move all bifinite class instances to Bifinite.thy
authorhuffman
Sat, 09 Oct 2010 07:24:49 -0700
changeset 39987 8c2f449af35a
parent 39986 38677db30cad
child 39988 a4b2971952f4
move all bifinite class instances to Bifinite.thy
src/HOLCF/Bifinite.thy
src/HOLCF/Cprod.thy
src/HOLCF/Lift.thy
src/HOLCF/Representable.thy
src/HOLCF/Sprod.thy
src/HOLCF/Ssum.thy
src/HOLCF/Up.thy
--- a/src/HOLCF/Bifinite.thy	Fri Oct 08 07:39:50 2010 -0700
+++ b/src/HOLCF/Bifinite.thy	Sat Oct 09 07:24:49 2010 -0700
@@ -5,7 +5,7 @@
 header {* Bifinite domains *}
 
 theory Bifinite
-imports Algebraic
+imports Algebraic Cprod Sprod Ssum Up Lift One Tr
 begin
 
 subsection {* Class of bifinite domains *}
@@ -144,7 +144,7 @@
                    Abs_fin_defl_inverse [unfolded mem_Collect_eq, OF 1])
 qed
 
-subsection {* Instance for universal domain type *}
+subsection {* The universal domain is bifinite *}
 
 instantiation udom :: bifinite
 begin
@@ -178,7 +178,7 @@
 
 end
 
-subsection {* Instance for continuous function space *}
+subsection {* Continuous function space is a bifinite domain *}
 
 definition
   cfun_approx :: "nat \<Rightarrow> (udom \<rightarrow> udom) \<rightarrow> (udom \<rightarrow> udom)"
@@ -237,4 +237,324 @@
   "SFP('a::bifinite \<rightarrow> 'b::bifinite) = cfun_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
 by (rule sfp_cfun_def)
 
