--- a/src/HOL/Product_Type.ML Thu Feb 01 20:56:21 2001 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,645 +0,0 @@
-(* Title: HOL/Product_Type.ML
- ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1991 University of Cambridge
-
-Ordered Pairs, the Cartesian product type, the unit type
-*)
-
-(** unit **)
-
-Goalw [Unity_def]
- "u = ()";
-by (stac (rewrite_rule [unit_def] Rep_unit RS singletonD RS sym) 1);
-by (rtac (Rep_unit_inverse RS sym) 1);
-qed "unit_eq";
-
-(*simplification procedure for unit_eq.
- Cannot use this rule directly -- it loops!*)
-local
- val unit_pat = Thm.cterm_of (Theory.sign_of (the_context ())) (Free ("x", HOLogic.unitT));
- val unit_meta_eq = standard (mk_meta_eq unit_eq);
- fun proc _ _ t =
- if HOLogic.is_unit t then None
- else Some unit_meta_eq;
-in
- val unit_eq_proc = Simplifier.mk_simproc "unit_eq" [unit_pat] proc;
-end;
-
-Addsimprocs [unit_eq_proc];
-
-Goal "(!!x::unit. PROP P x) == PROP P ()";
-by (Simp_tac 1);
-qed "unit_all_eq1";
-
-Goal "(!!x::unit. PROP P) == PROP P";
-by (rtac triv_forall_equality 1);
-qed "unit_all_eq2";
-
-Goal "P () ==> P x";
-by (Simp_tac 1);
-qed "unit_induct";
-
-(*This rewrite counters the effect of unit_eq_proc on (%u::unit. f u),
- replacing it by f rather than by %u.f(). *)
-Goal "(%u::unit. f()) = f";
-by (rtac ext 1);
-by (Simp_tac 1);
-qed "unit_abs_eta_conv";
-Addsimps [unit_abs_eta_conv];
-
-
-(** prod **)
-
-Goalw [Prod_def] "Pair_Rep a b : Prod";
-by (EVERY1 [rtac CollectI, rtac exI, rtac exI, rtac refl]);
-qed "ProdI";
-
-Goalw [Pair_Rep_def] "Pair_Rep a b = Pair_Rep a' b' ==> a=a' & b=b'";
-by (dtac (fun_cong RS fun_cong) 1);
-by (Blast_tac 1);
-qed "Pair_Rep_inject";
-
-Goal "inj_on Abs_Prod Prod";
-by (rtac inj_on_inverseI 1);
-by (etac Abs_Prod_inverse 1);
-qed "inj_on_Abs_Prod";
-
-val prems = Goalw [Pair_def]
- "[| (a, b) = (a',b'); [| a=a'; b=b' |] ==> R |] ==> R";
-by (rtac (inj_on_Abs_Prod RS inj_onD RS Pair_Rep_inject RS conjE) 1);
-by (REPEAT (ares_tac (prems@[ProdI]) 1));
-qed "Pair_inject";
-
-Goal "((a,b) = (a',b')) = (a=a' & b=b')";
-by (blast_tac (claset() addSEs [Pair_inject]) 1);
-qed "Pair_eq";
-AddIffs [Pair_eq];
-
-Goalw [fst_def] "fst (a,b) = a";
-by (Blast_tac 1);
-qed "fst_conv";
-Goalw [snd_def] "snd (a,b) = b";
-by (Blast_tac 1);
-qed "snd_conv";
-Addsimps [fst_conv, snd_conv];
-
-Goal "fst (x, y) = a ==> x = a";
-by (Asm_full_simp_tac 1);
-qed "fst_eqD";
-Goal "snd (x, y) = a ==> y = a";
-by (Asm_full_simp_tac 1);
-qed "snd_eqD";
-
-Goalw [Pair_def] "? x y. p = (x,y)";
-by (rtac (rewrite_rule [Prod_def] Rep_Prod RS CollectE) 1);
-by (EVERY1[etac exE, etac exE, rtac exI, rtac exI,
- rtac (Rep_Prod_inverse RS sym RS trans), etac arg_cong]);
-qed "PairE_lemma";
-
-val [prem] = Goal "[| !!x y. p = (x,y) ==> Q |] ==> Q";
-by (rtac (PairE_lemma RS exE) 1);
-by (REPEAT (eresolve_tac [prem,exE] 1));
-qed "PairE";
-
-fun pair_tac s = EVERY' [res_inst_tac [("p",s)] PairE, hyp_subst_tac,
- K prune_params_tac];
-
-(* Do not add as rewrite rule: invalidates some proofs in IMP *)
-Goal "p = (fst(p),snd(p))";
-by (pair_tac "p" 1);
-by (Asm_simp_tac 1);
-qed "surjective_pairing";
-Addsimps [surjective_pairing RS sym];
-
-Goal "? x y. z = (x, y)";
-by (rtac exI 1);
-by (rtac exI 1);
-by (rtac surjective_pairing 1);
-qed "surj_pair";
-Addsimps [surj_pair];
-
-
-bind_thm ("split_paired_all",
- SplitPairedAll.rule (standard (surjective_pairing RS eq_reflection)));
-bind_thms ("split_tupled_all", [split_paired_all, unit_all_eq2]);
-
-(*
-Addsimps [split_paired_all] does not work with simplifier
-because it also affects premises in congrence rules,
-where is can lead to premises of the form !!a b. ... = ?P(a,b)
-which cannot be solved by reflexivity.
