support for sparse matrices
authorobua
Tue, 29 Jun 2004 10:07:56 +0200
changeset 15009 8c89f588c7aa
parent 15008 5abd18710a1f
child 15010 72fbe711e414
support for sparse matrices
src/HOL/IsaMakefile
src/HOL/Matrix/SparseMatrix.thy
--- a/src/HOL/IsaMakefile	Mon Jun 28 11:15:13 2004 +0200
+++ b/src/HOL/IsaMakefile	Tue Jun 29 10:07:56 2004 +0200
@@ -638,7 +638,7 @@
 
 $(LOG)/HOL-Matrix.gz: $(OUT)/HOL Matrix/ROOT.ML \
   Matrix/Matrix.thy Matrix/LinProg.thy Matrix/MatrixGeneral.thy \
-  Matrix/document/root.tex
+  Matrix/SparseMatrix.thy Matrix/document/root.tex
 	@$(ISATOOL) usedir $(OUT)/HOL Matrix
 
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Matrix/SparseMatrix.thy	Tue Jun 29 10:07:56 2004 +0200
@@ -0,0 +1,790 @@
+theory SparseMatrix = Matrix:
+
+types 
+  'a spvec = "(nat * 'a) list"
+  'a spmat = "('a spvec) spvec"
+
+consts
+  sparse_row_vector :: "('a::lordered_ring) spvec \<Rightarrow> 'a matrix"
+  sparse_row_matrix :: "('a::lordered_ring) spmat \<Rightarrow> 'a matrix"
+
+defs
+  sparse_row_vector_def : "sparse_row_vector arr == foldl (% m x. m + (singleton_matrix 0 (fst x) (snd x))) 0 arr"
+  sparse_row_matrix_def : "sparse_row_matrix arr == foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr"
+
+lemma sparse_row_vector_empty[simp]: "sparse_row_vector [] = 0"
+  by (simp add: sparse_row_vector_def)
+
+lemma sparse_row_matrix_empty[simp]: "sparse_row_matrix [] = 0"
+  by (simp add: sparse_row_matrix_def)
+
+lemma foldl_distrstart[rule_format]: "! a x y. (f (g x y) a = g x (f y a)) \<Longrightarrow> ! x y. (foldl f (g x y) l = g x (foldl f y l))"
+  by (induct l, auto)
+
+lemma sparse_row_vector_cons[simp]: "sparse_row_vector (a#arr) = (singleton_matrix 0 (fst a) (snd a)) + (sparse_row_vector arr)"
+  apply (induct arr)
+  apply (auto simp add: sparse_row_vector_def)
+  apply (simp add: foldl_distrstart[of "\<lambda>m x. m + singleton_matrix 0 (fst x) (snd x)" "\<lambda>x m. singleton_matrix 0 (fst x) (snd x) + m"])
+  done
+
+lemma sparse_row_vector_append[simp]: "sparse_row_vector (a @ b) = (sparse_row_vector a) + (sparse_row_vector b)"
+  by (induct a, auto)
+
+lemma nrows_spvec[simp]: "nrows (sparse_row_vector x) <= (Suc 0)"
+  apply (induct x)
+  apply (simp_all add: add_nrows)
+  done
+
+lemma sparse_row_matrix_cons: "sparse_row_matrix (a#arr) = ((move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0)) + sparse_row_matrix arr"
+  apply (induct arr)
+  apply (auto simp add: sparse_row_matrix_def)
+  apply (simp add: foldl_distrstart[of "\<lambda>m x. m + (move_matrix (sparse_row_vector (snd x)) (int (fst x)) 0)" 
+    "% a m. (move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0) + m"])
+  done
+
+lemma sparse_row_matrix_append: "sparse_row_matrix (arr@brr) = (sparse_row_matrix arr) + (sparse_row_matrix brr)"
+  apply (induct arr)
+  apply (auto simp add: sparse_row_matrix_cons)
+  done
+
+consts
+  sorted_spvec :: "'a spvec \<Rightarrow> bool"
+  sorted_spmat :: "'a spmat \<Rightarrow> bool"
+
+primrec
+  "sorted_spmat [] = True"
+  "sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))"
+
+primrec
+  "sorted_spvec [] = True"
+sorted_spvec_step:  "sorted_spvec (a#as) = (case as of [] \<Rightarrow> True | b#bs \<Rightarrow> ((fst a < fst b) & (sorted_spvec as)))" 
+
+declare sorted_spvec.simps [simp del]
+
+lemma sorted_spvec_empty[simp]: "sorted_spvec [] = True"
+by (simp add: sorted_spvec.simps)
+
+lemma sorted_spvec_cons1: "sorted_spvec (a#as) \<Longrightarrow> sorted_spvec as"
+apply (induct as)
+apply (auto simp add: sorted_spvec.simps)
+done
+
+lemma sorted_spvec_cons2: "sorted_spvec (a#b#t) \<Longrightarrow> sorted_spvec (a#t)"
+apply (induct t)
+apply (auto simp add: sorted_spvec.simps)
+done
+
+lemma sorted_spvec_cons3: "sorted_spvec(a#b#t) \<Longrightarrow> fst a < fst b"
+apply (auto simp add: sorted_spvec.simps)
+done
+
+lemma sorted_sparse_row_vector_zero[rule_format]: "m <= n \<longrightarrow> sorted_spvec ((n,a)#arr) \<longrightarrow> Rep_matrix (sparse_row_vector arr) j m = 0"
+apply (induct arr)
+apply (auto)
+apply (frule sorted_spvec_cons2,simp)+
+apply (frule sorted_spvec_cons3, simp)
+done
+
+lemma sorted_sparse_row_matrix_zero[rule_format]: "m <= n \<longrightarrow> sorted_spvec ((n,a)#arr) \<longrightarrow> Rep_matrix (sparse_row_matrix arr) m j = 0"
+  apply (induct arr)
+  apply (auto)
+  apply (frule sorted_spvec_cons2, simp)
+  apply (frule sorted_spvec_cons3, simp)
+  apply (simp add: sparse_row_matrix_cons neg_def)
+  done
+
+consts
+  smult_spvec :: "('a::lordered_ring) \<Rightarrow> 'a spvec \<Rightarrow> 'a spvec" 
+  addmult_spvec :: "('a::lordered_ring) * 'a spvec * 'a spvec \<Rightarrow> 'a spvec"
+
+defs
+  smult_spvec_def: "smult_spvec y arr == map (% a. (fst a, y * snd a)) arr"  
+
+lemma smult_spvec_empty[simp]: "smult_spvec y [] = []"
+  by (simp add: smult_spvec_def)
+
+lemma smult_spvec_cons: "smult_spvec y (a#arr) = (fst a, y * (snd a)) # (smult_spvec y arr)"
+  by (simp add: smult_spvec_def)
+
+recdef addmult_spvec "measure (% (y, a, b). length a + (length b))"
+  "addmult_spvec (y, arr, []) = arr"
+  "addmult_spvec (y, [], brr) = smult_spvec y brr"
+  "addmult_spvec (y, a#arr, b#brr) = (
+    if (fst a) < (fst b) then (a#(addmult_spvec (y, arr, b#brr))) 
+    else (if (fst b < fst a) then ((fst b, y * (snd b))#(addmult_spvec (y, a#arr, brr)))
+    else ((fst a, (snd a)+ y*(snd b))#(addmult_spvec (y, arr,brr)))))"
+
+lemma addmult_spvec_empty1[simp]: "addmult_spvec (y, [], a) = smult_spvec y a"
+  by (induct a, auto)
+
+lemma addmult_spvec_empty2[simp]: "addmult_spvec (y, a, []) = a"
+  by (induct a, auto)
+
+lemma sparse_row_vector_map: "(! x y. f (x+y) = (f x) + (f y)) \<Longrightarrow> (f::'a\<Rightarrow>('a::lordered_ring)) 0 = 0 \<Longrightarrow> 
+  sparse_row_vector (map (% x. (fst x, f (snd x))) a) = apply_matrix f (sparse_row_vector a)"
+  apply (induct a)
+  apply (simp_all add: apply_matrix_add)
+  done
+
+lemma sparse_row_vector_smult: "sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)"
+  apply (induct a)
+  apply (simp_all add: smult_spvec_cons scalar_mult_add)
+  done
+
+lemma sparse_row_vector_addmult_spvec: "sparse_row_vector (addmult_spvec (y::'a::lordered_ring, a, b)) = 
+  (sparse_row_vector a) + (scalar_mult y (sparse_row_vector b))"
+  apply (rule addmult_spvec.induct[of _ y])
+  apply (simp add: scalar_mult_add smult_spvec_cons sparse_row_vector_smult singleton_matrix_add)+
+  apply (case_tac "a=aa")
+  apply (auto)
+  done
+
+lemma sorted_smult_spvec[rule_format]: "sorted_spvec a \<Longrightarrow> sorted_spvec (smult_spvec y a)"
+  apply (auto simp add: smult_spvec_def)
+  apply (induct a)
+  apply (auto simp add: sorted_spvec.simps)
+  apply (case_tac list)
+  apply (auto)
+  done
+
+lemma sorted_spvec_addmult_spvec_helper: "\<lbrakk>sorted_spvec (addmult_spvec (y, (a, b) # arr, brr)); aa < a; sorted_spvec ((a, b) # arr); 
+  sorted_spvec ((aa, ba) # brr)\<rbrakk> \<Longrightarrow> sorted_spvec ((aa, y * ba) # addmult_spvec (y, (a, b) # arr, brr))"  
+  apply (induct brr)
+  apply (auto simp add: sorted_spvec.simps)
+  apply (simp split: list.split)
+  apply (auto)
+  apply (simp split: list.split)
+  apply (auto)
+  done
+
+lemma sorted_spvec_addmult_spvec_helper2: 
+ "\<lbrakk>sorted_spvec (addmult_spvec (y, arr, (aa, ba) # brr)); a < aa; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)\<rbrakk>
+       \<Longrightarrow> sorted_spvec ((a, b) # addmult_spvec (y, arr, (aa, ba) # brr))"
+  apply (induct arr)
+  apply (auto simp add: smult_spvec_def sorted_spvec.simps)
+  apply (simp split: list.split)
+  apply (auto)
+  done
+
+lemma sorted_spvec_addmult_spvec_helper3[rule_format]:
+  "sorted_spvec (addmult_spvec (y, arr, brr)) \<longrightarrow> sorted_spvec ((aa, b) # arr) \<longrightarrow> sorted_spvec ((aa, ba) # brr)
+     \<longrightarrow> sorted_spvec ((aa, b + y * ba) # (addmult_spvec (y, arr, brr)))"
+  apply (rule addmult_spvec.induct[of _ y arr brr])
+  apply (simp_all add: sorted_spvec.simps smult_spvec_def)
+  done
+
+lemma sorted_addmult_spvec[rule_format]: "sorted_spvec a \<longrightarrow> sorted_spvec b \<longrightarrow> sorted_spvec (addmult_spvec (y, a, b))"
+  apply (rule addmult_spvec.induct[of _ y a b])
+  apply (simp_all add: sorted_smult_spvec)
+  apply (rule conjI, intro strip)
+  apply (case_tac "~(a < aa)")
+  apply (simp_all)
+  apply (frule_tac as=brr in sorted_spvec_cons1)
+  apply (simp add: sorted_spvec_addmult_spvec_helper)
+  apply (intro strip | rule conjI)+
+  apply (frule_tac as=arr in sorted_spvec_cons1)
+  apply (simp add: sorted_spvec_addmult_spvec_helper2)
+  apply (intro strip)
+  apply (frule_tac as=arr in sorted_spvec_cons1)
+  apply (frule_tac as=brr in sorted_spvec_cons1)
+  apply (simp)
+  apply (case_tac "a=aa")
+  apply (simp_all add: sorted_spvec_addmult_spvec_helper3)
+  done
+
+consts 
+  mult_spvec_spmat :: "('a::lordered_ring) spvec * 'a spvec * 'a spmat  \<Rightarrow> 'a spvec"
+
+recdef mult_spvec_spmat "measure (% (c, arr, brr). (length arr) + (length brr))"
+  "mult_spvec_spmat (c, [], brr) = c"
+  "mult_spvec_spmat (c, arr, []) = c"
+  "mult_spvec_spmat (c, a#arr, b#brr) = (
+     if ((fst a) < (fst b)) then (mult_spvec_spmat (c, arr, b#brr))
+     else (if ((fst b) < (fst a)) then (mult_spvec_spmat (c, a#arr, brr)) 
+     else (mult_spvec_spmat (addmult_spvec (snd a, c, snd b), arr, brr))))"
+
+lemma sparse_row_mult_spvec_spmat[rule_format]: "sorted_spvec (a::('a::lordered_ring) spvec) \<longrightarrow> sorted_spvec B \<longrightarrow> 
+  sparse_row_vector (mult_spvec_spmat (c, a, B)) = (sparse_row_vector c) + (sparse_row_vector a) * (sparse_row_matrix B)"
+proof -
+  have comp_1: "!! a b. a < b \<Longrightarrow> Suc 0 <= nat ((int b)-(int a))" by arith
+  have not_iff: "!! a b. a = b \<Longrightarrow> (~ a) = (~ b)" by simp
+  have max_helper: "!! a b. ~ (a <= max (Suc a) b) \<Longrightarrow> False"
+    by arith
+  {
+    fix a 
+    fix v
+    assume a:"a < nrows(sparse_row_vector v)"
+    have b:"nrows(sparse_row_vector v) <= 1" by simp
+    note dummy = less_le_trans[of a "nrows (sparse_row_vector v)" 1, OF a b]   
+    then have "a = 0" by simp
+  }
+  note nrows_helper = this
+  show ?thesis
+    apply (rule mult_spvec_spmat.induct)
+    apply simp+
+    apply (rule conjI)
+    apply (intro strip)
+    apply (frule_tac as=brr in sorted_spvec_cons1)
+    apply (simp add: ring_eq_simps sparse_row_matrix_cons)
+    apply (subst Rep_matrix_zero_imp_mult_zero) 
+    apply (simp)
+    apply (intro strip)
+    apply (rule disjI2)
+    apply (intro strip)
+    apply (subst nrows)
+    apply (rule  order_trans[of _ 1])
+    apply (simp add: comp_1)+
+    apply (subst Rep_matrix_zero_imp_mult_zero)
+    apply (intro strip)
+    apply (case_tac "k <= aa")
+    apply (rule_tac m1 = k and n1 = a and a1 = b in ssubst[OF sorted_sparse_row_vector_zero])
+    apply (simp_all)
+    apply (rule impI)
+    apply (rule disjI2)
+    apply (rule nrows)
+    apply (rule order_trans[of _ 1])
+    apply (simp_all add: comp_1)
+    
+    apply (intro strip | rule conjI)+
+    apply (frule_tac as=arr in sorted_spvec_cons1)
+    apply (simp add: ring_eq_simps)
+    apply (subst Rep_matrix_zero_imp_mult_zero)
+    apply (simp)
+    apply (rule disjI2)
+    apply (intro strip)
+    apply (simp add: sparse_row_matrix_cons neg_def)
+    apply (case_tac "a <= aa")  
+    apply (erule sorted_sparse_row_matrix_zero)  
+    apply (simp_all)
+    apply (intro strip)
+    apply (case_tac "a=aa")
+    apply (simp_all)
+    apply (frule_tac as=arr in sorted_spvec_cons1)
+    apply (frule_tac as=brr in sorted_spvec_cons1)
+    apply (simp add: sparse_row_matrix_cons ring_eq_simps sparse_row_vector_addmult_spvec)
+    apply (rule_tac B1 = "sparse_row_matrix brr" in ssubst[OF Rep_matrix_zero_imp_mult_zero])
+    apply (auto)
+    apply (rule sorted_sparse_row_matrix_zero)
+    apply (simp_all)
+    apply (rule_tac A1 = "sparse_row_vector arr" in ssubst[OF Rep_matrix_zero_imp_mult_zero])
+    apply (auto)
+    apply (rule_tac m=k and n = aa and a = b and arr=arr in sorted_sparse_row_vector_zero)
+    apply (simp_all)
+    apply (simp add: neg_def)
+    apply (drule nrows_notzero)
+    apply (drule nrows_helper)
+    apply (arith)
+    
+    apply (subst Rep_matrix_inject[symmetric])
+    apply (rule ext)+
+    apply (simp)
+    apply (subst Rep_matrix_mult)
+    apply (rule_tac j1=aa in ssubst[OF foldseq_almostzero])
+    apply (simp_all)
+    apply (intro strip, rule conjI)
+    apply (intro strip)
+    apply (drule_tac max_helper)
+    apply (simp)
+    apply (auto)
+    apply (rule zero_imp_mult_zero)
+    apply (rule disjI2)
+    apply (rule nrows)
+    apply (rule order_trans[of _ 1])
+    apply (simp)
+    apply (simp)
+    done
+qed
+
+lemma sorted_mult_spvec_spmat[rule_format]: 
+  "sorted_spvec (c::('a::lordered_ring) spvec) \<longrightarrow> sorted_spmat B \<longrightarrow> sorted_spvec (mult_spvec_spmat (c, a, B))"
+  apply (rule mult_spvec_spmat.induct[of _ c a B])
+  apply (simp_all add: sorted_addmult_spvec)
+  done
+
+consts 
+  mult_spmat :: "('a::lordered_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat"
+
+primrec 
+  "mult_spmat [] A = []"
+  "mult_spmat (a#as) A = (fst a, mult_spvec_spmat ([], snd a, A))#(mult_spmat as A)"
+
+lemma sparse_row_mult_spmat[rule_format]: 
+  "sorted_spmat A \<longrightarrow> sorted_spvec B \<longrightarrow> sparse_row_matrix (mult_spmat A B) = (sparse_row_matrix A) * (sparse_row_matrix B)"
+  apply (induct A)
+  apply (auto simp add: sparse_row_matrix_cons sparse_row_mult_spvec_spmat ring_eq_simps move_matrix_mult)
+  done
+
+lemma sorted_spvec_mult_spmat[rule_format]:
+  "sorted_spvec (A::('a::lordered_ring) spmat) \<longrightarrow> sorted_spvec (mult_spmat A B)"
+  apply (induct A)
+  apply (auto)
+  apply (drule sorted_spvec_cons1, simp)
+  apply (case_tac list)
+  apply (auto simp add: sorted_spvec.simps)
+  done
+
+lemma sorted_spmat_mult_spmat[rule_format]:
+  "sorted_spmat (B::('a::lordered_ring) spmat) \<longrightarrow> sorted_spmat (mult_spmat A B)"
+  apply (induct A)
+  apply (auto simp add: sorted_mult_spvec_spmat) 
+  done
+
+consts
+  add_spvec :: "('a::lordered_ab_group) spvec * 'a spvec \<Rightarrow> 'a spvec"
+  add_spmat :: "('a::lordered_ab_group) spmat * 'a spmat \<Rightarrow> 'a spmat"
+
+recdef add_spvec "measure (% (a, b). length a + (length b))"
+  "add_spvec (arr, []) = arr"
+  "add_spvec ([], brr) = brr"
+  "add_spvec (a#arr, b#brr) = (
+  if (fst a) < (fst b) then (a#(add_spvec (arr, b#brr))) 
+     else (if (fst b < fst a) then (b#(add_spvec (a#arr, brr)))
+     else ((fst a, (snd a)+(snd b))#(add_spvec (arr,brr)))))"
+
+lemma add_spvec_empty1[simp]: "add_spvec ([], a) = a"
+  by (induct a, auto)
+
+lemma add_spvec_empty2[simp]: "add_spvec (a, []) = a"
+  by (induct a, auto)
+
+lemma sparse_row_vector_add: "sparse_row_vector (add_spvec (a,b)) = (sparse_row_vector a) + (sparse_row_vector b)"
+  apply (rule add_spvec.induct[of _ a b])
+  apply (simp_all add: singleton_matrix_add)
+  apply (case_tac "a = aa")
+  apply (simp_all)
+  done
+
+recdef add_spmat "measure (% (A,B). (length A)+(length B))"
+  "add_spmat ([], bs) = bs"
+  "add_spmat (as, []) = as"
+  "add_spmat (a#as, b#bs) = (
+  if fst a < fst b then 
+    (a#(add_spmat (as, b#bs)))
+  else (if fst b < fst a then
+    (b#(add_spmat (a#as, bs)))
+  else
+    ((fst a, add_spvec (snd a, snd b))#(add_spmat (as, bs)))))"
+
+lemma sparse_row_add_spmat: "sparse_row_matrix (add_spmat (A, B)) = (sparse_row_matrix A) + (sparse_row_matrix B)"
+  apply (rule add_spmat.induct)
+  apply (auto simp add: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add)
+  apply (case_tac "a=aa", simp, simp)+
+  done
+
+lemma sorted_add_spvec_helper1[rule_format]: "add_spvec ((a,b)#arr, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (brr \<noteq> [] & ab = fst (hd brr)))"
+  proof - 
+    have "(! x ab a. x = (a,b)#arr \<longrightarrow> add_spvec (x, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (ab = fst (hd brr))))"
+      by (rule add_spvec.induct[of _ _ brr], auto)
+    then show ?thesis
+      by (case_tac brr, auto)
