--- a/doc-src/Logics/FOL.tex Wed May 07 17:16:18 1997 +0200
+++ b/doc-src/Logics/FOL.tex Wed May 07 17:16:36 1997 +0200
@@ -196,11 +196,6 @@
\FOL{} instantiates most of Isabelle's generic packages.
\begin{itemize}
\item
-Because it includes a general substitution rule, \FOL{} instantiates the
-tactic \ttindex{hyp_subst_tac}, which substitutes for an equality
-throughout a subgoal and its hypotheses.
-(See {\tt FOL/ROOT.ML} for details.)
-\item
It instantiates the simplifier. Both equality ($=$) and the biconditional
($\bimp$) may be used for rewriting. Tactics such as {\tt Asm_simp_tac} and
{\tt Full_simp_tac} use the default simpset ({\tt!simpset}), which works for
@@ -215,8 +210,19 @@
\item
It instantiates the classical reasoner. See~\S\ref{fol-cla-prover}
for details.
+
+\item \FOL{} provides the tactic \ttindex{hyp_subst_tac}, which substitutes
+ for an equality throughout a subgoal and its hypotheses. This tactic uses
+ \FOL's general substitution rule.
\end{itemize}
+\begin{warn}\index{simplification!of conjunctions}%
+ Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous. The
+ left part of a conjunction helps in simplifying the right part. This effect
+ is not available by default: it can be slow. It can be obtained by
+ including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$.
+\end{warn}
+
\section{Intuitionistic proof procedures} \label{fol-int-prover}
Implication elimination (the rules~{\tt mp} and~{\tt impE}) pose
@@ -331,7 +337,7 @@
well as classical elimination rules for~$\imp$ and~$\bimp$, and the swap
rule (see Fig.\ts\ref{fol-cla-derived}).
-The classical reasoner is installed. Tactics such as {\tt Fast_tac} and {\tt
+The classical reasoner is installed. Tactics such as {\tt Blast_tac} and {\tt
Best_tac} use the default claset ({\tt!claset}), which works for most
purposes. Named clasets include \ttindexbold{prop_cs}, which includes the
propositional rules, and \ttindexbold{FOL_cs}, which also includes quantifier
@@ -649,7 +655,7 @@
\end{ttbox}
The derivations of the introduction and elimination rules demonstrate the
methods for rewriting with definitions. Classical reasoning is required,
-so we use {\tt fast_tac}.
+so we use {\tt blast_tac}.
\subsection{Deriving the introduction rule}
@@ -665,10 +671,10 @@
{\out 1. P & Q | ~ P & R}
\end{ttbox}
The premises (bound to the {\ML} variable {\tt prems}) are passed as
-introduction rules to \ttindex{fast_tac}. Remember that {\tt!claset} refers
+introduction rules to \ttindex{blast_tac}. Remember that {\tt!claset} refers
to the default classical set.
\begin{ttbox}
-by (fast_tac (!claset addIs prems) 1);
+by (blast_tac (!claset addIs prems) 1);
{\out Level 1}
{\out if(P,Q,R)}
{\out No subgoals!}
@@ -689,14 +695,14 @@
The major premise contains an occurrence of~$if$, but the version returned
by \ttindex{goalw} (and bound to the {\ML} variable~{\tt major}) has the
definition expanded. Now \ttindex{cut_facts_tac} inserts~{\tt major} as an
-assumption in the subgoal, so that \ttindex{fast_tac} can break it down.
+assumption in the subgoal, so that \ttindex{blast_tac} can break it down.
\begin{ttbox}
by (cut_facts_tac [major] 1);
{\out Level 1}
{\out S}
{\out 1. P & Q | ~ P & R ==> S}
\ttbreak
-by (fast_tac (!claset addIs prems) 1);
+by (blast_tac (!claset addIs prems) 1);
{\out Level 2}
{\out S}
{\out No subgoals!}
@@ -789,13 +795,13 @@
AddSEs [ifE];
\end{ttbox}
Now we can revert to the
-initial proof state and let \ttindex{fast_tac} solve it.
+initial proof state and let \ttindex{blast_tac} solve it.
\begin{ttbox}
choplev 0;
{\out Level 0}
{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
{\out 1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
-by (Fast_tac 1);
+by (Blast_tac 1);
{\out Level 1}
{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
{\out No subgoals!}
@@ -807,7 +813,7 @@
{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
{\out 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
\ttbreak
-by (Fast_tac 1);
+by (Blast_tac 1);
{\out Level 1}
{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
{\out No subgoals!}
@@ -816,7 +822,7 @@
\subsection{Derived rules versus definitions}
Dispensing with the derived rules, we can treat $if$ as an
-abbreviation, and let \ttindex{fast_tac} prove the expanded formula. Let
+abbreviation, and let \ttindex{blast_tac} prove the expanded formula. Let
us redo the previous proof:
\begin{ttbox}
choplev 0;
@@ -834,9 +840,9 @@
\end{ttbox}
We are left with a subgoal in pure first-order logic, which is why the
classical reasoner can prove it given {\tt FOL_cs} alone. (We could, of
-course, have used {\tt Fast_tac}.)
+course, have used {\tt Blast_tac}.)
\begin{ttbox}
-by (fast_tac FOL_cs 1);
+by (blast_tac FOL_cs 1);
{\out Level 2}
{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
{\out No subgoals!}
@@ -858,7 +864,7 @@
{\out Level 0}
{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
{\out 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
-by (Fast_tac 1);
+by (Blast_tac 1);
{\out by: tactic failed}
\end{ttbox}
This failure message is uninformative, but we can get a closer look at the
@@ -889,7 +895,7 @@
{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
{\out 1. (P & Q | ~ P & R) & A | ~ (P & Q | ~ P & R) & B <->}
{\out P & (Q & A | ~ Q & B) | ~ P & (R & B | ~ R & A)}
-by (fast_tac FOL_cs 1);
+by (blast_tac FOL_cs 1);
{\out by: tactic failed}
\end{ttbox}
Again we apply \ttindex{step_tac}: