add/rename some theorems about Map(pings)
authorLukas Stevens <mail@lukas-stevens.de>
Thu, 19 Aug 2021 12:31:06 +0200
changeset 74157 8e2355ddce1b
parent 74156 ecf80e37ed1a
child 74160 b5eba4717648
add/rename some theorems about Map(pings)
src/HOL/Library/AList.thy
src/HOL/Library/Mapping.thy
src/HOL/Library/RBT_Mapping.thy
src/HOL/Map.thy
--- a/src/HOL/Library/AList.thy	Wed Aug 18 23:04:58 2021 +0200
+++ b/src/HOL/Library/AList.thy	Thu Aug 19 12:31:06 2021 +0200
@@ -424,7 +424,7 @@
 qed
 
 lemma graph_map_of: "Map.graph (map_of al) = set (clearjunk al)"
-  by (metis distinct_clearjunk graph_map_of_if_distinct_ran map_of_clearjunk)
+  by (metis distinct_clearjunk graph_map_of_if_distinct_dom map_of_clearjunk)
 
 lemma clearjunk_update: "clearjunk (update k v al) = update k v (clearjunk al)"
   by (induct al rule: clearjunk.induct) (simp_all add: delete_update)
--- a/src/HOL/Library/Mapping.thy	Wed Aug 18 23:04:58 2021 +0200
+++ b/src/HOL/Library/Mapping.thy	Thu Aug 19 12:31:06 2021 +0200
@@ -284,16 +284,22 @@
   qed
 qed
 
-lemma lookup_update: "lookup (update k v m) k = Some v"
+lemma lookup_update[simp]: "lookup (update k v m) k = Some v"
+  by transfer simp
+
+lemma lookup_update_neq[simp]: "k \<noteq> k' \<Longrightarrow> lookup (update k v m) k' = lookup m k'"
   by transfer simp
 
-lemma lookup_update_neq: "k \<noteq> k' \<Longrightarrow> lookup (update k v m) k' = lookup m k'"
+lemma lookup_update': "lookup (update k v m) k' = (if k = k' then Some v else lookup m k')"
   by transfer simp
 
-lemma lookup_update': "Mapping.lookup (update k v m) k' = (if k = k' then Some v else lookup m k')"
-  by (auto simp: lookup_update lookup_update_neq)
+lemma lookup_empty[simp]: "lookup empty k = None"
+  by transfer simp
 
-lemma lookup_empty: "lookup empty k = None"
+lemma lookup_delete[simp]: "lookup (delete k m) k = None"
+  by transfer simp
+
+lemma lookup_delete_neq[simp]: "k \<noteq> k' \<Longrightarrow> lookup (delete k m) k' = lookup m k'"
   by transfer simp
 
 lemma lookup_filter:
@@ -310,11 +316,11 @@
   by (simp add: lookup_default_def lookup_empty)
 
 lemma lookup_default_update: "lookup_default d (update k v m) k = v"
-  by (simp add: lookup_default_def lookup_update)
+  by (simp add: lookup_default_def)
 
 lemma lookup_default_update_neq:
   "k \<noteq> k' \<Longrightarrow> lookup_default d (update k v m) k' = lookup_default d m k'"
-  by (simp add: lookup_default_def lookup_update_neq)
+  by (simp add: lookup_default_def)
 
 lemma lookup_default_update':
   "lookup_default d (update k v m) k' = (if k = k' then v else lookup_default d m k')"
@@ -398,7 +404,7 @@
   shows "Mapping.lookup (Mapping.tabulate xs f) x = (if x \<in> set xs then Some (f x) else None)"
   using assms by transfer (auto simp: map_of_eq_None_iff o_def dest!: map_of_SomeD)
 
-lemma lookup_of_alist: "Mapping.lookup (Mapping.of_alist xs) k = map_of xs k"
+lemma lookup_of_alist: "lookup (of_alist xs) k = map_of xs k"
   by transfer simp_all
 
 lemma keys_is_none_rep [code_unfold]: "k \<in> keys m \<longleftrightarrow> \<not> (Option.is_none (lookup m k))"
@@ -420,6 +426,10 @@
 lemma delete_empty [simp]: "delete k empty = empty"
   by transfer simp
 
