--- a/src/HOL/Arith_Tools.thy Thu Jun 21 20:07:26 2007 +0200
+++ b/src/HOL/Arith_Tools.thy Thu Jun 21 20:48:47 2007 +0200
@@ -7,16 +7,12 @@
header {* Setup of arithmetic tools *}
theory Arith_Tools
-imports Groebner_Basis Dense_Linear_Order SetInterval
+imports Groebner_Basis Dense_Linear_Order
uses
"~~/src/Provers/Arith/cancel_numeral_factor.ML"
"~~/src/Provers/Arith/extract_common_term.ML"
"int_factor_simprocs.ML"
"nat_simprocs.ML"
- "Tools/Presburger/cooper_data.ML"
- "Tools/Presburger/generated_cooper.ML"
- ("Tools/Presburger/cooper.ML")
- ("Tools/Presburger/presburger.ML")
begin
subsection {* Simprocs for the Naturals *}
@@ -941,681 +937,4 @@
end
*}
-
-subsection {* Decision Procedure for Presburger Arithmetic *}
-
-setup CooperData.setup
-
-subsection{* The @{text "-\<infinity>"} and @{text "+\<infinity>"} Properties *}
-
-lemma minf:
- "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk>
- \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<and> Q x) = (P' x \<and> Q' x)"
- "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk>
- \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<or> Q x) = (P' x \<or> Q' x)"
- "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x = t) = False"
- "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<noteq> t) = True"
- "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x < t) = True"
- "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<le> t) = True"
- "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x > t) = False"
- "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<ge> t) = False"
- "\<exists>z.\<forall>(x::'a::{linorder,plus,times})<z. (d dvd x + s) = (d dvd x + s)"
- "\<exists>z.\<forall>(x::'a::{linorder,plus,times})<z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
- "\<exists>z.\<forall>x<z. F = F"
- by ((erule exE, erule exE,rule_tac x="min z za" in exI,simp)+, (rule_tac x="t" in exI,fastsimp)+) simp_all
-
-lemma pinf:
- "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk>
- \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<and> Q x) = (P' x \<and> Q' x)"
- "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk>
- \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<or> Q x) = (P' x \<or> Q' x)"
- "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x = t) = False"
- "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<noteq> t) = True"
- "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x < t) = False"
- "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<le> t) = False"
- "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x > t) = True"
- "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<ge> t) = True"
- "\<exists>z.\<forall>(x::'a::{linorder,plus,times})>z. (d dvd x + s) = (d dvd x + s)"
- "\<exists>z.\<forall>(x::'a::{linorder,plus,times})>z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
- "\<exists>z.\<forall>x>z. F = F"
- by ((erule exE, erule exE,rule_tac x="max z za" in exI,simp)+,(rule_tac x="t" in exI,fastsimp)+) simp_all
-
-lemma inf_period:
- "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk>
- \<Longrightarrow> \<forall>x k. (P x \<and> Q x) = (P (x - k*D) \<and> Q (x - k*D))"
- "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk>
- \<Longrightarrow> \<forall>x k. (P x \<or> Q x) = (P (x - k*D) \<or> Q (x - k*D))"
- "(d::'a::{comm_ring}) dvd D \<Longrightarrow> \<forall>x k. (d dvd x + t) = (d dvd (x - k*D) + t)"
- "(d::'a::{comm_ring}) dvd D \<Longrightarrow> \<forall>x k. (\<not>d dvd x + t) = (\<not>d dvd (x - k*D) + t)"
- "\<forall>x k. F = F"
-by simp_all
- (clarsimp simp add: dvd_def, rule iffI, clarsimp,rule_tac x = "kb - ka*k" in exI,
- simp add: ring_eq_simps, clarsimp,rule_tac x = "kb + ka*k" in exI,simp add: ring_eq_simps)+
-
-section{* The A and B sets *}
-lemma bset:
- "\<lbrakk>\<forall>x.(\<forall>j \<in> {1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
- \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow>
- \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x - D) \<and> Q (x - D))"
- "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
- \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow>
- \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x - D) \<or> Q (x - D))"
- "\<lbrakk>D>0; t - 1\<in> B\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))"
- "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))"
- "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))"
- "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t))"
- "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t))"
- "\<lbrakk>D>0 ; t - 1 \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t))"
- "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t))"
- "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x - D) + t))"
- "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> F \<longrightarrow> F"
-proof (blast, blast)
- assume dp: "D > 0" and tB: "t - 1\<in> B"
- show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))"
- apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"])
- using dp tB by simp_all
-next
- assume dp: "D > 0" and tB: "t \<in> B"
- show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))"
- apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"])
- using dp tB by simp_all
-next
- assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" by arith
-next
- assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t)" by arith
-next
- assume dp: "D > 0" and tB:"t \<in> B"
- {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x > t" and ng: "\<not> (x - D) > t"
- hence "x -t \<le> D" and "1 \<le> x - t" by simp+
- hence "\<exists>j \<in> {1 .. D}. x - t = j" by auto
- hence "\<exists>j \<in> {1 .. D}. x = t + j" by (simp add: ring_eq_simps)
- with nob tB have "False" by simp}
- thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t)" by blast
-next
- assume dp: "D > 0" and tB:"t - 1\<in> B"
- {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x \<ge> t" and ng: "\<not> (x - D) \<ge> t"
- hence "x - (t - 1) \<le> D" and "1 \<le> x - (t - 1)" by simp+
- hence "\<exists>j \<in> {1 .. D}. x - (t - 1) = j" by auto
- hence "\<exists>j \<in> {1 .. D}. x = (t - 1) + j" by (simp add: ring_eq_simps)
- with nob tB have "False" by simp}
- thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t)" by blast
-next
- assume d: "d dvd D"
- {fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t"
- by (clarsimp simp add: dvd_def,rule_tac x= "ka - k" in exI,simp add: ring_eq_simps)}
- thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t)" by simp
-next
- assume d: "d dvd D"
- {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x - D) + t"
- by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: ring_eq_simps)}
- thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x - D) + t)" by auto
-qed blast
-
-lemma aset:
- "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
- \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow>
- \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x + D) \<and> Q (x + D))"
- "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
- \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow>
- \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x + D) \<or> Q (x + D))"
- "\<lbrakk>D>0; t + 1\<in> A\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))"
- "\<lbrakk>D>0 ; t \<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))"
- "\<lbrakk>D>0; t\<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int). (\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t))"
- "\<lbrakk>D>0; t + 1 \<in> A\<rbrakk> \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t))"
- "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))"
- "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t))"
- "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t))"
- "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x + D) + t))"
- "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> F \<longrightarrow> F"
-proof (blast, blast)
- assume dp: "D > 0" and tA: "t + 1 \<in> A"
- show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))"
- apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"])
- using dp tA by simp_all
-next
- assume dp: "D > 0" and tA: "t \<in> A"
- show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))"
- apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"])
- using dp tA by simp_all
-next
- assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" by arith
-next
- assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t)" by arith
-next
- assume dp: "D > 0" and tA:"t \<in> A"
- {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x < t" and ng: "\<not> (x + D) < t"
- hence "t - x \<le> D" and "1 \<le> t - x" by simp+
- hence "\<exists>j \<in> {1 .. D}. t - x = j" by auto
- hence "\<exists>j \<in> {1 .. D}. x = t - j" by (auto simp add: ring_eq_simps)
- with nob tA have "False" by simp}
- thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t)" by blast
-next
- assume dp: "D > 0" and tA:"t + 1\<in> A"
- {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x \<le> t" and ng: "\<not> (x + D) \<le> t"
- hence "(t + 1) - x \<le> D" and "1 \<le> (t + 1) - x" by (simp_all add: ring_eq_simps)
- hence "\<exists>j \<in> {1 .. D}. (t + 1) - x = j" by auto
- hence "\<exists>j \<in> {1 .. D}. x = (t + 1) - j" by (auto simp add: ring_eq_simps)
- with nob tA have "False" by simp}
- thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t)" by blast
-next
- assume d: "d dvd D"
- {fix x assume H: "d dvd x + t" with d have "d dvd (x + D) + t"
- by (clarsimp simp add: dvd_def,rule_tac x= "ka + k" in exI,simp add: ring_eq_simps)}
- thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t)" by simp
-next
- assume d: "d dvd D"
- {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x + D) + t"
- by (clarsimp simp add: dvd_def,erule_tac x= "ka - k" in allE,simp add: ring_eq_simps)}
- thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x + D) + t)" by auto
-qed blast
-
-subsection{* Cooper's Theorem @{text "-\<infinity>"} and @{text "+\<infinity>"} Version *}
-
-subsubsection{* First some trivial facts about periodic sets or predicates *}
-lemma periodic_finite_ex:
- assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)"
- shows "(EX x. P x) = (EX j : {1..d}. P j)"
- (is "?LHS = ?RHS")
-proof
- assume ?LHS
- then obtain x where P: "P x" ..