+subsection {* Cartesian product is a bifinite domain *}
+
+definition
+  prod_approx :: "nat \<Rightarrow> udom \<times> udom \<rightarrow> udom \<times> udom"
+where
+  "prod_approx = (\<lambda>i. cprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+
+lemma prod_approx: "approx_chain prod_approx"
+proof (rule approx_chain.intro)
+  show "chain (\<lambda>i. prod_approx i)"
+    unfolding prod_approx_def by simp
+  show "(\<Squnion>i. prod_approx i) = ID"
+    unfolding prod_approx_def
+    by (simp add: lub_distribs cprod_map_ID)
+  show "\<And>i. finite_deflation (prod_approx i)"
+    unfolding prod_approx_def
+    by (intro finite_deflation_cprod_map finite_deflation_udom_approx)
+qed
+
+definition prod_sfp :: "sfp \<rightarrow> sfp \<rightarrow> sfp"
+where "prod_sfp = sfp_fun2 prod_approx cprod_map"
+
+lemma cast_prod_sfp:
+  "cast\<cdot>(prod_sfp\<cdot>A\<cdot>B) = udom_emb prod_approx oo
+    cprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj prod_approx"
+unfolding prod_sfp_def
+apply (rule cast_sfp_fun2 [OF prod_approx])
+apply (erule (1) finite_deflation_cprod_map)
+done
+
+instantiation prod :: (bifinite, bifinite) bifinite
+begin
+
+definition
+  "emb = udom_emb prod_approx oo cprod_map\<cdot>emb\<cdot>emb"
+
+definition
+  "prj = cprod_map\<cdot>prj\<cdot>prj oo udom_prj prod_approx"
+
+definition
+  "sfp (t::('a \<times> 'b) itself) = prod_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
+
+instance proof
+  show "ep_pair emb (prj :: udom \<rightarrow> 'a \<times> 'b)"
+    unfolding emb_prod_def prj_prod_def
+    using ep_pair_udom [OF prod_approx]
+    by (intro ep_pair_comp ep_pair_cprod_map ep_pair_emb_prj)
+next
+  show "cast\<cdot>SFP('a \<times> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<times> 'b)"
+    unfolding emb_prod_def prj_prod_def sfp_prod_def cast_prod_sfp
+    by (simp add: cast_SFP oo_def expand_cfun_eq cprod_map_map)
+qed
+
 end
+
+lemma SFP_prod:
+  "SFP('a::bifinite \<times> 'b::bifinite) = prod_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
+by (rule sfp_prod_def)
+
+subsection {* Strict product is a bifinite domain *}
+
+definition
+  sprod_approx :: "nat \<Rightarrow> udom \<otimes> udom \<rightarrow> udom \<otimes> udom"
+where
+  "sprod_approx = (\<lambda>i. sprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+
+lemma sprod_approx: "approx_chain sprod_approx"
+proof (rule approx_chain.intro)
+  show "chain (\<lambda>i. sprod_approx i)"
+    unfolding sprod_approx_def by simp
+  show "(\<Squnion>i. sprod_approx i) = ID"
+    unfolding sprod_approx_def
+    by (simp add: lub_distribs sprod_map_ID)
+  show "\<And>i. finite_deflation (sprod_approx i)"
+    unfolding sprod_approx_def
+    by (intro finite_deflation_sprod_map finite_deflation_udom_approx)
+qed
+
+definition sprod_sfp :: "sfp \<rightarrow> sfp \<rightarrow> sfp"
+where "sprod_sfp = sfp_fun2 sprod_approx sprod_map"
+
+lemma cast_sprod_sfp:
+  "cast\<cdot>(sprod_sfp\<cdot>A\<cdot>B) =
+    udom_emb sprod_approx oo
+      sprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo
+        udom_prj sprod_approx"
+unfolding sprod_sfp_def
+apply (rule cast_sfp_fun2 [OF sprod_approx])
+apply (erule (1) finite_deflation_sprod_map)
+done
+
+instantiation sprod :: (bifinite, bifinite) bifinite
+begin
+
+definition
+  "emb = udom_emb sprod_approx oo sprod_map\<cdot>emb\<cdot>emb"
+
+definition
+  "prj = sprod_map\<cdot>prj\<cdot>prj oo udom_prj sprod_approx"
+
+definition
+  "sfp (t::('a \<otimes> 'b) itself) = sprod_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
+
+instance proof
+  show "ep_pair emb (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
+    unfolding emb_sprod_def prj_sprod_def
+    using ep_pair_udom [OF sprod_approx]
+    by (intro ep_pair_comp ep_pair_sprod_map ep_pair_emb_prj)
+next
+  show "cast\<cdot>SFP('a \<otimes> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
+    unfolding emb_sprod_def prj_sprod_def sfp_sprod_def cast_sprod_sfp
+    by (simp add: cast_SFP oo_def expand_cfun_eq sprod_map_map)
+qed
+
+end
+
+lemma SFP_sprod:
+  "SFP('a::bifinite \<otimes> 'b::bifinite) = sprod_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
+by (rule sfp_sprod_def)
+
+subsection {* Lifted cpo is a bifinite domain *}
+
+definition u_approx :: "nat \<Rightarrow> udom\<^sub>\<bottom> \<rightarrow> udom\<^sub>\<bottom>"
+where "u_approx = (\<lambda>i. u_map\<cdot>(udom_approx i))"
+
+lemma u_approx: "approx_chain u_approx"
+proof (rule approx_chain.intro)
+  show "chain (\<lambda>i. u_approx i)"
+    unfolding u_approx_def by simp
+  show "(\<Squnion>i. u_approx i) = ID"
+    unfolding u_approx_def
+    by (simp add: lub_distribs u_map_ID)
+  show "\<And>i. finite_deflation (u_approx i)"
+    unfolding u_approx_def
+    by (intro finite_deflation_u_map finite_deflation_udom_approx)
+qed
+
+definition u_sfp :: "sfp \<rightarrow> sfp"
+where "u_sfp = sfp_fun1 u_approx u_map"
+
+lemma cast_u_sfp:
+  "cast\<cdot>(u_sfp\<cdot>A) =
+    udom_emb u_approx oo u_map\<cdot>(cast\<cdot>A) oo udom_prj u_approx"
+unfolding u_sfp_def
+apply (rule cast_sfp_fun1 [OF u_approx])
+apply (erule finite_deflation_u_map)
+done
+
+instantiation u :: (bifinite) bifinite
+begin
+
+definition
+  "emb = udom_emb u_approx oo u_map\<cdot>emb"
+
+definition
+  "prj = u_map\<cdot>prj oo udom_prj u_approx"
+
+definition
+  "sfp (t::'a u itself) = u_sfp\<cdot>SFP('a)"
+
+instance proof
+  show "ep_pair emb (prj :: udom \<rightarrow> 'a u)"
+    unfolding emb_u_def prj_u_def
+    using ep_pair_udom [OF u_approx]
+    by (intro ep_pair_comp ep_pair_u_map ep_pair_emb_prj)
+next
+  show "cast\<cdot>SFP('a u) = emb oo (prj :: udom \<rightarrow> 'a u)"
+    unfolding emb_u_def prj_u_def sfp_u_def cast_u_sfp
+    by (simp add: cast_SFP oo_def expand_cfun_eq u_map_map)
+qed
+
+end
+
+lemma SFP_u: "SFP('a::bifinite u) = u_sfp\<cdot>SFP('a)"
+by (rule sfp_u_def)
+
+subsection {* Lifted countable types are bifinite domains *}
+
+definition
+  lift_approx :: "nat \<Rightarrow> 'a::countable lift \<rightarrow> 'a lift"
+where
+  "lift_approx = (\<lambda>i. FLIFT x. if to_nat x < i then Def x else \<bottom>)"
+
+lemma chain_lift_approx [simp]: "chain lift_approx"
+  unfolding lift_approx_def
+  by (rule chainI, simp add: FLIFT_mono)
+
+lemma lub_lift_approx [simp]: "(\<Squnion>i. lift_approx i) = ID"
+apply (rule ext_cfun)
+apply (simp add: contlub_cfun_fun)
+apply (simp add: lift_approx_def)
+apply (case_tac x, simp)
+apply (rule thelubI)
+apply (rule is_lubI)
+apply (rule ub_rangeI, simp)
+apply (drule ub_rangeD)
+apply (erule rev_below_trans)
+apply simp
+apply (rule lessI)
+done
+
+lemma finite_deflation_lift_approx: "finite_deflation (lift_approx i)"
+proof
+  fix x
+  show "lift_approx i\<cdot>x \<sqsubseteq> x"
+    unfolding lift_approx_def
+    by (cases x, simp, simp)
+  show "lift_approx i\<cdot>(lift_approx i\<cdot>x) = lift_approx i\<cdot>x"
+    unfolding lift_approx_def
+    by (cases x, simp, simp)
+  show "finite {x::'a lift. lift_approx i\<cdot>x = x}"
+  proof (rule finite_subset)
+    let ?S = "insert (\<bottom>::'a lift) (Def ` to_nat -` {..<i})"
+    show "{x::'a lift. lift_approx i\<cdot>x = x} \<subseteq> ?S"
+      unfolding lift_approx_def
+      by (rule subsetI, case_tac x, simp, simp split: split_if_asm)
