updated generated file;
authorwenzelm
Mon, 02 Jun 2008 22:50:29 +0200
changeset 27042 8fcf19f2168b
parent 27041 22dcf2fc0aa2
child 27043 3ff111ed85a1
updated generated file;
doc-src/IsarRef/Thy/document/Document_Preparation.tex
doc-src/IsarRef/Thy/document/Generic.tex
doc-src/IsarRef/Thy/document/HOL_Specific.tex
doc-src/IsarRef/Thy/document/Introduction.tex
doc-src/IsarRef/Thy/document/Outer_Syntax.tex
doc-src/IsarRef/Thy/document/Proof.tex
doc-src/IsarRef/Thy/document/Spec.tex
doc-src/IsarRef/Thy/document/pure.tex
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarRef/Thy/document/Document_Preparation.tex	Mon Jun 02 22:50:29 2008 +0200
@@ -0,0 +1,454 @@
+%
+\begin{isabellebody}%
+\def\isabellecontext{Document{\isacharunderscore}Preparation}%
+%
+\isadelimtheory
+\isanewline
+\isanewline
+%
+\endisadelimtheory
+%
+\isatagtheory
+\isacommand{theory}\isamarkupfalse%
+\ Document{\isacharunderscore}Preparation\isanewline
+\isakeyword{imports}\ Main\isanewline
+\isakeyword{begin}%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isamarkupchapter{Document preparation \label{ch:document-prep}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Isabelle/Isar provides a simple document preparation system based on
+  existing {PDF-\LaTeX} technology, with full support of hyper-links
+  (both local references and URLs) and bookmarks.  Thus the results
+  are equally well suited for WWW browsing and as printed copies.
+
+  \medskip Isabelle generates {\LaTeX} output as part of the run of a
+  \emph{logic session} (see also \cite{isabelle-sys}).  Getting
+  started with a working configuration for common situations is quite
+  easy by using the Isabelle \verb|mkdir| and \verb|make|
+  tools.  First invoke
+\begin{ttbox}
+  isatool mkdir Foo
+\end{ttbox}
+  to initialize a separate directory for session \verb|Foo| ---
+  it is safe to experiment, since \verb|isatool mkdir| never
+  overwrites existing files.  Ensure that \verb|Foo/ROOT.ML|
+  holds ML commands to load all theories required for this session;
+  furthermore \verb|Foo/document/root.tex| should include any
+  special {\LaTeX} macro packages required for your document (the
+  default is usually sufficient as a start).
+
+  The session is controlled by a separate \verb|IsaMakefile|
+  (with crude source dependencies by default).  This file is located
+  one level up from the \verb|Foo| directory location.  Now
+  invoke
+\begin{ttbox}
+  isatool make Foo
+\end{ttbox}
+  to run the \verb|Foo| session, with browser information and
+  document preparation enabled.  Unless any errors are reported by
+  Isabelle or {\LaTeX}, the output will appear inside the directory
+  \verb|ISABELLE_BROWSER_INFO|, as reported by the batch job in
+  verbose mode.
+
+  \medskip You may also consider to tune the \verb|usedir|
+  options in \verb|IsaMakefile|, for example to change the output
+  format from \verb|pdf| to \verb|dvi|, or activate the
+  \verb|-D| option to retain a second copy of the generated
+  {\LaTeX} sources.
+
+  \medskip See \emph{The Isabelle System Manual} \cite{isabelle-sys}
+  for further details on Isabelle logic sessions and theory
+  presentation.  The Isabelle/HOL tutorial \cite{isabelle-hol-book}
+  also covers theory presentation issues.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Markup commands \label{sec:markup}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{chapter}\hypertarget{command.chapter}{\hyperlink{command.chapter}{\mbox{\isa{\isacommand{chapter}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{command}{section}\hypertarget{command.section}{\hyperlink{command.section}{\mbox{\isa{\isacommand{section}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{command}{subsection}\hypertarget{command.subsection}{\hyperlink{command.subsection}{\mbox{\isa{\isacommand{subsection}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{command}{subsubsection}\hypertarget{command.subsubsection}{\hyperlink{command.subsubsection}{\mbox{\isa{\isacommand{subsubsection}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{command}{text}\hypertarget{command.text}{\hyperlink{command.text}{\mbox{\isa{\isacommand{text}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{command}{text\_raw}\hypertarget{command.text-raw}{\hyperlink{command.text-raw}{\mbox{\isa{\isacommand{text{\isacharunderscore}raw}}}}} & : & \isarkeep{local{\dsh}theory} \\[0.5ex]
+    \indexdef{}{command}{sect}\hypertarget{command.sect}{\hyperlink{command.sect}{\mbox{\isa{\isacommand{sect}}}}} & : & \isartrans{proof}{proof} \\
+    \indexdef{}{command}{subsect}\hypertarget{command.subsect}{\hyperlink{command.subsect}{\mbox{\isa{\isacommand{subsect}}}}} & : & \isartrans{proof}{proof} \\
+    \indexdef{}{command}{subsubsect}\hypertarget{command.subsubsect}{\hyperlink{command.subsubsect}{\mbox{\isa{\isacommand{subsubsect}}}}} & : & \isartrans{proof}{proof} \\
+    \indexdef{}{command}{txt}\hypertarget{command.txt}{\hyperlink{command.txt}{\mbox{\isa{\isacommand{txt}}}}} & : & \isartrans{proof}{proof} \\
+    \indexdef{}{command}{txt\_raw}\hypertarget{command.txt-raw}{\hyperlink{command.txt-raw}{\mbox{\isa{\isacommand{txt{\isacharunderscore}raw}}}}} & : & \isartrans{proof}{proof} \\
+  \end{matharray}
+
+  Apart from formal comments (see \secref{sec:comments}), markup
+  commands provide a structured way to insert text into the document
+  generated from a theory (see \cite{isabelle-sys} for more
+  information on Isabelle's document preparation tools).
+
+  \begin{rail}
+    ('chapter' | 'section' | 'subsection' | 'subsubsection' | 'text') target? text
+    ;
+    ('text\_raw' | 'sect' | 'subsect' | 'subsubsect' | 'txt' | 'txt\_raw') text
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.chapter}{\mbox{\isa{\isacommand{chapter}}}}, \hyperlink{command.section}{\mbox{\isa{\isacommand{section}}}}, \hyperlink{command.subsection}{\mbox{\isa{\isacommand{subsection}}}}, and \hyperlink{command.subsubsection}{\mbox{\isa{\isacommand{subsubsection}}}}] mark chapter and
+  section headings.
+
+  \item [\hyperlink{command.text}{\mbox{\isa{\isacommand{text}}}} and \hyperlink{command.txt}{\mbox{\isa{\isacommand{txt}}}}] specify paragraphs of
+  plain text.
+
+  \item [\hyperlink{command.text-raw}{\mbox{\isa{\isacommand{text{\isacharunderscore}raw}}}} and \hyperlink{command.txt-raw}{\mbox{\isa{\isacommand{txt{\isacharunderscore}raw}}}}] insert
+  {\LaTeX} source into the output, without additional markup.  Thus
+  the full range of document manipulations becomes available.
+
+  \end{descr}
+
+  The \isa{{\isachardoublequote}text{\isachardoublequote}} argument of these markup commands (except for
+  \hyperlink{command.text-raw}{\mbox{\isa{\isacommand{text{\isacharunderscore}raw}}}}) may contain references to formal entities
+  (``antiquotations'', see also \secref{sec:antiq}).  These are
+  interpreted in the present theory context, or the named \isa{{\isachardoublequote}target{\isachardoublequote}}.
+
+  Any of these markup elements corresponds to a {\LaTeX} command with
+  the name prefixed by \verb|\isamarkup|.  For the sectioning
+  commands this is a plain macro with a single argument, e.g.\
+  \verb|\isamarkupchapter{|\isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}\verb|}| for
+  \hyperlink{command.chapter}{\mbox{\isa{\isacommand{chapter}}}}.  The \hyperlink{command.text}{\mbox{\isa{\isacommand{text}}}} markup results in a
+  {\LaTeX} environment \verb|\begin{isamarkuptext}| \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}} \verb|\end{isamarkuptext}|, while \hyperlink{command.text-raw}{\mbox{\isa{\isacommand{text{\isacharunderscore}raw}}}}
+  causes the text to be inserted directly into the {\LaTeX} source.
+
+  \medskip The proof markup commands closely resemble those for theory
+  specifications, but have a different formal status and produce
+  different {\LaTeX} macros.  Also note that the \indexref{}{command}{header}\hyperlink{command.header}{\mbox{\isa{\isacommand{header}}}} declaration (see \secref{sec:begin-thy}) admits to insert
+  section markup just preceding the actual theory definition.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Antiquotations \label{sec:antiq}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{antiquotation}{theory}\hypertarget{antiquotation.theory}{\hyperlink{antiquotation.theory}{\mbox{\isa{theory}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{thm}\hypertarget{antiquotation.thm}{\hyperlink{antiquotation.thm}{\mbox{\isa{thm}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{prop}\hypertarget{antiquotation.prop}{\hyperlink{antiquotation.prop}{\mbox{\isa{prop}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{term}\hypertarget{antiquotation.term}{\hyperlink{antiquotation.term}{\mbox{\isa{term}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{const}\hypertarget{antiquotation.const}{\hyperlink{antiquotation.const}{\mbox{\isa{const}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{abbrev}\hypertarget{antiquotation.abbrev}{\hyperlink{antiquotation.abbrev}{\mbox{\isa{abbrev}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{typeof}\hypertarget{antiquotation.typeof}{\hyperlink{antiquotation.typeof}{\mbox{\isa{typeof}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{typ}\hypertarget{antiquotation.typ}{\hyperlink{antiquotation.typ}{\mbox{\isa{typ}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{thm\_style}\hypertarget{antiquotation.thm-style}{\hyperlink{antiquotation.thm-style}{\mbox{\isa{thm{\isacharunderscore}style}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{term\_style}\hypertarget{antiquotation.term-style}{\hyperlink{antiquotation.term-style}{\mbox{\isa{term{\isacharunderscore}style}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{text}\hypertarget{antiquotation.text}{\hyperlink{antiquotation.text}{\mbox{\isa{text}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{goals}\hypertarget{antiquotation.goals}{\hyperlink{antiquotation.goals}{\mbox{\isa{goals}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{subgoals}\hypertarget{antiquotation.subgoals}{\hyperlink{antiquotation.subgoals}{\mbox{\isa{subgoals}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{prf}\hypertarget{antiquotation.prf}{\hyperlink{antiquotation.prf}{\mbox{\isa{prf}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{full\_prf}\hypertarget{antiquotation.full-prf}{\hyperlink{antiquotation.full-prf}{\mbox{\isa{full{\isacharunderscore}prf}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{ML}\hypertarget{antiquotation.ML}{\hyperlink{antiquotation.ML}{\mbox{\isa{ML}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{ML\_type}\hypertarget{antiquotation.ML-type}{\hyperlink{antiquotation.ML-type}{\mbox{\isa{ML{\isacharunderscore}type}}}} & : & \isarantiq \\
+    \indexdef{}{antiquotation}{ML\_struct}\hypertarget{antiquotation.ML-struct}{\hyperlink{antiquotation.ML-struct}{\mbox{\isa{ML{\isacharunderscore}struct}}}} & : & \isarantiq \\
+  \end{matharray}
+
+  The text body of formal comments (see also \secref{sec:comments})
+  may contain antiquotations of logical entities, such as theorems,
+  terms and types, which are to be presented in the final output
+  produced by the Isabelle document preparation system (see also
+  \chref{ch:document-prep}).
+
+  Thus embedding of ``\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}term\ {\isacharbrackleft}show{\isacharunderscore}types{\isacharbrackright}\ {\isachardoublequote}f\ x\ {\isacharequal}\ a\ {\isacharplus}\ x{\isachardoublequote}{\isacharbraceright}{\isachardoublequote}}''
+  within a text block would cause
+  \isa{{\isacharparenleft}f{\isasymColon}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}a{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isacharplus}\ x} to appear in the final {\LaTeX} document.  Also note that theorem
+  antiquotations may involve attributes as well.  For example,
+  \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}thm\ sym\ {\isacharbrackleft}no{\isacharunderscore}vars{\isacharbrackright}{\isacharbraceright}{\isachardoublequote}} would print the theorem's
+  statement where all schematic variables have been replaced by fixed
+  ones, which are easier to read.
+
+  \begin{rail}
+    atsign lbrace antiquotation rbrace
+    ;
+
+    antiquotation:
+      'theory' options name |
+      'thm' options thmrefs |
+      'prop' options prop |
+      'term' options term |
+      'const' options term |
+      'abbrev' options term |
+      'typeof' options term |
+      'typ' options type |
+      'thm\_style' options name thmref |
+      'term\_style' options name term |
+      'text' options name |
+      'goals' options |
+      'subgoals' options |
+      'prf' options thmrefs |
+      'full\_prf' options thmrefs |
+      'ML' options name |
+      'ML\_type' options name |
+      'ML\_struct' options name
+    ;
+    options: '[' (option * ',') ']'
+    ;
+    option: name | name '=' name
+    ;
+  \end{rail}
+
+  Note that the syntax of antiquotations may \emph{not} include source
+  comments \verb|(*|~\isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}~\verb|*)| or verbatim
+  text \verb|{|\verb|*|~\isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}~\verb|*|\verb|}|.
+
+  \begin{descr}
+  
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}theory\ A{\isacharbraceright}{\isachardoublequote}}] prints the name \isa{{\isachardoublequote}A{\isachardoublequote}}, which is
+  guaranteed to refer to a valid ancestor theory in the current
+  context.
+
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}thm\ a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharbraceright}{\isachardoublequote}}] prints theorems
+  \isa{{\isachardoublequote}a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isachardoublequote}}.  Note that attribute specifications
+  may be included as well (see also \secref{sec:syn-att}); the
+  \indexref{}{attribute}{no\_vars}\hyperlink{attribute.no-vars}{\mbox{\isa{no{\isacharunderscore}vars}}} rule (see \secref{sec:misc-meth-att}) would
+  be particularly useful to suppress printing of schematic variables.
+
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}prop\ {\isasymphi}{\isacharbraceright}{\isachardoublequote}}] prints a well-typed proposition \isa{{\isachardoublequote}{\isasymphi}{\isachardoublequote}}.
+
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}term\ t{\isacharbraceright}{\isachardoublequote}}] prints a well-typed term \isa{{\isachardoublequote}t{\isachardoublequote}}.
+
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}const\ c{\isacharbraceright}{\isachardoublequote}}] prints a logical or syntactic constant
+  \isa{{\isachardoublequote}c{\isachardoublequote}}.
+  
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}abbrev\ c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n{\isacharbraceright}{\isachardoublequote}}] prints a constant
+  abbreviation \isa{{\isachardoublequote}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n\ {\isasymequiv}\ rhs{\isachardoublequote}} as defined in
+  the current context.
+
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}typeof\ t{\isacharbraceright}{\isachardoublequote}}] prints the type of a well-typed term
+  \isa{{\isachardoublequote}t{\isachardoublequote}}.
+
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}typ\ {\isasymtau}{\isacharbraceright}{\isachardoublequote}}] prints a well-formed type \isa{{\isachardoublequote}{\isasymtau}{\isachardoublequote}}.
+  
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}thm{\isacharunderscore}style\ s\ a{\isacharbraceright}{\isachardoublequote}}] prints theorem \isa{a},
+  previously applying a style \isa{s} to it (see below).
+  
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}term{\isacharunderscore}style\ s\ t{\isacharbraceright}{\isachardoublequote}}] prints a well-typed term \isa{t} after applying a style \isa{s} to it (see below).
+
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}text\ s{\isacharbraceright}{\isachardoublequote}}] prints uninterpreted source text \isa{s}.  This is particularly useful to print portions of text according
+  to the Isabelle {\LaTeX} output style, without demanding
+  well-formedness (e.g.\ small pieces of terms that should not be
+  parsed or type-checked yet).
+
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}goals{\isacharbraceright}{\isachardoublequote}}] prints the current \emph{dynamic} goal
+  state.  This is mainly for support of tactic-emulation scripts
+  within Isar --- presentation of goal states does not conform to
+  actual human-readable proof documents.
+
+  Please do not include goal states into document output unless you
+  really know what you are doing!
+  
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}subgoals{\isacharbraceright}{\isachardoublequote}}] is similar to \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}goals{\isacharbraceright}{\isachardoublequote}}, but
+  does not print the main goal.
+  
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}prf\ a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharbraceright}{\isachardoublequote}}] prints the (compact)
+  proof terms corresponding to the theorems \isa{{\isachardoublequote}a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isachardoublequote}}. Note that this requires proof terms to be switched on
+  for the current object logic (see the ``Proof terms'' section of the
+  Isabelle reference manual for information on how to do this).
+  
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}full{\isacharunderscore}prf\ a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharbraceright}{\isachardoublequote}}] is like \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}prf\ a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharbraceright}{\isachardoublequote}}, but displays the full proof terms,
+  i.e.\ also displays information omitted in the compact proof term,
+  which is denoted by ``\isa{{\isacharunderscore}}'' placeholders there.
+  
+  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}ML\ s{\isacharbraceright}{\isachardoublequote}}, \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}ML{\isacharunderscore}type\ s{\isacharbraceright}{\isachardoublequote}}, and \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}ML{\isacharunderscore}struct\ s{\isacharbraceright}{\isachardoublequote}}] check text \isa{s} as ML value, type, and
+  structure, respectively.  The source is displayed verbatim.
+
+  \end{descr}
+
+  \medskip The following standard styles for use with \isa{thm{\isacharunderscore}style} and \isa{term{\isacharunderscore}style} are available:
+
+  \begin{descr}
+  
+  \item [\isa{lhs}] extracts the first argument of any application
+  form with at least two arguments -- typically meta-level or
+  object-level equality, or any other binary relation.
+  
+  \item [\isa{rhs}] is like \isa{lhs}, but extracts the second
+  argument.
+  
+  \item [\isa{{\isachardoublequote}concl{\isachardoublequote}}] extracts the conclusion \isa{C} from a rule
+  in Horn-clause normal form \isa{{\isachardoublequote}A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ A\isactrlsub n\ {\isasymLongrightarrow}\ C{\isachardoublequote}}.
+  
+  \item [\isa{{\isachardoublequote}prem{\isadigit{1}}{\isachardoublequote}}, \dots, \isa{{\isachardoublequote}prem{\isadigit{9}}{\isachardoublequote}}] extract premise
+  number \isa{{\isachardoublequote}{\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isadigit{9}}{\isachardoublequote}}, respectively, from from a rule in
+  Horn-clause normal form \isa{{\isachardoublequote}A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ A\isactrlsub n\ {\isasymLongrightarrow}\ C{\isachardoublequote}}
+
+  \end{descr}
+
+  \medskip
+  The following options are available to tune the output.  Note that most of
+  these coincide with ML flags of the same names (see also \cite{isabelle-ref}).
+
+  \begin{descr}
+
+  \item[\isa{{\isachardoublequote}show{\isacharunderscore}types\ {\isacharequal}\ bool{\isachardoublequote}} and \isa{{\isachardoublequote}show{\isacharunderscore}sorts\ {\isacharequal}\ bool{\isachardoublequote}}]
+  control printing of explicit type and sort constraints.