- have "x mod d = x - (x div d)*d" by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq)
- hence Pmod: "P x = P(x mod d)" using modd by simp
- show ?RHS
- proof (cases)
- assume "x mod d = 0"
- hence "P 0" using P Pmod by simp
- moreover have "P 0 = P(0 - (-1)*d)" using modd by blast
- ultimately have "P d" by simp
- moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff)
- ultimately show ?RHS ..
- next
- assume not0: "x mod d \<noteq> 0"
- have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound)
- moreover have "x mod d : {1..d}"
- proof -
- from dpos have "0 \<le> x mod d" by(rule pos_mod_sign)
- moreover from dpos have "x mod d < d" by(rule pos_mod_bound)
- ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff)
- qed
- ultimately show ?RHS ..
- qed
-qed auto
-
-subsubsection{* The @{text "-\<infinity>"} Version*}
-
-lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (abs(x-z)+1) * d < z"
-by(induct rule: int_gr_induct,simp_all add:int_distrib)
-
-lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (abs(x-z)+1) * d"
-by(induct rule: int_gr_induct, simp_all add:int_distrib)
-
-theorem int_induct[case_names base step1 step2]:
- assumes
- base: "P(k::int)" and step1: "\<And>i. \<lbrakk>k \<le> i; P i\<rbrakk> \<Longrightarrow> P(i+1)" and
- step2: "\<And>i. \<lbrakk>k \<ge> i; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
- shows "P i"
-proof -
- have "i \<le> k \<or> i\<ge> k" by arith
- thus ?thesis using prems int_ge_induct[where P="P" and k="k" and i="i"] int_le_induct[where P="P" and k="k" and i="i"] by blast
-qed
-
-lemma decr_mult_lemma:
- assumes dpos: "(0::int) < d" and minus: "\<forall>x. P x \<longrightarrow> P(x - d)" and knneg: "0 <= k"
- shows "ALL x. P x \<longrightarrow> P(x - k*d)"
-using knneg
-proof (induct rule:int_ge_induct)
- case base thus ?case by simp
-next
- case (step i)
- {fix x
- have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast
- also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"]
- by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric])
- ultimately have "P x \<longrightarrow> P(x - (i + 1) * d)" by blast}
- thus ?case ..
-qed
-
-lemma minusinfinity:
- assumes dpos: "0 < d" and
- P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and ePeqP1: "EX z::int. ALL x. x < z \<longrightarrow> (P x = P1 x)"
- shows "(EX x. P1 x) \<longrightarrow> (EX x. P x)"
-proof
- assume eP1: "EX x. P1 x"
- then obtain x where P1: "P1 x" ..
- from ePeqP1 obtain z where P1eqP: "ALL x. x < z \<longrightarrow> (P x = P1 x)" ..
- let ?w = "x - (abs(x-z)+1) * d"
- from dpos have w: "?w < z" by(rule decr_lemma)
- have "P1 x = P1 ?w" using P1eqP1 by blast
- also have "\<dots> = P(?w)" using w P1eqP by blast
- finally have "P ?w" using P1 by blast
- thus "EX x. P x" ..
-qed
-
-lemma cpmi:
- assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x< z. P x = P' x"
- and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> B. x \<noteq> b+j) --> P (x) --> P (x - D)"
- and pd: "\<forall> x k. P' x = P' (x-k*D)"
- shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> B. P (b+j)))"
- (is "?L = (?R1 \<or> ?R2)")
-proof-
- {assume "?R2" hence "?L" by blast}
- moreover
- {assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
- moreover
- { fix x
- assume P: "P x" and H: "\<not> ?R2"
- {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>B. P (b + j))" and P: "P y"
- hence "~(EX (j::int) : {1..D}. EX (b::int) : B. y = b+j)" by auto
- with nb P have "P (y - D)" by auto }
- hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)" by blast
- with H P have th: " \<forall>x. P x \<longrightarrow> P (x - D)" by auto
- from p1 obtain z where z: "ALL x. x < z --> (P x = P' x)" by blast
- let ?y = "x - (\<bar>x - z\<bar> + 1)*D"
- have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith
- from dp have yz: "?y < z" using decr_lemma[OF dp] by simp
- from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto
- with periodic_finite_ex[OF dp pd]
- have "?R1" by blast}
- ultimately show ?thesis by blast
-qed
-
-subsubsection {* The @{text "+\<infinity>"} Version*}
-
-lemma plusinfinity:
- assumes dpos: "(0::int) < d" and
- P1eqP1: "\<forall>x k. P' x = P'(x - k*d)" and ePeqP1: "\<exists> z. \<forall> x>z. P x = P' x"
- shows "(\<exists> x. P' x) \<longrightarrow> (\<exists> x. P x)"
-proof
- assume eP1: "EX x. P' x"
- then obtain x where P1: "P' x" ..
- from ePeqP1 obtain z where P1eqP: "\<forall>x>z. P x = P' x" ..
- let ?w' = "x + (abs(x-z)+1) * d"
- let ?w = "x - (-(abs(x-z) + 1))*d"
- have ww'[simp]: "?w = ?w'" by (simp add: ring_eq_simps)
- from dpos have w: "?w > z" by(simp only: ww' incr_lemma)
- hence "P' x = P' ?w" using P1eqP1 by blast
- also have "\<dots> = P(?w)" using w P1eqP by blast
- finally have "P ?w" using P1 by blast
- thus "EX x. P x" ..
-qed
-
-lemma incr_mult_lemma:
- assumes dpos: "(0::int) < d" and plus: "ALL x::int. P x \<longrightarrow> P(x + d)" and knneg: "0 <= k"
- shows "ALL x. P x \<longrightarrow> P(x + k*d)"
-using knneg
-proof (induct rule:int_ge_induct)
- case base thus ?case by simp
-next
- case (step i)
- {fix x
- have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast
- also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"]
- by (simp add:int_distrib zadd_ac)
- ultimately have "P x \<longrightarrow> P(x + (i + 1) * d)" by blast}
- thus ?case ..
