--- a/src/HOL/Nominal/Examples/SOS.thy Tue Apr 23 15:57:03 2024 +0200
+++ b/src/HOL/Nominal/Examples/SOS.thy Tue Apr 23 21:58:42 2024 +0100
@@ -67,11 +67,7 @@
"\<theta><(Var x)> = (lookup \<theta> x)"
| "\<theta><(App e\<^sub>1 e\<^sub>2)> = App (\<theta><e\<^sub>1>) (\<theta><e\<^sub>2>)"
| "x\<sharp>\<theta> \<Longrightarrow> \<theta><(Lam [x].e)> = Lam [x].(\<theta><e>)"
-apply(finite_guess)+
-apply(rule TrueI)+
-apply(simp add: abs_fresh)+
-apply(fresh_guess)+
-done
+ by (finite_guess | simp add: abs_fresh | fresh_guess)+
lemma psubst_eqvt[eqvt]:
fixes pi::"name prm"
@@ -357,24 +353,30 @@
lemma V_eqvt:
fixes pi::"name prm"
- assumes a: "x\<in>V T"
- shows "(pi\<bullet>x)\<in>V T"
-using a
-apply(nominal_induct T arbitrary: pi x rule: ty.strong_induct)
-apply(auto simp add: trm.inject)
-apply(simp add: eqvts)
-apply(rule_tac x="pi\<bullet>xa" in exI)
-apply(rule_tac x="pi\<bullet>e" in exI)
-apply(simp)
-apply(auto)
-apply(drule_tac x="(rev pi)\<bullet>v" in bspec)
-apply(force)
-apply(auto)
-apply(rule_tac x="pi\<bullet>v'" in exI)
-apply(auto)
-apply(drule_tac pi="pi" in big.eqvt)
-apply(perm_simp add: eqvts)
-done
+ assumes "x \<in> V T"
+ shows "(pi\<bullet>x) \<in> V T"
+using assms
+proof (nominal_induct T arbitrary: pi x rule: ty.strong_induct)
+ case (TVar nat)
+ then show ?case
+ by (simp add: val.eqvt)
+next
+ case (Arrow T\<^sub>1 T\<^sub>2 pi x)
+ obtain a e where ae: "x = Lam [a]. e" "\<forall>v\<in>V T\<^sub>1. \<exists>v'. e[a::=v] \<Down> v' \<and> v' \<in> V T\<^sub>2"
+ using Arrow.prems by auto
+ have "\<exists>v'. (pi \<bullet> e)[(pi \<bullet> a)::=v] \<Down> v' \<and> v' \<in> V T\<^sub>2" if v: "v \<in> V T\<^sub>1" for v
+ proof -
+ have "rev pi \<bullet> v \<in> V T\<^sub>1"
+ by (simp add: Arrow.hyps(1) v)
+ then obtain v' where "e[a::=(rev pi \<bullet> v)] \<Down> v'" "v' \<in> V T\<^sub>2"
+ using ae(2) by blast
+ then have "(pi \<bullet> e)[(pi \<bullet> a)::=v] \<Down> pi \<bullet> v'"
+ by (metis (no_types, lifting) big.eqvt cons_eqvt nil_eqvt perm_pi_simp(1) perm_prod.simps psubst_eqvt)
+ then show ?thesis
+ using Arrow.hyps \<open>v' \<in> V T\<^sub>2\<close> by blast
+ qed
+ with ae show ?case by force
+qed
lemma V_arrow_elim_weak:
assumes h:"u \<in> V (T\<^sub>1 \<rightarrow> T\<^sub>2)"
@@ -385,33 +387,28 @@
fixes c::"'a::fs_name"
assumes h: "u \<in> V (T\<^sub>1 \<rightarrow> T\<^sub>2)"
obtains a t where "a\<sharp>c" "u = Lam [a].t" "\<forall>v \<in> (V T\<^sub>1). \<exists> v'. t[a::=v] \<Down> v' \<and> v' \<in> V T\<^sub>2"
-using h
-apply -
-apply(erule V_arrow_elim_weak)
-apply(subgoal_tac "\<exists>a'::name. a'\<sharp>(a,t,c)") (*A*)
-apply(erule exE)
-apply(drule_tac x="a'" in meta_spec)
-apply(drule_tac x="[(a,a')]\<bullet>t" in meta_spec)
-apply(drule meta_mp)
-apply(simp)
-apply(drule meta_mp)
-apply(simp add: trm.inject alpha fresh_left fresh_prod calc_atm fresh_atm)
-apply(perm_simp)
-apply(force)
-apply(drule meta_mp)
-apply(rule ballI)
-apply(drule_tac x="[(a,a')]\<bullet>v" in bspec)
-apply(simp add: V_eqvt)
-apply(auto)
-apply(rule_tac x="[(a,a')]\<bullet>v'" in exI)
-apply(auto)
-apply(drule_tac pi="[(a,a')]" in big.eqvt)
-apply(perm_simp add: eqvts calc_atm)
-apply(simp add: V_eqvt)
-(*A*)
-apply(rule exists_fresh')
-apply(simp add: fin_supp)
-done
+proof -
+ obtain a t where "u = Lam [a].t"
+ and at: "\<And>v. v \<in> (V T\<^sub>1) \<Longrightarrow> \<exists> v'. t[a::=v] \<Down> v' \<and> v' \<in> V T\<^sub>2"
+ using V_arrow_elim_weak [OF assms] by metis
+ obtain a'::name where a': "a'\<sharp>(a,t,c)"
+ by (meson exists_fresh fs_name_class.axioms)
+ then have "u = Lam [a'].([(a, a')] \<bullet> t)"
+ unfolding \<open>u = Lam [a].t\<close>
+ by (smt (verit) alpha fresh_atm fresh_prod perm_swap trm.inject(2))
+ moreover
+ have "\<exists> v'. ([(a, a')] \<bullet> t)[a'::=v] \<Down> v' \<and> v' \<in> V T\<^sub>2" if "v \<in> (V T\<^sub>1)" for v
+ proof -
+ obtain v' where v': "t[a::=([(a, a')] \<bullet> v)] \<Down> v' \<and> v' \<in> V T\<^sub>2"
+ using V_eqvt \<open>v \<in> V T\<^sub>1\<close> at by blast
+ then have "([(a, a')] \<bullet> t[a::=([(a, a')] \<bullet> v)]) \<Down> [(a, a')] \<bullet> v'"
+ by (simp add: big.eqvt)
+ then show ?thesis
+ by (smt (verit) V_eqvt cons_eqvt nil_eqvt perm_prod.simps perm_swap(1) psubst_eqvt swap_simps(1) v')
+ qed
+ ultimately show thesis
+ by (metis fresh_prod that a')
+qed
lemma Vs_are_values:
assumes a: "e \<in> V T"