+    show "finite ?S"
+      by (simp add: finite_vimageI)
+  qed
+qed
+
+lemma lift_approx: "approx_chain lift_approx"
+using chain_lift_approx lub_lift_approx finite_deflation_lift_approx
+by (rule approx_chain.intro)
+
+instantiation lift :: (countable) bifinite
+begin
+
+definition
+  "emb = udom_emb lift_approx"
+
+definition
+  "prj = udom_prj lift_approx"
+
+definition
+  "sfp (t::'a lift itself) =
+    (\<Squnion>i. sfp_principal (Abs_fin_defl (emb oo lift_approx i oo prj)))"
+
+instance proof
+  show ep: "ep_pair emb (prj :: udom \<rightarrow> 'a lift)"
+    unfolding emb_lift_def prj_lift_def
+    by (rule ep_pair_udom [OF lift_approx])
+  show "cast\<cdot>SFP('a lift) = emb oo (prj :: udom \<rightarrow> 'a lift)"
+    unfolding sfp_lift_def
+    apply (subst contlub_cfun_arg)
+    apply (rule chainI)
+    apply (rule sfp.principal_mono)
+    apply (simp add: below_fin_defl_def)
+    apply (simp add: Abs_fin_defl_inverse finite_deflation_lift_approx
+                     ep_pair.finite_deflation_e_d_p [OF ep])
+    apply (intro monofun_cfun below_refl)
+    apply (rule chainE)
+    apply (rule chain_lift_approx)
+    apply (subst cast_sfp_principal)
+    apply (simp add: Abs_fin_defl_inverse finite_deflation_lift_approx
+                     ep_pair.finite_deflation_e_d_p [OF ep] lub_distribs)
+    done
+qed
+
+end
+
+subsection {* Strict sum is a bifinite domain *}
+
+definition
+  ssum_approx :: "nat \<Rightarrow> udom \<oplus> udom \<rightarrow> udom \<oplus> udom"
+where
+  "ssum_approx = (\<lambda>i. ssum_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
+
+lemma ssum_approx: "approx_chain ssum_approx"
+proof (rule approx_chain.intro)
+  show "chain (\<lambda>i. ssum_approx i)"
+    unfolding ssum_approx_def by simp
+  show "(\<Squnion>i. ssum_approx i) = ID"
+    unfolding ssum_approx_def
+    by (simp add: lub_distribs ssum_map_ID)
+  show "\<And>i. finite_deflation (ssum_approx i)"
+    unfolding ssum_approx_def
+    by (intro finite_deflation_ssum_map finite_deflation_udom_approx)
+qed
+
+definition ssum_sfp :: "sfp \<rightarrow> sfp \<rightarrow> sfp"
+where "ssum_sfp = sfp_fun2 ssum_approx ssum_map"
+
+lemma cast_ssum_sfp:
+  "cast\<cdot>(ssum_sfp\<cdot>A\<cdot>B) =
+    udom_emb ssum_approx oo ssum_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj ssum_approx"
+unfolding ssum_sfp_def
+apply (rule cast_sfp_fun2 [OF ssum_approx])
+apply (erule (1) finite_deflation_ssum_map)
+done
+
+instantiation ssum :: (bifinite, bifinite) bifinite
+begin
+
+definition
+  "emb = udom_emb ssum_approx oo ssum_map\<cdot>emb\<cdot>emb"
+
+definition
+  "prj = ssum_map\<cdot>prj\<cdot>prj oo udom_prj ssum_approx"
+
+definition
+  "sfp (t::('a \<oplus> 'b) itself) = ssum_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
+
+instance proof
+  show "ep_pair emb (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
+    unfolding emb_ssum_def prj_ssum_def
+    using ep_pair_udom [OF ssum_approx]
+    by (intro ep_pair_comp ep_pair_ssum_map ep_pair_emb_prj)
+next
+  show "cast\<cdot>SFP('a \<oplus> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
+    unfolding emb_ssum_def prj_ssum_def sfp_ssum_def cast_ssum_sfp
+    by (simp add: cast_SFP oo_def expand_cfun_eq ssum_map_map)
+qed
+
+end
+
+lemma SFP_ssum:
+  "SFP('a::bifinite \<oplus> 'b::bifinite) = ssum_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
+by (rule sfp_ssum_def)
+
+end
--- a/src/HOLCF/Cprod.thy	Fri Oct 08 07:39:50 2010 -0700
+++ b/src/HOLCF/Cprod.thy	Sat Oct 09 07:24:49 2010 -0700
@@ -5,7 +5,7 @@
 header {* The cpo of cartesian products *}
 