-qed
-
-lemma cppi:
- assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x> z. P x = P' x"
- and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> A. x \<noteq> b - j) --> P (x) --> P (x + D)"
- and pd: "\<forall> x k. P' x= P' (x-k*D)"
- shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> A. P (b - j)))" (is "?L = (?R1 \<or> ?R2)")
-proof-
- {assume "?R2" hence "?L" by blast}
- moreover
- {assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
- moreover
- { fix x
- assume P: "P x" and H: "\<not> ?R2"
- {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>A. P (b - j))" and P: "P y"
- hence "~(EX (j::int) : {1..D}. EX (b::int) : A. y = b - j)" by auto
- with nb P have "P (y + D)" by auto }
- hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : A. P(b-j)) --> P (x) --> P (x + D)" by blast
- with H P have th: " \<forall>x. P x \<longrightarrow> P (x + D)" by auto
- from p1 obtain z where z: "ALL x. x > z --> (P x = P' x)" by blast
- let ?y = "x + (\<bar>x - z\<bar> + 1)*D"
- have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith
- from dp have yz: "?y > z" using incr_lemma[OF dp] by simp
- from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto
- with periodic_finite_ex[OF dp pd]
- have "?R1" by blast}
- ultimately show ?thesis by blast
-qed
-
-lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"
-apply(simp add:atLeastAtMost_def atLeast_def atMost_def)
-apply(fastsimp)
-done
-
-theorem unity_coeff_ex: "(\<exists>(x::'a::{semiring_0}). P (l * x)) \<equiv> (\<exists>x. l dvd (x + 0) \<and> P x)"
- apply (rule eq_reflection[symmetric])
- apply (rule iffI)
- defer
- apply (erule exE)
- apply (rule_tac x = "l * x" in exI)
- apply (simp add: dvd_def)
- apply (rule_tac x="x" in exI, simp)
- apply (erule exE)
- apply (erule conjE)
- apply (erule dvdE)
- apply (rule_tac x = k in exI)
- apply simp
- done
-
-lemma zdvd_mono: assumes not0: "(k::int) \<noteq> 0"
-shows "((m::int) dvd t) \<equiv> (k*m dvd k*t)"
- using not0 by (simp add: dvd_def)
-
-lemma uminus_dvd_conv: "(d dvd (t::int)) \<equiv> (-d dvd t)" "(d dvd (t::int)) \<equiv> (d dvd -t)"
- by simp_all
-text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*}
-lemma all_nat: "(\<forall>x::nat. P x) = (\<forall>x::int. 0 <= x \<longrightarrow> P (nat x))"
- by (simp split add: split_nat)
-
-lemma ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))"
- apply (auto split add: split_nat)
- apply (rule_tac x="int x" in exI, simp)
- apply (rule_tac x = "nat x" in exI,erule_tac x = "nat x" in allE, simp)
- done
-
-lemma zdiff_int_split: "P (int (x - y)) =
- ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))"
- by (case_tac "y \<le> x", simp_all add: zdiff_int)
-
-lemma number_of1: "(0::int) <= number_of n \<Longrightarrow> (0::int) <= number_of (n BIT b)" by simp
-lemma number_of2: "(0::int) <= Numeral0" by simp
-lemma Suc_plus1: "Suc n = n + 1" by simp
-
-text {*
- \medskip Specific instances of congruence rules, to prevent
- simplifier from looping. *}
-
-theorem imp_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<longrightarrow> P) = (0 <= x \<longrightarrow> P')" by simp
-
-theorem conj_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<and> P) = (0 <= x \<and> P')"
- by (simp cong: conj_cong)
-lemma int_eq_number_of_eq:
- "(((number_of v)::int) = (number_of w)) = iszero ((number_of (v + (uminus w)))::int)"
- by simp
-
-lemma mod_eq0_dvd_iff[presburger]: "(m::nat) mod n = 0 \<longleftrightarrow> n dvd m"
-unfolding dvd_eq_mod_eq_0[symmetric] ..
-
-lemma zmod_eq0_zdvd_iff[presburger]: "(m::int) mod n = 0 \<longleftrightarrow> n dvd m"
-unfolding zdvd_iff_zmod_eq_0[symmetric] ..
-declare mod_1[presburger]
-declare mod_0[presburger]
-declare zmod_1[presburger]
-declare zmod_zero[presburger]
-declare zmod_self[presburger]
-declare mod_self[presburger]
-declare DIVISION_BY_ZERO_MOD[presburger]
-declare nat_mod_div_trivial[presburger]
-declare div_mod_equality2[presburger]
-declare div_mod_equality[presburger]
-declare mod_div_equality2[presburger]
-declare mod_div_equality[presburger]
-declare mod_mult_self1[presburger]
-declare mod_mult_self2[presburger]
-declare zdiv_zmod_equality2[presburger]
-declare zdiv_zmod_equality[presburger]
-declare mod2_Suc_Suc[presburger]
-lemma [presburger]: "(a::int) div 0 = 0" and [presburger]: "a mod 0 = a"
-using IntDiv.DIVISION_BY_ZERO by blast+
-
-use "Tools/Presburger/cooper.ML"
-oracle linzqe_oracle ("term") = Coopereif.cooper_oracle
-
-use "Tools/Presburger/presburger.ML"
-
-setup {*
- arith_tactic_add
- (mk_arith_tactic "presburger" (fn i => fn st =>
- (warning "Trying Presburger arithmetic ...";
- Presburger.cooper_tac true [] [] ((ProofContext.init o theory_of_thm) st) i st)))
- (* FIXME!!!!!!! get the right context!!*)
-*}
-
-method_setup presburger = {*
-let
- fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ()
- fun simple_keyword k = Scan.lift (Args.$$$ k) >> K ()
- val addN = "add"
- val delN = "del"
- val elimN = "elim"
- val any_keyword = keyword addN || keyword delN || simple_keyword elimN
- val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
-in
- fn src => Method.syntax
- ((Scan.optional (simple_keyword elimN >> K false) true) --
- (Scan.optional (keyword addN |-- thms) []) --
- (Scan.optional (keyword delN |-- thms) [])) src
- #> (fn (((elim, add_ths), del_ths),ctxt) =>
- Method.SIMPLE_METHOD' (Presburger.cooper_tac elim add_ths del_ths ctxt))
end
-*} "Cooper's algorithm for Presburger arithmetic"
-
-lemma [presburger]: "m mod 2 = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger
-lemma [presburger]: "m mod 2 = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger
-lemma [presburger]: "m mod (Suc (Suc 0)) = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger
-lemma [presburger]: "m mod (Suc (Suc 0)) = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger
-lemma [presburger]: "m mod 2 = (1::int) \<longleftrightarrow> \<not> 2 dvd m " by presburger
-
-
-subsection {* Code generator setup *}
-
-text {*
- Presburger arithmetic is convenient to prove some
- of the following code lemmas on integer numerals:
-*}
-
-lemma eq_Pls_Pls:
- "Numeral.Pls = Numeral.Pls \<longleftrightarrow> True" by presburger
-
-lemma eq_Pls_Min:
- "Numeral.Pls = Numeral.Min \<longleftrightarrow> False"
- unfolding Pls_def Numeral.Min_def by presburger
-
-lemma eq_Pls_Bit0:
- "Numeral.Pls = Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls = k"
- unfolding Pls_def Bit_def bit.cases by presburger
-
-lemma eq_Pls_Bit1:
- "Numeral.Pls = Numeral.Bit k bit.B1 \<longleftrightarrow> False"
- unfolding Pls_def Bit_def bit.cases by presburger
-
-lemma eq_Min_Pls:
- "Numeral.Min = Numeral.Pls \<longleftrightarrow> False"
- unfolding Pls_def Numeral.Min_def by presburger
-
-lemma eq_Min_Min:
- "Numeral.Min = Numeral.Min \<longleftrightarrow> True" by presburger
-
-lemma eq_Min_Bit0:
- "Numeral.Min = Numeral.Bit k bit.B0 \<longleftrightarrow> False"
- unfolding Numeral.Min_def Bit_def bit.cases by presburger
-
-lemma eq_Min_Bit1:
- "Numeral.Min = Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min = k"
- unfolding Numeral.Min_def Bit_def bit.cases by presburger
-
-lemma eq_Bit0_Pls:
- "Numeral.Bit k bit.B0 = Numeral.Pls \<longleftrightarrow> Numeral.Pls = k"
- unfolding Pls_def Bit_def bit.cases by presburger
-
-lemma eq_Bit1_Pls:
- "Numeral.Bit k bit.B1 = Numeral.Pls \<longleftrightarrow> False"
- unfolding Pls_def Bit_def bit.cases by presburger
-
-lemma eq_Bit0_Min:
- "Numeral.Bit k bit.B0 = Numeral.Min \<longleftrightarrow> False"
- unfolding Numeral.Min_def Bit_def bit.cases by presburger
-
-lemma eq_Bit1_Min:
- "(Numeral.Bit k bit.B1) = Numeral.Min \<longleftrightarrow> Numeral.Min = k"
- unfolding Numeral.Min_def Bit_def bit.cases by presburger
-
-lemma eq_Bit_Bit:
- "Numeral.Bit k1 v1 = Numeral.Bit k2 v2 \<longleftrightarrow>
- v1 = v2 \<and> k1 = k2"
- unfolding Bit_def
- apply (cases v1)
- apply (cases v2)
- apply auto
- apply presburger
- apply (cases v2)
- apply auto
- apply presburger
- apply (cases v2)
- apply auto
- done
-
-lemma eq_number_of:
- "(number_of k \<Colon> int) = number_of l \<longleftrightarrow> k = l"
- unfolding number_of_is_id ..
-
-
-lemma less_eq_Pls_Pls:
- "Numeral.Pls \<le> Numeral.Pls \<longleftrightarrow> True" by rule+
-
-lemma less_eq_Pls_Min:
- "Numeral.Pls \<le> Numeral.Min \<longleftrightarrow> False"
- unfolding Pls_def Numeral.Min_def by presburger
-
-lemma less_eq_Pls_Bit:
- "Numeral.Pls \<le> Numeral.Bit k v \<longleftrightarrow> Numeral.Pls \<le> k"
- unfolding Pls_def Bit_def by (cases v) auto
-
-lemma less_eq_Min_Pls:
- "Numeral.Min \<le> Numeral.Pls \<longleftrightarrow> True"
- unfolding Pls_def Numeral.Min_def by presburger
-
-lemma less_eq_Min_Min:
- "Numeral.Min \<le> Numeral.Min \<longleftrightarrow> True" by rule+
-
-lemma less_eq_Min_Bit0:
- "Numeral.Min \<le> Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Min < k"
- unfolding Numeral.Min_def Bit_def by auto
-
-lemma less_eq_Min_Bit1:
- "Numeral.Min \<le> Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min \<le> k"
- unfolding Numeral.Min_def Bit_def by auto
-
-lemma less_eq_Bit0_Pls:
- "Numeral.Bit k bit.B0 \<le> Numeral.Pls \<longleftrightarrow> k \<le> Numeral.Pls"
- unfolding Pls_def Bit_def by simp
-
-lemma less_eq_Bit1_Pls:
- "Numeral.Bit k bit.B1 \<le> Numeral.Pls \<longleftrightarrow> k < Numeral.Pls"
- unfolding Pls_def Bit_def by auto
-
-lemma less_eq_Bit_Min:
- "Numeral.Bit k v \<le> Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min"
- unfolding Numeral.Min_def Bit_def by (cases v) auto
-
-lemma less_eq_Bit0_Bit:
- "Numeral.Bit k1 bit.B0 \<le> Numeral.Bit k2 v \<longleftrightarrow> k1 \<le> k2"
- unfolding Bit_def bit.cases by (cases v) auto
-
-lemma less_eq_Bit_Bit1:
- "Numeral.Bit k1 v \<le> Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2"
- unfolding Bit_def bit.cases by (cases v) auto
-
-lemma less_eq_Bit1_Bit0:
- "Numeral.Bit k1 bit.B1 \<le> Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2"
- unfolding Bit_def by (auto split: bit.split)
-
-lemma less_eq_number_of:
- "(number_of k \<Colon> int) \<le> number_of l \<longleftrightarrow> k \<le> l"
- unfolding number_of_is_id ..
-
-
-lemma less_Pls_Pls:
- "Numeral.Pls < Numeral.Pls \<longleftrightarrow> False" by simp
-
-lemma less_Pls_Min:
- "Numeral.Pls < Numeral.Min \<longleftrightarrow> False"
- unfolding Pls_def Numeral.Min_def by presburger
-
-lemma less_Pls_Bit0:
- "Numeral.Pls < Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls < k"
- unfolding Pls_def Bit_def by auto
-
-lemma less_Pls_Bit1:
- "Numeral.Pls < Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Pls \<le> k"
- unfolding Pls_def Bit_def by auto
-
-lemma less_Min_Pls:
- "Numeral.Min < Numeral.Pls \<longleftrightarrow> True"
- unfolding Pls_def Numeral.Min_def by presburger
-
-lemma less_Min_Min:
- "Numeral.Min < Numeral.Min \<longleftrightarrow> False" by simp
-
-lemma less_Min_Bit:
- "Numeral.Min < Numeral.Bit k v \<longleftrightarrow> Numeral.Min < k"
- unfolding Numeral.Min_def Bit_def by (auto split: bit.split)
-
-lemma less_Bit_Pls:
- "Numeral.Bit k v < Numeral.Pls \<longleftrightarrow> k < Numeral.Pls"
- unfolding Pls_def Bit_def by (auto split: bit.split)
-
-lemma less_Bit0_Min:
- "Numeral.Bit k bit.B0 < Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min"
- unfolding Numeral.Min_def Bit_def by auto
-
-lemma less_Bit1_Min:
- "Numeral.Bit k bit.B1 < Numeral.Min \<longleftrightarrow> k < Numeral.Min"
- unfolding Numeral.Min_def Bit_def by auto
-
-lemma less_Bit_Bit0:
- "Numeral.Bit k1 v < Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2"
- unfolding Bit_def by (auto split: bit.split)
-
-lemma less_Bit1_Bit:
- "Numeral.Bit k1 bit.B1 < Numeral.Bit k2 v \<longleftrightarrow> k1 < k2"
- unfolding Bit_def by (auto split: bit.split)
-
-lemma less_Bit0_Bit1:
- "Numeral.Bit k1 bit.B0 < Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2"
- unfolding Bit_def bit.cases by arith
-
-lemma less_number_of:
- "(number_of k \<Colon> int) < number_of l \<longleftrightarrow> k < l"
- unfolding number_of_is_id ..