+
+  \item[\isa{{\isachardoublequote}show{\isacharunderscore}structs\ {\isacharequal}\ bool{\isachardoublequote}}] controls printing of implicit
+  structures.
+
+  \item[\isa{{\isachardoublequote}long{\isacharunderscore}names\ {\isacharequal}\ bool{\isachardoublequote}}] forces names of types and
+  constants etc.\ to be printed in their fully qualified internal
+  form.
+
+  \item[\isa{{\isachardoublequote}short{\isacharunderscore}names\ {\isacharequal}\ bool{\isachardoublequote}}] forces names of types and
+  constants etc.\ to be printed unqualified.  Note that internalizing
+  the output again in the current context may well yield a different
+  result.
+
+  \item[\isa{{\isachardoublequote}unique{\isacharunderscore}names\ {\isacharequal}\ bool{\isachardoublequote}}] determines whether the printed
+  version of qualified names should be made sufficiently long to avoid
+  overlap with names declared further back.  Set to \isa{false} for
+  more concise output.
+
+  \item[\isa{{\isachardoublequote}eta{\isacharunderscore}contract\ {\isacharequal}\ bool{\isachardoublequote}}] prints terms in \isa{{\isasymeta}}-contracted form.
+
+  \item[\isa{{\isachardoublequote}display\ {\isacharequal}\ bool{\isachardoublequote}}] indicates if the text is to be
+  output as multi-line ``display material'', rather than a small piece
+  of text without line breaks (which is the default).
+
+  \item[\isa{{\isachardoublequote}break\ {\isacharequal}\ bool{\isachardoublequote}}] controls line breaks in non-display
+  material.
+
+  \item[\isa{{\isachardoublequote}quotes\ {\isacharequal}\ bool{\isachardoublequote}}] indicates if the output should be
+  enclosed in double quotes.
+
+  \item[\isa{{\isachardoublequote}mode\ {\isacharequal}\ name{\isachardoublequote}}] adds \isa{name} to the print mode to
+  be used for presentation (see also \cite{isabelle-ref}).  Note that
+  the standard setup for {\LaTeX} output is already present by
+  default, including the modes \isa{latex} and \isa{xsymbols}.
+
+  \item[\isa{{\isachardoublequote}margin\ {\isacharequal}\ nat{\isachardoublequote}} and \isa{{\isachardoublequote}indent\ {\isacharequal}\ nat{\isachardoublequote}}] change the
+  margin or indentation for pretty printing of display material.
+
+  \item[\isa{{\isachardoublequote}source\ {\isacharequal}\ bool{\isachardoublequote}}] prints the source text of the
+  antiquotation arguments, rather than the actual value.  Note that
+  this does not affect well-formedness checks of \hyperlink{antiquotation.thm}{\mbox{\isa{thm}}}, \hyperlink{antiquotation.term}{\mbox{\isa{term}}}, etc. (only the \hyperlink{antiquotation.text}{\mbox{\isa{text}}} antiquotation admits arbitrary output).
+
+  \item[\isa{{\isachardoublequote}goals{\isacharunderscore}limit\ {\isacharequal}\ nat{\isachardoublequote}}] determines the maximum number of
+  goals to be printed.
+
+  \item[\isa{{\isachardoublequote}locale\ {\isacharequal}\ name{\isachardoublequote}}] specifies an alternative locale
+  context used for evaluating and printing the subsequent argument.
+
+  \end{descr}
+
+  For boolean flags, ``\isa{{\isachardoublequote}name\ {\isacharequal}\ true{\isachardoublequote}}'' may be abbreviated as
+  ``\isa{name}''.  All of the above flags are disabled by default,
+  unless changed from ML.
+
+  \medskip Note that antiquotations do not only spare the author from
+  tedious typing of logical entities, but also achieve some degree of
+  consistency-checking of informal explanations with formal
+  developments: well-formedness of terms and types with respect to the
+  current theory or proof context is ensured here.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Tagged commands \label{sec:tags}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Each Isabelle/Isar command may be decorated by presentation tags:
+
+  \indexouternonterm{tags}
+  \begin{rail}
+    tags: ( tag * )
+    ;
+    tag: '\%' (ident | string)
+  \end{rail}
+
+  The tags \isa{{\isachardoublequote}theory{\isachardoublequote}}, \isa{{\isachardoublequote}proof{\isachardoublequote}}, \isa{{\isachardoublequote}ML{\isachardoublequote}} are already
+  pre-declared for certain classes of commands:
+
+ \medskip
+
+  \begin{tabular}{ll}
+    \isa{{\isachardoublequote}theory{\isachardoublequote}} & theory begin/end \\
+    \isa{{\isachardoublequote}proof{\isachardoublequote}} & all proof commands \\
+    \isa{{\isachardoublequote}ML{\isachardoublequote}} & all commands involving ML code \\
+  \end{tabular}
+
+  \medskip The Isabelle document preparation system (see also
+  \cite{isabelle-sys}) allows tagged command regions to be presented
+  specifically, e.g.\ to fold proof texts, or drop parts of the text
+  completely.
+
+  For example ``\hyperlink{command.by}{\mbox{\isa{\isacommand{by}}}}~\isa{{\isachardoublequote}{\isacharpercent}invisible\ auto{\isachardoublequote}}'' would
+  cause that piece of proof to be treated as \isa{invisible} instead
+  of \isa{{\isachardoublequote}proof{\isachardoublequote}} (the default), which may be either show or hidden
+  depending on the document setup.  In contrast, ``\hyperlink{command.by}{\mbox{\isa{\isacommand{by}}}}~\isa{{\isachardoublequote}{\isacharpercent}visible\ auto{\isachardoublequote}}'' would force this text to be shown
+  invariably.
+
+  Explicit tag specifications within a proof apply to all subsequent
+  commands of the same level of nesting.  For example, ``\hyperlink{command.proof}{\mbox{\isa{\isacommand{proof}}}}~\isa{{\isachardoublequote}{\isacharpercent}visible\ {\isasymdots}{\isachardoublequote}}~\hyperlink{command.qed}{\mbox{\isa{\isacommand{qed}}}}'' would force the
+  whole sub-proof to be typeset as \isa{visible} (unless some of its
+  parts are tagged differently).%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Draft presentation%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{display\_drafts}\hypertarget{command.display-drafts}{\hyperlink{command.display-drafts}{\mbox{\isa{\isacommand{display{\isacharunderscore}drafts}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{\cdot} \\
+    \indexdef{}{command}{print\_drafts}\hypertarget{command.print-drafts}{\hyperlink{command.print-drafts}{\mbox{\isa{\isacommand{print{\isacharunderscore}drafts}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{\cdot} \\
+  \end{matharray}
+
+  \begin{rail}
+    ('display\_drafts' | 'print\_drafts') (name +)
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.display-drafts}{\mbox{\isa{\isacommand{display{\isacharunderscore}drafts}}}}~\isa{paths} and \hyperlink{command.print-drafts}{\mbox{\isa{\isacommand{print{\isacharunderscore}drafts}}}}~\isa{paths}] perform simple output of a given list
+  of raw source files.  Only those symbols that do not require
+  additional {\LaTeX} packages are displayed properly, everything else
+  is left verbatim.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+\isacommand{end}\isamarkupfalse%
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+\isanewline
+\end{isabellebody}%
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "root"
+%%% End:
--- a/doc-src/IsarRef/Thy/document/Generic.tex	Mon Jun 02 22:50:27 2008 +0200
+++ b/doc-src/IsarRef/Thy/document/Generic.tex	Mon Jun 02 22:50:29 2008 +0200
@@ -24,733 +24,7 @@
 }
 \isamarkuptrue%
 %
-\isamarkupsection{Specification commands%
-}
-\isamarkuptrue%
-%
-\isamarkupsubsection{Derived specifications%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcll}
-    \indexdef{}{command}{axiomatization}\hypertarget{command.axiomatization}{\hyperlink{command.axiomatization}{\mbox{\isa{\isacommand{axiomatization}}}}} & : & \isarkeep{local{\dsh}theory} & (axiomatic!)\\
-    \indexdef{}{command}{definition}\hypertarget{command.definition}{\hyperlink{command.definition}{\mbox{\isa{\isacommand{definition}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{attribute}{defn}\hypertarget{attribute.defn}{\hyperlink{attribute.defn}{\mbox{\isa{defn}}}} & : & \isaratt \\
-    \indexdef{}{command}{abbreviation}\hypertarget{command.abbreviation}{\hyperlink{command.abbreviation}{\mbox{\isa{\isacommand{abbreviation}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{command}{print\_abbrevs}\hypertarget{command.print-abbrevs}{\hyperlink{command.print-abbrevs}{\mbox{\isa{\isacommand{print{\isacharunderscore}abbrevs}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
-    \indexdef{}{command}{notation}\hypertarget{command.notation}{\hyperlink{command.notation}{\mbox{\isa{\isacommand{notation}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{command}{no\_notation}\hypertarget{command.no-notation}{\hyperlink{command.no-notation}{\mbox{\isa{\isacommand{no{\isacharunderscore}notation}}}}} & : & \isarkeep{local{\dsh}theory} \\
-  \end{matharray}
-
-  These specification mechanisms provide a slightly more abstract view
-  than the underlying primitives of \hyperlink{command.consts}{\mbox{\isa{\isacommand{consts}}}}, \hyperlink{command.defs}{\mbox{\isa{\isacommand{defs}}}} (see \secref{sec:consts}), and \hyperlink{command.axioms}{\mbox{\isa{\isacommand{axioms}}}} (see
-  \secref{sec:axms-thms}).  In particular, type-inference is commonly
-  available, and result names need not be given.
-
-  \begin{rail}
-    'axiomatization' target? fixes? ('where' specs)?
-    ;
-    'definition' target? (decl 'where')? thmdecl? prop
-    ;
-    'abbreviation' target? mode? (decl 'where')? prop
-    ;
-    ('notation' | 'no\_notation') target? mode? (nameref structmixfix + 'and')
-    ;
-
-    fixes: ((name ('::' type)? mixfix? | vars) + 'and')
-    ;
-    specs: (thmdecl? props + 'and')
-    ;
-    decl: name ('::' type)? mixfix?
-    ;
-  \end{rail}
-
-  \begin{descr}
-  
-  \item [\hyperlink{command.axiomatization}{\mbox{\isa{\isacommand{axiomatization}}}}~\isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}\ {\isasymdots}\ c\isactrlsub m\ {\isasymWHERE}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}] introduces several constants
-  simultaneously and states axiomatic properties for these.  The
-  constants are marked as being specified once and for all, which
-  prevents additional specifications being issued later on.
-  
-  Note that axiomatic specifications are only appropriate when
-  declaring a new logical system.  Normal applications should only use
-  definitional mechanisms!
-
-  \item [\hyperlink{command.definition}{\mbox{\isa{\isacommand{definition}}}}~\isa{{\isachardoublequote}c\ {\isasymWHERE}\ eq{\isachardoublequote}}] produces an
-  internal definition \isa{{\isachardoublequote}c\ {\isasymequiv}\ t{\isachardoublequote}} according to the specification
-  given as \isa{eq}, which is then turned into a proven fact.  The
-  given proposition may deviate from internal meta-level equality
-  according to the rewrite rules declared as \hyperlink{attribute.defn}{\mbox{\isa{defn}}} by the
-  object-logic.  This usually covers object-level equality \isa{{\isachardoublequote}x\ {\isacharequal}\ y{\isachardoublequote}} and equivalence \isa{{\isachardoublequote}A\ {\isasymleftrightarrow}\ B{\isachardoublequote}}.  End-users normally need not
-  change the \hyperlink{attribute.defn}{\mbox{\isa{defn}}} setup.
-  
-  Definitions may be presented with explicit arguments on the LHS, as
-  well as additional conditions, e.g.\ \isa{{\isachardoublequote}f\ x\ y\ {\isacharequal}\ t{\isachardoublequote}} instead of
-  \isa{{\isachardoublequote}f\ {\isasymequiv}\ {\isasymlambda}x\ y{\isachardot}\ t{\isachardoublequote}} and \isa{{\isachardoublequote}y\ {\isasymnoteq}\ {\isadigit{0}}\ {\isasymLongrightarrow}\ g\ x\ y\ {\isacharequal}\ u{\isachardoublequote}} instead of an
-  unrestricted \isa{{\isachardoublequote}g\ {\isasymequiv}\ {\isasymlambda}x\ y{\isachardot}\ u{\isachardoublequote}}.
-  
-  \item [\hyperlink{command.abbreviation}{\mbox{\isa{\isacommand{abbreviation}}}}~\isa{{\isachardoublequote}c\ {\isasymWHERE}\ eq{\isachardoublequote}}] introduces
-  a syntactic constant which is associated with a certain term
-  according to the meta-level equality \isa{eq}.
-  
-  Abbreviations participate in the usual type-inference process, but
-  are expanded before the logic ever sees them.  Pretty printing of
-  terms involves higher-order rewriting with rules stemming from
-  reverted abbreviations.  This needs some care to avoid overlapping
-  or looping syntactic replacements!
-  
-  The optional \isa{mode} specification restricts output to a
-  particular print mode; using ``\isa{input}'' here achieves the
-  effect of one-way abbreviations.  The mode may also include an
-  ``\hyperlink{keyword.output}{\mbox{\isa{\isakeyword{output}}}}'' qualifier that affects the concrete syntax
-  declared for abbreviations, cf.\ \hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}} in
-  \secref{sec:syn-trans}.
-  
-  \item [\hyperlink{command.print-abbrevs}{\mbox{\isa{\isacommand{print{\isacharunderscore}abbrevs}}}}] prints all constant abbreviations
-  of the current context.
-  
-  \item [\hyperlink{command.notation}{\mbox{\isa{\isacommand{notation}}}}~\isa{{\isachardoublequote}c\ {\isacharparenleft}mx{\isacharparenright}{\isachardoublequote}}] associates mixfix
-  syntax with an existing constant or fixed variable.  This is a
-  robust interface to the underlying \hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}} primitive
-  (\secref{sec:syn-trans}).  Type declaration and internal syntactic
-  representation of the given entity is retrieved from the context.
-  
-  \item [\hyperlink{command.no-notation}{\mbox{\isa{\isacommand{no{\isacharunderscore}notation}}}}] is similar to \hyperlink{command.notation}{\mbox{\isa{\isacommand{notation}}}}, but removes the specified syntax annotation from the
-  present context.
-
-  \end{descr}
-
-  All of these specifications support local theory targets (cf.\
-  \secref{sec:target}).%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Generic declarations%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Arbitrary operations on the background context may be wrapped-up as
-  generic declaration elements.  Since the underlying concept of local
-  theories may be subject to later re-interpretation, there is an
-  additional dependency on a morphism that tells the difference of the
-  original declaration context wrt.\ the application context
-  encountered later on.  A fact declaration is an important special
-  case: it consists of a theorem which is applied to the context by
-  means of an attribute.
-
-  \begin{matharray}{rcl}
-    \indexdef{}{command}{declaration}\hypertarget{command.declaration}{\hyperlink{command.declaration}{\mbox{\isa{\isacommand{declaration}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{command}{declare}\hypertarget{command.declare}{\hyperlink{command.declare}{\mbox{\isa{\isacommand{declare}}}}} & : & \isarkeep{local{\dsh}theory} \\
-  \end{matharray}
-
-  \begin{rail}
-    'declaration' target? text
-    ;
-    'declare' target? (thmrefs + 'and')
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.declaration}{\mbox{\isa{\isacommand{declaration}}}}~\isa{d}] adds the declaration
-  function \isa{d} of ML type \verb|declaration|, to the current
-  local theory under construction.  In later application contexts, the
-  function is transformed according to the morphisms being involved in
-  the interpretation hierarchy.
-
-  \item [\hyperlink{command.declare}{\mbox{\isa{\isacommand{declare}}}}~\isa{thms}] declares theorems to the
-  current local theory context.  No theorem binding is involved here,
-  unlike \hyperlink{command.theorems}{\mbox{\isa{\isacommand{theorems}}}} or \hyperlink{command.lemmas}{\mbox{\isa{\isacommand{lemmas}}}} (cf.\
-  \secref{sec:axms-thms}), so \hyperlink{command.declare}{\mbox{\isa{\isacommand{declare}}}} only has the effect
-  of applying attributes as included in the theorem specification.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Local theory targets \label{sec:target}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A local theory target is a context managed separately within the
-  enclosing theory.  Contexts may introduce parameters (fixed
-  variables) and assumptions (hypotheses).  Definitions and theorems
-  depending on the context may be added incrementally later on.  Named
-  contexts refer to locales (cf.\ \secref{sec:locale}) or type classes
-  (cf.\ \secref{sec:class}); the name ``\isa{{\isachardoublequote}{\isacharminus}{\isachardoublequote}}'' signifies the
-  global theory context.
-
-  \begin{matharray}{rcll}
-    \indexdef{}{command}{context}\hypertarget{command.context}{\hyperlink{command.context}{\mbox{\isa{\isacommand{context}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
-    \indexdef{}{command}{end}\hypertarget{command.end}{\hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}}} & : & \isartrans{local{\dsh}theory}{theory} \\
-  \end{matharray}
-
-  \indexouternonterm{target}
-  \begin{rail}
-    'context' name 'begin'
-    ;
-
-    target: '(' 'in' name ')'
-    ;
-  \end{rail}
-
-  \begin{descr}
-  
-  \item [\hyperlink{command.context}{\mbox{\isa{\isacommand{context}}}}~\isa{{\isachardoublequote}c\ {\isasymBEGIN}{\isachardoublequote}}] recommences an
-  existing locale or class context \isa{c}.  Note that locale and
-  class definitions allow to include the \indexref{}{keyword}{begin}\hyperlink{keyword.begin}{\mbox{\isa{\isakeyword{begin}}}}
-  keyword as well, in order to continue the local theory immediately
-  after the initial specification.
-  
-  \item [\hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}}] concludes the current local theory and
-  continues the enclosing global theory.  Note that a non-local
-  \hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}} has a different meaning: it concludes the theory
-  itself (\secref{sec:begin-thy}).
-  
-  \item [\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIN}\ c{\isacharparenright}{\isachardoublequote}}] given after any local theory command
-  specifies an immediate target, e.g.\ ``\hyperlink{command.definition}{\mbox{\isa{\isacommand{definition}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIN}\ c{\isacharparenright}\ {\isasymdots}{\isachardoublequote}}'' or ``\hyperlink{command.theorem}{\mbox{\isa{\isacommand{theorem}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIN}\ c{\isacharparenright}\ {\isasymdots}{\isachardoublequote}}''.  This works both in a local or
-  global theory context; the current target context will be suspended
-  for this command only.  Note that ``\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIN}\ {\isacharminus}{\isacharparenright}{\isachardoublequote}}'' will
-  always produce a global result independently of the current target
-  context.
-
-  \end{descr}
-
-  The exact meaning of results produced within a local theory context
-  depends on the underlying target infrastructure (locale, type class
-  etc.).  The general idea is as follows, considering a context named
-  \isa{c} with parameter \isa{x} and assumption \isa{{\isachardoublequote}A{\isacharbrackleft}x{\isacharbrackright}{\isachardoublequote}}.