-*)
-
-(* replace parameters of product type by individual component parameters *)
-local
- fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
- can HOLogic.dest_prodT T orelse exists_paired_all t
- | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
- | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
- | exists_paired_all _ = false;
- val ss = HOL_basic_ss
- addsimps [split_paired_all, unit_all_eq2, unit_abs_eta_conv]
- addsimprocs [unit_eq_proc];
-in
- val split_all_tac = SUBGOAL (fn (t, i) =>
- if exists_paired_all t then full_simp_tac ss i else no_tac);
- fun split_all th =
- if exists_paired_all (#prop (Thm.rep_thm th)) then full_simplify ss th else th;
-end;
-
-claset_ref() := claset()
- addSWrapper ("split_all_tac", fn tac2 => split_all_tac ORELSE' tac2);
-
-Goal "(!x. P x) = (!a b. P(a,b))";
-by (Fast_tac 1);
-qed "split_paired_All";
-Addsimps [split_paired_All];
-(* AddIffs is not a good idea because it makes Blast_tac loop *)
-
-bind_thm ("prod_induct",
- allI RS (allI RS (split_paired_All RS iffD2)) RS spec);
-
-Goal "(? x. P x) = (? a b. P(a,b))";
-by (Fast_tac 1);
-qed "split_paired_Ex";
-Addsimps [split_paired_Ex];
-
-Goalw [split_def] "split c (a,b) = c a b";
-by (Simp_tac 1);
-qed "split_conv";
-Addsimps [split_conv];
-(*bind_thm ("split", split_conv); (*for compatibility*)*)
-
-(*Subsumes the old split_Pair when f is the identity function*)
-Goal "split (%x y. f(x,y)) = f";
-by (rtac ext 1);
-by (pair_tac "x" 1);
-by (Simp_tac 1);
-qed "split_Pair_apply";
-
-(*Can't be added to simpset: loops!*)
-Goal "(SOME x. P x) = (SOME (a,b). P(a,b))";
-by (simp_tac (simpset() addsimps [split_Pair_apply]) 1);
-qed "split_paired_Eps";
-
-Goal "!!s t. (s=t) = (fst(s)=fst(t) & snd(s)=snd(t))";
-by (split_all_tac 1);
-by (Asm_simp_tac 1);
-qed "Pair_fst_snd_eq";
-
-Goal "fst p = fst q ==> snd p = snd q ==> p = q";
-by (asm_simp_tac (simpset() addsimps [Pair_fst_snd_eq]) 1);
-qed "prod_eqI";
-AddXIs [prod_eqI];
-
-(*Prevents simplification of c: much faster*)
-Goal "p=q ==> split c p = split c q";
-by (etac arg_cong 1);
-qed "split_weak_cong";
-
-Goal "(%(x,y). f(x,y)) = f";
-by (rtac ext 1);
-by (split_all_tac 1);
-by (rtac split_conv 1);
-qed "split_eta";
-
-val prems = Goal "(!!x y. f x y = g(x,y)) ==> (%(x,y). f x y) = g";
-by (asm_simp_tac (simpset() addsimps prems@[split_eta]) 1);
-qed "cond_split_eta";
-
-(*simplification procedure for cond_split_eta.
- using split_eta a rewrite rule is not general enough, and using
- cond_split_eta directly would render some existing proofs very inefficient.
- similarly for split_beta. *)
-local
- fun Pair_pat k 0 (Bound m) = (m = k)
- | Pair_pat k i (Const ("Pair", _) $ Bound m $ t) = i > 0 andalso
- m = k+i andalso Pair_pat k (i-1) t
- | Pair_pat _ _ _ = false;
- fun no_args k i (Abs (_, _, t)) = no_args (k+1) i t
- | no_args k i (t $ u) = no_args k i t andalso no_args k i u
- | no_args k i (Bound m) = m < k orelse m > k+i
- | no_args _ _ _ = true;
- fun split_pat tp i (Abs (_,_,t)) = if tp 0 i t then Some (i,t) else None
- | split_pat tp i (Const ("split", _) $ Abs (_, _, t)) = split_pat tp (i+1) t
- | split_pat tp i _ = None;
- fun metaeq sg lhs rhs = mk_meta_eq (prove_goalw_cterm []
- (cterm_of sg (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs,rhs))))
- (K [simp_tac (HOL_basic_ss addsimps [cond_split_eta]) 1]));
- val sign = sign_of (the_context ());
- fun simproc name patstr = Simplifier.mk_simproc name
- [Thm.read_cterm sign (patstr, HOLogic.termT)];
-
- val beta_patstr = "split f z";
- val eta_patstr = "split f";
- fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k+1) i t
- | beta_term_pat k i (t $ u) = Pair_pat k i (t $ u) orelse
- (beta_term_pat k i t andalso beta_term_pat k i u)
- | beta_term_pat k i t = no_args k i t;
- fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
- | eta_term_pat _ _ _ = false;
- fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
- | subst arg k i (t $ u) = if Pair_pat k i (t $ u) then incr_boundvars k arg
- else (subst arg k i t $ subst arg k i u)
- | subst arg k i t = t;
- fun beta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t) $ arg) =
- (case split_pat beta_term_pat 1 t of
- Some (i,f) => Some (metaeq sg s (subst arg 0 i f))
- | None => None)
- | beta_proc _ _ _ = None;
- fun eta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t)) =
- (case split_pat eta_term_pat 1 t of
- Some (_,ft) => Some (metaeq sg s (let val (f $ arg) = ft in f end))
- | None => None)
- | eta_proc _ _ _ = None;
-in
- val split_beta_proc = simproc "split_beta" beta_patstr beta_proc;
- val split_eta_proc = simproc "split_eta" eta_patstr eta_proc;
-end;
-
-Addsimprocs [split_beta_proc,split_eta_proc];
-
-Goal "(%(x,y). P x y) z = P (fst z) (snd z)";
-by (stac surjective_pairing 1 THEN rtac split_conv 1);
-qed "split_beta";
-
-(*For use with split_tac and the simplifier*)
-Goal "R (split c p) = (! x y. p = (x,y) --> R (c x y))";
-by (stac surjective_pairing 1);
-by (stac split_conv 1);
-by (Blast_tac 1);
-qed "split_split";
-
-(* could be done after split_tac has been speeded up significantly:
-simpset_ref() := simpset() addsplits [split_split];
- precompute the constants involved and don't do anything unless
- the current goal contains one of those constants
-*)
-
-Goal "R (split c p) = (~(? x y. p = (x,y) & (~R (c x y))))";
-by (stac split_split 1);
-by (Simp_tac 1);
-qed "split_split_asm";
-
-(** split used as a logical connective or set former **)
-
-(*These rules are for use with blast_tac.
- Could instead call simp_tac/asm_full_simp_tac using split as rewrite.*)
-
-Goal "!!p. [| !!a b. p=(a,b) ==> c a b |] ==> split c p";
-by (split_all_tac 1);
-by (Asm_simp_tac 1);
-qed "splitI2";
-
-Goal "!!p. [| !!a b. (a,b)=p ==> c a b x |] ==> split c p x";
-by (split_all_tac 1);
-by (Asm_simp_tac 1);
-qed "splitI2'";
-
-Goal "c a b ==> split c (a,b)";
-by (Asm_simp_tac 1);
-qed "splitI";
-
-val prems = Goalw [split_def]
- "[| split c p; !!x y. [| p = (x,y); c x y |] ==> Q |] ==> Q";
-by (REPEAT (resolve_tac (prems@[surjective_pairing]) 1));
-qed "splitE";
-
-val prems = Goalw [split_def]
- "[| split c p z; !!x y. [| p = (x,y); c x y z |] ==> Q |] ==> Q";
-by (REPEAT (resolve_tac (prems@[surjective_pairing]) 1));
-qed "splitE'";
-
-val major::prems = Goal
- "[| Q (split P z); !!x y. [|z = (x, y); Q (P x y)|] ==> R \
-\ |] ==> R";
-by (REPEAT (resolve_tac (prems@[surjective_pairing]) 1));
-by (rtac (split_beta RS subst) 1 THEN rtac major 1);
-qed "splitE2";
-
-Goal "split R (a,b) ==> R a b";
-by (etac (split_conv RS iffD1) 1);
-qed "splitD";
-
-Goal "z: c a b ==> z: split c (a,b)";
-by (Asm_simp_tac 1);
-qed "mem_splitI";
-
-Goal "!!p. [| !!a b. p=(a,b) ==> z: c a b |] ==> z: split c p";
-by (split_all_tac 1);
-by (Asm_simp_tac 1);
-qed "mem_splitI2";
-
-val prems = Goalw [split_def]
- "[| z: split c p; !!x y. [| p = (x,y); z: c x y |] ==> Q |] ==> Q";
-by (REPEAT (resolve_tac (prems@[surjective_pairing]) 1));
-qed "mem_splitE";
-
-AddSIs [splitI, splitI2, splitI2', mem_splitI, mem_splitI2];
-AddSEs [splitE, splitE', mem_splitE];
-
-Goal "(%u. ? x y. u = (x, y) & P (x, y)) = P";
-by (rtac ext 1);
-by (Fast_tac 1);
-qed "split_eta_SetCompr";
-Addsimps [split_eta_SetCompr];
-
-Goal "(%u. ? x y. u = (x, y) & P x y) = split P";
-br ext 1;
-by (Fast_tac 1);
-qed "split_eta_SetCompr2";
-Addsimps [split_eta_SetCompr2];
-
-(* allows simplifications of nested splits in case of independent predicates *)
-Goal "(%(a,b). P & Q a b) = (%ab. P & split Q ab)";
-by (rtac ext 1);
-by (Blast_tac 1);
-qed "split_part";
-Addsimps [split_part];
-
-Goal "(@(x',y'). x = x' & y = y') = (x,y)";
-by (Blast_tac 1);
-qed "Eps_split_eq";
-Addsimps [Eps_split_eq];
-(*
-the following would be slightly more general,
-but cannot be used as rewrite rule:
-### Cannot add premise as rewrite rule because it contains (type) unknowns:
-### ?y = .x
-Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)";
-by (rtac some_equality 1);
-by ( Simp_tac 1);
-by (split_all_tac 1);
-by (Asm_full_simp_tac 1);
-qed "Eps_split_eq";
-*)
-
-(*** prod_fun -- action of the product functor upon functions ***)
-
-Goalw [prod_fun_def] "prod_fun f g (a,b) = (f(a),g(b))";
-by (rtac split_conv 1);
-qed "prod_fun";
-Addsimps [prod_fun];
-
-Goal "prod_fun (f1 o f2) (g1 o g2) = ((prod_fun f1 g1) o (prod_fun f2 g2))";
-by (rtac ext 1);
-by (pair_tac "x" 1);
-by (Asm_simp_tac 1);
-qed "prod_fun_compose";
-
-Goal "prod_fun (%x. x) (%y. y) = (%z. z)";
-by (rtac ext 1);
-by (pair_tac "z" 1);
-by (Asm_simp_tac 1);
-qed "prod_fun_ident";
-Addsimps [prod_fun_ident];
-
-Goal "(a,b):r ==> (f(a),g(b)) : (prod_fun f g)`r";
-by (rtac image_eqI 1);
-by (rtac (prod_fun RS sym) 1);
-by (assume_tac 1);
-qed "prod_fun_imageI";
-
-val major::prems = Goal
- "[| c: (prod_fun f g)`r; !!x y. [| c=(f(x),g(y)); (x,y):r |] ==> P \
-\ |] ==> P";
-by (rtac (major RS imageE) 1);
-by (res_inst_tac [("p","x")] PairE 1);