-
-lemmas pred_succ_numeral_code [code func] =
- arith_simps(5-12)
-
-lemmas plus_numeral_code [code func] =
- arith_simps(13-17)
- arith_simps(26-27)
- arith_extra_simps(1) [where 'a = int]
-
-lemmas minus_numeral_code [code func] =
- arith_simps(18-21)
- arith_extra_simps(2) [where 'a = int]
- arith_extra_simps(5) [where 'a = int]
-
-lemmas times_numeral_code [code func] =
- arith_simps(22-25)
- arith_extra_simps(4) [where 'a = int]
-
-lemmas eq_numeral_code [code func] =
- eq_Pls_Pls eq_Pls_Min eq_Pls_Bit0 eq_Pls_Bit1
- eq_Min_Pls eq_Min_Min eq_Min_Bit0 eq_Min_Bit1
- eq_Bit0_Pls eq_Bit1_Pls eq_Bit0_Min eq_Bit1_Min eq_Bit_Bit
- eq_number_of
-
-lemmas less_eq_numeral_code [code func] = less_eq_Pls_Pls less_eq_Pls_Min less_eq_Pls_Bit
- less_eq_Min_Pls less_eq_Min_Min less_eq_Min_Bit0 less_eq_Min_Bit1
- less_eq_Bit0_Pls less_eq_Bit1_Pls less_eq_Bit_Min less_eq_Bit0_Bit less_eq_Bit_Bit1 less_eq_Bit1_Bit0
- less_eq_number_of
-
-lemmas less_numeral_code [code func] = less_Pls_Pls less_Pls_Min less_Pls_Bit0
- less_Pls_Bit1 less_Min_Pls less_Min_Min less_Min_Bit less_Bit_Pls
- less_Bit0_Min less_Bit1_Min less_Bit_Bit0 less_Bit1_Bit less_Bit0_Bit1
- less_number_of
-
-end
--- a/src/HOL/PreList.thy Thu Jun 21 20:07:26 2007 +0200
+++ b/src/HOL/PreList.thy Thu Jun 21 20:48:47 2007 +0200
@@ -7,7 +7,7 @@
header {* A Basis for Building the Theory of Lists *}
theory PreList
-imports Wellfounded_Relations Arith_Tools Relation_Power SAT
+imports Wellfounded_Relations Presburger Relation_Power SAT
FunDef Recdef Extraction
begin
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Presburger.thy Thu Jun 21 20:48:47 2007 +0200
@@ -0,0 +1,691 @@
+(* Title: HOL/Presburger.thy
+ ID: $Id$
+ Author: Amine Chaieb, TU Muenchen
+*)
+
+theory Presburger
+imports Arith_Tools SetInterval
+uses
+ "Tools/Qelim/cooper_data.ML"
+ "Tools/Qelim/generated_cooper.ML"
+ ("Tools/Qelim/cooper.ML")
+ ("Tools/Qelim/presburger.ML")
+begin
+
+subsection {* Decision Procedure for Presburger Arithmetic *}
+
+setup CooperData.setup
+
+subsection{* The @{text "-\<infinity>"} and @{text "+\<infinity>"} Properties *}
+
+lemma minf:
+ "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk>
+ \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<and> Q x) = (P' x \<and> Q' x)"
+ "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk>
+ \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<or> Q x) = (P' x \<or> Q' x)"
+ "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x = t) = False"
+ "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<noteq> t) = True"
+ "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x < t) = True"
+ "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<le> t) = True"
+ "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x > t) = False"
+ "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<ge> t) = False"
+ "\<exists>z.\<forall>(x::'a::{linorder,plus,times})<z. (d dvd x + s) = (d dvd x + s)"
+ "\<exists>z.\<forall>(x::'a::{linorder,plus,times})<z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
+ "\<exists>z.\<forall>x<z. F = F"
+ by ((erule exE, erule exE,rule_tac x="min z za" in exI,simp)+, (rule_tac x="t" in exI,fastsimp)+) simp_all
+
+lemma pinf:
+ "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk>
+ \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<and> Q x) = (P' x \<and> Q' x)"
+ "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk>
+ \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<or> Q x) = (P' x \<or> Q' x)"
+ "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x = t) = False"
+ "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<noteq> t) = True"
+ "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x < t) = False"
+ "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<le> t) = False"
+ "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x > t) = True"
+ "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<ge> t) = True"
+ "\<exists>z.\<forall>(x::'a::{linorder,plus,times})>z. (d dvd x + s) = (d dvd x + s)"
+ "\<exists>z.\<forall>(x::'a::{linorder,plus,times})>z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
+ "\<exists>z.\<forall>x>z. F = F"
+ by ((erule exE, erule exE,rule_tac x="max z za" in exI,simp)+,(rule_tac x="t" in exI,fastsimp)+) simp_all
+
+lemma inf_period:
+ "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk>
+ \<Longrightarrow> \<forall>x k. (P x \<and> Q x) = (P (x - k*D) \<and> Q (x - k*D))"
+ "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk>
+ \<Longrightarrow> \<forall>x k. (P x \<or> Q x) = (P (x - k*D) \<or> Q (x - k*D))"
+ "(d::'a::{comm_ring}) dvd D \<Longrightarrow> \<forall>x k. (d dvd x + t) = (d dvd (x - k*D) + t)"
+ "(d::'a::{comm_ring}) dvd D \<Longrightarrow> \<forall>x k. (\<not>d dvd x + t) = (\<not>d dvd (x - k*D) + t)"
+ "\<forall>x k. F = F"
+by simp_all
+ (clarsimp simp add: dvd_def, rule iffI, clarsimp,rule_tac x = "kb - ka*k" in exI,
+ simp add: ring_eq_simps, clarsimp,rule_tac x = "kb + ka*k" in exI,simp add: ring_eq_simps)+
+
+section{* The A and B sets *}
+lemma bset:
+ "\<lbrakk>\<forall>x.(\<forall>j \<in> {1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
+ \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow>
+ \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x - D) \<and> Q (x - D))"
+ "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
+ \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow>
+ \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x - D) \<or> Q (x - D))"
+ "\<lbrakk>D>0; t - 1\<in> B\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))"
+ "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))"
+ "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))"
+ "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t))"
+ "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t))"
+ "\<lbrakk>D>0 ; t - 1 \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t))"
+ "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t))"
+ "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x - D) + t))"
+ "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> F \<longrightarrow> F"
+proof (blast, blast)
+ assume dp: "D > 0" and tB: "t - 1\<in> B"
+ show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))"
+ apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"])
+ using dp tB by simp_all
+next
+ assume dp: "D > 0" and tB: "t \<in> B"
+ show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))"
+ apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"])
+ using dp tB by simp_all
+next
+ assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" by arith
+next
+ assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t)" by arith
+next
+ assume dp: "D > 0" and tB:"t \<in> B"
+ {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x > t" and ng: "\<not> (x - D) > t"
+ hence "x -t \<le> D" and "1 \<le> x - t" by simp+
+ hence "\<exists>j \<in> {1 .. D}. x - t = j" by auto
+ hence "\<exists>j \<in> {1 .. D}. x = t + j" by (simp add: ring_eq_simps)
+ with nob tB have "False" by simp}
+ thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t)" by blast
+next
+ assume dp: "D > 0" and tB:"t - 1\<in> B"
+ {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x \<ge> t" and ng: "\<not> (x - D) \<ge> t"
+ hence "x - (t - 1) \<le> D" and "1 \<le> x - (t - 1)" by simp+
+ hence "\<exists>j \<in> {1 .. D}. x - (t - 1) = j" by auto
+ hence "\<exists>j \<in> {1 .. D}. x = (t - 1) + j" by (simp add: ring_eq_simps)
+ with nob tB have "False" by simp}
+ thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t)" by blast
+next
+ assume d: "d dvd D"
+ {fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t"
+ by (clarsimp simp add: dvd_def,rule_tac x= "ka - k" in exI,simp add: ring_eq_simps)}
+ thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t)" by simp
+next
+ assume d: "d dvd D"
+ {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x - D) + t"
+ by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: ring_eq_simps)}
+ thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x - D) + t)" by auto
+qed blast
+
+lemma aset:
+ "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
+ \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow>
+ \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x + D) \<and> Q (x + D))"
+ "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
+ \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow>
+ \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x + D) \<or> Q (x + D))"
+ "\<lbrakk>D>0; t + 1\<in> A\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))"
+ "\<lbrakk>D>0 ; t \<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))"
+ "\<lbrakk>D>0; t\<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int). (\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t))"
+ "\<lbrakk>D>0; t + 1 \<in> A\<rbrakk> \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t))"
+ "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))"
+ "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t))"
+ "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t))"
+ "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x + D) + t))"
+ "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> F \<longrightarrow> F"
+proof (blast, blast)
+ assume dp: "D > 0" and tA: "t + 1 \<in> A"
+ show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))"
+ apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"])
+ using dp tA by simp_all
+next
+ assume dp: "D > 0" and tA: "t \<in> A"
+ show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))"
+ apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"])
+ using dp tA by simp_all
+next
+ assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" by arith
+next
+ assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t)" by arith
+next
+ assume dp: "D > 0" and tA:"t \<in> A"
+ {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x < t" and ng: "\<not> (x + D) < t"
+ hence "t - x \<le> D" and "1 \<le> t - x" by simp+
+ hence "\<exists>j \<in> {1 .. D}. t - x = j" by auto
+ hence "\<exists>j \<in> {1 .. D}. x = t - j" by (auto simp add: ring_eq_simps)
+ with nob tA have "False" by simp}
+ thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t)" by blast
+next
+ assume dp: "D > 0" and tA:"t + 1\<in> A"
+ {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x \<le> t" and ng: "\<not> (x + D) \<le> t"
+ hence "(t + 1) - x \<le> D" and "1 \<le> (t + 1) - x" by (simp_all add: ring_eq_simps)
+ hence "\<exists>j \<in> {1 .. D}. (t + 1) - x = j" by auto
+ hence "\<exists>j \<in> {1 .. D}. x = (t + 1) - j" by (auto simp add: ring_eq_simps)
+ with nob tA have "False" by simp}
+ thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t)" by blast
+next
+ assume d: "d dvd D"
+ {fix x assume H: "d dvd x + t" with d have "d dvd (x + D) + t"
+ by (clarsimp simp add: dvd_def,rule_tac x= "ka + k" in exI,simp add: ring_eq_simps)}
+ thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t)" by simp
+next
+ assume d: "d dvd D"
+ {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x + D) + t"
+ by (clarsimp simp add: dvd_def,erule_tac x= "ka - k" in allE,simp add: ring_eq_simps)}
+ thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x + D) + t)" by auto
+qed blast
+
+subsection{* Cooper's Theorem @{text "-\<infinity>"} and @{text "+\<infinity>"} Version *}
+
+subsubsection{* First some trivial facts about periodic sets or predicates *}
+lemma periodic_finite_ex:
+ assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)"
+ shows "(EX x. P x) = (EX j : {1..d}. P j)"
+ (is "?LHS = ?RHS")
+proof
+ assume ?LHS
+ then obtain x where P: "P x" ..