 theory Cprod
-imports Bifinite
+imports Deflation
 begin
 
 default_sort cpo
@@ -97,63 +97,4 @@
     by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
 qed
 
-subsection {* Cartesian product is a bifinite domain *}
-
-definition
-  prod_approx :: "nat \<Rightarrow> udom \<times> udom \<rightarrow> udom \<times> udom"
-where
-  "prod_approx = (\<lambda>i. cprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
-
-lemma prod_approx: "approx_chain prod_approx"
-proof (rule approx_chain.intro)
-  show "chain (\<lambda>i. prod_approx i)"
-    unfolding prod_approx_def by simp
-  show "(\<Squnion>i. prod_approx i) = ID"
-    unfolding prod_approx_def
-    by (simp add: lub_distribs cprod_map_ID)
-  show "\<And>i. finite_deflation (prod_approx i)"
-    unfolding prod_approx_def
-    by (intro finite_deflation_cprod_map finite_deflation_udom_approx)
-qed
-
-definition prod_sfp :: "sfp \<rightarrow> sfp \<rightarrow> sfp"
-where "prod_sfp = sfp_fun2 prod_approx cprod_map"
-
-lemma cast_prod_sfp:
-  "cast\<cdot>(prod_sfp\<cdot>A\<cdot>B) = udom_emb prod_approx oo
-    cprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj prod_approx"
-unfolding prod_sfp_def
-apply (rule cast_sfp_fun2 [OF prod_approx])
-apply (erule (1) finite_deflation_cprod_map)
-done
-
-instantiation prod :: (bifinite, bifinite) bifinite
-begin
-
-definition
-  "emb = udom_emb prod_approx oo cprod_map\<cdot>emb\<cdot>emb"
-
-definition
-  "prj = cprod_map\<cdot>prj\<cdot>prj oo udom_prj prod_approx"
-
-definition
-  "sfp (t::('a \<times> 'b) itself) = prod_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
-
-instance proof
-  show "ep_pair emb (prj :: udom \<rightarrow> 'a \<times> 'b)"
-    unfolding emb_prod_def prj_prod_def
-    using ep_pair_udom [OF prod_approx]
-    by (intro ep_pair_comp ep_pair_cprod_map ep_pair_emb_prj)
-next
-  show "cast\<cdot>SFP('a \<times> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<times> 'b)"
-    unfolding emb_prod_def prj_prod_def sfp_prod_def cast_prod_sfp
-    by (simp add: cast_SFP oo_def expand_cfun_eq cprod_map_map)
-qed
-
 end
-
-lemma SFP_prod:
-  "SFP('a::bifinite \<times> 'b::bifinite) = prod_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
-by (rule sfp_prod_def)
-
-end
--- a/src/HOLCF/Lift.thy	Fri Oct 08 07:39:50 2010 -0700
+++ b/src/HOLCF/Lift.thy	Sat Oct 09 07:24:49 2010 -0700
@@ -170,90 +170,4 @@
 lemma flift2_defined_iff [simp]: "(flift2 f\<cdot>x = \<bottom>) = (x = \<bottom>)"
 by (cases x, simp_all)
 
