Tuned interpretation proofs.
--- a/src/HOL/Algebra/UnivPoly.thy Thu Feb 11 21:00:36 2010 +0100
+++ b/src/HOL/Algebra/UnivPoly.thy Mon Feb 15 01:27:06 2010 +0100
@@ -1342,14 +1342,8 @@
text {* Interpretation of ring homomorphism lemmas. *}
sublocale UP_univ_prop < ring_hom_cring P S Eval
- apply (unfold Eval_def)
- apply intro_locales
- apply (rule ring_hom_cring.axioms)
- apply (rule ring_hom_cring.intro)
- apply unfold_locales
- apply (rule eval_ring_hom)
- apply rule
- done
+ unfolding Eval_def
+ by unfold_locales (fast intro: eval_ring_hom)
lemma (in UP_cring) monom_pow:
assumes R: "a \<in> carrier R"
@@ -1436,10 +1430,7 @@
lemma ring_homD:
assumes Phi: "Phi \<in> ring_hom P S"
shows "ring_hom_cring P S Phi"
-proof (rule ring_hom_cring.intro)
- show "ring_hom_cring_axioms P S Phi"
- by (rule ring_hom_cring_axioms.intro) (rule Phi)
-qed unfold_locales
+ by unfold_locales (rule Phi)
theorem UP_universal_property:
assumes S: "s \<in> carrier S"
@@ -1759,9 +1750,9 @@
shows "eval R R id a (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub>P\<^esub> monom P a 0) = \<zero>"
(is "eval R R id a ?g = _")
proof -
- interpret UP_pre_univ_prop R R id proof qed simp
+ interpret UP_pre_univ_prop R R id by unfold_locales simp
have eval_ring_hom: "eval R R id a \<in> ring_hom P R" using eval_ring_hom [OF a] by simp
- interpret ring_hom_cring P R "eval R R id a" proof qed (simp add: eval_ring_hom)
+ interpret ring_hom_cring P R "eval R R id a" by unfold_locales (rule eval_ring_hom)
have mon1_closed: "monom P \<one>\<^bsub>R\<^esub> 1 \<in> carrier P"
and mon0_closed: "monom P a 0 \<in> carrier P"
and min_mon0_closed: "\<ominus>\<^bsub>P\<^esub> monom P a 0 \<in> carrier P"
--- a/src/HOL/Lattices.thy Thu Feb 11 21:00:36 2010 +0100
+++ b/src/HOL/Lattices.thy Mon Feb 15 01:27:06 2010 +0100
@@ -301,8 +301,7 @@
lemma dual_bounded_lattice:
"bounded_lattice (op \<ge>) (op >) (op \<squnion>) (op \<sqinter>) \<top> \<bottom>"
- by (rule bounded_lattice.intro, rule dual_lattice)
- (unfold_locales, auto simp add: less_le_not_le)
+ by unfold_locales (auto simp add: less_le_not_le)
lemma inf_bot_left [simp]:
"\<bottom> \<sqinter> x = \<bottom>"