+ have "x mod d = x - (x div d)*d" by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq)
+ hence Pmod: "P x = P(x mod d)" using modd by simp
+ show ?RHS
+ proof (cases)
+ assume "x mod d = 0"
+ hence "P 0" using P Pmod by simp
+ moreover have "P 0 = P(0 - (-1)*d)" using modd by blast
+ ultimately have "P d" by simp
+ moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff)
+ ultimately show ?RHS ..
+ next
+ assume not0: "x mod d \<noteq> 0"
+ have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound)
+ moreover have "x mod d : {1..d}"
+ proof -
+ from dpos have "0 \<le> x mod d" by(rule pos_mod_sign)
+ moreover from dpos have "x mod d < d" by(rule pos_mod_bound)
+ ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff)
+ qed
+ ultimately show ?RHS ..
+ qed
+qed auto
+
+subsubsection{* The @{text "-\<infinity>"} Version*}
+
+lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (abs(x-z)+1) * d < z"
+by(induct rule: int_gr_induct,simp_all add:int_distrib)
+
+lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (abs(x-z)+1) * d"
+by(induct rule: int_gr_induct, simp_all add:int_distrib)
+
+theorem int_induct[case_names base step1 step2]:
+ assumes
+ base: "P(k::int)" and step1: "\<And>i. \<lbrakk>k \<le> i; P i\<rbrakk> \<Longrightarrow> P(i+1)" and
+ step2: "\<And>i. \<lbrakk>k \<ge> i; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
+ shows "P i"
+proof -
+ have "i \<le> k \<or> i\<ge> k" by arith
+ thus ?thesis using prems int_ge_induct[where P="P" and k="k" and i="i"] int_le_induct[where P="P" and k="k" and i="i"] by blast
+qed
+
+lemma decr_mult_lemma:
+ assumes dpos: "(0::int) < d" and minus: "\<forall>x. P x \<longrightarrow> P(x - d)" and knneg: "0 <= k"
+ shows "ALL x. P x \<longrightarrow> P(x - k*d)"
+using knneg
+proof (induct rule:int_ge_induct)
+ case base thus ?case by simp
+next
+ case (step i)
+ {fix x
+ have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast
+ also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"]
+ by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric])
+ ultimately have "P x \<longrightarrow> P(x - (i + 1) * d)" by blast}
+ thus ?case ..
+qed
+
+lemma minusinfinity:
+ assumes dpos: "0 < d" and
+ P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and ePeqP1: "EX z::int. ALL x. x < z \<longrightarrow> (P x = P1 x)"
+ shows "(EX x. P1 x) \<longrightarrow> (EX x. P x)"
+proof
+ assume eP1: "EX x. P1 x"
+ then obtain x where P1: "P1 x" ..
+ from ePeqP1 obtain z where P1eqP: "ALL x. x < z \<longrightarrow> (P x = P1 x)" ..
+ let ?w = "x - (abs(x-z)+1) * d"
+ from dpos have w: "?w < z" by(rule decr_lemma)
+ have "P1 x = P1 ?w" using P1eqP1 by blast
+ also have "\<dots> = P(?w)" using w P1eqP by blast
+ finally have "P ?w" using P1 by blast
+ thus "EX x. P x" ..
+qed
+
+lemma cpmi:
+ assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x< z. P x = P' x"
+ and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> B. x \<noteq> b+j) --> P (x) --> P (x - D)"
+ and pd: "\<forall> x k. P' x = P' (x-k*D)"
+ shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> B. P (b+j)))"
+ (is "?L = (?R1 \<or> ?R2)")
+proof-
+ {assume "?R2" hence "?L" by blast}
+ moreover
+ {assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
+ moreover
+ { fix x
+ assume P: "P x" and H: "\<not> ?R2"
+ {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>B. P (b + j))" and P: "P y"
+ hence "~(EX (j::int) : {1..D}. EX (b::int) : B. y = b+j)" by auto
+ with nb P have "P (y - D)" by auto }
+ hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)" by blast
+ with H P have th: " \<forall>x. P x \<longrightarrow> P (x - D)" by auto
+ from p1 obtain z where z: "ALL x. x < z --> (P x = P' x)" by blast
+ let ?y = "x - (\<bar>x - z\<bar> + 1)*D"
+ have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith
+ from dp have yz: "?y < z" using decr_lemma[OF dp] by simp
+ from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto
+ with periodic_finite_ex[OF dp pd]
+ have "?R1" by blast}
+ ultimately show ?thesis by blast
+qed
+
+subsubsection {* The @{text "+\<infinity>"} Version*}
+
+lemma plusinfinity:
+ assumes dpos: "(0::int) < d" and
+ P1eqP1: "\<forall>x k. P' x = P'(x - k*d)" and ePeqP1: "\<exists> z. \<forall> x>z. P x = P' x"
+ shows "(\<exists> x. P' x) \<longrightarrow> (\<exists> x. P x)"
+proof
+ assume eP1: "EX x. P' x"
+ then obtain x where P1: "P' x" ..
+ from ePeqP1 obtain z where P1eqP: "\<forall>x>z. P x = P' x" ..
+ let ?w' = "x + (abs(x-z)+1) * d"
+ let ?w = "x - (-(abs(x-z) + 1))*d"
+ have ww'[simp]: "?w = ?w'" by (simp add: ring_eq_simps)
+ from dpos have w: "?w > z" by(simp only: ww' incr_lemma)
+ hence "P' x = P' ?w" using P1eqP1 by blast
+ also have "\<dots> = P(?w)" using w P1eqP by blast
+ finally have "P ?w" using P1 by blast
+ thus "EX x. P x" ..
+qed
+
+lemma incr_mult_lemma:
+ assumes dpos: "(0::int) < d" and plus: "ALL x::int. P x \<longrightarrow> P(x + d)" and knneg: "0 <= k"
+ shows "ALL x. P x \<longrightarrow> P(x + k*d)"
+using knneg
+proof (induct rule:int_ge_induct)
+ case base thus ?case by simp
+next
+ case (step i)
+ {fix x
+ have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast
+ also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"]
+ by (simp add:int_distrib zadd_ac)
+ ultimately have "P x \<longrightarrow> P(x + (i + 1) * d)" by blast}
+ thus ?case ..