-
-subsection {* Lifted countable types are bifinite domains *}
-
-definition
-  lift_approx :: "nat \<Rightarrow> 'a::countable lift \<rightarrow> 'a lift"
-where
-  "lift_approx = (\<lambda>i. FLIFT x. if to_nat x < i then Def x else \<bottom>)"
-
-lemma chain_lift_approx [simp]: "chain lift_approx"
-  unfolding lift_approx_def
-  by (rule chainI, simp add: FLIFT_mono)
-
-lemma lub_lift_approx [simp]: "(\<Squnion>i. lift_approx i) = ID"
-apply (rule ext_cfun)
-apply (simp add: contlub_cfun_fun)
-apply (simp add: lift_approx_def)
-apply (case_tac x, simp)
-apply (rule thelubI)
-apply (rule is_lubI)
-apply (rule ub_rangeI, simp)
-apply (drule ub_rangeD)
-apply (erule rev_below_trans)
-apply simp
-apply (rule lessI)
-done
-
-lemma finite_deflation_lift_approx: "finite_deflation (lift_approx i)"
-proof
-  fix x
-  show "lift_approx i\<cdot>x \<sqsubseteq> x"
-    unfolding lift_approx_def
-    by (cases x, simp, simp)
-  show "lift_approx i\<cdot>(lift_approx i\<cdot>x) = lift_approx i\<cdot>x"
-    unfolding lift_approx_def
-    by (cases x, simp, simp)
-  show "finite {x::'a lift. lift_approx i\<cdot>x = x}"
-  proof (rule finite_subset)
-    let ?S = "insert (\<bottom>::'a lift) (Def ` to_nat -` {..<i})"
-    show "{x::'a lift. lift_approx i\<cdot>x = x} \<subseteq> ?S"
-      unfolding lift_approx_def
-      by (rule subsetI, case_tac x, simp, simp split: split_if_asm)
-    show "finite ?S"
-      by (simp add: finite_vimageI)
-  qed
-qed
-
-lemma lift_approx: "approx_chain lift_approx"
-using chain_lift_approx lub_lift_approx finite_deflation_lift_approx
-by (rule approx_chain.intro)
-
-instantiation lift :: (countable) bifinite
-begin
-
-definition
-  "emb = udom_emb lift_approx"
-
-definition
-  "prj = udom_prj lift_approx"
-
-definition
-  "sfp (t::'a lift itself) =
-    (\<Squnion>i. sfp_principal (Abs_fin_defl (emb oo lift_approx i oo prj)))"
-
-instance proof
-  show ep: "ep_pair emb (prj :: udom \<rightarrow> 'a lift)"
-    unfolding emb_lift_def prj_lift_def
-    by (rule ep_pair_udom [OF lift_approx])
-  show "cast\<cdot>SFP('a lift) = emb oo (prj :: udom \<rightarrow> 'a lift)"
-    unfolding sfp_lift_def
-    apply (subst contlub_cfun_arg)
-    apply (rule chainI)
-    apply (rule sfp.principal_mono)
-    apply (simp add: below_fin_defl_def)
-    apply (simp add: Abs_fin_defl_inverse finite_deflation_lift_approx
-                     ep_pair.finite_deflation_e_d_p [OF ep])
-    apply (intro monofun_cfun below_refl)
-    apply (rule chainE)
-    apply (rule chain_lift_approx)
-    apply (subst cast_sfp_principal)
-    apply (simp add: Abs_fin_defl_inverse finite_deflation_lift_approx
-                     ep_pair.finite_deflation_e_d_p [OF ep] lub_distribs)
-    done
-qed
-
 end
-
-end
--- a/src/HOLCF/Representable.thy	Fri Oct 08 07:39:50 2010 -0700
+++ b/src/HOLCF/Representable.thy	Sat Oct 09 07:24:49 2010 -0700
@@ -5,7 +5,7 @@
 header {* Representable Types *}
 
 theory Representable
-imports Algebraic Universal Ssum One Fixrec Domain_Aux
+imports Algebraic Bifinite Universal Ssum One Fixrec Domain_Aux
 uses
   ("Tools/repdef.ML")
   ("Tools/Domain/domain_isomorphism.ML")
--- a/src/HOLCF/Sprod.thy	Fri Oct 08 07:39:50 2010 -0700
+++ b/src/HOLCF/Sprod.thy	Sat Oct 09 07:24:49 2010 -0700
@@ -5,7 +5,7 @@
 header {* The type of strict products *}
 
 theory Sprod
-imports Bifinite
+imports Deflation
 begin
 
 default_sort pcpo
@@ -310,65 +310,4 @@
     by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
 qed
 