+  qed
+
+lemma sorted_add_spmat_helper1[rule_format]: "add_spmat ((a,b)#arr, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (brr \<noteq> [] & ab = fst (hd brr)))"
+  proof - 
+    have "(! x ab a. x = (a,b)#arr \<longrightarrow> add_spmat (x, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (ab = fst (hd brr))))"
+      by (rule add_spmat.induct[of _ _ brr], auto)
+    then show ?thesis
+      by (case_tac brr, auto)
+  qed
+
+lemma sorted_add_spvec_helper[rule_format]: "add_spvec (arr, brr) = (ab, bb) # list \<longrightarrow> ((arr \<noteq> [] & ab = fst (hd arr)) | (brr \<noteq> [] & ab = fst (hd brr)))"
+  apply (rule add_spvec.induct[of _ arr brr])
+  apply (auto)
+  done
+
+lemma sorted_add_spmat_helper[rule_format]: "add_spmat (arr, brr) = (ab, bb) # list \<longrightarrow> ((arr \<noteq> [] & ab = fst (hd arr)) | (brr \<noteq> [] & ab = fst (hd brr)))"
+  apply (rule add_spmat.induct[of _ arr brr])
+  apply (auto)
+  done
+
+lemma add_spvec_commute: "add_spvec (a, b) = add_spvec (b, a)"
+  by (rule add_spvec.induct[of _ a b], auto)
+
+lemma add_spmat_commute: "add_spmat (a, b) = add_spmat (b, a)"
+  apply (rule add_spmat.induct[of _ a b])
+  apply (simp_all add: add_spvec_commute)
+  done
+  
+lemma sorted_add_spvec_helper2: "add_spvec ((a,b)#arr, brr) = (ab, bb) # list \<Longrightarrow> aa < a \<Longrightarrow> sorted_spvec ((aa, ba) # brr) \<Longrightarrow> aa < ab"
+  apply (drule sorted_add_spvec_helper1)
+  apply (auto)
+  apply (case_tac brr)
+  apply (simp_all)
+  apply (drule_tac sorted_spvec_cons3)
+  apply (simp)
+  done
+
+lemma sorted_add_spmat_helper2: "add_spmat ((a,b)#arr, brr) = (ab, bb) # list \<Longrightarrow> aa < a \<Longrightarrow> sorted_spvec ((aa, ba) # brr) \<Longrightarrow> aa < ab"
+  apply (drule sorted_add_spmat_helper1)
+  apply (auto)
+  apply (case_tac brr)
+  apply (simp_all)
+  apply (drule_tac sorted_spvec_cons3)
+  apply (simp)
+  done
+
+lemma sorted_spvec_add_spvec[rule_format]: "sorted_spvec a \<longrightarrow> sorted_spvec b \<longrightarrow> sorted_spvec (add_spvec (a, b))"
+  apply (rule add_spvec.induct[of _ a b])
+  apply (simp_all)
+  apply (rule conjI)
+  apply (intro strip)
+  apply (simp)
+  apply (frule_tac as=brr in sorted_spvec_cons1)
+  apply (simp)
+  apply (subst sorted_spvec_step)
+  apply (simp split: list.split)
+  apply (clarify, simp)
+  apply (simp add: sorted_add_spvec_helper2)
+  apply (clarify)
+  apply (rule conjI)
+  apply (case_tac "a=aa")
+  apply (simp)
+  apply (clarify)
+  apply (frule_tac as=arr in sorted_spvec_cons1, simp)
+  apply (subst sorted_spvec_step)
+  apply (simp split: list.split)
+  apply (clarify, simp)
+  apply (simp add: sorted_add_spvec_helper2 add_spvec_commute)
+  apply (case_tac "a=aa")
+  apply (simp_all)
+  apply (clarify)
+  apply (frule_tac as=arr in sorted_spvec_cons1)
+  apply (frule_tac as=brr in sorted_spvec_cons1)
+  apply (simp)
+  apply (subst sorted_spvec_step)
+  apply (simp split: list.split)
+  apply (clarify, simp)
+  apply (drule_tac sorted_add_spvec_helper)
+  apply (auto)
+  apply (case_tac arr)
+  apply (simp_all)
+  apply (drule sorted_spvec_cons3)
+  apply (simp)
+  apply (case_tac brr)
+  apply (simp_all)
+  apply (drule sorted_spvec_cons3)
+  apply (simp)
+  done
+
+lemma sorted_spvec_add_spmat[rule_format]: "sorted_spvec A \<longrightarrow> sorted_spvec B \<longrightarrow> sorted_spvec (add_spmat (A, B))"
+  apply (rule add_spmat.induct[of _ A B])
+  apply (simp_all)
+  apply (rule conjI)
+  apply (intro strip)
+  apply (simp)
+  apply (frule_tac as=bs in sorted_spvec_cons1)
+  apply (simp)
+  apply (subst sorted_spvec_step)
+  apply (simp split: list.split)
+  apply (clarify, simp)
+  apply (simp add: sorted_add_spmat_helper2)
+  apply (clarify)
+  apply (rule conjI)
+  apply (case_tac "a=aa")
+  apply (simp)
+  apply (clarify)
+  apply (frule_tac as=as in sorted_spvec_cons1, simp)
+  apply (subst sorted_spvec_step)
+  apply (simp split: list.split)
+  apply (clarify, simp)
