context -> int -> string -> string list * Proof.context
+  val mk_TFrees': sort list -> Proof.context -> typ list * Proof.context
+  val mk_TFrees: int -> Proof.context -> typ list * Proof.context
+  val mk_Frees': string -> typ list -> Proof.context ->
+    (term list * (string * typ) list) * Proof.context
+  val mk_Freess': string -> typ list list -> Proof.context ->
+    (term list list * (string * typ) list list) * Proof.context
+  val mk_Frees: string -> typ list -> Proof.context -> term list * Proof.context
+  val mk_Freess: string -> typ list list -> Proof.context -> term list list * Proof.context
+  val resort_tfree: sort -> typ -> typ
+  val variant_types: string list -> sort list -> Proof.context ->
+    (string * sort) list * Proof.context
+  val variant_tfrees: string list -> Proof.context -> typ list * Proof.context
+
+  val mk_predT: typ list -> typ
+  val mk_pred1T: typ -> typ
+
+  val mk_disjIN: int -> int -> thm
+
+  val mk_unabs_def: int -> thm -> thm
+
+  val mk_IfN: typ -> term list -> term list -> term
+  val mk_Trueprop_eq: term * term -> term
+
+  val rapp: term -> term -> term
+
+  val list_all_free: term list -> term -> term
+  val list_exists_free: term list -> term -> term
+
+  val fo_match: Proof.context -> term -> term -> Type.tyenv * Envir.tenv
+
+  val unfold_thms: Proof.context -> thm list -> thm -> thm
+
+  val certifyT: Proof.context -> typ -> ctyp
+  val certify: Proof.context -> term -> cterm
+
+  val standard_binding: binding
+  val equal_binding: binding
+  val parse_binding: binding parser
+
+  val ss_only: thm list -> Proof.context -> Proof.context
+end;
+
+structure Ctr_Sugar_Util : CTR_SUGAR_UTIL =
+struct
+
+fun map3 _ [] [] [] = []
+  | map3 f (x1::x1s) (x2::x2s) (x3::x3s) = f x1 x2 x3 :: map3 f x1s x2s x3s
+  | map3 _ _ _ _ = raise ListPair.UnequalLengths;
+
+fun map4 _ [] [] [] [] = []
+  | map4 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) = f x1 x2 x3 x4 :: map4 f x1s x2s x3s x4s
+  | map4 _ _ _ _ _ = raise ListPair.UnequalLengths;
+
+fun map5 _ [] [] [] [] [] = []
+  | map5 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) =
+    f x1 x2 x3 x4 x5 :: map5 f x1s x2s x3s x4s x5s
+  | map5 _ _ _ _ _ _ = raise ListPair.UnequalLengths;
+
+fun fold_map2 _ [] [] acc = ([], acc)
+  | fold_map2 f (x1::x1s) (x2::x2s) acc =
+    let
+      val (x, acc') = f x1 x2 acc;
+      val (xs, acc'') = fold_map2 f x1s x2s acc';
+    in (x :: xs, acc'') end
+  | fold_map2 _ _ _ _ = raise ListPair.UnequalLengths;
+
+fun fold_map3 _ [] [] [] acc = ([], acc)
+  | fold_map3 f (x1::x1s) (x2::x2s) (x3::x3s) acc =
+    let
+      val (x, acc') = f x1 x2 x3 acc;
+      val (xs, acc'') = fold_map3 f x1s x2s x3s acc';
+    in (x :: xs, acc'') end
+  | fold_map3 _ _ _ _ _ = raise ListPair.UnequalLengths;
+
+fun seq_conds f n k xs =
+  if k = n then
+    map (f false) (take (k - 1) xs)
+  else
+    let val (negs, pos) = split_last (take k xs) in
+      map (f false) negs @ [f true pos]
+    end;
+
+fun transpose [] = []
+  | transpose ([] :: xss) = transpose xss
+  | transpose xss = map hd xss :: transpose (map tl xss);
+
+fun pad_list x n xs = xs @ replicate (n - length xs) x;