+qed
+
+lemma cppi:
+ assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x> z. P x = P' x"
+ and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> A. x \<noteq> b - j) --> P (x) --> P (x + D)"
+ and pd: "\<forall> x k. P' x= P' (x-k*D)"
+ shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> A. P (b - j)))" (is "?L = (?R1 \<or> ?R2)")
+proof-
+ {assume "?R2" hence "?L" by blast}
+ moreover
+ {assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
+ moreover
+ { fix x
+ assume P: "P x" and H: "\<not> ?R2"
+ {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>A. P (b - j))" and P: "P y"
+ hence "~(EX (j::int) : {1..D}. EX (b::int) : A. y = b - j)" by auto
+ with nb P have "P (y + D)" by auto }
+ hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : A. P(b-j)) --> P (x) --> P (x + D)" by blast
+ with H P have th: " \<forall>x. P x \<longrightarrow> P (x + D)" by auto
+ from p1 obtain z where z: "ALL x. x > z --> (P x = P' x)" by blast
+ let ?y = "x + (\<bar>x - z\<bar> + 1)*D"
+ have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith
+ from dp have yz: "?y > z" using incr_lemma[OF dp] by simp
+ from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto
+ with periodic_finite_ex[OF dp pd]
+ have "?R1" by blast}
+ ultimately show ?thesis by blast
+qed
+
+lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"
+apply(simp add:atLeastAtMost_def atLeast_def atMost_def)
+apply(fastsimp)
+done
+
+theorem unity_coeff_ex: "(\<exists>(x::'a::{semiring_0}). P (l * x)) \<equiv> (\<exists>x. l dvd (x + 0) \<and> P x)"
+ apply (rule eq_reflection[symmetric])
+ apply (rule iffI)
+ defer
+ apply (erule exE)
+ apply (rule_tac x = "l * x" in exI)
+ apply (simp add: dvd_def)
+ apply (rule_tac x="x" in exI, simp)
+ apply (erule exE)
+ apply (erule conjE)
+ apply (erule dvdE)
+ apply (rule_tac x = k in exI)
+ apply simp
+ done
+
+lemma zdvd_mono: assumes not0: "(k::int) \<noteq> 0"
+shows "((m::int) dvd t) \<equiv> (k*m dvd k*t)"
+ using not0 by (simp add: dvd_def)
+
+lemma uminus_dvd_conv: "(d dvd (t::int)) \<equiv> (-d dvd t)" "(d dvd (t::int)) \<equiv> (d dvd -t)"
+ by simp_all
+text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*}
+lemma all_nat: "(\<forall>x::nat. P x) = (\<forall>x::int. 0 <= x \<longrightarrow> P (nat x))"
+ by (simp split add: split_nat)
+
+lemma ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))"
+ apply (auto split add: split_nat)
+ apply (rule_tac x="int x" in exI, simp)
+ apply (rule_tac x = "nat x" in exI,erule_tac x = "nat x" in allE, simp)
+ done
+
+lemma zdiff_int_split: "P (int (x - y)) =
+ ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))"
+ by (case_tac "y \<le> x", simp_all add: zdiff_int)
+
+lemma number_of1: "(0::int) <= number_of n \<Longrightarrow> (0::int) <= number_of (n BIT b)" by simp
+lemma number_of2: "(0::int) <= Numeral0" by simp
+lemma Suc_plus1: "Suc n = n + 1" by simp
+
+text {*
+ \medskip Specific instances of congruence rules, to prevent
+ simplifier from looping. *}
+
+theorem imp_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<longrightarrow> P) = (0 <= x \<longrightarrow> P')" by simp
+
+theorem conj_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<and> P) = (0 <= x \<and> P')"
+ by (simp cong: conj_cong)
+lemma int_eq_number_of_eq:
+ "(((number_of v)::int) = (number_of w)) = iszero ((number_of (v + (uminus w)))::int)"
+ by simp
+
+lemma mod_eq0_dvd_iff[presburger]: "(m::nat) mod n = 0 \<longleftrightarrow> n dvd m"
+unfolding dvd_eq_mod_eq_0[symmetric] ..
+
+lemma zmod_eq0_zdvd_iff[presburger]: "(m::int) mod n = 0 \<longleftrightarrow> n dvd m"
+unfolding zdvd_iff_zmod_eq_0[symmetric] ..
+declare mod_1[presburger]
+declare mod_0[presburger]
+declare zmod_1[presburger]
+declare zmod_zero[presburger]
+declare zmod_self[presburger]
+declare mod_self[presburger]
+declare DIVISION_BY_ZERO_MOD[presburger]
+declare nat_mod_div_trivial[presburger]
+declare div_mod_equality2[presburger]
+declare div_mod_equality[presburger]
+declare mod_div_equality2[presburger]
+declare mod_div_equality[presburger]
+declare mod_mult_self1[presburger]
+declare mod_mult_self2[presburger]
+declare zdiv_zmod_equality2[presburger]
+declare zdiv_zmod_equality[presburger]
+declare mod2_Suc_Suc[presburger]
+lemma [presburger]: "(a::int) div 0 = 0" and [presburger]: "a mod 0 = a"
+using IntDiv.DIVISION_BY_ZERO by blast+
+
+use "Tools/Qelim/cooper.ML"
+oracle linzqe_oracle ("term") = Coopereif.cooper_oracle
+
+use "Tools/Qelim/presburger.ML"
+
+setup {*
+ arith_tactic_add
+ (mk_arith_tactic "presburger" (fn i => fn st =>
+ (warning "Trying Presburger arithmetic ...";
+ Presburger.cooper_tac true [] [] ((ProofContext.init o theory_of_thm) st) i st)))
+ (* FIXME!!!!!!! get the right context!!*)
+*}
+
+method_setup presburger = {*
+let
+ fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ()
+ fun simple_keyword k = Scan.lift (Args.$$$ k) >> K ()
+ val addN = "add"
+ val delN = "del"
+ val elimN = "elim"
+ val any_keyword = keyword addN || keyword delN || simple_keyword elimN
+ val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
+in
+ fn src => Method.syntax
+ ((Scan.optional (simple_keyword elimN >> K false) true) --
+ (Scan.optional (keyword addN |-- thms) []) --
+ (Scan.optional (keyword delN |-- thms) [])) src
+ #> (fn (((elim, add_ths), del_ths),ctxt) =>
+ Method.SIMPLE_METHOD' (Presburger.cooper_tac elim add_ths del_ths ctxt))
+end
+*} "Cooper's algorithm for Presburger arithmetic"
+
+lemma [presburger]: "m mod 2 = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger
+lemma [presburger]: "m mod 2 = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger
+lemma [presburger]: "m mod (Suc (Suc 0)) = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger
+lemma [presburger]: "m mod (Suc (Suc 0)) = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger
+lemma [presburger]: "m mod 2 = (1::int) \<longleftrightarrow> \<not> 2 dvd m " by presburger
+
+
+subsection {* Code generator setup *}
+
+text {*
+ Presburger arithmetic is convenient to prove some
+ of the following code lemmas on integer numerals:
+*}
+
+lemma eq_Pls_Pls:
+ "Numeral.Pls = Numeral.Pls \<longleftrightarrow> True" by presburger
+
+lemma eq_Pls_Min:
+ "Numeral.Pls = Numeral.Min \<longleftrightarrow> False"
+ unfolding Pls_def Numeral.Min_def by presburger
+
+lemma eq_Pls_Bit0:
+ "Numeral.Pls = Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls = k"
+ unfolding Pls_def Bit_def bit.cases by presburger
+
+lemma eq_Pls_Bit1:
+ "Numeral.Pls = Numeral.Bit k bit.B1 \<longleftrightarrow> False"
+ unfolding Pls_def Bit_def bit.cases by presburger
+
+lemma eq_Min_Pls:
+ "Numeral.Min = Numeral.Pls \<longleftrightarrow> False"
+ unfolding Pls_def Numeral.Min_def by presburger
+
+lemma eq_Min_Min:
+ "Numeral.Min = Numeral.Min \<longleftrightarrow> True" by presburger
+
+lemma eq_Min_Bit0:
+ "Numeral.Min = Numeral.Bit k bit.B0 \<longleftrightarrow> False"
+ unfolding Numeral.Min_def Bit_def bit.cases by presburger
+
+lemma eq_Min_Bit1:
+ "Numeral.Min = Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min = k"
+ unfolding Numeral.Min_def Bit_def bit.cases by presburger
+
+lemma eq_Bit0_Pls:
+ "Numeral.Bit k bit.B0 = Numeral.Pls \<longleftrightarrow> Numeral.Pls = k"
+ unfolding Pls_def Bit_def bit.cases by presburger
+
+lemma eq_Bit1_Pls:
+ "Numeral.Bit k bit.B1 = Numeral.Pls \<longleftrightarrow> False"
+ unfolding Pls_def Bit_def bit.cases by presburger
+
+lemma eq_Bit0_Min:
+ "Numeral.Bit k bit.B0 = Numeral.Min \<longleftrightarrow> False"
+ unfolding Numeral.Min_def Bit_def bit.cases by presburger
+
+lemma eq_Bit1_Min:
+ "(Numeral.Bit k bit.B1) = Numeral.Min \<longleftrightarrow> Numeral.Min = k"
+ unfolding Numeral.Min_def Bit_def bit.cases by presburger
+
+lemma eq_Bit_Bit:
+ "Numeral.Bit k1 v1 = Numeral.Bit k2 v2 \<longleftrightarrow>
+ v1 = v2 \<and> k1 = k2"
+ unfolding Bit_def
+ apply (cases v1)
+ apply (cases v2)
+ apply auto
+ apply presburger
+ apply (cases v2)
+ apply auto
+ apply presburger
+ apply (cases v2)
+ apply auto
+ done
+
+lemma eq_number_of:
+ "(number_of k \<Colon> int) = number_of l \<longleftrightarrow> k = l"
+ unfolding number_of_is_id ..