+lemma Mapping_delete_if_notin_keys[simp]:
+  "k \<notin> keys m \<Longrightarrow> delete k m = m"
+  by transfer simp
+
 lemma replace_update:
   "k \<notin> keys m \<Longrightarrow> replace k v m = m"
   "k \<in> keys m \<Longrightarrow> replace k v m = update k v m"
@@ -487,9 +497,6 @@
 lemma in_keysD: "k \<in> keys m \<Longrightarrow> \<exists>v. lookup m k = Some v"
   by transfer (fact domD)
 
-lemma in_entriesI: "lookup m k = Some v \<Longrightarrow> (k, v) \<in> entries m"
-  by transfer (fact in_graphI)
-
 lemma keys_update [simp]: "keys (update k v m) = insert k (keys m)"
   by transfer simp
 
@@ -527,6 +534,14 @@
 lemma keys_bulkload [simp]: "keys (bulkload xs) = {0..<length xs}"
   by (simp add: bulkload_tabulate)
 
+lemma finite_keys_update[simp]:
+  "finite (keys (update k v m)) = finite (keys m)"
+  by transfer simp
+
+lemma set_ordered_keys[simp]:
+  "finite (Mapping.keys m) \<Longrightarrow> set (Mapping.ordered_keys m) = Mapping.keys m"
+  unfolding ordered_keys_def by transfer auto
+
 lemma distinct_ordered_keys [simp]: "distinct (ordered_keys m)"
   by (simp add: ordered_keys_def)
 
@@ -536,6 +551,9 @@
 lemma ordered_keys_empty [simp]: "ordered_keys empty = []"
   by (simp add: ordered_keys_def)
 
+lemma sorted_ordered_keys[simp]: "sorted (ordered_keys m)"
+  unfolding ordered_keys_def by simp
+
 lemma ordered_keys_update [simp]:
   "k \<in> keys m \<Longrightarrow> ordered_keys (update k v m) = ordered_keys m"
   "finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow>
@@ -806,42 +824,43 @@
   qed simp
 qed simp
 
+lemma entries_empty[simp]: "entries empty = {}"
+  by transfer (fact graph_empty)
+
 lemma entries_lookup: "entries m = Map.graph (lookup m)"
   by transfer rule
 
-lemma entries_empty[simp]: "entries empty = {}"
-  by transfer (fact graph_empty)
+lemma in_entriesI: "lookup m k = Some v \<Longrightarrow> (k, v) \<in> entries m"
+  by transfer (fact in_graphI)
+
+lemma in_entriesD: "(k, v) \<in> entries m \<Longrightarrow> lookup m k = Some v"
+  by transfer (fact in_graphD)
+
+lemma fst_image_entries_eq_keys[simp]: "fst ` Mapping.entries m = Mapping.keys m"
+  by transfer (fact fst_graph_eq_dom)
 
 lemma finite_entries_iff_finite_keys[simp]:
   "finite (entries m) = finite (keys m)"
   by transfer (fact finite_graph_iff_finite_dom)
 
-lemma entries_update[simp]:
+lemma entries_update:
   "entries (update k v m) = insert (k, v) (entries (delete k m))"
   by transfer (fact graph_map_upd)
 
-lemma Mapping_delete_if_notin_keys[simp]:
-  "k \<notin> Mapping.keys m \<Longrightarrow> delete k m = m"
-  by transfer simp
-
 lemma entries_delete:
   "entries (delete k m) = {e \<in> entries m. fst e \<noteq> k}"
   by transfer (fact graph_fun_upd_None)
 
 lemma entries_of_alist[simp]:
   "distinct (List.map fst xs) \<Longrightarrow> entries (of_alist xs) = set xs"
-  by transfer (fact graph_map_of_if_distinct_ran)
+  by transfer (fact graph_map_of_if_distinct_dom)
 
 lemma entries_keysD:
   "x \<in> entries m \<Longrightarrow> fst x \<in> keys m"
   by transfer (fact graph_domD)
 