+  apply (simp add: sorted_add_spmat_helper2 add_spmat_commute)
+  apply (case_tac "a=aa")
+  apply (simp_all)
+  apply (clarify)
+  apply (frule_tac as=as in sorted_spvec_cons1)
+  apply (frule_tac as=bs in sorted_spvec_cons1)
+  apply (simp)
+  apply (subst sorted_spvec_step)
+  apply (simp split: list.split)
+  apply (clarify, simp)
+  apply (drule_tac sorted_add_spmat_helper)
+  apply (auto)
+  apply (case_tac as)
+  apply (simp_all)
+  apply (drule sorted_spvec_cons3)
+  apply (simp)
+  apply (case_tac bs)
+  apply (simp_all)
+  apply (drule sorted_spvec_cons3)
+  apply (simp)
+  done
+
+lemma sorted_spmat_add_spmat[rule_format]: "sorted_spmat A \<longrightarrow> sorted_spmat B \<longrightarrow> sorted_spmat (add_spmat (A, B))"
+  apply (rule add_spmat.induct[of _ A B])
+  apply (simp_all add: sorted_spvec_add_spvec)
+  done
+
+consts
+  le_spvec :: "('a::lordered_ab_group) spvec * 'a spvec \<Rightarrow> bool" 
+  le_spmat :: "('a::lordered_ab_group) spmat * 'a spmat \<Rightarrow> bool" 
+
+recdef le_spvec "measure (% (a,b). (length a) + (length b))" 
+  "le_spvec ([], []) = True"
+  "le_spvec (a#as, []) = ((snd a <= 0) & (le_spvec (as, [])))"
+  "le_spvec ([], b#bs) = ((0 <= snd b) & (le_spvec ([], bs)))"
+  "le_spvec (a#as, b#bs) = (
+  if (fst a < fst b) then 
+    ((snd a <= 0) & (le_spvec (as, b#bs)))
+  else (if (fst b < fst a) then
+    ((0 <= snd b) & (le_spvec (a#as, bs)))
+  else 
+    ((snd a <= snd b) & (le_spvec (as, bs)))))"
+
+recdef le_spmat "measure (% (a,b). (length a) + (length b))"
+  "le_spmat ([], []) = True"
+  "le_spmat (a#as, []) = (le_spvec (snd a, []) & (le_spmat (as, [])))"
+  "le_spmat ([], b#bs) = (le_spvec ([], snd b) & (le_spmat ([], bs)))"
+  "le_spmat (a#as, b#bs) = (
+  if fst a < fst b then
+    (le_spvec(snd a,[]) & le_spmat(as, b#bs))
+  else (if (fst b < fst a) then 
+    (le_spvec([], snd b) & le_spmat(a#as, bs))
+  else
+    (le_spvec(snd a, snd b) & le_spmat (as, bs))))"
+
+lemma spec2: "! j i. P j i \<Longrightarrow> P j i" by blast
+lemma neg_imp: "(\<not> Q \<longrightarrow> \<not> P) \<Longrightarrow> P \<longrightarrow> Q" by blast
+
+constdefs
+  disj_matrices :: "('a::zero) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
+  "disj_matrices A B == (! j i. (Rep_matrix A j i \<noteq> 0) \<longrightarrow> (Rep_matrix B j i = 0)) & (! j i. (Rep_matrix B j i \<noteq> 0) \<longrightarrow> (Rep_matrix A j i = 0))"  
+
+ML {* simp_depth_limit := 2 *}
+
+lemma disj_matrices_add: "disj_matrices A B \<Longrightarrow> disj_matrices C D \<Longrightarrow> disj_matrices A D \<Longrightarrow> disj_matrices B C \<Longrightarrow> 
+  (A + B <= C + D) = (A <= C & B <= (D::('a::lordered_ab_group) matrix))"
+  apply (auto)
+  apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def)
+  apply (intro strip)
+  apply (erule conjE)+
+  apply (drule_tac j=j and i=i in spec2)+
+  apply (case_tac "Rep_matrix B j i = 0")
+  apply (case_tac "Rep_matrix D j i = 0")
+  apply (simp_all)
+  apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def)
+  apply (intro strip)
+  apply (erule conjE)+
+  apply (drule_tac j=j and i=i in spec2)+
+  apply (case_tac "Rep_matrix A j i = 0")
+  apply (case_tac "Rep_matrix C j i = 0")
+  apply (simp_all)
+  apply (erule add_mono)
+  apply (assumption)
+  done
+
+lemma disj_matrices_zero1[simp]: "disj_matrices 0 B"
+by (simp add: disj_matrices_def)
+
+lemma disj_matrices_zero2[simp]: "disj_matrices A 0"
+by (simp add: disj_matrices_def)
+
+lemma disj_matrices_commute: "disj_matrices A B = disj_matrices B A"
+by (auto simp add: disj_matrices_def)
+
+lemma disj_matrices_add_le_zero: "disj_matrices A B \<Longrightarrow>
+  (A + B <= 0) = (A <= 0 & (B::('a::lordered_ab_group) matrix) <= 0)"
+by (rule disj_matrices_add[of A B 0 0, simplified])
+ 
+lemma disj_matrices_add_zero_le: "disj_matrices A B \<Longrightarrow>
+  (0 <= A + B) = (0 <= A & 0 <= (B::('a::lordered_ab_group) matrix))"
+by (rule disj_matrices_add[of 0 0 A B, simplified])
+
+lemma disj_matrices_add_x_le: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow> 