+
+fun splice xs ys = flat (map2 (fn x => fn y => [x, y]) xs ys);
+
+fun permute_like eq xs xs' ys = map (nth ys o (fn y => find_index (fn x => eq (x, y)) xs)) xs';
+
+fun mk_names n x = if n = 1 then [x] else map (fn i => x ^ string_of_int i) (1 upto n);
+fun mk_fresh_names ctxt = (fn xs => Variable.variant_fixes xs ctxt) oo mk_names;
+
+val mk_TFrees' = apfst (map TFree) oo Variable.invent_types;
+
+fun mk_TFrees n = mk_TFrees' (replicate n HOLogic.typeS);
+
+fun mk_Frees' x Ts ctxt = mk_fresh_names ctxt (length Ts) x |>> (fn xs => `(map Free) (xs ~~ Ts));
+fun mk_Freess' x Tss = fold_map2 mk_Frees' (mk_names (length Tss) x) Tss #>> split_list;
+
+fun mk_Frees x Ts ctxt = mk_fresh_names ctxt (length Ts) x |>> (fn xs => map2 (curry Free) xs Ts);
+fun mk_Freess x Tss = fold_map2 mk_Frees (mk_names (length Tss) x) Tss;
+
+fun resort_tfree S (TFree (s, _)) = TFree (s, S);
+
+fun ensure_prefix pre s = s |> not (String.isPrefix pre s) ? prefix pre;
+
+fun variant_types ss Ss ctxt =
+  let
+    val (tfrees, _) =
+      fold_map2 (fn s => fn S => Name.variant s #> apfst (rpair S)) ss Ss (Variable.names_of ctxt);
+    val ctxt' = fold (Variable.declare_constraints o Logic.mk_type o TFree) tfrees ctxt;
+  in (tfrees, ctxt') end;
+
+fun variant_tfrees ss =
+  apfst (map TFree) o
+    variant_types (map (ensure_prefix "'") ss) (replicate (length ss) HOLogic.typeS);
+
+fun mk_predT Ts = Ts ---> HOLogic.boolT;
+fun mk_pred1T T = mk_predT [T];
+
+fun mk_disjIN 1 1 = @{thm TrueE[OF TrueI]}
+  | mk_disjIN _ 1 = disjI1
+  | mk_disjIN 2 2 = disjI2
+  | mk_disjIN n m = (mk_disjIN (n - 1) (m - 1)) RS disjI2;
+
+fun mk_unabs_def n = funpow n (fn thm => thm RS fun_cong);
+
+fun mk_IfN _ _ [t] = t
+  | mk_IfN T (c :: cs) (t :: ts) =
+    Const (@{const_name If}, HOLogic.boolT --> T --> T --> T) $ c $ t $ mk_IfN T cs ts;
+
+val mk_Trueprop_eq = HOLogic.mk_Trueprop o HOLogic.mk_eq;
+
+fun rapp u t = betapply (t, u);
+
+fun list_quant_free quant_const =
+  fold_rev (fn free => fn P =>
+    let val (x, T) = Term.dest_Free free;
+    in quant_const T $ Term.absfree (x, T) P end);
+
+val list_all_free = list_quant_free HOLogic.all_const;
+val list_exists_free = list_quant_free HOLogic.exists_const;
+
+fun fo_match ctxt t pat =
+  let val thy = Proof_Context.theory_of ctxt in
+    Pattern.first_order_match thy (pat, t) (Vartab.empty, Vartab.empty)
+  end;
+
+fun unfold_thms ctxt thms = Local_Defs.unfold ctxt (distinct Thm.eq_thm_prop thms);
+
+(*stolen from ~~/src/HOL/Tools/SMT/smt_utils.ML*)
+fun certifyT ctxt = Thm.ctyp_of (Proof_Context.theory_of ctxt);
+fun certify ctxt = Thm.cterm_of (Proof_Context.theory_of ctxt);
+
+(* The standard binding stands for a name generated following the canonical convention (e.g.,
+   "is_Nil" from "Nil"). In contrast, the empty binding is either the standard binding or no
+   binding at all, depending on the context. *)
+val standard_binding = @{binding _};
+val equal_binding = @{binding "="};
+
+val parse_binding = Parse.binding || @{keyword "="} >> K equal_binding;
+
+fun ss_only thms ctxt = clear_simpset (put_simpset HOL_basic_ss ctxt) addsimps thms;
+
+end;