-by (resolve_tac prems 1);
-by (Blast_tac 2);
-by (blast_tac (claset() addIs [prod_fun]) 1);
-qed "prod_fun_imageE";
-
-AddIs [prod_fun_imageI];
-AddSEs [prod_fun_imageE];
-
-
-(*** Disjoint union of a family of sets - Sigma ***)
-
-Goalw [Sigma_def] "[| a:A; b:B(a) |] ==> (a,b) : Sigma A B";
-by (REPEAT (ares_tac [singletonI,UN_I] 1));
-qed "SigmaI";
-
-AddSIs [SigmaI];
-
-(*The general elimination rule*)
-val major::prems = Goalw [Sigma_def]
- "[| c: Sigma A B; \
-\ !!x y.[| x:A; y:B(x); c=(x,y) |] ==> P \
-\ |] ==> P";
-by (cut_facts_tac [major] 1);
-by (REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ;
-qed "SigmaE";
-
-(** Elimination of (a,b):A*B -- introduces no eigenvariables **)
-
-Goal "(a,b) : Sigma A B ==> a : A";
-by (etac SigmaE 1);
-by (REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ;
-qed "SigmaD1";
-
-Goal "(a,b) : Sigma A B ==> b : B(a)";
-by (etac SigmaE 1);
-by (REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ;
-qed "SigmaD2";
-
-val [major,minor]= Goal
- "[| (a,b) : Sigma A B; \
-\ [| a:A; b:B(a) |] ==> P \
-\ |] ==> P";
-by (rtac minor 1);
-by (rtac (major RS SigmaD1) 1);
-by (rtac (major RS SigmaD2) 1) ;
-qed "SigmaE2";
-
-AddSEs [SigmaE2, SigmaE];
-
-val prems = Goal
- "[| A<=C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D";
-by (cut_facts_tac prems 1);
-by (blast_tac (claset() addIs (prems RL [subsetD])) 1);
-qed "Sigma_mono";
-
-Goal "Sigma {} B = {}";
-by (Blast_tac 1) ;
-qed "Sigma_empty1";
-
-Goal "A <*> {} = {}";
-by (Blast_tac 1) ;
-qed "Sigma_empty2";
-
-Addsimps [Sigma_empty1,Sigma_empty2];
-
-Goal "UNIV <*> UNIV = UNIV";
-by Auto_tac;
-qed "UNIV_Times_UNIV";
-Addsimps [UNIV_Times_UNIV];
-
-Goal "- (UNIV <*> A) = UNIV <*> (-A)";
-by Auto_tac;
-qed "Compl_Times_UNIV1";
-
-Goal "- (A <*> UNIV) = (-A) <*> UNIV";
-by Auto_tac;
-qed "Compl_Times_UNIV2";
-
-Addsimps [Compl_Times_UNIV1, Compl_Times_UNIV2];
-
-Goal "((a,b): Sigma A B) = (a:A & b:B(a))";
-by (Blast_tac 1);
-qed "mem_Sigma_iff";
-AddIffs [mem_Sigma_iff];
-
-Goal "x:C ==> (A <*> C <= B <*> C) = (A <= B)";
-by (Blast_tac 1);
-qed "Times_subset_cancel2";
-
-Goal "x:C ==> (A <*> C = B <*> C) = (A = B)";
-by (blast_tac (claset() addEs [equalityE]) 1);
-qed "Times_eq_cancel2";
-
-Goal "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))";
-by (Fast_tac 1);
-qed "SetCompr_Sigma_eq";
-
-(*** Complex rules for Sigma ***)
-
-Goal "{(a,b). P a & Q b} = Collect P <*> Collect Q";
-by (Blast_tac 1);
-qed "Collect_split";
-
-Addsimps [Collect_split];
-
-(*Suggested by Pierre Chartier*)
-Goal "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)";
-by (Blast_tac 1);
-qed "UN_Times_distrib";
-
-Goal "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))";
-by (Fast_tac 1);
-qed "split_paired_Ball_Sigma";
-Addsimps [split_paired_Ball_Sigma];
-
-Goal "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))";
-by (Fast_tac 1);
-qed "split_paired_Bex_Sigma";
-Addsimps [split_paired_Bex_Sigma];
-
-Goal "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))";
-by (Blast_tac 1);
-qed "Sigma_Un_distrib1";
-
-Goal "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))";
-by (Blast_tac 1);
-qed "Sigma_Un_distrib2";
-
-Goal "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))";
-by (Blast_tac 1);
-qed "Sigma_Int_distrib1";
-
-Goal "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))";
-by (Blast_tac 1);