+  (A <= B + C) = (A <= C & 0 <= (B::('a::lordered_ab_group) matrix))"
+by (auto simp add: disj_matrices_add[of 0 A B C, simplified])
+
+lemma disj_matrices_add_le_x: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow> 
+  (B + A <= C) = (A <= C &  (B::('a::lordered_ab_group) matrix) <= 0)"
+by (auto simp add: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute)
+
+lemma singleton_le_zero[simp]: "(singleton_matrix j i x <= 0) = (x <= (0::'a::{order,zero}))"
+  apply (auto)
+  apply (simp add: le_matrix_def)
+  apply (drule_tac j=j and i=i in spec2)
+  apply (simp)
+  apply (simp add: le_matrix_def)
+  done
+
+lemma singleton_ge_zero[simp]: "(0 <= singleton_matrix j i x) = ((0::'a::{order,zero}) <= x)"
+  apply (auto)
+  apply (simp add: le_matrix_def)
+  apply (drule_tac j=j and i=i in spec2)
+  apply (simp)
+  apply (simp add: le_matrix_def)
+  done
+
+lemma disj_sparse_row_singleton: "i <= j \<Longrightarrow> sorted_spvec((j,y)#v) \<Longrightarrow> disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)"
+  apply (simp add: disj_matrices_def)
+  apply (rule conjI)
+  apply (rule neg_imp)
+  apply (simp)
+  apply (intro strip)
+  apply (rule sorted_sparse_row_vector_zero)
+  apply (simp_all)
+  apply (intro strip)
+  apply (rule sorted_sparse_row_vector_zero)
+  apply (simp_all)
+  done 
+
+lemma disj_matrices_x_add: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (A::('a::lordered_ab_group) matrix) (B+C)"
+  apply (simp add: disj_matrices_def)
+  apply (auto)
+  apply (drule_tac j=j and i=i in spec2)+
+  apply (case_tac "Rep_matrix B j i = 0")
+  apply (case_tac "Rep_matrix C j i = 0")
+  apply (simp_all)
+  done
+
+lemma disj_matrices_add_x: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (B+C) (A::('a::lordered_ab_group) matrix)" 
+  by (simp add: disj_matrices_x_add disj_matrices_commute)
+
+lemma disj_singleton_matrices[simp]: "disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) = (j \<noteq> u | i \<noteq> v | x = 0 | y = 0)" 
+  by (auto simp add: disj_matrices_def)
+
+lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) \<longrightarrow> (sorted_spvec b) \<longrightarrow> (le_spvec (a,b)) = (sparse_row_vector a <= sparse_row_vector b)"
+  apply (rule le_spvec.induct)
+  apply (simp_all add: sorted_spvec_cons1 disj_matrices_add_le_zero disj_matrices_add_zero_le disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
+  apply (rule conjI, intro strip)
+  apply (simp add: sorted_spvec_cons1)
+  apply (subst disj_matrices_add_x_le)
+  apply (simp add: disj_sparse_row_singleton[OF less_imp_le] disj_matrices_x_add disj_matrices_commute)
+  apply (simp add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
+  apply (simp, blast)
+  apply (intro strip, rule conjI, intro strip)
+  apply (simp add: sorted_spvec_cons1)
+  apply (subst disj_matrices_add_le_x)
+  apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_sparse_row_singleton[OF less_imp_le] disj_matrices_commute disj_matrices_x_add)
+  apply (blast)
+  apply (intro strip)
+  apply (simp add: sorted_spvec_cons1)
+  apply (case_tac "a=aa", simp_all)
+  apply (subst disj_matrices_add)
+  apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
+  done
+
+lemma disj_move_sparse_vec_mat[simplified disj_matrices_commute]: 
+  "j <= a \<Longrightarrow> sorted_spvec((a,c)#as) \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)"
+  apply (auto simp add: neg_def disj_matrices_def)
+  apply (drule nrows_notzero)
+  apply (drule less_le_trans[OF _ nrows_spvec])
+  apply (subgoal_tac "ja = j")
+  apply (simp add: sorted_sparse_row_matrix_zero)
+  apply (arith)
+  apply (rule nrows)
+  apply (rule order_trans[of _ 1 _])
+  apply (simp)
+  apply (case_tac "nat (int ja - int j) = 0")
+  apply (case_tac "ja = j")
+  apply (simp add: sorted_sparse_row_matrix_zero)
+  apply arith+
+  done
+
+lemma disj_move_sparse_row_vector_twice:
+  "j \<noteq> u \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector a) j i) (move_matrix (sparse_row_vector b) u v)"
+  apply (auto simp add: neg_def disj_matrices_def)
+  apply (rule nrows, rule order_trans[of _ 1], simp, drule nrows_notzero, drule less_le_trans[OF _ nrows_spvec], arith)+
+  done
+
+lemma move_matrix_le_zero[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (move_matrix A j i <= 0) = (A <= (0::('a::{order,zero}) matrix))"
+  apply (auto simp add: le_matrix_def neg_def)
+  apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
+  apply (auto)
+  done
+
+lemma move_matrix_zero_le[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (0 <= move_matrix A j i) = ((0::('a::{order,zero}) matrix) <= A)"
+  apply (auto simp add: le_matrix_def neg_def)
+  apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
+  apply (auto)
+  done
+
+lemma move_matrix_le_move_matrix_iff[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (move_matrix A j i <= move_matrix B j i) = (A <= (B::('a::{order,zero}) matrix))"
+  apply (auto simp add: le_matrix_def neg_def)
+  apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
+  apply (auto)
+  done  
+
+lemma le_spvec_empty2_sparse_row[rule_format]: "(sorted_spvec b) \<longrightarrow> (le_spvec (b,[]) = (sparse_row_vector b <= 0))"
+  apply (induct b)
+  apply (simp_all add: sorted_spvec_cons1)
+  apply (intro strip)
+  apply (subst disj_matrices_add_le_zero)
+  apply (simp add: disj_matrices_commute disj_sparse_row_singleton sorted_spvec_cons1)
+  apply (rule_tac y = "snd a" in disj_sparse_row_singleton[OF order_refl])
+  apply (simp_all)
+  done
+
+lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) \<longrightarrow> (le_spvec ([],b) = (0 <= sparse_row_vector b))"
+  apply (induct b)
+  apply (simp_all add: sorted_spvec_cons1)
+  apply (intro strip)
+  apply (subst disj_matrices_add_zero_le)
+  apply (simp add: disj_matrices_commute disj_sparse_row_singleton sorted_spvec_cons1)
+  apply (rule_tac y = "snd a" in disj_sparse_row_singleton[OF order_refl])
+  apply (simp_all)
+  done
+
+lemma le_spmat_iff_sparse_row_le[rule_format]: "(sorted_spvec A) \<longrightarrow> (sorted_spmat A) \<longrightarrow> (sorted_spvec B) \<longrightarrow> (sorted_spmat B) \<longrightarrow> 
+  le_spmat(A, B) = (sparse_row_matrix A <= sparse_row_matrix B)"
+  apply (rule le_spmat.induct)
+  apply (simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl] 
+    disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)+ 
+  apply (rule conjI, intro strip)
+  apply (simp add: sorted_spvec_cons1)
+  apply (subst disj_matrices_add_x_le)
+  apply (rule disj_matrices_add_x)
+  apply (simp add: disj_move_sparse_row_vector_twice)
+  apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute)
+  apply (simp add: disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute)
+  apply (simp, blast)
+  apply (intro strip, rule conjI, intro strip)
+  apply (simp add: sorted_spvec_cons1)
+  apply (subst disj_matrices_add_le_x)
+  apply (simp add: disj_move_sparse_vec_mat[OF order_refl])
+  apply (rule disj_matrices_x_add)
+  apply (simp add: disj_move_sparse_row_vector_twice)
+  apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute)
+  apply (simp, blast)
+  apply (intro strip)
+  apply (case_tac "a=aa")
+  apply (simp_all)
+  apply (subst disj_matrices_add)
+  apply (simp_all add: disj_matrices_commute disj_move_sparse_vec_mat[OF order_refl])
+  apply (simp add: sorted_spvec_cons1 le_spvec_iff_sparse_row_le)
+  done
+
+term smult_spvec
+term addmult_spvec
+term add_spvec
+term mult_spvec_spmat
+term mult_spmat
+term add_spmat
+term le_spvec
+term le_spmat
+term sorted_spvec
+term sorted_spmat
+
+thm sparse_row_mult_spmat
+thm sparse_row_add_spmat
+thm le_spmat_iff_sparse_row_le
+
+thm sorted_spvec_mult_spmat
+thm sorted_spmat_mult_spmat
+thm sorted_spvec_add_spmat
+thm sorted_spmat_add_spmat
+
+thm smult_spvec_empty
+thm smult_spvec_cons
+thm addmult_spvec.simps
+thm add_spvec.simps
+thm add_spmat.simps
+thm mult_spvec_spmat.simps
+thm mult_spmat.simps
+thm le_spvec.simps
+thm le_spmat.simps
+thm sorted_spvec.simps
+thm sorted_spmat.simps
+
+end
+
+
+