-  
-  Definitions are exported by introducing a global version with
-  additional arguments; a syntactic abbreviation links the long form
-  with the abstract version of the target context.  For example,
-  \isa{{\isachardoublequote}a\ {\isasymequiv}\ t{\isacharbrackleft}x{\isacharbrackright}{\isachardoublequote}} becomes \isa{{\isachardoublequote}c{\isachardot}a\ {\isacharquery}x\ {\isasymequiv}\ t{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}{\isachardoublequote}} at the theory
-  level (for arbitrary \isa{{\isachardoublequote}{\isacharquery}x{\isachardoublequote}}), together with a local
-  abbreviation \isa{{\isachardoublequote}c\ {\isasymequiv}\ c{\isachardot}a\ x{\isachardoublequote}} in the target context (for the
-  fixed parameter \isa{x}).
-
-  Theorems are exported by discharging the assumptions and
-  generalizing the parameters of the context.  For example, \isa{{\isachardoublequote}a{\isacharcolon}\ B{\isacharbrackleft}x{\isacharbrackright}{\isachardoublequote}} becomes \isa{{\isachardoublequote}c{\isachardot}a{\isacharcolon}\ A{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}\ {\isasymLongrightarrow}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}{\isachardoublequote}}, again for arbitrary
-  \isa{{\isachardoublequote}{\isacharquery}x{\isachardoublequote}}.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Locales \label{sec:locale}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Locales are named local contexts, consisting of a list of
-  declaration elements that are modeled after the Isar proof context
-  commands (cf.\ \secref{sec:proof-context}).%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsubsection{Locale specifications%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{locale}\hypertarget{command.locale}{\hyperlink{command.locale}{\mbox{\isa{\isacommand{locale}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
-    \indexdef{}{command}{print\_locale}\hypertarget{command.print-locale}{\hyperlink{command.print-locale}{\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
-    \indexdef{}{command}{print\_locales}\hypertarget{command.print-locales}{\hyperlink{command.print-locales}{\mbox{\isa{\isacommand{print{\isacharunderscore}locales}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
-    \indexdef{}{method}{intro\_locales}\hypertarget{method.intro-locales}{\hyperlink{method.intro-locales}{\mbox{\isa{intro{\isacharunderscore}locales}}}} & : & \isarmeth \\
-    \indexdef{}{method}{unfold\_locales}\hypertarget{method.unfold-locales}{\hyperlink{method.unfold-locales}{\mbox{\isa{unfold{\isacharunderscore}locales}}}} & : & \isarmeth \\
-  \end{matharray}
-
-  \indexouternonterm{contextexpr}\indexouternonterm{contextelem}
-  \indexisarelem{fixes}\indexisarelem{constrains}\indexisarelem{assumes}
-  \indexisarelem{defines}\indexisarelem{notes}\indexisarelem{includes}
-  \begin{rail}
-    'locale' ('(open)')? name ('=' localeexpr)? 'begin'?
-    ;
-    'print\_locale' '!'? localeexpr
-    ;
-    localeexpr: ((contextexpr '+' (contextelem+)) | contextexpr | (contextelem+))
-    ;
-
-    contextexpr: nameref | '(' contextexpr ')' |
-    (contextexpr (name mixfix? +)) | (contextexpr + '+')
-    ;
-    contextelem: fixes | constrains | assumes | defines | notes
-    ;
-    fixes: 'fixes' ((name ('::' type)? structmixfix? | vars) + 'and')
-    ;
-    constrains: 'constrains' (name '::' type + 'and')
-    ;
-    assumes: 'assumes' (thmdecl? props + 'and')
-    ;
-    defines: 'defines' (thmdecl? prop proppat? + 'and')
-    ;
-    notes: 'notes' (thmdef? thmrefs + 'and')
-    ;
-    includes: 'includes' contextexpr
-    ;
-  \end{rail}
-
-  \begin{descr}
-  
-  \item [\hyperlink{command.locale}{\mbox{\isa{\isacommand{locale}}}}~\isa{{\isachardoublequote}loc\ {\isacharequal}\ import\ {\isacharplus}\ body{\isachardoublequote}}] defines a
-  new locale \isa{loc} as a context consisting of a certain view of
-  existing locales (\isa{import}) plus some additional elements
-  (\isa{body}).  Both \isa{import} and \isa{body} are optional;
-  the degenerate form \hyperlink{command.locale}{\mbox{\isa{\isacommand{locale}}}}~\isa{loc} defines an empty
-  locale, which may still be useful to collect declarations of facts
-  later on.  Type-inference on locale expressions automatically takes
-  care of the most general typing that the combined context elements
-  may acquire.
-
-  The \isa{import} consists of a structured context expression,
-  consisting of references to existing locales, renamed contexts, or
-  merged contexts.  Renaming uses positional notation: \isa{{\isachardoublequote}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n{\isachardoublequote}} means that (a prefix of) the fixed
-  parameters of context \isa{c} are named \isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub n{\isachardoublequote}}; a ``\isa{{\isacharunderscore}}'' (underscore) means to skip that
-  position.  Renaming by default deletes concrete syntax, but new
-  syntax may by specified with a mixfix annotation.  An exeption of
-  this rule is the special syntax declared with ``\isa{{\isachardoublequote}{\isacharparenleft}{\isasymSTRUCTURE}{\isacharparenright}{\isachardoublequote}}'' (see below), which is neither deleted nor can it
-  be changed.  Merging proceeds from left-to-right, suppressing any
-  duplicates stemming from different paths through the import
-  hierarchy.
-
-  The \isa{body} consists of basic context elements, further context
-  expressions may be included as well.
-
-  \begin{descr}
-
-  \item [\hyperlink{element.fixes}{\mbox{\isa{\isakeyword{fixes}}}}~\isa{{\isachardoublequote}x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isacharparenleft}mx{\isacharparenright}{\isachardoublequote}}] declares a local
-  parameter of type \isa{{\isasymtau}} and mixfix annotation \isa{mx} (both
-  are optional).  The special syntax declaration ``\isa{{\isachardoublequote}{\isacharparenleft}{\isasymSTRUCTURE}{\isacharparenright}{\isachardoublequote}}'' means that \isa{x} may be referenced
-  implicitly in this context.
-
-  \item [\hyperlink{element.constrains}{\mbox{\isa{\isakeyword{constrains}}}}~\isa{{\isachardoublequote}x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}{\isachardoublequote}}] introduces a type
-  constraint \isa{{\isasymtau}} on the local parameter \isa{x}.
-
-  \item [\hyperlink{element.assumes}{\mbox{\isa{\isakeyword{assumes}}}}~\isa{{\isachardoublequote}a{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}]
-  introduces local premises, similar to \hyperlink{command.assume}{\mbox{\isa{\isacommand{assume}}}} within a
-  proof (cf.\ \secref{sec:proof-context}).
-
-  \item [\hyperlink{element.defines}{\mbox{\isa{\isakeyword{defines}}}}~\isa{{\isachardoublequote}a{\isacharcolon}\ x\ {\isasymequiv}\ t{\isachardoublequote}}] defines a previously
-  declared parameter.  This is similar to \hyperlink{command.def}{\mbox{\isa{\isacommand{def}}}} within a
-  proof (cf.\ \secref{sec:proof-context}), but \hyperlink{element.defines}{\mbox{\isa{\isakeyword{defines}}}}
-  takes an equational proposition instead of variable-term pair.  The
-  left-hand side of the equation may have additional arguments, e.g.\
-  ``\hyperlink{element.defines}{\mbox{\isa{\isakeyword{defines}}}}~\isa{{\isachardoublequote}f\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n\ {\isasymequiv}\ t{\isachardoublequote}}''.
-
-  \item [\hyperlink{element.notes}{\mbox{\isa{\isakeyword{notes}}}}~\isa{{\isachardoublequote}a\ {\isacharequal}\ b\isactrlsub {\isadigit{1}}\ {\isasymdots}\ b\isactrlsub n{\isachardoublequote}}]
-  reconsiders facts within a local context.  Most notably, this may
-  include arbitrary declarations in any attribute specifications
-  included here, e.g.\ a local \hyperlink{attribute.simp}{\mbox{\isa{simp}}} rule.
-
-  \item [\hyperlink{element.includes}{\mbox{\isa{\isakeyword{includes}}}}~\isa{c}] copies the specified context
-  in a statically scoped manner.  Only available in the long goal
-  format of \secref{sec:goals}.
-
-  In contrast, the initial \isa{import} specification of a locale
-  expression maintains a dynamic relation to the locales being
-  referenced (benefiting from any later fact declarations in the
-  obvious manner).
-
-  \end{descr}
-  
-  Note that ``\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIS}\ p\isactrlsub {\isadigit{1}}\ {\isasymdots}\ p\isactrlsub n{\isacharparenright}{\isachardoublequote}}'' patterns given
-  in the syntax of \hyperlink{element.assumes}{\mbox{\isa{\isakeyword{assumes}}}} and \hyperlink{element.defines}{\mbox{\isa{\isakeyword{defines}}}} above
-  are illegal in locale definitions.  In the long goal format of
-  \secref{sec:goals}, term bindings may be included as expected,
-  though.
-  
-  \medskip By default, locale specifications are ``closed up'' by
-  turning the given text into a predicate definition \isa{loc{\isacharunderscore}axioms} and deriving the original assumptions as local lemmas
-  (modulo local definitions).  The predicate statement covers only the
-  newly specified assumptions, omitting the content of included locale
-  expressions.  The full cumulative view is only provided on export,
-  involving another predicate \isa{loc} that refers to the complete
-  specification text.
-  
-  In any case, the predicate arguments are those locale parameters
-  that actually occur in the respective piece of text.  Also note that
-  these predicates operate at the meta-level in theory, but the locale
-  packages attempts to internalize statements according to the
-  object-logic setup (e.g.\ replacing \isa{{\isasymAnd}} by \isa{{\isasymforall}}, and
-  \isa{{\isachardoublequote}{\isasymLongrightarrow}{\isachardoublequote}} by \isa{{\isachardoublequote}{\isasymlongrightarrow}{\isachardoublequote}} in HOL; see also
-  \secref{sec:object-logic}).  Separate introduction rules \isa{loc{\isacharunderscore}axioms{\isachardot}intro} and \isa{loc{\isachardot}intro} are provided as well.
-  
-  The \isa{{\isachardoublequote}{\isacharparenleft}open{\isacharparenright}{\isachardoublequote}} option of a locale specification prevents both
-  the current \isa{loc{\isacharunderscore}axioms} and cumulative \isa{loc} predicate
-  constructions.  Predicates are also omitted for empty specification
-  texts.
-
-  \item [\hyperlink{command.print-locale}{\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}}~\isa{{\isachardoublequote}import\ {\isacharplus}\ body{\isachardoublequote}}] prints the
-  specified locale expression in a flattened form.  The notable
-  special case \hyperlink{command.print-locale}{\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}}~\isa{loc} just prints the
-  contents of the named locale, but keep in mind that type-inference
-  will normalize type variables according to the usual alphabetical
-  order.  The command omits \hyperlink{element.notes}{\mbox{\isa{\isakeyword{notes}}}} elements by default.
-  Use \hyperlink{command.print-locale}{\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}}\isa{{\isachardoublequote}{\isacharbang}{\isachardoublequote}} to get them included.
-
-  \item [\hyperlink{command.print-locales}{\mbox{\isa{\isacommand{print{\isacharunderscore}locales}}}}] prints the names of all locales
-  of the current theory.
-
-  \item [\hyperlink{method.intro-locales}{\mbox{\isa{intro{\isacharunderscore}locales}}} and \hyperlink{method.unfold-locales}{\mbox{\isa{unfold{\isacharunderscore}locales}}}]
-  repeatedly expand all introduction rules of locale predicates of the
-  theory.  While \hyperlink{method.intro-locales}{\mbox{\isa{intro{\isacharunderscore}locales}}} only applies the \isa{loc{\isachardot}intro} introduction rules and therefore does not decend to
-  assumptions, \hyperlink{method.unfold-locales}{\mbox{\isa{unfold{\isacharunderscore}locales}}} is more aggressive and applies
-  \isa{loc{\isacharunderscore}axioms{\isachardot}intro} as well.  Both methods are aware of locale
-  specifications entailed by the context, both from target and
-  \hyperlink{element.includes}{\mbox{\isa{\isakeyword{includes}}}} statements, and from interpretations (see
-  below).  New goals that are entailed by the current context are
-  discharged automatically.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsubsection{Interpretation of locales%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Locale expressions (more precisely, \emph{context expressions}) may
-  be instantiated, and the instantiated facts added to the current
-  context.  This requires a proof of the instantiated specification
-  and is called \emph{locale interpretation}.  Interpretation is
-  possible in theories and locales (command \hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}}) and also within a proof body (command \hyperlink{command.interpret}{\mbox{\isa{\isacommand{interpret}}}}).
-
-  \begin{matharray}{rcl}
-    \indexdef{}{command}{interpretation}\hypertarget{command.interpretation}{\hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}}} & : & \isartrans{theory}{proof(prove)} \\
-    \indexdef{}{command}{interpret}\hypertarget{command.interpret}{\hyperlink{command.interpret}{\mbox{\isa{\isacommand{interpret}}}}} & : & \isartrans{proof(state) ~|~ proof(chain)}{proof(prove)} \\
-    \indexdef{}{command}{print\_interps}\hypertarget{command.print-interps}{\hyperlink{command.print-interps}{\mbox{\isa{\isacommand{print{\isacharunderscore}interps}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : &  \isarkeep{theory~|~proof} \\
-  \end{matharray}
-
-  \indexouternonterm{interp}
-  \begin{rail}
-    'interpretation' (interp | name ('<' | subseteq) contextexpr)
-    ;
-    'interpret' interp
-    ;
-    'print\_interps' '!'? name
-    ;
-    instantiation: ('[' (inst+) ']')?
-    ;
-    interp: thmdecl? \\ (contextexpr instantiation |
-      name instantiation 'where' (thmdecl? prop + 'and'))
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}}~\isa{{\isachardoublequote}expr\ insts\ {\isasymWHERE}\ eqns{\isachardoublequote}}]
-
-  The first form of \hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}} interprets \isa{expr} in the theory.  The instantiation is given as a list of terms
-  \isa{insts} and is positional.  All parameters must receive an
-  instantiation term --- with the exception of defined parameters.
-  These are, if omitted, derived from the defining equation and other
-  instantiations.  Use ``\isa{{\isacharunderscore}}'' to omit an instantiation term.
-
-  The command generates proof obligations for the instantiated
-  specifications (assumes and defines elements).  Once these are
-  discharged by the user, instantiated facts are added to the theory
-  in a post-processing phase.
-
-  Additional equations, which are unfolded in facts during
-  post-processing, may be given after the keyword \hyperlink{keyword.where}{\mbox{\isa{\isakeyword{where}}}}.
-  This is useful for interpreting concepts introduced through
-  definition specification elements.  The equations must be proved.
-  Note that if equations are present, the context expression is
-  restricted to a locale name.
-
-  The command is aware of interpretations already active in the
-  theory.  No proof obligations are generated for those, neither is
-  post-processing applied to their facts.  This avoids duplication of
-  interpreted facts, in particular.  Note that, in the case of a
-  locale with import, parts of the interpretation may already be
-  active.  The command will only generate proof obligations and
-  process facts for new parts.
-
-  The context expression may be preceded by a name and/or attributes.
-  These take effect in the post-processing of facts.  The name is used
-  to prefix fact names, for example to avoid accidental hiding of
-  other facts.  Attributes are applied after attributes of the
-  interpreted facts.
-
-  Adding facts to locales has the effect of adding interpreted facts
-  to the theory for all active interpretations also.  That is,
-  interpretations dynamically participate in any facts added to
-  locales.
-
-  \item [\hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}}~\isa{{\isachardoublequote}name\ {\isasymsubseteq}\ expr{\isachardoublequote}}]
-
-  This form of the command interprets \isa{expr} in the locale
-  \isa{name}.  It requires a proof that the specification of \isa{name} implies the specification of \isa{expr}.  As in the
-  localized version of the theorem command, the proof is in the
-  context of \isa{name}.  After the proof obligation has been
-  dischared, the facts of \isa{expr} become part of locale \isa{name} as \emph{derived} context elements and are available when the
-  context \isa{name} is subsequently entered.  Note that, like
-  import, this is dynamic: facts added to a locale part of \isa{expr} after interpretation become also available in \isa{name}.
-  Like facts of renamed context elements, facts obtained by
-  interpretation may be accessed by prefixing with the parameter
-  renaming (where the parameters are separated by ``\isa{{\isacharunderscore}}'').
-
-  Unlike interpretation in theories, instantiation is confined to the
-  renaming of parameters, which may be specified as part of the
-  context expression \isa{expr}.  Using defined parameters in \isa{name} one may achieve an effect similar to instantiation, though.
-
-  Only specification fragments of \isa{expr} that are not already
-  part of \isa{name} (be it imported, derived or a derived fragment
-  of the import) are considered by interpretation.  This enables
-  circular interpretations.
-
-  If interpretations of \isa{name} exist in the current theory, the
-  command adds interpretations for \isa{expr} as well, with the same
-  prefix and attributes, although only for fragments of \isa{expr}
-  that are not interpreted in the theory already.
-
-  \item [\hyperlink{command.interpret}{\mbox{\isa{\isacommand{interpret}}}}~\isa{{\isachardoublequote}expr\ insts\ {\isasymWHERE}\ eqns{\isachardoublequote}}]
-  interprets \isa{expr} in the proof context and is otherwise
-  similar to interpretation in theories.
-
-  \item [\hyperlink{command.print-interps}{\mbox{\isa{\isacommand{print{\isacharunderscore}interps}}}}~\isa{loc}] prints the
-  interpretations of a particular locale \isa{loc} that are active
-  in the current context, either theory or proof context.  The
-  exclamation point argument triggers printing of \emph{witness}
-  theorems justifying interpretations.  These are normally omitted
-  from the output.
-  
-  \end{descr}
-
-  \begin{warn}
-    Since attributes are applied to interpreted theorems,
-    interpretation may modify the context of common proof tools, e.g.\
-    the Simplifier or Classical Reasoner.  Since the behavior of such
-    automated reasoning tools is \emph{not} stable under
-    interpretation morphisms, manual declarations might have to be
-    issued.
-  \end{warn}
-
-  \begin{warn}
-    An interpretation in a theory may subsume previous
-    interpretations.  This happens if the same specification fragment
-    is interpreted twice and the instantiation of the second
-    interpretation is more general than the interpretation of the
-    first.  A warning is issued, since it is likely that these could
-    have been generalized in the first place.  The locale package does
-    not attempt to remove subsumed interpretations.
-  \end{warn}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Classes \label{sec:class}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A class is a particular locale with \emph{exactly one} type variable
-  \isa{{\isasymalpha}}.  Beyond the underlying locale, a corresponding type class
-  is established which is interpreted logically as axiomatic type
-  class \cite{Wenzel:1997:TPHOL} whose logical content are the
-  assumptions of the locale.  Thus, classes provide the full
-  generality of locales combined with the commodity of type classes
-  (notably type-inference).  See \cite{isabelle-classes} for a short
-  tutorial.
-
-  \begin{matharray}{rcl}
-    \indexdef{}{command}{class}\hypertarget{command.class}{\hyperlink{command.class}{\mbox{\isa{\isacommand{class}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
-    \indexdef{}{command}{instantiation}\hypertarget{command.instantiation}{\hyperlink{command.instantiation}{\mbox{\isa{\isacommand{instantiation}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
-    \indexdef{}{command}{instance}\hypertarget{command.instance}{\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
-    \indexdef{}{command}{subclass}\hypertarget{command.subclass}{\hyperlink{command.subclass}{\mbox{\isa{\isacommand{subclass}}}}} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
-    \indexdef{}{command}{print\_classes}\hypertarget{command.print-classes}{\hyperlink{command.print-classes}{\mbox{\isa{\isacommand{print{\isacharunderscore}classes}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
-    \indexdef{}{method}{intro\_classes}\hypertarget{method.intro-classes}{\hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}}} & : & \isarmeth \\
-  \end{matharray}
-
-  \begin{rail}
-    'class' name '=' ((superclassexpr '+' (contextelem+)) | superclassexpr | (contextelem+)) \\
-      'begin'?
-    ;
-    'instantiation' (nameref + 'and') '::' arity 'begin'
-    ;
-    'instance'
-    ;
-    'subclass' target? nameref
-    ;
-    'print\_classes'
-    ;
-
-    superclassexpr: nameref | (nameref '+' superclassexpr)
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.class}{\mbox{\isa{\isacommand{class}}}}~\isa{{\isachardoublequote}c\ {\isacharequal}\ superclasses\ {\isacharplus}\ body{\isachardoublequote}}] defines
-  a new class \isa{c}, inheriting from \isa{superclasses}.  This
-  introduces a locale \isa{c} with import of all locales \isa{superclasses}.
-
-  Any \hyperlink{element.fixes}{\mbox{\isa{\isakeyword{fixes}}}} in \isa{body} are lifted to the global
-  theory level (\emph{class operations} \isa{{\isachardoublequote}f\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ f\isactrlsub n{\isachardoublequote}} of class \isa{c}), mapping the local type parameter
-  \isa{{\isasymalpha}} to a schematic type variable \isa{{\isachardoublequote}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isachardoublequote}}.
-
-  Likewise, \hyperlink{element.assumes}{\mbox{\isa{\isakeyword{assumes}}}} in \isa{body} are also lifted,
-  mapping each local parameter \isa{{\isachardoublequote}f\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}{\isachardoublequote}} to its
-  corresponding global constant \isa{{\isachardoublequote}f\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}{\isachardoublequote}}.  The
-  corresponding introduction rule is provided as \isa{c{\isacharunderscore}class{\isacharunderscore}axioms{\isachardot}intro}.  This rule should be rarely needed directly
-  --- the \hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}} method takes care of the details of
-  class membership proofs.
-
-  \item [\hyperlink{command.instantiation}{\mbox{\isa{\isacommand{instantiation}}}}~\isa{{\isachardoublequote}t\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlsub n{\isacharparenright}\ s\ {\isasymBEGIN}{\isachardoublequote}}] opens a theory target (cf.\
-  \secref{sec:target}) which allows to specify class operations \isa{{\isachardoublequote}f\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ f\isactrlsub n{\isachardoublequote}} corresponding to sort \isa{s} at the
-  particular type instance \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ s\isactrlsub n{\isacharparenright}\ t{\isachardoublequote}}.  A plain \hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}} command
-  in the target body poses a goal stating these type arities.  The
-  target is concluded by an \indexref{}{command}{end}\hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}} command.
-
-  Note that a list of simultaneous type constructors may be given;
-  this corresponds nicely to mutual recursive type definitions, e.g.\
-  in Isabelle/HOL.
-
-  \item [\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}] in an instantiation target body sets
-  up a goal stating the type arities claimed at the opening \hyperlink{command.instantiation}{\mbox{\isa{\isacommand{instantiation}}}}.  The proof would usually proceed by \hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}}, and then establish the characteristic theorems of
-  the type classes involved.  After finishing the proof, the
-  background theory will be augmented by the proven type arities.
-
-  \item [\hyperlink{command.subclass}{\mbox{\isa{\isacommand{subclass}}}}~\isa{c}] in a class context for class
-  \isa{d} sets up a goal stating that class \isa{c} is logically
-  contained in class \isa{d}.  After finishing the proof, class
-  \isa{d} is proven to be subclass \isa{c} and the locale \isa{c} is interpreted into \isa{d} simultaneously.
-
-  \item [\hyperlink{command.print-classes}{\mbox{\isa{\isacommand{print{\isacharunderscore}classes}}}}] prints all classes in the current
-  theory.
-
-  \item [\hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}}] repeatedly expands all class
-  introduction rules of this theory.  Note that this method usually
-  needs not be named explicitly, as it is already included in the
-  default proof step (e.g.\ of \hyperlink{command.proof}{\mbox{\isa{\isacommand{proof}}}}).  In particular,
-  instantiation of trivial (syntactic) classes may be performed by a
-  single ``\hyperlink{command.ddot}{\mbox{\isa{\isacommand{{\isachardot}{\isachardot}}}}}'' proof step.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsubsection{The class target%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-%FIXME check
-
-  A named context may refer to a locale (cf.\ \secref{sec:target}).
-  If this locale is also a class \isa{c}, apart from the common
-  locale target behaviour the following happens.
-
-  \begin{itemize}
-
-  \item Local constant declarations \isa{{\isachardoublequote}g{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}{\isachardoublequote}} referring to the
-  local type parameter \isa{{\isasymalpha}} and local parameters \isa{{\isachardoublequote}f{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}{\isachardoublequote}}
-  are accompanied by theory-level constants \isa{{\isachardoublequote}g{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}{\isachardoublequote}}
-  referring to theory-level class operations \isa{{\isachardoublequote}f{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}{\isachardoublequote}}.
-
-  \item Local theorem bindings are lifted as are assumptions.
-
-  \item Local syntax refers to local operations \isa{{\isachardoublequote}g{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}{\isachardoublequote}} and
-  global operations \isa{{\isachardoublequote}g{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}{\isachardoublequote}} uniformly.  Type inference
-  resolves ambiguities.  In rare cases, manual type annotations are
-  needed.
-  
-  \end{itemize}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Axiomatic type classes \label{sec:axclass}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{axclass}\hypertarget{command.axclass}{\hyperlink{command.axclass}{\mbox{\isa{\isacommand{axclass}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{instance}\hypertarget{command.instance}{\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}} & : & \isartrans{theory}{proof(prove)} \\
-  \end{matharray}
-
-  Axiomatic type classes are Isabelle/Pure's primitive
-  \emph{definitional} interface to type classes.  For practical
-  applications, you should consider using classes
-  (cf.~\secref{sec:classes}) which provide high level interface.
-
-  \begin{rail}
-    'axclass' classdecl (axmdecl prop +)
-    ;
-    'instance' (nameref ('<' | subseteq) nameref | nameref '::' arity)
-    ;
-  \end{rail}
-
-  \begin{descr}
-  
-  \item [\hyperlink{command.axclass}{\mbox{\isa{\isacommand{axclass}}}}~\isa{{\isachardoublequote}c\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n\ axms{\isachardoublequote}}] defines an axiomatic type class as the intersection of
-  existing classes, with additional axioms holding.  Class axioms may
-  not contain more than one type variable.  The class axioms (with
-  implicit sort constraints added) are bound to the given names.
-  Furthermore a class introduction rule is generated (being bound as
-  \isa{c{\isacharunderscore}class{\isachardot}intro}); this rule is employed by method \hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}} to support instantiation proofs of this class.
-  
-  The ``class axioms'' are stored as theorems according to the given
-  name specifications, adding \isa{{\isachardoublequote}c{\isacharunderscore}class{\isachardoublequote}} as name space prefix;
-  the same facts are also stored collectively as \isa{c{\isacharunderscore}class{\isachardot}axioms}.
-  
-  \item [\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}~\isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{2}}{\isachardoublequote}} and
-  \hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}~\isa{{\isachardoublequote}t\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlsub n{\isacharparenright}\ s{\isachardoublequote}}]
-  setup a goal stating a class relation or type arity.  The proof
-  would usually proceed by \hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}}, and then establish
-  the characteristic theorems of the type classes involved.  After
-  finishing the proof, the theory will be augmented by a type
-  signature declaration corresponding to the resulting theorem.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Arbitrary overloading%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Isabelle/Pure's definitional schemes support certain forms of
-  overloading (see \secref{sec:consts}).  At most occassions
-  overloading will be used in a Haskell-like fashion together with
-  type classes by means of \hyperlink{command.instantiation}{\mbox{\isa{\isacommand{instantiation}}}} (see
-  \secref{sec:class}).  Sometimes low-level overloading is desirable.
-  The \hyperlink{command.overloading}{\mbox{\isa{\isacommand{overloading}}}} target provides a convenient view for
-  end-users.
-
-  \begin{matharray}{rcl}
-    \indexdef{}{command}{overloading}\hypertarget{command.overloading}{\hyperlink{command.overloading}{\mbox{\isa{\isacommand{overloading}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
-  \end{matharray}
-
-  \begin{rail}
-    'overloading' \\
-    ( string ( '==' | equiv ) term ( '(' 'unchecked' ')' )? + ) 'begin'
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.overloading}{\mbox{\isa{\isacommand{overloading}}}}~\isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}\ {\isasymequiv}\ c\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\isactrlsub {\isadigit{1}}\ {\isasymAND}\ {\isasymdots}\ x\isactrlsub n\ {\isasymequiv}\ c\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\isactrlsub n\ {\isasymBEGIN}{\isachardoublequote}}]
-  opens a theory target (cf.\ \secref{sec:target}) which allows to
-  specify constants with overloaded definitions.  These are identified
-  by an explicitly given mapping from variable names \isa{{\isachardoublequote}x\isactrlsub i{\isachardoublequote}} to constants \isa{{\isachardoublequote}c\isactrlsub i{\isachardoublequote}} at particular type
-  instances.  The definitions themselves are established using common
-  specification tools, using the names \isa{{\isachardoublequote}x\isactrlsub i{\isachardoublequote}} as
-  reference to the corresponding constants.  The target is concluded
-  by \hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}}.
-
-  A \isa{{\isachardoublequote}{\isacharparenleft}unchecked{\isacharparenright}{\isachardoublequote}} option disables global dependency checks for
-  the corresponding definition, which is occasionally useful for
-  exotic overloading.  It is at the discretion of the user to avoid
-  malformed theory specifications!
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Configuration options%
+\isamarkupsection{Configuration options%
 }
 \isamarkuptrue%
 %
@@ -790,7 +64,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsection{Proof tools%
+\isamarkupsection{Basic proof tools%
 }
 \isamarkuptrue%
 %
@@ -1031,11 +305,11 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsection{The Simplifier \label{sec:simplifier}%
+\isamarkupsection{The Simplifier \label{sec:simplifier}%
 }
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Simplification methods%
+\isamarkupsubsection{Simplification methods%
 }
 \isamarkuptrue%
 %
@@ -1110,7 +384,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Declaring rules%
+\isamarkupsubsection{Declaring rules%
 }
 \isamarkuptrue%
 %
@@ -1143,7 +417,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Simplification procedures%
+\isamarkupsubsection{Simplification procedures%
 }
 \isamarkuptrue%
 %
@@ -1189,7 +463,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Forward simplification%
+\isamarkupsubsection{Forward simplification%
 }
 \isamarkuptrue%
 %
@@ -1224,7 +498,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Low-level equational reasoning%
+\isamarkupsubsection{Low-level equational reasoning%
 }
 \isamarkuptrue%
 %
@@ -1290,11 +564,11 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsection{The Classical Reasoner \label{sec:classical}%
+\isamarkupsection{The Classical Reasoner \label{sec:classical}%
 }
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Basic methods%
+\isamarkupsubsection{Basic methods%
 }
 \isamarkuptrue%
 %
@@ -1339,7 +613,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Automated methods%
+\isamarkupsubsection{Automated methods%
 }
 \isamarkuptrue%
 %
@@ -1384,7 +658,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Combined automated methods \label{sec:clasimp}%
+\isamarkupsubsection{Combined automated methods \label{sec:clasimp}%
 }
 \isamarkuptrue%
 %
@@ -1430,7 +704,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Declaring rules%
+\isamarkupsubsection{Declaring rules%
 }
 \isamarkuptrue%
 %
@@ -1486,7 +760,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsubsection{Classical operations%
+\isamarkupsubsection{Classical operations%
 }
 \isamarkuptrue%
 %
@@ -1504,355 +778,6 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsection{Proof by cases and induction \label{sec:cases-induct}%
-}
-\isamarkuptrue%
-%
-\isamarkupsubsubsection{Rule contexts%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{case}\hypertarget{command.case}{\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}} & : & \isartrans{proof(state)}{proof(state)} \\
-    \indexdef{}{command}{print\_cases}\hypertarget{command.print-cases}{\hyperlink{command.print-cases}{\mbox{\isa{\isacommand{print{\isacharunderscore}cases}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{proof} \\
-    \indexdef{}{attribute}{case\_names}\hypertarget{attribute.case-names}{\hyperlink{attribute.case-names}{\mbox{\isa{case{\isacharunderscore}names}}}} & : & \isaratt \\
-    \indexdef{}{attribute}{case\_conclusion}\hypertarget{attribute.case-conclusion}{\hyperlink{attribute.case-conclusion}{\mbox{\isa{case{\isacharunderscore}conclusion}}}} & : & \isaratt \\
-    \indexdef{}{attribute}{params}\hypertarget{attribute.params}{\hyperlink{attribute.params}{\mbox{\isa{params}}}} & : & \isaratt \\
-    \indexdef{}{attribute}{consumes}\hypertarget{attribute.consumes}{\hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}} & : & \isaratt \\
-  \end{matharray}
-
-  The puristic way to build up Isar proof contexts is by explicit
-  language elements like \hyperlink{command.fix}{\mbox{\isa{\isacommand{fix}}}}, \hyperlink{command.assume}{\mbox{\isa{\isacommand{assume}}}},
-  \hyperlink{command.let}{\mbox{\isa{\isacommand{let}}}} (see \secref{sec:proof-context}).  This is adequate
-  for plain natural deduction, but easily becomes unwieldy in concrete
-  verification tasks, which typically involve big induction rules with
-  several cases.
-
-  The \hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}} command provides a shorthand to refer to a
-  local context symbolically: certain proof methods provide an
-  environment of named ``cases'' of the form \isa{{\isachardoublequote}c{\isacharcolon}\ x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isacharcomma}\ {\isasymphi}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}; the effect of ``\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{c}'' is then equivalent to ``\hyperlink{command.fix}{\mbox{\isa{\isacommand{fix}}}}~\isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardoublequote}}~\hyperlink{command.assume}{\mbox{\isa{\isacommand{assume}}}}~\isa{{\isachardoublequote}c{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}''.  Term bindings may be covered as well, notably
-  \hyperlink{variable.?case}{\mbox{\isa{{\isacharquery}case}}} for the main conclusion.
-
-  By default, the ``terminology'' \isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isachardoublequote}} of
-  a case value is marked as hidden, i.e.\ there is no way to refer to
-  such parameters in the subsequent proof text.  After all, original
-  rule parameters stem from somewhere outside of the current proof
-  text.  By using the explicit form ``\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{{\isachardoublequote}{\isacharparenleft}c\ y\isactrlsub {\isadigit{1}}\ {\isasymdots}\ y\isactrlsub m{\isacharparenright}{\isachardoublequote}}'' instead, the proof author is able to
-  chose local names that fit nicely into the current context.
-
-  \medskip It is important to note that proper use of \hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}} does not provide means to peek at the current goal state,
-  which is not directly observable in Isar!  Nonetheless, goal
-  refinement commands do provide named cases \isa{{\isachardoublequote}goal\isactrlsub i{\isachardoublequote}}
-  for each subgoal \isa{{\isachardoublequote}i\ {\isacharequal}\ {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n{\isachardoublequote}} of the resulting goal state.
-  Using this extra feature requires great care, because some bits of
-  the internal tactical machinery intrude the proof text.  In
-  particular, parameter names stemming from the left-over of automated
-  reasoning tools are usually quite unpredictable.
-
-  Under normal circumstances, the text of cases emerge from standard
-  elimination or induction rules, which in turn are derived from
-  previous theory specifications in a canonical way (say from
-  \hyperlink{command.inductive}{\mbox{\isa{\isacommand{inductive}}}} definitions).
-
-  \medskip Proper cases are only available if both the proof method
-  and the rules involved support this.  By using appropriate
-  attributes, case names, conclusions, and parameters may be also
-  declared by hand.  Thus variant versions of rules that have been
-  derived manually become ready to use in advanced case analysis
-  later.
-
-  \begin{rail}
-    'case' (caseref | '(' caseref ((name | underscore) +) ')')
-    ;
-    caseref: nameref attributes?
-    ;
-
-    'case\_names' (name +)
-    ;
-    'case\_conclusion' name (name *)
-    ;
-    'params' ((name *) + 'and')
-    ;
-    'consumes' nat?
-    ;
-  \end{rail}
-
-  \begin{descr}
-  
-  \item [\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{{\isachardoublequote}{\isacharparenleft}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isacharparenright}{\isachardoublequote}}]
-  invokes a named local context \isa{{\isachardoublequote}c{\isacharcolon}\ x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isacharcomma}\ {\isasymphi}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymphi}\isactrlsub m{\isachardoublequote}}, as provided by an appropriate
-  proof method (such as \indexref{}{method}{cases}\hyperlink{method.cases}{\mbox{\isa{cases}}} and \indexref{}{method}{induct}\hyperlink{method.induct}{\mbox{\isa{induct}}}).
-  The command ``\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{{\isachardoublequote}{\isacharparenleft}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isacharparenright}{\isachardoublequote}}'' abbreviates ``\hyperlink{command.fix}{\mbox{\isa{\isacommand{fix}}}}~\isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardoublequote}}~\hyperlink{command.assume}{\mbox{\isa{\isacommand{assume}}}}~\isa{{\isachardoublequote}c{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}''.
-
-  \item [\hyperlink{command.print-cases}{\mbox{\isa{\isacommand{print{\isacharunderscore}cases}}}}] prints all local contexts of the
-  current state, using Isar proof language notation.
-  
-  \item [\hyperlink{attribute.case-names}{\mbox{\isa{case{\isacharunderscore}names}}}~\isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}\ {\isasymdots}\ c\isactrlsub k{\isachardoublequote}}]
-  declares names for the local contexts of premises of a theorem;
-  \isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub k{\isachardoublequote}} refers to the \emph{suffix} of the
-  list of premises.
-  
-  \item [\hyperlink{attribute.case-conclusion}{\mbox{\isa{case{\isacharunderscore}conclusion}}}~\isa{{\isachardoublequote}c\ d\isactrlsub {\isadigit{1}}\ {\isasymdots}\ d\isactrlsub k{\isachardoublequote}}] declares names for the conclusions of a named premise
-  \isa{c}; here \isa{{\isachardoublequote}d\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ d\isactrlsub k{\isachardoublequote}} refers to the
-  prefix of arguments of a logical formula built by nesting a binary
-  connective (e.g.\ \isa{{\isachardoublequote}{\isasymor}{\isachardoublequote}}).