-qed "Sigma_Int_distrib2";
-
-Goal "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))";
-by (Blast_tac 1);
-qed "Sigma_Diff_distrib1";
-
-Goal "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))";
-by (Blast_tac 1);
-qed "Sigma_Diff_distrib2";
-
-Goal "Sigma (Union X) B = (UN A:X. Sigma A B)";
-by (Blast_tac 1);
-qed "Sigma_Union";
-
-(*Non-dependent versions are needed to avoid the need for higher-order
- matching, especially when the rules are re-oriented*)
-Goal "(A Un B) <*> C = (A <*> C) Un (B <*> C)";
-by (Blast_tac 1);
-qed "Times_Un_distrib1";
-
-Goal "(A Int B) <*> C = (A <*> C) Int (B <*> C)";
-by (Blast_tac 1);
-qed "Times_Int_distrib1";
-
-Goal "(A - B) <*> C = (A <*> C) - (B <*> C)";
-by (Blast_tac 1);
-qed "Times_Diff_distrib1";
-
-
-(*Attempts to remove occurrences of split, and pair-valued parameters*)
-val remove_split = rewrite_rule [split_conv RS eq_reflection] o split_all;
-
-local
-
-(*In ap_split S T u, term u expects separate arguments for the factors of S,
- with result type T. The call creates a new term expecting one argument
- of type S.*)
-fun ap_split (Type ("*", [T1, T2])) T3 u =
- HOLogic.split_const (T1, T2, T3) $
- Abs("v", T1,
- ap_split T2 T3
- ((ap_split T1 (HOLogic.prodT_factors T2 ---> T3) (incr_boundvars 1 u)) $
- Bound 0))
- | ap_split T T3 u = u;
-
-(*Curries any Var of function type in the rule*)
-fun split_rule_var' (t as Var (v, Type ("fun", [T1, T2])), rl) =
- let val T' = HOLogic.prodT_factors T1 ---> T2
- val newt = ap_split T1 T2 (Var (v, T'))
- val cterm = Thm.cterm_of (#sign (rep_thm rl))
- in
- instantiate ([], [(cterm t, cterm newt)]) rl
- end
- | split_rule_var' (t, rl) = rl;
-
-(*** Complete splitting of partially splitted rules ***)
-
-fun ap_split' (T::Ts) U u = Abs ("v", T, ap_split' Ts U
- (ap_split T (flat (map HOLogic.prodT_factors Ts) ---> U)
- (incr_boundvars 1 u) $ Bound 0))
- | ap_split' _ _ u = u;
-
-fun complete_split_rule_var ((t as Var (v, T), ts), (rl, vs)) =
- let
- val cterm = Thm.cterm_of (#sign (rep_thm rl))
- val (Us', U') = strip_type T;
- val Us = take (length ts, Us');
- val U = drop (length ts, Us') ---> U';
- val T' = flat (map HOLogic.prodT_factors Us) ---> U;
- fun mk_tuple ((xs, insts), v as Var ((a, _), T)) =
- let
- val Ts = HOLogic.prodT_factors T;
- val ys = variantlist (replicate (length Ts) a, xs);
- in (xs @ ys, (cterm v, cterm (HOLogic.mk_tuple T
- (map (Var o apfst (rpair 0)) (ys ~~ Ts))))::insts)
- end
- | mk_tuple (x, _) = x;
- val newt = ap_split' Us U (Var (v, T'));
- val cterm = Thm.cterm_of (#sign (rep_thm rl));
- val (vs', insts) = foldl mk_tuple ((vs, []), ts);
- in
- (instantiate ([], [(cterm t, cterm newt)] @ insts) rl, vs')
- end
- | complete_split_rule_var (_, x) = x;
-
-fun collect_vars (vs, Abs (_, _, t)) = collect_vars (vs, t)
- | collect_vars (vs, t) = (case strip_comb t of
- (v as Var _, ts) => (v, ts)::vs
- | (t, ts) => foldl collect_vars (vs, ts));
-
-in
-
-val split_rule_var = standard o remove_split o split_rule_var';
-
-(*Curries ALL function variables occurring in a rule's conclusion*)
-fun split_rule rl = standard (remove_split (foldr split_rule_var' (term_vars (concl_of rl), rl)));
-
-fun complete_split_rule rl =
- standard (remove_split (fst (foldr complete_split_rule_var
- (collect_vars ([], concl_of rl),
- (rl, map (fst o fst o dest_Var) (term_vars (#prop (rep_thm rl))))))));
-
-end;