-subsection {* Strict product is a bifinite domain *}
-
-definition
-  sprod_approx :: "nat \<Rightarrow> udom \<otimes> udom \<rightarrow> udom \<otimes> udom"
-where
-  "sprod_approx = (\<lambda>i. sprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
-
-lemma sprod_approx: "approx_chain sprod_approx"
-proof (rule approx_chain.intro)
-  show "chain (\<lambda>i. sprod_approx i)"
-    unfolding sprod_approx_def by simp
-  show "(\<Squnion>i. sprod_approx i) = ID"
-    unfolding sprod_approx_def
-    by (simp add: lub_distribs sprod_map_ID)
-  show "\<And>i. finite_deflation (sprod_approx i)"
-    unfolding sprod_approx_def
-    by (intro finite_deflation_sprod_map finite_deflation_udom_approx)
-qed
-
-definition sprod_sfp :: "sfp \<rightarrow> sfp \<rightarrow> sfp"
-where "sprod_sfp = sfp_fun2 sprod_approx sprod_map"
-
-lemma cast_sprod_sfp:
-  "cast\<cdot>(sprod_sfp\<cdot>A\<cdot>B) =
-    udom_emb sprod_approx oo
-      sprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo
-        udom_prj sprod_approx"
-unfolding sprod_sfp_def
-apply (rule cast_sfp_fun2 [OF sprod_approx])
-apply (erule (1) finite_deflation_sprod_map)
-done
-
-instantiation sprod :: (bifinite, bifinite) bifinite
-begin
-
-definition
-  "emb = udom_emb sprod_approx oo sprod_map\<cdot>emb\<cdot>emb"
-
-definition
-  "prj = sprod_map\<cdot>prj\<cdot>prj oo udom_prj sprod_approx"
-
-definition
-  "sfp (t::('a \<otimes> 'b) itself) = sprod_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
-
-instance proof
-  show "ep_pair emb (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
-    unfolding emb_sprod_def prj_sprod_def
-    using ep_pair_udom [OF sprod_approx]
-    by (intro ep_pair_comp ep_pair_sprod_map ep_pair_emb_prj)
-next
-  show "cast\<cdot>SFP('a \<otimes> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
-    unfolding emb_sprod_def prj_sprod_def sfp_sprod_def cast_sprod_sfp
-    by (simp add: cast_SFP oo_def expand_cfun_eq sprod_map_map)
-qed
-
 end
-
-lemma SFP_sprod:
-  "SFP('a::bifinite \<otimes> 'b::bifinite) = sprod_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
-by (rule sfp_sprod_def)
-
-end
--- a/src/HOLCF/Ssum.thy	Fri Oct 08 07:39:50 2010 -0700
+++ b/src/HOLCF/Ssum.thy	Sat Oct 09 07:24:49 2010 -0700
@@ -295,63 +295,4 @@
     by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
 qed
 
-subsection {* Strict sum is a bifinite domain *}
-
-definition
-  ssum_approx :: "nat \<Rightarrow> udom \<oplus> udom \<rightarrow> udom \<oplus> udom"
-where
-  "ssum_approx = (\<lambda>i. ssum_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
-
-lemma ssum_approx: "approx_chain ssum_approx"
-proof (rule approx_chain.intro)
-  show "chain (\<lambda>i. ssum_approx i)"
-    unfolding ssum_approx_def by simp
-  show "(\<Squnion>i. ssum_approx i) = ID"
-    unfolding ssum_approx_def
-    by (simp add: lub_distribs ssum_map_ID)
-  show "\<And>i. finite_deflation (ssum_approx i)"
-    unfolding ssum_approx_def
-    by (intro finite_deflation_ssum_map finite_deflation_udom_approx)
-qed
-
-definition ssum_sfp :: "sfp \<rightarrow> sfp \<rightarrow> sfp"
-where "ssum_sfp = sfp_fun2 ssum_approx ssum_map"
-
-lemma cast_ssum_sfp:
-  "cast\<cdot>(ssum_sfp\<cdot>A\<cdot>B) =
-    udom_emb ssum_approx oo ssum_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj ssum_approx"
-unfolding ssum_sfp_def
-apply (rule cast_sfp_fun2 [OF ssum_approx])
-apply (erule (1) finite_deflation_ssum_map)
-done
-
-instantiation ssum :: (bifinite, bifinite) bifinite
-begin
-
-definition
-  "emb = udom_emb ssum_approx oo ssum_map\<cdot>emb\<cdot>emb"
-
-definition
-  "prj = ssum_map\<cdot>prj\<cdot>prj oo udom_prj ssum_approx"
-
-definition
-  "sfp (t::('a \<oplus> 'b) itself) = ssum_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
-
-instance proof
-  show "ep_pair emb (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
-    unfolding emb_ssum_def prj_ssum_def
-    using ep_pair_udom [OF ssum_approx]
-    by (intro ep_pair_comp ep_pair_ssum_map ep_pair_emb_prj)
-next
-  show "cast\<cdot>SFP('a \<oplus> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
-    unfolding emb_ssum_def prj_ssum_def sfp_ssum_def cast_ssum_sfp
-    by (simp add: cast_SFP oo_def expand_cfun_eq ssum_map_map)
-qed
-
 end
-
-lemma SFP_ssum:
-  "SFP('a::bifinite \<oplus> 'b::bifinite) = ssum_sfp\<cdot>SFP('a)\<cdot>SFP('b)"
-by (rule sfp_ssum_def)
-
-end
--- a/src/HOLCF/Up.thy	Fri Oct 08 07:39:50 2010 -0700
+++ b/src/HOLCF/Up.thy	Sat Oct 09 07:24:49 2010 -0700
@@ -5,7 +5,7 @@
 header {* The type of lifted values *}
 