-  
-  Note that proof methods such as \hyperlink{method.induct}{\mbox{\isa{induct}}} and \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} already provide a default name for the conclusion as a
-  whole.  The need to name subformulas only arises with cases that
-  split into several sub-cases, as in common co-induction rules.
-
-  \item [\hyperlink{attribute.params}{\mbox{\isa{params}}}~\isa{{\isachardoublequote}p\isactrlsub {\isadigit{1}}\ {\isasymdots}\ p\isactrlsub m\ {\isasymAND}\ {\isasymdots}\ q\isactrlsub {\isadigit{1}}\ {\isasymdots}\ q\isactrlsub n{\isachardoublequote}}] renames the innermost parameters of
-  premises \isa{{\isachardoublequote}{\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n{\isachardoublequote}} of some theorem.  An empty list of names
-  may be given to skip positions, leaving the present parameters
-  unchanged.
-  
-  Note that the default usage of case rules does \emph{not} directly
-  expose parameters to the proof context.
-  
-  \item [\hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}~\isa{n}] declares the number of
-  ``major premises'' of a rule, i.e.\ the number of facts to be
-  consumed when it is applied by an appropriate proof method.  The
-  default value of \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}} is \isa{{\isachardoublequote}n\ {\isacharequal}\ {\isadigit{1}}{\isachardoublequote}}, which is
-  appropriate for the usual kind of cases and induction rules for
-  inductive sets (cf.\ \secref{sec:hol-inductive}).  Rules without any
-  \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}} declaration given are treated as if
-  \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}~\isa{{\isadigit{0}}} had been specified.
-  
-  Note that explicit \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}} declarations are only
-  rarely needed; this is already taken care of automatically by the
-  higher-level \hyperlink{attribute.cases}{\mbox{\isa{cases}}}, \hyperlink{attribute.induct}{\mbox{\isa{induct}}}, and
-  \hyperlink{attribute.coinduct}{\mbox{\isa{coinduct}}} declarations.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsubsection{Proof methods%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{method}{cases}\hypertarget{method.cases}{\hyperlink{method.cases}{\mbox{\isa{cases}}}} & : & \isarmeth \\
-    \indexdef{}{method}{induct}\hypertarget{method.induct}{\hyperlink{method.induct}{\mbox{\isa{induct}}}} & : & \isarmeth \\
-    \indexdef{}{method}{coinduct}\hypertarget{method.coinduct}{\hyperlink{method.coinduct}{\mbox{\isa{coinduct}}}} & : & \isarmeth \\
-  \end{matharray}
-
-  The \hyperlink{method.cases}{\mbox{\isa{cases}}}, \hyperlink{method.induct}{\mbox{\isa{induct}}}, and \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}}
-  methods provide a uniform interface to common proof techniques over
-  datatypes, inductive predicates (or sets), recursive functions etc.
-  The corresponding rules may be specified and instantiated in a
-  casual manner.  Furthermore, these methods provide named local
-  contexts that may be invoked via the \hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}} proof command
-  within the subsequent proof text.  This accommodates compact proof
-  texts even when reasoning about large specifications.
-
-  The \hyperlink{method.induct}{\mbox{\isa{induct}}} method also provides some additional
-  infrastructure in order to be applicable to structure statements
-  (either using explicit meta-level connectives, or including facts
-  and parameters separately).  This avoids cumbersome encoding of
-  ``strengthened'' inductive statements within the object-logic.
-
-  \begin{rail}
-    'cases' (insts * 'and') rule?
-    ;
-    'induct' (definsts * 'and') \\ arbitrary? taking? rule?
-    ;
-    'coinduct' insts taking rule?
-    ;
-
-    rule: ('type' | 'pred' | 'set') ':' (nameref +) | 'rule' ':' (thmref +)
-    ;
-    definst: name ('==' | equiv) term | inst
-    ;
-    definsts: ( definst *)
-    ;
-    arbitrary: 'arbitrary' ':' ((term *) 'and' +)
-    ;
-    taking: 'taking' ':' insts
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{method.cases}{\mbox{\isa{cases}}}~\isa{{\isachardoublequote}insts\ R{\isachardoublequote}}] applies method \hyperlink{method.rule}{\mbox{\isa{rule}}} with an appropriate case distinction theorem, instantiated to
-  the subjects \isa{insts}.  Symbolic case names are bound according
-  to the rule's local contexts.
-
-  The rule is determined as follows, according to the facts and
-  arguments passed to the \hyperlink{method.cases}{\mbox{\isa{cases}}} method:
-
-  \medskip
-  \begin{tabular}{llll}
-    facts           &                 & arguments   & rule \\\hline
-                    & \hyperlink{method.cases}{\mbox{\isa{cases}}} &             & classical case split \\
-                    & \hyperlink{method.cases}{\mbox{\isa{cases}}} & \isa{t}   & datatype exhaustion (type of \isa{t}) \\
-    \isa{{\isachardoublequote}{\isasymturnstile}\ A\ t{\isachardoublequote}} & \hyperlink{method.cases}{\mbox{\isa{cases}}} & \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}} & inductive predicate/set elimination (of \isa{A}) \\
-    \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}     & \hyperlink{method.cases}{\mbox{\isa{cases}}} & \isa{{\isachardoublequote}{\isasymdots}\ rule{\isacharcolon}\ R{\isachardoublequote}} & explicit rule \isa{R} \\
-  \end{tabular}
-  \medskip
-
-  Several instantiations may be given, referring to the \emph{suffix}
-  of premises of the case rule; within each premise, the \emph{prefix}
-  of variables is instantiated.  In most situations, only a single
-  term needs to be specified; this refers to the first variable of the
-  last premise (it is usually the same for all cases).
-
-  \item [\hyperlink{method.induct}{\mbox{\isa{induct}}}~\isa{{\isachardoublequote}insts\ R{\isachardoublequote}}] is analogous to the
-  \hyperlink{method.cases}{\mbox{\isa{cases}}} method, but refers to induction rules, which are
-  determined as follows:
-
-  \medskip
-  \begin{tabular}{llll}
-    facts           &                  & arguments            & rule \\\hline
-                    & \hyperlink{method.induct}{\mbox{\isa{induct}}} & \isa{{\isachardoublequote}P\ x{\isachardoublequote}}        & datatype induction (type of \isa{x}) \\
-    \isa{{\isachardoublequote}{\isasymturnstile}\ A\ x{\isachardoublequote}} & \hyperlink{method.induct}{\mbox{\isa{induct}}} & \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}          & predicate/set induction (of \isa{A}) \\
-    \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}     & \hyperlink{method.induct}{\mbox{\isa{induct}}} & \isa{{\isachardoublequote}{\isasymdots}\ rule{\isacharcolon}\ R{\isachardoublequote}} & explicit rule \isa{R} \\
-  \end{tabular}
-  \medskip
-  
-  Several instantiations may be given, each referring to some part of
-  a mutual inductive definition or datatype --- only related partial
-  induction rules may be used together, though.  Any of the lists of
-  terms \isa{{\isachardoublequote}P{\isacharcomma}\ x{\isacharcomma}\ {\isasymdots}{\isachardoublequote}} refers to the \emph{suffix} of variables
-  present in the induction rule.  This enables the writer to specify
-  only induction variables, or both predicates and variables, for
-  example.
-  
-  Instantiations may be definitional: equations \isa{{\isachardoublequote}x\ {\isasymequiv}\ t{\isachardoublequote}}
-  introduce local definitions, which are inserted into the claim and
-  discharged after applying the induction rule.  Equalities reappear
-  in the inductive cases, but have been transformed according to the
-  induction principle being involved here.  In order to achieve
-  practically useful induction hypotheses, some variables occurring in
-  \isa{t} need to be fixed (see below).
-  
-  The optional ``\isa{{\isachardoublequote}arbitrary{\isacharcolon}\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardoublequote}}''
-  specification generalizes variables \isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isachardoublequote}} of the original goal before applying induction.  Thus
-  induction hypotheses may become sufficiently general to get the
-  proof through.  Together with definitional instantiations, one may
-  effectively perform induction over expressions of a certain
-  structure.
-  
-  The optional ``\isa{{\isachardoublequote}taking{\isacharcolon}\ t\isactrlsub {\isadigit{1}}\ {\isasymdots}\ t\isactrlsub n{\isachardoublequote}}''
-  specification provides additional instantiations of a prefix of
-  pending variables in the rule.  Such schematic induction rules
-  rarely occur in practice, though.
-
-  \item [\hyperlink{method.coinduct}{\mbox{\isa{coinduct}}}~\isa{{\isachardoublequote}inst\ R{\isachardoublequote}}] is analogous to the
-  \hyperlink{method.induct}{\mbox{\isa{induct}}} method, but refers to coinduction rules, which are
-  determined as follows:
-
-  \medskip
-  \begin{tabular}{llll}
-    goal          &                    & arguments & rule \\\hline
-                  & \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} & \isa{x} & type coinduction (type of \isa{x}) \\
-    \isa{{\isachardoublequote}A\ x{\isachardoublequote}} & \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} & \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}} & predicate/set coinduction (of \isa{A}) \\
-    \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}   & \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} & \isa{{\isachardoublequote}{\isasymdots}\ rule{\isacharcolon}\ R{\isachardoublequote}} & explicit rule \isa{R} \\
-  \end{tabular}
-  
-  Coinduction is the dual of induction.  Induction essentially
-  eliminates \isa{{\isachardoublequote}A\ x{\isachardoublequote}} towards a generic result \isa{{\isachardoublequote}P\ x{\isachardoublequote}},
-  while coinduction introduces \isa{{\isachardoublequote}A\ x{\isachardoublequote}} starting with \isa{{\isachardoublequote}B\ x{\isachardoublequote}}, for a suitable ``bisimulation'' \isa{B}.  The cases of a
-  coinduct rule are typically named after the predicates or sets being
-  covered, while the conclusions consist of several alternatives being
-  named after the individual destructor patterns.
-  
-  The given instantiation refers to the \emph{suffix} of variables
-  occurring in the rule's major premise, or conclusion if unavailable.
-  An additional ``\isa{{\isachardoublequote}taking{\isacharcolon}\ t\isactrlsub {\isadigit{1}}\ {\isasymdots}\ t\isactrlsub n{\isachardoublequote}}''
-  specification may be required in order to specify the bisimulation
-  to be used in the coinduction step.
-
-  \end{descr}
-
-  Above methods produce named local contexts, as determined by the
-  instantiated rule as given in the text.  Beyond that, the \hyperlink{method.induct}{\mbox{\isa{induct}}} and \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} methods guess further instantiations
-  from the goal specification itself.  Any persisting unresolved
-  schematic variables of the resulting rule will render the the
-  corresponding case invalid.  The term binding \hyperlink{variable.?case}{\mbox{\isa{{\isacharquery}case}}} for
-  the conclusion will be provided with each case, provided that term
-  is fully specified.
-
-  The \hyperlink{command.print-cases}{\mbox{\isa{\isacommand{print{\isacharunderscore}cases}}}} command prints all named cases present
-  in the current proof state.
-
-  \medskip Despite the additional infrastructure, both \hyperlink{method.cases}{\mbox{\isa{cases}}}
-  and \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} merely apply a certain rule, after
-  instantiation, while conforming due to the usual way of monotonic
-  natural deduction: the context of a structured statement \isa{{\isachardoublequote}{\isasymAnd}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardot}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymphi}\isactrlsub n\ {\isasymLongrightarrow}\ {\isasymdots}{\isachardoublequote}}
-  reappears unchanged after the case split.
-
-  The \hyperlink{method.induct}{\mbox{\isa{induct}}} method is fundamentally different in this
-  respect: the meta-level structure is passed through the
-  ``recursive'' course involved in the induction.  Thus the original
-  statement is basically replaced by separate copies, corresponding to
-  the induction hypotheses and conclusion; the original goal context
-  is no longer available.  Thus local assumptions, fixed parameters
-  and definitions effectively participate in the inductive rephrasing
-  of the original statement.
-
-  In induction proofs, local assumptions introduced by cases are split
-  into two different kinds: \isa{hyps} stemming from the rule and
-  \isa{prems} from the goal statement.  This is reflected in the
-  extracted cases accordingly, so invoking ``\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{c}'' will provide separate facts \isa{c{\isachardot}hyps} and \isa{c{\isachardot}prems},
-  as well as fact \isa{c} to hold the all-inclusive list.
-
-  \medskip Facts presented to either method are consumed according to
-  the number of ``major premises'' of the rule involved, which is
-  usually 0 for plain cases and induction rules of datatypes etc.\ and
-  1 for rules of inductive predicates or sets and the like.  The
-  remaining facts are inserted into the goal verbatim before the
-  actual \isa{cases}, \isa{induct}, or \isa{coinduct} rule is
-  applied.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsubsection{Declaring rules%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{print\_induct\_rules}\hypertarget{command.print-induct-rules}{\hyperlink{command.print-induct-rules}{\mbox{\isa{\isacommand{print{\isacharunderscore}induct{\isacharunderscore}rules}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
-    \indexdef{}{attribute}{cases}\hypertarget{attribute.cases}{\hyperlink{attribute.cases}{\mbox{\isa{cases}}}} & : & \isaratt \\
-    \indexdef{}{attribute}{induct}\hypertarget{attribute.induct}{\hyperlink{attribute.induct}{\mbox{\isa{induct}}}} & : & \isaratt \\
-    \indexdef{}{attribute}{coinduct}\hypertarget{attribute.coinduct}{\hyperlink{attribute.coinduct}{\mbox{\isa{coinduct}}}} & : & \isaratt \\
-  \end{matharray}
-
-  \begin{rail}
-    'cases' spec
-    ;
-    'induct' spec
-    ;
-    'coinduct' spec
-    ;
-
-    spec: ('type' | 'pred' | 'set') ':' nameref
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.print-induct-rules}{\mbox{\isa{\isacommand{print{\isacharunderscore}induct{\isacharunderscore}rules}}}}] prints cases and induct
-  rules for predicates (or sets) and types of the current context.
-  
-  \item [\hyperlink{attribute.cases}{\mbox{\isa{cases}}}, \hyperlink{attribute.induct}{\mbox{\isa{induct}}}, and \hyperlink{attribute.coinduct}{\mbox{\isa{coinduct}}}] (as attributes) augment the corresponding context of
-  rules for reasoning about (co)inductive predicates (or sets) and
-  types, using the corresponding methods of the same name.  Certain
-  definitional packages of object-logics usually declare emerging
-  cases and induction rules as expected, so users rarely need to
-  intervene.
-  
-  Manual rule declarations usually refer to the \hyperlink{attribute.case-names}{\mbox{\isa{case{\isacharunderscore}names}}} and \hyperlink{attribute.params}{\mbox{\isa{params}}} attributes to adjust names of
-  cases and parameters of a rule; the \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}
-  declaration is taken care of automatically: \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}~\isa{{\isadigit{0}}} is specified for ``type'' rules and \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}~\isa{{\isadigit{1}}} for ``predicate'' / ``set'' rules.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
 \isamarkupsection{General logic setup \label{sec:object-logic}%
 }
 \isamarkuptrue%
--- a/doc-src/IsarRef/Thy/document/HOL_Specific.tex	Mon Jun 02 22:50:27 2008 +0200
+++ b/doc-src/IsarRef/Thy/document/HOL_Specific.tex	Mon Jun 02 22:50:29 2008 +0200
@@ -1154,7 +1154,6 @@
 %
 \endisadelimtheory
 \isanewline
-\isanewline
 \end{isabellebody}%
 %%% Local Variables:
 %%% mode: latex
--- a/doc-src/IsarRef/Thy/document/Introduction.tex	Mon Jun 02 22:50:27 2008 +0200
+++ b/doc-src/IsarRef/Thy/document/Introduction.tex	Mon Jun 02 22:50:29 2008 +0200
@@ -73,10 +73,22 @@
 
   \medskip The Isabelle/Isar framework is generic and should work
   reasonably well for any Isabelle object-logic that conforms to the
-  natural deduction view of the Isabelle/Pure framework.  Major
-  Isabelle logics like HOL \cite{isabelle-HOL}, HOLCF
-  \cite{MuellerNvOS99}, FOL \cite{isabelle-logics}, and ZF
-  \cite{isabelle-ZF} have already been set up for end-users.%
+  natural deduction view of the Isabelle/Pure framework.  Specific
+  language elements introduced by the major object-logics are
+  described in \chref{ch:hol} (Isabelle/HOL), \chref{ch:holcf}
+  (Isabelle/HOLCF), and \chref{ch:zf} (Isabelle/ZF).  The main
+  language elements are already provided by the Isabelle/Pure
+  framework. Nevertheless, examples given in the generic parts will
+  usually refer to Isabelle/HOL as well.
+
+  \medskip Isar commands may be either \emph{proper} document
+  constructors, or \emph{improper commands}.  Some proof methods and
+  attributes introduced later are classified as improper as well.
+  Improper Isar language elements, which are marked by ``\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}}'' in the subsequent chapters; they are often helpful
+  when developing proof documents, but their use is discouraged for
+  the final human-readable outcome.  Typical examples are diagnostic
+  commands that print terms or theorems according to the current
+  context; other commands emulate old-style tactical theorem proving.%
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
@@ -108,7 +120,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsection{Proof General%
+\isamarkupsubsection{Emacs Proof General%
 }
 \isamarkuptrue%
 %
@@ -198,7 +210,7 @@
   hand, the plain ASCII sources easily become somewhat unintelligible.
   For example, \isa{{\isachardoublequote}{\isasymLongrightarrow}{\isachardoublequote}} would appear as \verb|\<Longrightarrow>| according
   the default set of Isabelle symbols.  Nevertheless, the Isabelle
-  document preparation system (see \secref{sec:document-prep}) will be
+  document preparation system (see \chref{ch:document-prep}) will be
   happy to print non-ASCII symbols properly.  It is even possible to
   invent additional notation beyond the display capabilities of Emacs
   and X-Symbol.%
@@ -243,58 +255,6 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsection{Document preparation \label{sec:document-prep}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Isabelle/Isar provides a simple document preparation system based on
-  existing {PDF-\LaTeX} technology, with full support of hyper-links
-  (both local references and URLs) and bookmarks.  Thus the results
-  are equally well suited for WWW browsing and as printed copies.
-
-  \medskip Isabelle generates {\LaTeX} output as part of the run of a
-  \emph{logic session} (see also \cite{isabelle-sys}).  Getting
-  started with a working configuration for common situations is quite
-  easy by using the Isabelle \verb|mkdir| and \verb|make|
-  tools.  First invoke
-\begin{ttbox}
-  isatool mkdir Foo
-\end{ttbox}
-  to initialize a separate directory for session \verb|Foo| ---
-  it is safe to experiment, since \verb|isatool mkdir| never
-  overwrites existing files.  Ensure that \verb|Foo/ROOT.ML|
-  holds ML commands to load all theories required for this session;
-  furthermore \verb|Foo/document/root.tex| should include any
-  special {\LaTeX} macro packages required for your document (the
-  default is usually sufficient as a start).
-
-  The session is controlled by a separate \verb|IsaMakefile|
-  (with crude source dependencies by default).  This file is located
-  one level up from the \verb|Foo| directory location.  Now
-  invoke
-\begin{ttbox}
-  isatool make Foo
-\end{ttbox}
-  to run the \verb|Foo| session, with browser information and
-  document preparation enabled.  Unless any errors are reported by
-  Isabelle or {\LaTeX}, the output will appear inside the directory
-  \verb|ISABELLE_BROWSER_INFO|, as reported by the batch job in
-  verbose mode.
-
-  \medskip You may also consider to tune the \verb|usedir|
-  options in \verb|IsaMakefile|, for example to change the output
-  format from \verb|pdf| to \verb|dvi|, or activate the
-  \verb|-D| option to retain a second copy of the generated
-  {\LaTeX} sources.
-
-  \medskip See \emph{The Isabelle System Manual} \cite{isabelle-sys}
-  for further details on Isabelle logic sessions and theory
-  presentation.  The Isabelle/HOL tutorial \cite{isabelle-hol-book}
-  also covers theory presentation issues.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
 \isamarkupsubsection{How to write Isar proofs anyway? \label{sec:isar-howto}%
 }
 \isamarkuptrue%
--- a/doc-src/IsarRef/Thy/document/Outer_Syntax.tex	Mon Jun 02 22:50:27 2008 +0200
+++ b/doc-src/IsarRef/Thy/document/Outer_Syntax.tex	Mon Jun 02 22:50:29 2008 +0200
@@ -20,7 +20,7 @@
 %
 \endisadelimtheory
 %
-\isamarkupchapter{Syntax primitives%
+\isamarkupchapter{Outer syntax%
 }
 \isamarkuptrue%
 %
@@ -496,276 +496,6 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isamarkupsubsection{Antiquotations \label{sec:antiq}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{antiquotation}{theory}\hypertarget{antiquotation.theory}{\hyperlink{antiquotation.theory}{\mbox{\isa{theory}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{thm}\hypertarget{antiquotation.thm}{\hyperlink{antiquotation.thm}{\mbox{\isa{thm}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{prop}\hypertarget{antiquotation.prop}{\hyperlink{antiquotation.prop}{\mbox{\isa{prop}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{term}\hypertarget{antiquotation.term}{\hyperlink{antiquotation.term}{\mbox{\isa{term}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{const}\hypertarget{antiquotation.const}{\hyperlink{antiquotation.const}{\mbox{\isa{const}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{abbrev}\hypertarget{antiquotation.abbrev}{\hyperlink{antiquotation.abbrev}{\mbox{\isa{abbrev}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{typeof}\hypertarget{antiquotation.typeof}{\hyperlink{antiquotation.typeof}{\mbox{\isa{typeof}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{typ}\hypertarget{antiquotation.typ}{\hyperlink{antiquotation.typ}{\mbox{\isa{typ}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{thm\_style}\hypertarget{antiquotation.thm-style}{\hyperlink{antiquotation.thm-style}{\mbox{\isa{thm{\isacharunderscore}style}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{term\_style}\hypertarget{antiquotation.term-style}{\hyperlink{antiquotation.term-style}{\mbox{\isa{term{\isacharunderscore}style}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{text}\hypertarget{antiquotation.text}{\hyperlink{antiquotation.text}{\mbox{\isa{text}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{goals}\hypertarget{antiquotation.goals}{\hyperlink{antiquotation.goals}{\mbox{\isa{goals}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{subgoals}\hypertarget{antiquotation.subgoals}{\hyperlink{antiquotation.subgoals}{\mbox{\isa{subgoals}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{prf}\hypertarget{antiquotation.prf}{\hyperlink{antiquotation.prf}{\mbox{\isa{prf}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{full\_prf}\hypertarget{antiquotation.full-prf}{\hyperlink{antiquotation.full-prf}{\mbox{\isa{full{\isacharunderscore}prf}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{ML}\hypertarget{antiquotation.ML}{\hyperlink{antiquotation.ML}{\mbox{\isa{ML}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{ML\_type}\hypertarget{antiquotation.ML-type}{\hyperlink{antiquotation.ML-type}{\mbox{\isa{ML{\isacharunderscore}type}}}} & : & \isarantiq \\
-    \indexdef{}{antiquotation}{ML\_struct}\hypertarget{antiquotation.ML-struct}{\hyperlink{antiquotation.ML-struct}{\mbox{\isa{ML{\isacharunderscore}struct}}}} & : & \isarantiq \\
-  \end{matharray}
-
-  The text body of formal comments (see also \secref{sec:comments})
-  may contain antiquotations of logical entities, such as theorems,
-  terms and types, which are to be presented in the final output
-  produced by the Isabelle document preparation system (see also
-  \secref{sec:document-prep}).
-
-  Thus embedding of ``\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}term\ {\isacharbrackleft}show{\isacharunderscore}types{\isacharbrackright}\ {\isachardoublequote}f\ x\ {\isacharequal}\ a\ {\isacharplus}\ x{\isachardoublequote}{\isacharbraceright}{\isachardoublequote}}''
-  within a text block would cause
-  \isa{{\isacharparenleft}f{\isasymColon}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}a{\isasymColon}{\isacharprime}a{\isacharparenright}\ {\isacharplus}\ x} to appear in the final {\LaTeX} document.  Also note that theorem
-  antiquotations may involve attributes as well.  For example,
-  \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}thm\ sym\ {\isacharbrackleft}no{\isacharunderscore}vars{\isacharbrackright}{\isacharbraceright}{\isachardoublequote}} would print the theorem's
-  statement where all schematic variables have been replaced by fixed
-  ones, which are easier to read.
-
-  \begin{rail}
-    atsign lbrace antiquotation rbrace
-    ;
-
-    antiquotation:
-      'theory' options name |
-      'thm' options thmrefs |
-      'prop' options prop |
-      'term' options term |
-      'const' options term |
-      'abbrev' options term |
-      'typeof' options term |
-      'typ' options type |
-      'thm\_style' options name thmref |
-      'term\_style' options name term |
-      'text' options name |
-      'goals' options |
-      'subgoals' options |
-      'prf' options thmrefs |
-      'full\_prf' options thmrefs |
-      'ML' options name |
-      'ML\_type' options name |
-      'ML\_struct' options name
-    ;
-    options: '[' (option * ',') ']'
-    ;
-    option: name | name '=' name
-    ;
-  \end{rail}
-
-  Note that the syntax of antiquotations may \emph{not} include source
-  comments \verb|(*|~\isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}~\verb|*)| or verbatim
-  text \verb|{|\verb|*|~\isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}~\verb|*|\verb|}|.
-
-  \begin{descr}
-  
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}theory\ A{\isacharbraceright}{\isachardoublequote}}] prints the name \isa{{\isachardoublequote}A{\isachardoublequote}}, which is
-  guaranteed to refer to a valid ancestor theory in the current
-  context.
-
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}thm\ a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharbraceright}{\isachardoublequote}}] prints theorems
-  \isa{{\isachardoublequote}a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isachardoublequote}}.  Note that attribute specifications
-  may be included as well (see also \secref{sec:syn-att}); the
-  \indexref{}{attribute}{no\_vars}\hyperlink{attribute.no-vars}{\mbox{\isa{no{\isacharunderscore}vars}}} rule (see \secref{sec:misc-meth-att}) would
-  be particularly useful to suppress printing of schematic variables.
-
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}prop\ {\isasymphi}{\isacharbraceright}{\isachardoublequote}}] prints a well-typed proposition \isa{{\isachardoublequote}{\isasymphi}{\isachardoublequote}}.
-
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}term\ t{\isacharbraceright}{\isachardoublequote}}] prints a well-typed term \isa{{\isachardoublequote}t{\isachardoublequote}}.
-
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}const\ c{\isacharbraceright}{\isachardoublequote}}] prints a logical or syntactic constant
-  \isa{{\isachardoublequote}c{\isachardoublequote}}.
-  
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}abbrev\ c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n{\isacharbraceright}{\isachardoublequote}}] prints a constant
-  abbreviation \isa{{\isachardoublequote}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n\ {\isasymequiv}\ rhs{\isachardoublequote}} as defined in
-  the current context.
-
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}typeof\ t{\isacharbraceright}{\isachardoublequote}}] prints the type of a well-typed term
-  \isa{{\isachardoublequote}t{\isachardoublequote}}.
-
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}typ\ {\isasymtau}{\isacharbraceright}{\isachardoublequote}}] prints a well-formed type \isa{{\isachardoublequote}{\isasymtau}{\isachardoublequote}}.
-  
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}thm{\isacharunderscore}style\ s\ a{\isacharbraceright}{\isachardoublequote}}] prints theorem \isa{a},
-  previously applying a style \isa{s} to it (see below).
-  
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}term{\isacharunderscore}style\ s\ t{\isacharbraceright}{\isachardoublequote}}] prints a well-typed term \isa{t} after applying a style \isa{s} to it (see below).
-
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}text\ s{\isacharbraceright}{\isachardoublequote}}] prints uninterpreted source text \isa{s}.  This is particularly useful to print portions of text according
-  to the Isabelle {\LaTeX} output style, without demanding
-  well-formedness (e.g.\ small pieces of terms that should not be
-  parsed or type-checked yet).
-
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}goals{\isacharbraceright}{\isachardoublequote}}] prints the current \emph{dynamic} goal
-  state.  This is mainly for support of tactic-emulation scripts
-  within Isar --- presentation of goal states does not conform to
-  actual human-readable proof documents.
-
-  Please do not include goal states into document output unless you
-  really know what you are doing!
-  
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}subgoals{\isacharbraceright}{\isachardoublequote}}] is similar to \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}goals{\isacharbraceright}{\isachardoublequote}}, but
-  does not print the main goal.
-  
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}prf\ a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharbraceright}{\isachardoublequote}}] prints the (compact)
-  proof terms corresponding to the theorems \isa{{\isachardoublequote}a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isachardoublequote}}. Note that this requires proof terms to be switched on
-  for the current object logic (see the ``Proof terms'' section of the
-  Isabelle reference manual for information on how to do this).
-  
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}full{\isacharunderscore}prf\ a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharbraceright}{\isachardoublequote}}] is like \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}prf\ a\isactrlsub {\isadigit{1}}\ {\isasymdots}\ a\isactrlsub n{\isacharbraceright}{\isachardoublequote}}, but displays the full proof terms,
-  i.e.\ also displays information omitted in the compact proof term,
-  which is denoted by ``\isa{{\isacharunderscore}}'' placeholders there.
-  
-  \item [\isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}ML\ s{\isacharbraceright}{\isachardoublequote}}, \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}ML{\isacharunderscore}type\ s{\isacharbraceright}{\isachardoublequote}}, and \isa{{\isachardoublequote}{\isacharat}{\isacharbraceleft}ML{\isacharunderscore}struct\ s{\isacharbraceright}{\isachardoublequote}}] check text \isa{s} as ML value, type, and
-  structure, respectively.  The source is displayed verbatim.
-
-  \end{descr}
-
-  \medskip The following standard styles for use with \isa{thm{\isacharunderscore}style} and \isa{term{\isacharunderscore}style} are available:
-
-  \begin{descr}
-  
-  \item [\isa{lhs}] extracts the first argument of any application
-  form with at least two arguments -- typically meta-level or
-  object-level equality, or any other binary relation.
-  
-  \item [\isa{rhs}] is like \isa{lhs}, but extracts the second
-  argument.
-  
-  \item [\isa{{\isachardoublequote}concl{\isachardoublequote}}] extracts the conclusion \isa{C} from a rule
-  in Horn-clause normal form \isa{{\isachardoublequote}A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ A\isactrlsub n\ {\isasymLongrightarrow}\ C{\isachardoublequote}}.
-  
-  \item [\isa{{\isachardoublequote}prem{\isadigit{1}}{\isachardoublequote}}, \dots, \isa{{\isachardoublequote}prem{\isadigit{9}}{\isachardoublequote}}] extract premise
-  number \isa{{\isachardoublequote}{\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isadigit{9}}{\isachardoublequote}}, respectively, from from a rule in
-  Horn-clause normal form \isa{{\isachardoublequote}A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ A\isactrlsub n\ {\isasymLongrightarrow}\ C{\isachardoublequote}}
-
-  \end{descr}
-
-  \medskip
-  The following options are available to tune the output.  Note that most of
-  these coincide with ML flags of the same names (see also \cite{isabelle-ref}).
-
-  \begin{descr}
-
-  \item[\isa{{\isachardoublequote}show{\isacharunderscore}types\ {\isacharequal}\ bool{\isachardoublequote}} and \isa{{\isachardoublequote}show{\isacharunderscore}sorts\ {\isacharequal}\ bool{\isachardoublequote}}]
-  control printing of explicit type and sort constraints.
-
-  \item[\isa{{\isachardoublequote}show{\isacharunderscore}structs\ {\isacharequal}\ bool{\isachardoublequote}}] controls printing of implicit
-  structures.
-
-  \item[\isa{{\isachardoublequote}long{\isacharunderscore}names\ {\isacharequal}\ bool{\isachardoublequote}}] forces names of types and
-  constants etc.\ to be printed in their fully qualified internal
-  form.
-
-  \item[\isa{{\isachardoublequote}short{\isacharunderscore}names\ {\isacharequal}\ bool{\isachardoublequote}}] forces names of types and
-  constants etc.\ to be printed unqualified.  Note that internalizing
-  the output again in the current context may well yield a different
-  result.
-
-  \item[\isa{{\isachardoublequote}unique{\isacharunderscore}names\ {\isacharequal}\ bool{\isachardoublequote}}] determines whether the printed
-  version of qualified names should be made sufficiently long to avoid
-  overlap with names declared further back.  Set to \isa{false} for
-  more concise output.
-
-  \item[\isa{{\isachardoublequote}eta{\isacharunderscore}contract\ {\isacharequal}\ bool{\isachardoublequote}}] prints terms in \isa{{\isasymeta}}-contracted form.
-
-  \item[\isa{{\isachardoublequote}display\ {\isacharequal}\ bool{\isachardoublequote}}] indicates if the text is to be
-  output as multi-line ``display material'', rather than a small piece
-  of text without line breaks (which is the default).
-
-  \item[\isa{{\isachardoublequote}break\ {\isacharequal}\ bool{\isachardoublequote}}] controls line breaks in non-display
-  material.
-
-  \item[\isa{{\isachardoublequote}quotes\ {\isacharequal}\ bool{\isachardoublequote}}] indicates if the output should be
-  enclosed in double quotes.
-
-  \item[\isa{{\isachardoublequote}mode\ {\isacharequal}\ name{\isachardoublequote}}] adds \isa{name} to the print mode to
-  be used for presentation (see also \cite{isabelle-ref}).  Note that
-  the standard setup for {\LaTeX} output is already present by
-  default, including the modes \isa{latex} and \isa{xsymbols}.
-
-  \item[\isa{{\isachardoublequote}margin\ {\isacharequal}\ nat{\isachardoublequote}} and \isa{{\isachardoublequote}indent\ {\isacharequal}\ nat{\isachardoublequote}}] change the
-  margin or indentation for pretty printing of display material.
-
-  \item[\isa{{\isachardoublequote}source\ {\isacharequal}\ bool{\isachardoublequote}}] prints the source text of the
-  antiquotation arguments, rather than the actual value.  Note that
-  this does not affect well-formedness checks of \hyperlink{antiquotation.thm}{\mbox{\isa{thm}}}, \hyperlink{antiquotation.term}{\mbox{\isa{term}}}, etc. (only the \hyperlink{antiquotation.text}{\mbox{\isa{text}}} antiquotation admits arbitrary output).
-
-  \item[\isa{{\isachardoublequote}goals{\isacharunderscore}limit\ {\isacharequal}\ nat{\isachardoublequote}}] determines the maximum number of
-  goals to be printed.
-
-  \item[\isa{{\isachardoublequote}locale\ {\isacharequal}\ name{\isachardoublequote}}] specifies an alternative locale
-  context used for evaluating and printing the subsequent argument.
-
-  \end{descr}
-
-  For boolean flags, ``\isa{{\isachardoublequote}name\ {\isacharequal}\ true{\isachardoublequote}}'' may be abbreviated as
-  ``\isa{name}''.  All of the above flags are disabled by default,
-  unless changed from ML.
-
-  \medskip Note that antiquotations do not only spare the author from
-  tedious typing of logical entities, but also achieve some degree of
-  consistency-checking of informal explanations with formal
-  developments: well-formedness of terms and types with respect to the
-  current theory or proof context is ensured here.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Tagged commands \label{sec:tags}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Each Isabelle/Isar command may be decorated by presentation tags:
-
-  \indexouternonterm{tags}
-  \begin{rail}
-    tags: ( tag * )
-    ;
-    tag: '\%' (ident | string)
-  \end{rail}
-
-  The tags \isa{{\isachardoublequote}theory{\isachardoublequote}}, \isa{{\isachardoublequote}proof{\isachardoublequote}}, \isa{{\isachardoublequote}ML{\isachardoublequote}} are already
-  pre-declared for certain classes of commands:
-
- \medskip
-
-  \begin{tabular}{ll}
-    \isa{{\isachardoublequote}theory{\isachardoublequote}} & theory begin/end \\
-    \isa{{\isachardoublequote}proof{\isachardoublequote}} & all proof commands \\
-    \isa{{\isachardoublequote}ML{\isachardoublequote}} & all commands involving ML code \\
-  \end{tabular}
-
-  \medskip The Isabelle document preparation system (see also
-  \cite{isabelle-sys}) allows tagged command regions to be presented
-  specifically, e.g.\ to fold proof texts, or drop parts of the text
-  completely.
-
-  For example ``\hyperlink{command.by}{\mbox{\isa{\isacommand{by}}}}~\isa{{\isachardoublequote}{\isacharpercent}invisible\ auto{\isachardoublequote}}'' would
-  cause that piece of proof to be treated as \isa{invisible} instead
-  of \isa{{\isachardoublequote}proof{\isachardoublequote}} (the default), which may be either show or hidden
-  depending on the document setup.  In contrast, ``\hyperlink{command.by}{\mbox{\isa{\isacommand{by}}}}~\isa{{\isachardoublequote}{\isacharpercent}visible\ auto{\isachardoublequote}}'' would force this text to be shown
-  invariably.