-lemma finite_keys_entries[simp]:
-  "finite (keys (update k v m)) = finite (keys m)"
-  by transfer simp
-
 lemma set_ordered_entries[simp]:
-  "finite (Mapping.keys m) \<Longrightarrow> set (ordered_entries m) = entries m"
+  "finite (keys m) \<Longrightarrow> set (ordered_entries m) = entries m"
   unfolding ordered_entries_def
   by transfer (auto simp: folding_Map_graph.set_sorted_key_list_of_set[OF subset_refl])
 
@@ -884,6 +903,22 @@
   "ordered_entries (delete k m) = AList.delete k (ordered_entries m)"
   unfolding ordered_entries_def by transfer auto
 
+lemma map_fst_ordered_entries[simp]:
+  "List.map fst (ordered_entries m) = ordered_keys m"
+proof(cases "finite (Mapping.keys m)")
+  case True
+  then have "set (List.map fst (Mapping.ordered_entries m)) = set (Mapping.ordered_keys m)"
+    unfolding ordered_entries_def ordered_keys_def
+    by (transfer) (simp add: folding_Map_graph.set_sorted_key_list_of_set[OF subset_refl] fst_graph_eq_dom)
+  with True show "List.map fst (Mapping.ordered_entries m) = Mapping.ordered_keys m"
+    by (metis distinct_ordered_entries ordered_keys_def sorted_list_of_set.idem_if_sorted_distinct          
+              sorted_list_of_set.set_sorted_key_list_of_set sorted_ordered_entries)
+next
+  case False
+  then show ?thesis
+    unfolding ordered_entries_def ordered_keys_def by simp
+qed
+
 lemma fold_empty[simp]: "fold f empty a = a"
   unfolding fold_def by simp
 
@@ -908,7 +943,9 @@
       unfolding ordered_entries_def
       by transfer (fastforce simp: folding_Map_graph.set_sorted_key_list_of_set[OF order_refl]
                              dest: graph_domD)
-    from insort_key_is_snoc_if_sorted_and_distinct[OF _ _ this] k_notin_entries show ?thesis
+    from insort_key_is_snoc_if_sorted_and_distinct[OF _ _ this] k_notin_entries \<open>finite (keys m)\<close>
+    show ?thesis
+      using sorted_ordered_keys
       unfolding insort_insert_key_def by auto
   qed
   finally show ?thesis unfolding fold_def by simp
--- a/src/HOL/Library/RBT_Mapping.thy	Wed Aug 18 23:04:58 2021 +0200
+++ b/src/HOL/Library/RBT_Mapping.thy	Thu Aug 19 12:31:06 2021 +0200
@@ -58,7 +58,7 @@
 by (transfer fixing: t) (auto simp add: lookup_keys intro: sorted_distinct_set_unique)
 
 lemma Map_graph_lookup: "Map.graph (RBT.lookup t) = set (RBT.entries t)"
-  by (metis RBT.distinct_entries RBT.map_of_entries graph_map_of_if_distinct_ran)
+  by (metis RBT.distinct_entries RBT.map_of_entries graph_map_of_if_distinct_dom)
 
 lemma entries_Mapping [code]: "Mapping.entries (Mapping t) = set (RBT.entries t)"
   by (transfer fixing: t) (fact Map_graph_lookup)
--- a/src/HOL/Map.thy	Wed Aug 18 23:04:58 2021 +0200
+++ b/src/HOL/Map.thy	Thu Aug 19 12:31:06 2021 +0200
@@ -765,7 +765,7 @@
   unfolding graph_eq_to_snd_dom finite_dom_map_of
   using finite_dom_map_of by blast
 
-lemma graph_map_of_if_distinct_ran: "distinct (map fst al) \<Longrightarrow> graph (map_of al) = set al"
+lemma graph_map_of_if_distinct_dom: "distinct (map fst al) \<Longrightarrow> graph (map_of al) = set al"
   unfolding graph_def by auto
 
 lemma finite_graph_iff_finite_dom[simp]: "finite (graph m) = finite (dom m)"