+
+
+lemma less_eq_Pls_Pls:
+ "Numeral.Pls \<le> Numeral.Pls \<longleftrightarrow> True" by rule+
+
+lemma less_eq_Pls_Min:
+ "Numeral.Pls \<le> Numeral.Min \<longleftrightarrow> False"
+ unfolding Pls_def Numeral.Min_def by presburger
+
+lemma less_eq_Pls_Bit:
+ "Numeral.Pls \<le> Numeral.Bit k v \<longleftrightarrow> Numeral.Pls \<le> k"
+ unfolding Pls_def Bit_def by (cases v) auto
+
+lemma less_eq_Min_Pls:
+ "Numeral.Min \<le> Numeral.Pls \<longleftrightarrow> True"
+ unfolding Pls_def Numeral.Min_def by presburger
+
+lemma less_eq_Min_Min:
+ "Numeral.Min \<le> Numeral.Min \<longleftrightarrow> True" by rule+
+
+lemma less_eq_Min_Bit0:
+ "Numeral.Min \<le> Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Min < k"
+ unfolding Numeral.Min_def Bit_def by auto
+
+lemma less_eq_Min_Bit1:
+ "Numeral.Min \<le> Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min \<le> k"
+ unfolding Numeral.Min_def Bit_def by auto
+
+lemma less_eq_Bit0_Pls:
+ "Numeral.Bit k bit.B0 \<le> Numeral.Pls \<longleftrightarrow> k \<le> Numeral.Pls"
+ unfolding Pls_def Bit_def by simp
+
+lemma less_eq_Bit1_Pls:
+ "Numeral.Bit k bit.B1 \<le> Numeral.Pls \<longleftrightarrow> k < Numeral.Pls"
+ unfolding Pls_def Bit_def by auto
+
+lemma less_eq_Bit_Min:
+ "Numeral.Bit k v \<le> Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min"
+ unfolding Numeral.Min_def Bit_def by (cases v) auto
+
+lemma less_eq_Bit0_Bit:
+ "Numeral.Bit k1 bit.B0 \<le> Numeral.Bit k2 v \<longleftrightarrow> k1 \<le> k2"
+ unfolding Bit_def bit.cases by (cases v) auto
+
+lemma less_eq_Bit_Bit1:
+ "Numeral.Bit k1 v \<le> Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2"
+ unfolding Bit_def bit.cases by (cases v) auto
+
+lemma less_eq_Bit1_Bit0:
+ "Numeral.Bit k1 bit.B1 \<le> Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2"
+ unfolding Bit_def by (auto split: bit.split)
+
+lemma less_eq_number_of:
+ "(number_of k \<Colon> int) \<le> number_of l \<longleftrightarrow> k \<le> l"
+ unfolding number_of_is_id ..
+
+
+lemma less_Pls_Pls:
+ "Numeral.Pls < Numeral.Pls \<longleftrightarrow> False" by simp
+
+lemma less_Pls_Min:
+ "Numeral.Pls < Numeral.Min \<longleftrightarrow> False"
+ unfolding Pls_def Numeral.Min_def by presburger
+
+lemma less_Pls_Bit0:
+ "Numeral.Pls < Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls < k"
+ unfolding Pls_def Bit_def by auto
+
+lemma less_Pls_Bit1:
+ "Numeral.Pls < Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Pls \<le> k"
+ unfolding Pls_def Bit_def by auto
+
+lemma less_Min_Pls:
+ "Numeral.Min < Numeral.Pls \<longleftrightarrow> True"
+ unfolding Pls_def Numeral.Min_def by presburger
+
+lemma less_Min_Min:
+ "Numeral.Min < Numeral.Min \<longleftrightarrow> False" by simp
+
+lemma less_Min_Bit:
+ "Numeral.Min < Numeral.Bit k v \<longleftrightarrow> Numeral.Min < k"
+ unfolding Numeral.Min_def Bit_def by (auto split: bit.split)
+
+lemma less_Bit_Pls:
+ "Numeral.Bit k v < Numeral.Pls \<longleftrightarrow> k < Numeral.Pls"
+ unfolding Pls_def Bit_def by (auto split: bit.split)
+
+lemma less_Bit0_Min:
+ "Numeral.Bit k bit.B0 < Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min"
+ unfolding Numeral.Min_def Bit_def by auto
+
+lemma less_Bit1_Min:
+ "Numeral.Bit k bit.B1 < Numeral.Min \<longleftrightarrow> k < Numeral.Min"
+ unfolding Numeral.Min_def Bit_def by auto
+
+lemma less_Bit_Bit0:
+ "Numeral.Bit k1 v < Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2"
+ unfolding Bit_def by (auto split: bit.split)
+
+lemma less_Bit1_Bit:
+ "Numeral.Bit k1 bit.B1 < Numeral.Bit k2 v \<longleftrightarrow> k1 < k2"
+ unfolding Bit_def by (auto split: bit.split)
+
+lemma less_Bit0_Bit1:
+ "Numeral.Bit k1 bit.B0 < Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2"
+ unfolding Bit_def bit.cases by arith
+
+lemma less_number_of:
+ "(number_of k \<Colon> int) < number_of l \<longleftrightarrow> k < l"
+ unfolding number_of_is_id ..
+
+lemmas pred_succ_numeral_code [code func] =
+ arith_simps(5-12)
+
+lemmas plus_numeral_code [code func] =
+ arith_simps(13-17)
+ arith_simps(26-27)
+ arith_extra_simps(1) [where 'a = int]
+
+lemmas minus_numeral_code [code func] =
+ arith_simps(18-21)
+ arith_extra_simps(2) [where 'a = int]
+ arith_extra_simps(5) [where 'a = int]
+
+lemmas times_numeral_code [code func] =
+ arith_simps(22-25)
+ arith_extra_simps(4) [where 'a = int]
+
+lemmas eq_numeral_code [code func] =
+ eq_Pls_Pls eq_Pls_Min eq_Pls_Bit0 eq_Pls_Bit1
+ eq_Min_Pls eq_Min_Min eq_Min_Bit0 eq_Min_Bit1
+ eq_Bit0_Pls eq_Bit1_Pls eq_Bit0_Min eq_Bit1_Min eq_Bit_Bit
+ eq_number_of
+
+lemmas less_eq_numeral_code [code func] = less_eq_Pls_Pls less_eq_Pls_Min less_eq_Pls_Bit
+ less_eq_Min_Pls less_eq_Min_Min less_eq_Min_Bit0 less_eq_Min_Bit1
+ less_eq_Bit0_Pls less_eq_Bit1_Pls less_eq_Bit_Min less_eq_Bit0_Bit less_eq_Bit_Bit1 less_eq_Bit1_Bit0
+ less_eq_number_of
+
+lemmas less_numeral_code [code func] = less_Pls_Pls less_Pls_Min less_Pls_Bit0
+ less_Pls_Bit1 less_Min_Pls less_Min_Min less_Min_Bit less_Bit_Pls
+ less_Bit0_Min less_Bit1_Min less_Bit_Bit0 less_Bit1_Bit less_Bit0_Bit1
+ less_number_of
+
+end