-
-  Explicit tag specifications within a proof apply to all subsequent
-  commands of the same level of nesting.  For example, ``\hyperlink{command.proof}{\mbox{\isa{\isacommand{proof}}}}~\isa{{\isachardoublequote}{\isacharpercent}visible\ {\isasymdots}{\isachardoublequote}}~\hyperlink{command.qed}{\mbox{\isa{\isacommand{qed}}}}'' would force the
-  whole sub-proof to be typeset as \isa{visible} (unless some of its
-  parts are tagged differently).%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
 \isadelimtheory
 %
 \endisadelimtheory
--- a/doc-src/IsarRef/Thy/document/Proof.tex	Mon Jun 02 22:50:27 2008 +0200
+++ b/doc-src/IsarRef/Thy/document/Proof.tex	Mon Jun 02 22:50:29 2008 +0200
@@ -1018,6 +1018,355 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
+\isamarkupsection{Proof by cases and induction \label{sec:cases-induct}%
+}
+\isamarkuptrue%
+%
+\isamarkupsubsection{Rule contexts%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{case}\hypertarget{command.case}{\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}} & : & \isartrans{proof(state)}{proof(state)} \\
+    \indexdef{}{command}{print\_cases}\hypertarget{command.print-cases}{\hyperlink{command.print-cases}{\mbox{\isa{\isacommand{print{\isacharunderscore}cases}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{proof} \\
+    \indexdef{}{attribute}{case\_names}\hypertarget{attribute.case-names}{\hyperlink{attribute.case-names}{\mbox{\isa{case{\isacharunderscore}names}}}} & : & \isaratt \\
+    \indexdef{}{attribute}{case\_conclusion}\hypertarget{attribute.case-conclusion}{\hyperlink{attribute.case-conclusion}{\mbox{\isa{case{\isacharunderscore}conclusion}}}} & : & \isaratt \\
+    \indexdef{}{attribute}{params}\hypertarget{attribute.params}{\hyperlink{attribute.params}{\mbox{\isa{params}}}} & : & \isaratt \\
+    \indexdef{}{attribute}{consumes}\hypertarget{attribute.consumes}{\hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}} & : & \isaratt \\
+  \end{matharray}
+
+  The puristic way to build up Isar proof contexts is by explicit
+  language elements like \hyperlink{command.fix}{\mbox{\isa{\isacommand{fix}}}}, \hyperlink{command.assume}{\mbox{\isa{\isacommand{assume}}}},
+  \hyperlink{command.let}{\mbox{\isa{\isacommand{let}}}} (see \secref{sec:proof-context}).  This is adequate
+  for plain natural deduction, but easily becomes unwieldy in concrete
+  verification tasks, which typically involve big induction rules with
+  several cases.
+
+  The \hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}} command provides a shorthand to refer to a
+  local context symbolically: certain proof methods provide an
+  environment of named ``cases'' of the form \isa{{\isachardoublequote}c{\isacharcolon}\ x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isacharcomma}\ {\isasymphi}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}; the effect of ``\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{c}'' is then equivalent to ``\hyperlink{command.fix}{\mbox{\isa{\isacommand{fix}}}}~\isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardoublequote}}~\hyperlink{command.assume}{\mbox{\isa{\isacommand{assume}}}}~\isa{{\isachardoublequote}c{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}''.  Term bindings may be covered as well, notably
+  \hyperlink{variable.?case}{\mbox{\isa{{\isacharquery}case}}} for the main conclusion.
+
+  By default, the ``terminology'' \isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isachardoublequote}} of
+  a case value is marked as hidden, i.e.\ there is no way to refer to
+  such parameters in the subsequent proof text.  After all, original
+  rule parameters stem from somewhere outside of the current proof
+  text.  By using the explicit form ``\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{{\isachardoublequote}{\isacharparenleft}c\ y\isactrlsub {\isadigit{1}}\ {\isasymdots}\ y\isactrlsub m{\isacharparenright}{\isachardoublequote}}'' instead, the proof author is able to
+  chose local names that fit nicely into the current context.
+
+  \medskip It is important to note that proper use of \hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}} does not provide means to peek at the current goal state,
+  which is not directly observable in Isar!  Nonetheless, goal
+  refinement commands do provide named cases \isa{{\isachardoublequote}goal\isactrlsub i{\isachardoublequote}}
+  for each subgoal \isa{{\isachardoublequote}i\ {\isacharequal}\ {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n{\isachardoublequote}} of the resulting goal state.
+  Using this extra feature requires great care, because some bits of
+  the internal tactical machinery intrude the proof text.  In
+  particular, parameter names stemming from the left-over of automated
+  reasoning tools are usually quite unpredictable.
+
+  Under normal circumstances, the text of cases emerge from standard
+  elimination or induction rules, which in turn are derived from
+  previous theory specifications in a canonical way (say from
+  \hyperlink{command.inductive}{\mbox{\isa{\isacommand{inductive}}}} definitions).
+
+  \medskip Proper cases are only available if both the proof method
+  and the rules involved support this.  By using appropriate
+  attributes, case names, conclusions, and parameters may be also
+  declared by hand.  Thus variant versions of rules that have been
+  derived manually become ready to use in advanced case analysis
+  later.
+
+  \begin{rail}
+    'case' (caseref | '(' caseref ((name | underscore) +) ')')
+    ;
+    caseref: nameref attributes?
+    ;
+
+    'case\_names' (name +)
+    ;
+    'case\_conclusion' name (name *)
+    ;
+    'params' ((name *) + 'and')
+    ;
+    'consumes' nat?
+    ;
+  \end{rail}
+
+  \begin{descr}
+  
+  \item [\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{{\isachardoublequote}{\isacharparenleft}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isacharparenright}{\isachardoublequote}}]
+  invokes a named local context \isa{{\isachardoublequote}c{\isacharcolon}\ x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isacharcomma}\ {\isasymphi}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymphi}\isactrlsub m{\isachardoublequote}}, as provided by an appropriate
+  proof method (such as \indexref{}{method}{cases}\hyperlink{method.cases}{\mbox{\isa{cases}}} and \indexref{}{method}{induct}\hyperlink{method.induct}{\mbox{\isa{induct}}}).
+  The command ``\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{{\isachardoublequote}{\isacharparenleft}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isacharparenright}{\isachardoublequote}}'' abbreviates ``\hyperlink{command.fix}{\mbox{\isa{\isacommand{fix}}}}~\isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardoublequote}}~\hyperlink{command.assume}{\mbox{\isa{\isacommand{assume}}}}~\isa{{\isachardoublequote}c{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}''.
+
+  \item [\hyperlink{command.print-cases}{\mbox{\isa{\isacommand{print{\isacharunderscore}cases}}}}] prints all local contexts of the
+  current state, using Isar proof language notation.
+  
+  \item [\hyperlink{attribute.case-names}{\mbox{\isa{case{\isacharunderscore}names}}}~\isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}\ {\isasymdots}\ c\isactrlsub k{\isachardoublequote}}]
+  declares names for the local contexts of premises of a theorem;
+  \isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub k{\isachardoublequote}} refers to the \emph{suffix} of the
+  list of premises.
+  
+  \item [\hyperlink{attribute.case-conclusion}{\mbox{\isa{case{\isacharunderscore}conclusion}}}~\isa{{\isachardoublequote}c\ d\isactrlsub {\isadigit{1}}\ {\isasymdots}\ d\isactrlsub k{\isachardoublequote}}] declares names for the conclusions of a named premise
+  \isa{c}; here \isa{{\isachardoublequote}d\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ d\isactrlsub k{\isachardoublequote}} refers to the
+  prefix of arguments of a logical formula built by nesting a binary
+  connective (e.g.\ \isa{{\isachardoublequote}{\isasymor}{\isachardoublequote}}).
+  
+  Note that proof methods such as \hyperlink{method.induct}{\mbox{\isa{induct}}} and \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} already provide a default name for the conclusion as a
+  whole.  The need to name subformulas only arises with cases that
+  split into several sub-cases, as in common co-induction rules.
+
+  \item [\hyperlink{attribute.params}{\mbox{\isa{params}}}~\isa{{\isachardoublequote}p\isactrlsub {\isadigit{1}}\ {\isasymdots}\ p\isactrlsub m\ {\isasymAND}\ {\isasymdots}\ q\isactrlsub {\isadigit{1}}\ {\isasymdots}\ q\isactrlsub n{\isachardoublequote}}] renames the innermost parameters of
+  premises \isa{{\isachardoublequote}{\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n{\isachardoublequote}} of some theorem.  An empty list of names
+  may be given to skip positions, leaving the present parameters
+  unchanged.
+  
+  Note that the default usage of case rules does \emph{not} directly
+  expose parameters to the proof context.
+  
+  \item [\hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}~\isa{n}] declares the number of
+  ``major premises'' of a rule, i.e.\ the number of facts to be
+  consumed when it is applied by an appropriate proof method.  The
+  default value of \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}} is \isa{{\isachardoublequote}n\ {\isacharequal}\ {\isadigit{1}}{\isachardoublequote}}, which is
+  appropriate for the usual kind of cases and induction rules for
+  inductive sets (cf.\ \secref{sec:hol-inductive}).  Rules without any
+  \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}} declaration given are treated as if
+  \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}~\isa{{\isadigit{0}}} had been specified.
+  
+  Note that explicit \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}} declarations are only
+  rarely needed; this is already taken care of automatically by the
+  higher-level \hyperlink{attribute.cases}{\mbox{\isa{cases}}}, \hyperlink{attribute.induct}{\mbox{\isa{induct}}}, and
+  \hyperlink{attribute.coinduct}{\mbox{\isa{coinduct}}} declarations.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Proof methods%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{method}{cases}\hypertarget{method.cases}{\hyperlink{method.cases}{\mbox{\isa{cases}}}} & : & \isarmeth \\
+    \indexdef{}{method}{induct}\hypertarget{method.induct}{\hyperlink{method.induct}{\mbox{\isa{induct}}}} & : & \isarmeth \\
+    \indexdef{}{method}{coinduct}\hypertarget{method.coinduct}{\hyperlink{method.coinduct}{\mbox{\isa{coinduct}}}} & : & \isarmeth \\
+  \end{matharray}
+
+  The \hyperlink{method.cases}{\mbox{\isa{cases}}}, \hyperlink{method.induct}{\mbox{\isa{induct}}}, and \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}}
+  methods provide a uniform interface to common proof techniques over
+  datatypes, inductive predicates (or sets), recursive functions etc.
+  The corresponding rules may be specified and instantiated in a
+  casual manner.  Furthermore, these methods provide named local
+  contexts that may be invoked via the \hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}} proof command
+  within the subsequent proof text.  This accommodates compact proof
+  texts even when reasoning about large specifications.
+
+  The \hyperlink{method.induct}{\mbox{\isa{induct}}} method also provides some additional
+  infrastructure in order to be applicable to structure statements
+  (either using explicit meta-level connectives, or including facts
+  and parameters separately).  This avoids cumbersome encoding of
+  ``strengthened'' inductive statements within the object-logic.
+
+  \begin{rail}
+    'cases' (insts * 'and') rule?
+    ;
+    'induct' (definsts * 'and') \\ arbitrary? taking? rule?
+    ;
+    'coinduct' insts taking rule?
+    ;
+
+    rule: ('type' | 'pred' | 'set') ':' (nameref +) | 'rule' ':' (thmref +)
+    ;
+    definst: name ('==' | equiv) term | inst
+    ;
+    definsts: ( definst *)
+    ;
+    arbitrary: 'arbitrary' ':' ((term *) 'and' +)
+    ;
+    taking: 'taking' ':' insts
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{method.cases}{\mbox{\isa{cases}}}~\isa{{\isachardoublequote}insts\ R{\isachardoublequote}}] applies method \hyperlink{method.rule}{\mbox{\isa{rule}}} with an appropriate case distinction theorem, instantiated to
+  the subjects \isa{insts}.  Symbolic case names are bound according
+  to the rule's local contexts.
+
+  The rule is determined as follows, according to the facts and
+  arguments passed to the \hyperlink{method.cases}{\mbox{\isa{cases}}} method:
+
+  \medskip
+  \begin{tabular}{llll}
+    facts           &                 & arguments   & rule \\\hline
+                    & \hyperlink{method.cases}{\mbox{\isa{cases}}} &             & classical case split \\
+                    & \hyperlink{method.cases}{\mbox{\isa{cases}}} & \isa{t}   & datatype exhaustion (type of \isa{t}) \\
+    \isa{{\isachardoublequote}{\isasymturnstile}\ A\ t{\isachardoublequote}} & \hyperlink{method.cases}{\mbox{\isa{cases}}} & \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}} & inductive predicate/set elimination (of \isa{A}) \\
+    \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}     & \hyperlink{method.cases}{\mbox{\isa{cases}}} & \isa{{\isachardoublequote}{\isasymdots}\ rule{\isacharcolon}\ R{\isachardoublequote}} & explicit rule \isa{R} \\
+  \end{tabular}
+  \medskip
+
+  Several instantiations may be given, referring to the \emph{suffix}
+  of premises of the case rule; within each premise, the \emph{prefix}
+  of variables is instantiated.  In most situations, only a single
+  term needs to be specified; this refers to the first variable of the
+  last premise (it is usually the same for all cases).
+
+  \item [\hyperlink{method.induct}{\mbox{\isa{induct}}}~\isa{{\isachardoublequote}insts\ R{\isachardoublequote}}] is analogous to the
+  \hyperlink{method.cases}{\mbox{\isa{cases}}} method, but refers to induction rules, which are
+  determined as follows:
+
+  \medskip
+  \begin{tabular}{llll}
+    facts           &                  & arguments            & rule \\\hline
+                    & \hyperlink{method.induct}{\mbox{\isa{induct}}} & \isa{{\isachardoublequote}P\ x{\isachardoublequote}}        & datatype induction (type of \isa{x}) \\
+    \isa{{\isachardoublequote}{\isasymturnstile}\ A\ x{\isachardoublequote}} & \hyperlink{method.induct}{\mbox{\isa{induct}}} & \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}          & predicate/set induction (of \isa{A}) \\
+    \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}     & \hyperlink{method.induct}{\mbox{\isa{induct}}} & \isa{{\isachardoublequote}{\isasymdots}\ rule{\isacharcolon}\ R{\isachardoublequote}} & explicit rule \isa{R} \\
+  \end{tabular}
+  \medskip
+  
+  Several instantiations may be given, each referring to some part of
+  a mutual inductive definition or datatype --- only related partial
+  induction rules may be used together, though.  Any of the lists of
+  terms \isa{{\isachardoublequote}P{\isacharcomma}\ x{\isacharcomma}\ {\isasymdots}{\isachardoublequote}} refers to the \emph{suffix} of variables
+  present in the induction rule.  This enables the writer to specify
+  only induction variables, or both predicates and variables, for
+  example.
+  
+  Instantiations may be definitional: equations \isa{{\isachardoublequote}x\ {\isasymequiv}\ t{\isachardoublequote}}
+  introduce local definitions, which are inserted into the claim and
+  discharged after applying the induction rule.  Equalities reappear
+  in the inductive cases, but have been transformed according to the
+  induction principle being involved here.  In order to achieve
+  practically useful induction hypotheses, some variables occurring in
+  \isa{t} need to be fixed (see below).
+  
+  The optional ``\isa{{\isachardoublequote}arbitrary{\isacharcolon}\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardoublequote}}''
+  specification generalizes variables \isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub m{\isachardoublequote}} of the original goal before applying induction.  Thus
+  induction hypotheses may become sufficiently general to get the
+  proof through.  Together with definitional instantiations, one may
+  effectively perform induction over expressions of a certain
+  structure.
+  
+  The optional ``\isa{{\isachardoublequote}taking{\isacharcolon}\ t\isactrlsub {\isadigit{1}}\ {\isasymdots}\ t\isactrlsub n{\isachardoublequote}}''
+  specification provides additional instantiations of a prefix of
+  pending variables in the rule.  Such schematic induction rules
+  rarely occur in practice, though.
+
+  \item [\hyperlink{method.coinduct}{\mbox{\isa{coinduct}}}~\isa{{\isachardoublequote}inst\ R{\isachardoublequote}}] is analogous to the
+  \hyperlink{method.induct}{\mbox{\isa{induct}}} method, but refers to coinduction rules, which are
+  determined as follows:
+
+  \medskip
+  \begin{tabular}{llll}
+    goal          &                    & arguments & rule \\\hline
+                  & \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} & \isa{x} & type coinduction (type of \isa{x}) \\
+    \isa{{\isachardoublequote}A\ x{\isachardoublequote}} & \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} & \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}} & predicate/set coinduction (of \isa{A}) \\
+    \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}   & \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} & \isa{{\isachardoublequote}{\isasymdots}\ rule{\isacharcolon}\ R{\isachardoublequote}} & explicit rule \isa{R} \\
+  \end{tabular}
+  
+  Coinduction is the dual of induction.  Induction essentially
+  eliminates \isa{{\isachardoublequote}A\ x{\isachardoublequote}} towards a generic result \isa{{\isachardoublequote}P\ x{\isachardoublequote}},
+  while coinduction introduces \isa{{\isachardoublequote}A\ x{\isachardoublequote}} starting with \isa{{\isachardoublequote}B\ x{\isachardoublequote}}, for a suitable ``bisimulation'' \isa{B}.  The cases of a
+  coinduct rule are typically named after the predicates or sets being
+  covered, while the conclusions consist of several alternatives being
+  named after the individual destructor patterns.
+  
+  The given instantiation refers to the \emph{suffix} of variables
+  occurring in the rule's major premise, or conclusion if unavailable.
+  An additional ``\isa{{\isachardoublequote}taking{\isacharcolon}\ t\isactrlsub {\isadigit{1}}\ {\isasymdots}\ t\isactrlsub n{\isachardoublequote}}''
+  specification may be required in order to specify the bisimulation
+  to be used in the coinduction step.
+
+  \end{descr}
+
+  Above methods produce named local contexts, as determined by the
+  instantiated rule as given in the text.  Beyond that, the \hyperlink{method.induct}{\mbox{\isa{induct}}} and \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} methods guess further instantiations
+  from the goal specification itself.  Any persisting unresolved
+  schematic variables of the resulting rule will render the the
+  corresponding case invalid.  The term binding \hyperlink{variable.?case}{\mbox{\isa{{\isacharquery}case}}} for
+  the conclusion will be provided with each case, provided that term
+  is fully specified.
+
+  The \hyperlink{command.print-cases}{\mbox{\isa{\isacommand{print{\isacharunderscore}cases}}}} command prints all named cases present
+  in the current proof state.
+
+  \medskip Despite the additional infrastructure, both \hyperlink{method.cases}{\mbox{\isa{cases}}}
+  and \hyperlink{method.coinduct}{\mbox{\isa{coinduct}}} merely apply a certain rule, after
+  instantiation, while conforming due to the usual way of monotonic
+  natural deduction: the context of a structured statement \isa{{\isachardoublequote}{\isasymAnd}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardot}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ {\isasymphi}\isactrlsub n\ {\isasymLongrightarrow}\ {\isasymdots}{\isachardoublequote}}
+  reappears unchanged after the case split.
+
+  The \hyperlink{method.induct}{\mbox{\isa{induct}}} method is fundamentally different in this
+  respect: the meta-level structure is passed through the
+  ``recursive'' course involved in the induction.  Thus the original
+  statement is basically replaced by separate copies, corresponding to
+  the induction hypotheses and conclusion; the original goal context
+  is no longer available.  Thus local assumptions, fixed parameters
+  and definitions effectively participate in the inductive rephrasing
+  of the original statement.
+
+  In induction proofs, local assumptions introduced by cases are split
+  into two different kinds: \isa{hyps} stemming from the rule and
+  \isa{prems} from the goal statement.  This is reflected in the
+  extracted cases accordingly, so invoking ``\hyperlink{command.case}{\mbox{\isa{\isacommand{case}}}}~\isa{c}'' will provide separate facts \isa{c{\isachardot}hyps} and \isa{c{\isachardot}prems},
+  as well as fact \isa{c} to hold the all-inclusive list.