 theory Up
-imports Bifinite
+imports Deflation
 begin
 
 default_sort cpo
@@ -332,60 +332,4 @@
     by (rule finite_subset, simp add: d.finite_fixes)
 qed
 
-subsection {* Lifted cpo is a bifinite domain *}
-
-definition u_approx :: "nat \<Rightarrow> udom\<^sub>\<bottom> \<rightarrow> udom\<^sub>\<bottom>"
-where "u_approx = (\<lambda>i. u_map\<cdot>(udom_approx i))"
-
-lemma u_approx: "approx_chain u_approx"
-proof (rule approx_chain.intro)
-  show "chain (\<lambda>i. u_approx i)"
-    unfolding u_approx_def by simp
-  show "(\<Squnion>i. u_approx i) = ID"
-    unfolding u_approx_def
-    by (simp add: lub_distribs u_map_ID)
-  show "\<And>i. finite_deflation (u_approx i)"
-    unfolding u_approx_def
-    by (intro finite_deflation_u_map finite_deflation_udom_approx)
-qed
-
-definition u_sfp :: "sfp \<rightarrow> sfp"
-where "u_sfp = sfp_fun1 u_approx u_map"
-
-lemma cast_u_sfp:
-  "cast\<cdot>(u_sfp\<cdot>A) =
-    udom_emb u_approx oo u_map\<cdot>(cast\<cdot>A) oo udom_prj u_approx"
-unfolding u_sfp_def
-apply (rule cast_sfp_fun1 [OF u_approx])
-apply (erule finite_deflation_u_map)
-done
-
-instantiation u :: (bifinite) bifinite
-begin
-
-definition
-  "emb = udom_emb u_approx oo u_map\<cdot>emb"
-
-definition
-  "prj = u_map\<cdot>prj oo udom_prj u_approx"
-
-definition
-  "sfp (t::'a u itself) = u_sfp\<cdot>SFP('a)"
-
-instance proof
-  show "ep_pair emb (prj :: udom \<rightarrow> 'a u)"
-    unfolding emb_u_def prj_u_def
-    using ep_pair_udom [OF u_approx]
-    by (intro ep_pair_comp ep_pair_u_map ep_pair_emb_prj)
-next
-  show "cast\<cdot>SFP('a u) = emb oo (prj :: udom \<rightarrow> 'a u)"
-    unfolding emb_u_def prj_u_def sfp_u_def cast_u_sfp
-    by (simp add: cast_SFP oo_def expand_cfun_eq u_map_map)
-qed
-
 end
-
-lemma SFP_u: "SFP('a::bifinite u) = u_sfp\<cdot>SFP('a)"
-by (rule sfp_u_def)
-
-end