+
+  \medskip Facts presented to either method are consumed according to
+  the number of ``major premises'' of the rule involved, which is
+  usually 0 for plain cases and induction rules of datatypes etc.\ and
+  1 for rules of inductive predicates or sets and the like.  The
+  remaining facts are inserted into the goal verbatim before the
+  actual \isa{cases}, \isa{induct}, or \isa{coinduct} rule is
+  applied.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Declaring rules%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{print\_induct\_rules}\hypertarget{command.print-induct-rules}{\hyperlink{command.print-induct-rules}{\mbox{\isa{\isacommand{print{\isacharunderscore}induct{\isacharunderscore}rules}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
+    \indexdef{}{attribute}{cases}\hypertarget{attribute.cases}{\hyperlink{attribute.cases}{\mbox{\isa{cases}}}} & : & \isaratt \\
+    \indexdef{}{attribute}{induct}\hypertarget{attribute.induct}{\hyperlink{attribute.induct}{\mbox{\isa{induct}}}} & : & \isaratt \\
+    \indexdef{}{attribute}{coinduct}\hypertarget{attribute.coinduct}{\hyperlink{attribute.coinduct}{\mbox{\isa{coinduct}}}} & : & \isaratt \\
+  \end{matharray}
+
+  \begin{rail}
+    'cases' spec
+    ;
+    'induct' spec
+    ;
+    'coinduct' spec
+    ;
+
+    spec: ('type' | 'pred' | 'set') ':' nameref
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.print-induct-rules}{\mbox{\isa{\isacommand{print{\isacharunderscore}induct{\isacharunderscore}rules}}}}] prints cases and induct
+  rules for predicates (or sets) and types of the current context.
+  
+  \item [\hyperlink{attribute.cases}{\mbox{\isa{cases}}}, \hyperlink{attribute.induct}{\mbox{\isa{induct}}}, and \hyperlink{attribute.coinduct}{\mbox{\isa{coinduct}}}] (as attributes) augment the corresponding context of
+  rules for reasoning about (co)inductive predicates (or sets) and
+  types, using the corresponding methods of the same name.  Certain
+  definitional packages of object-logics usually declare emerging
+  cases and induction rules as expected, so users rarely need to
+  intervene.
+  
+  Manual rule declarations usually refer to the \hyperlink{attribute.case-names}{\mbox{\isa{case{\isacharunderscore}names}}} and \hyperlink{attribute.params}{\mbox{\isa{params}}} attributes to adjust names of
+  cases and parameters of a rule; the \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}
+  declaration is taken care of automatically: \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}~\isa{{\isadigit{0}}} is specified for ``type'' rules and \hyperlink{attribute.consumes}{\mbox{\isa{consumes}}}~\isa{{\isadigit{1}}} for ``predicate'' / ``set'' rules.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
 \isadelimtheory
 %
 \endisadelimtheory
--- a/doc-src/IsarRef/Thy/document/Spec.tex	Mon Jun 02 22:50:27 2008 +0200
+++ b/doc-src/IsarRef/Thy/document/Spec.tex	Mon Jun 02 22:50:29 2008 +0200
@@ -32,21 +32,23 @@
 \begin{matharray}{rcl}
     \indexdef{}{command}{header}\hypertarget{command.header}{\hyperlink{command.header}{\mbox{\isa{\isacommand{header}}}}} & : & \isarkeep{toplevel} \\
     \indexdef{}{command}{theory}\hypertarget{command.theory}{\hyperlink{command.theory}{\mbox{\isa{\isacommand{theory}}}}} & : & \isartrans{toplevel}{theory} \\
-    \indexdef{}{command}{end}\hypertarget{command.end}{\hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}}} & : & \isartrans{theory}{toplevel} \\
+    \indexdef{global}{command}{end}\hypertarget{command.global.end}{\hyperlink{command.global.end}{\mbox{\isa{\isacommand{end}}}}} & : & \isartrans{theory}{toplevel} \\
   \end{matharray}
 
-  Isabelle/Isar theories are defined via theory, which contain both
-  specifications and proofs; occasionally definitional mechanisms also
-  require some explicit proof.
+  Isabelle/Isar theories are defined via theory file, which contain
+  both specifications and proofs; occasionally definitional mechanisms
+  also require some explicit proof.  The theory body may be
+  sub-structered by means of \emph{local theory} target mechanisms,
+  notably \hyperlink{command.locale}{\mbox{\isa{\isacommand{locale}}}} and \hyperlink{command.class}{\mbox{\isa{\isacommand{class}}}}.
 
   The first ``real'' command of any theory has to be \hyperlink{command.theory}{\mbox{\isa{\isacommand{theory}}}}, which starts a new theory based on the merge of existing
   ones.  Just preceding the \hyperlink{command.theory}{\mbox{\isa{\isacommand{theory}}}} keyword, there may be
   an optional \hyperlink{command.header}{\mbox{\isa{\isacommand{header}}}} declaration, which is relevant to
   document preparation only; it acts very much like a special
-  pre-theory markup command (cf.\ \secref{sec:markup-thy} and
-  \secref{sec:markup-thy}).  The \hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}} command concludes a
-  theory development; it has to be the very last command of any theory
-  file loaded in batch-mode.
+  pre-theory markup command (cf.\ \secref{sec:markup} and).  The
+  \hyperlink{command.global.end}{\mbox{\isa{\isacommand{end}}}} command
+  concludes a theory development; it has to be the very last command
+  of any theory file loaded in batch-mode.
 
   \begin{rail}
     'header' text
@@ -62,8 +64,7 @@
   \item [\hyperlink{command.header}{\mbox{\isa{\isacommand{header}}}}~\isa{{\isachardoublequote}text{\isachardoublequote}}] provides plain text
   markup just preceding the formal beginning of a theory.  In actual
   document preparation the corresponding {\LaTeX} macro \verb|\isamarkupheader| may be redefined to produce chapter or section
-  headings.  See also \secref{sec:markup-thy} and
-  \secref{sec:markup-prf} for further markup commands.
+  headings.  See also \secref{sec:markup} for further markup commands.
   
   \item [\hyperlink{command.theory}{\mbox{\isa{\isacommand{theory}}}}~\isa{{\isachardoublequote}A\ {\isasymIMPORTS}\ B\isactrlsub {\isadigit{1}}\ {\isasymdots}\ B\isactrlsub n\ {\isasymBEGIN}{\isachardoublequote}}] starts a new theory \isa{A} based on the
   merge of existing theories \isa{{\isachardoublequote}B\isactrlsub {\isadigit{1}}\ {\isasymdots}\ B\isactrlsub n{\isachardoublequote}}.
@@ -82,13 +83,1255 @@
   text (typically via explicit \indexref{}{command}{use}\hyperlink{command.use}{\mbox{\isa{\isacommand{use}}}} in the body text,
   see \secref{sec:ML}).
   
-  \item [\hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}}] concludes the current theory definition or
-  context switch.
+  \item [\hyperlink{command.global.end}{\mbox{\isa{\isacommand{end}}}}] concludes the current theory
+  definition.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Local theory targets \label{sec:target}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A local theory target is a context managed separately within the
+  enclosing theory.  Contexts may introduce parameters (fixed
+  variables) and assumptions (hypotheses).  Definitions and theorems
+  depending on the context may be added incrementally later on.  Named
+  contexts refer to locales (cf.\ \secref{sec:locale}) or type classes
+  (cf.\ \secref{sec:class}); the name ``\isa{{\isachardoublequote}{\isacharminus}{\isachardoublequote}}'' signifies the
+  global theory context.
+
+  \begin{matharray}{rcll}
+    \indexdef{}{command}{context}\hypertarget{command.context}{\hyperlink{command.context}{\mbox{\isa{\isacommand{context}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
+    \indexdef{local}{command}{end}\hypertarget{command.local.end}{\hyperlink{command.local.end}{\mbox{\isa{\isacommand{end}}}}} & : & \isartrans{local{\dsh}theory}{theory} \\
+  \end{matharray}
+
+  \indexouternonterm{target}
+  \begin{rail}
+    'context' name 'begin'
+    ;
+
+    target: '(' 'in' name ')'
+    ;
+  \end{rail}
+
+  \begin{descr}
+  
+  \item [\hyperlink{command.context}{\mbox{\isa{\isacommand{context}}}}~\isa{{\isachardoublequote}c\ {\isasymBEGIN}{\isachardoublequote}}] recommences an
+  existing locale or class context \isa{c}.  Note that locale and
+  class definitions allow to include the \indexref{}{keyword}{begin}\hyperlink{keyword.begin}{\mbox{\isa{\isakeyword{begin}}}}
+  keyword as well, in order to continue the local theory immediately
+  after the initial specification.
+  
+  \item [\hyperlink{command.local.end}{\mbox{\isa{\isacommand{end}}}}] concludes the current local theory
+  and continues the enclosing global theory.  Note that a global
+  \hyperlink{command.global.end}{\mbox{\isa{\isacommand{end}}}} has a different meaning: it concludes the
+  theory itself (\secref{sec:begin-thy}).
+  
+  \item [\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIN}\ c{\isacharparenright}{\isachardoublequote}}] given after any local theory command
+  specifies an immediate target, e.g.\ ``\hyperlink{command.definition}{\mbox{\isa{\isacommand{definition}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIN}\ c{\isacharparenright}\ {\isasymdots}{\isachardoublequote}}'' or ``\hyperlink{command.theorem}{\mbox{\isa{\isacommand{theorem}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIN}\ c{\isacharparenright}\ {\isasymdots}{\isachardoublequote}}''.  This works both in a local or
+  global theory context; the current target context will be suspended
+  for this command only.  Note that ``\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIN}\ {\isacharminus}{\isacharparenright}{\isachardoublequote}}'' will
+  always produce a global result independently of the current target
+  context.
+
+  \end{descr}
+
+  The exact meaning of results produced within a local theory context
+  depends on the underlying target infrastructure (locale, type class
+  etc.).  The general idea is as follows, considering a context named
+  \isa{c} with parameter \isa{x} and assumption \isa{{\isachardoublequote}A{\isacharbrackleft}x{\isacharbrackright}{\isachardoublequote}}.
+  
+  Definitions are exported by introducing a global version with
+  additional arguments; a syntactic abbreviation links the long form
+  with the abstract version of the target context.  For example,
+  \isa{{\isachardoublequote}a\ {\isasymequiv}\ t{\isacharbrackleft}x{\isacharbrackright}{\isachardoublequote}} becomes \isa{{\isachardoublequote}c{\isachardot}a\ {\isacharquery}x\ {\isasymequiv}\ t{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}{\isachardoublequote}} at the theory
+  level (for arbitrary \isa{{\isachardoublequote}{\isacharquery}x{\isachardoublequote}}), together with a local
+  abbreviation \isa{{\isachardoublequote}c\ {\isasymequiv}\ c{\isachardot}a\ x{\isachardoublequote}} in the target context (for the
+  fixed parameter \isa{x}).
+
+  Theorems are exported by discharging the assumptions and
+  generalizing the parameters of the context.  For example, \isa{{\isachardoublequote}a{\isacharcolon}\ B{\isacharbrackleft}x{\isacharbrackright}{\isachardoublequote}} becomes \isa{{\isachardoublequote}c{\isachardot}a{\isacharcolon}\ A{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}\ {\isasymLongrightarrow}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}{\isachardoublequote}}, again for arbitrary
+  \isa{{\isachardoublequote}{\isacharquery}x{\isachardoublequote}}.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Basic specification elements%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcll}
+    \indexdef{}{command}{axiomatization}\hypertarget{command.axiomatization}{\hyperlink{command.axiomatization}{\mbox{\isa{\isacommand{axiomatization}}}}} & : & \isarkeep{local{\dsh}theory} & (axiomatic!)\\
+    \indexdef{}{command}{definition}\hypertarget{command.definition}{\hyperlink{command.definition}{\mbox{\isa{\isacommand{definition}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{attribute}{defn}\hypertarget{attribute.defn}{\hyperlink{attribute.defn}{\mbox{\isa{defn}}}} & : & \isaratt \\
+    \indexdef{}{command}{abbreviation}\hypertarget{command.abbreviation}{\hyperlink{command.abbreviation}{\mbox{\isa{\isacommand{abbreviation}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{command}{print\_abbrevs}\hypertarget{command.print-abbrevs}{\hyperlink{command.print-abbrevs}{\mbox{\isa{\isacommand{print{\isacharunderscore}abbrevs}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
+    \indexdef{}{command}{notation}\hypertarget{command.notation}{\hyperlink{command.notation}{\mbox{\isa{\isacommand{notation}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{command}{no\_notation}\hypertarget{command.no-notation}{\hyperlink{command.no-notation}{\mbox{\isa{\isacommand{no{\isacharunderscore}notation}}}}} & : & \isarkeep{local{\dsh}theory} \\
+  \end{matharray}
+
+  These specification mechanisms provide a slightly more abstract view
+  than the underlying primitives of \hyperlink{command.consts}{\mbox{\isa{\isacommand{consts}}}}, \hyperlink{command.defs}{\mbox{\isa{\isacommand{defs}}}} (see \secref{sec:consts}), and \hyperlink{command.axioms}{\mbox{\isa{\isacommand{axioms}}}} (see
+  \secref{sec:axms-thms}).  In particular, type-inference is commonly
+  available, and result names need not be given.
+
+  \begin{rail}
+    'axiomatization' target? fixes? ('where' specs)?
+    ;
+    'definition' target? (decl 'where')? thmdecl? prop
+    ;
+    'abbreviation' target? mode? (decl 'where')? prop
+    ;
+    ('notation' | 'no\_notation') target? mode? (nameref structmixfix + 'and')
+    ;
+
+    fixes: ((name ('::' type)? mixfix? | vars) + 'and')
+    ;
+    specs: (thmdecl? props + 'and')
+    ;
+    decl: name ('::' type)? mixfix?
+    ;
+  \end{rail}
+
+  \begin{descr}
+  
+  \item [\hyperlink{command.axiomatization}{\mbox{\isa{\isacommand{axiomatization}}}}~\isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}\ {\isasymdots}\ c\isactrlsub m\ {\isasymWHERE}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}] introduces several constants
+  simultaneously and states axiomatic properties for these.  The
+  constants are marked as being specified once and for all, which
+  prevents additional specifications being issued later on.
+  
+  Note that axiomatic specifications are only appropriate when
+  declaring a new logical system.  Normal applications should only use
+  definitional mechanisms!
+
+  \item [\hyperlink{command.definition}{\mbox{\isa{\isacommand{definition}}}}~\isa{{\isachardoublequote}c\ {\isasymWHERE}\ eq{\isachardoublequote}}] produces an
+  internal definition \isa{{\isachardoublequote}c\ {\isasymequiv}\ t{\isachardoublequote}} according to the specification
+  given as \isa{eq}, which is then turned into a proven fact.  The
+  given proposition may deviate from internal meta-level equality
+  according to the rewrite rules declared as \hyperlink{attribute.defn}{\mbox{\isa{defn}}} by the
+  object-logic.  This usually covers object-level equality \isa{{\isachardoublequote}x\ {\isacharequal}\ y{\isachardoublequote}} and equivalence \isa{{\isachardoublequote}A\ {\isasymleftrightarrow}\ B{\isachardoublequote}}.  End-users normally need not
+  change the \hyperlink{attribute.defn}{\mbox{\isa{defn}}} setup.
+  
+  Definitions may be presented with explicit arguments on the LHS, as
+  well as additional conditions, e.g.\ \isa{{\isachardoublequote}f\ x\ y\ {\isacharequal}\ t{\isachardoublequote}} instead of
+  \isa{{\isachardoublequote}f\ {\isasymequiv}\ {\isasymlambda}x\ y{\isachardot}\ t{\isachardoublequote}} and \isa{{\isachardoublequote}y\ {\isasymnoteq}\ {\isadigit{0}}\ {\isasymLongrightarrow}\ g\ x\ y\ {\isacharequal}\ u{\isachardoublequote}} instead of an
+  unrestricted \isa{{\isachardoublequote}g\ {\isasymequiv}\ {\isasymlambda}x\ y{\isachardot}\ u{\isachardoublequote}}.
+  
+  \item [\hyperlink{command.abbreviation}{\mbox{\isa{\isacommand{abbreviation}}}}~\isa{{\isachardoublequote}c\ {\isasymWHERE}\ eq{\isachardoublequote}}] introduces
+  a syntactic constant which is associated with a certain term
+  according to the meta-level equality \isa{eq}.
+  
+  Abbreviations participate in the usual type-inference process, but
+  are expanded before the logic ever sees them.  Pretty printing of
+  terms involves higher-order rewriting with rules stemming from
+  reverted abbreviations.  This needs some care to avoid overlapping
+  or looping syntactic replacements!
+  
+  The optional \isa{mode} specification restricts output to a
+  particular print mode; using ``\isa{input}'' here achieves the
+  effect of one-way abbreviations.  The mode may also include an
+  ``\hyperlink{keyword.output}{\mbox{\isa{\isakeyword{output}}}}'' qualifier that affects the concrete syntax
+  declared for abbreviations, cf.\ \hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}} in
+  \secref{sec:syn-trans}.
+  
+  \item [\hyperlink{command.print-abbrevs}{\mbox{\isa{\isacommand{print{\isacharunderscore}abbrevs}}}}] prints all constant abbreviations
+  of the current context.
+  
+  \item [\hyperlink{command.notation}{\mbox{\isa{\isacommand{notation}}}}~\isa{{\isachardoublequote}c\ {\isacharparenleft}mx{\isacharparenright}{\isachardoublequote}}] associates mixfix
+  syntax with an existing constant or fixed variable.  This is a
+  robust interface to the underlying \hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}} primitive
+  (\secref{sec:syn-trans}).  Type declaration and internal syntactic
+  representation of the given entity is retrieved from the context.
+  
+  \item [\hyperlink{command.no-notation}{\mbox{\isa{\isacommand{no{\isacharunderscore}notation}}}}] is similar to \hyperlink{command.notation}{\mbox{\isa{\isacommand{notation}}}}, but removes the specified syntax annotation from the
+  present context.
+
+  \end{descr}
+
+  All of these specifications support local theory targets (cf.\
+  \secref{sec:target}).%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Generic declarations%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Arbitrary operations on the background context may be wrapped-up as
+  generic declaration elements.  Since the underlying concept of local
+  theories may be subject to later re-interpretation, there is an
+  additional dependency on a morphism that tells the difference of the
+  original declaration context wrt.\ the application context
+  encountered later on.  A fact declaration is an important special
+  case: it consists of a theorem which is applied to the context by
+  means of an attribute.
+
+  \begin{matharray}{rcl}
+    \indexdef{}{command}{declaration}\hypertarget{command.declaration}{\hyperlink{command.declaration}{\mbox{\isa{\isacommand{declaration}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{command}{declare}\hypertarget{command.declare}{\hyperlink{command.declare}{\mbox{\isa{\isacommand{declare}}}}} & : & \isarkeep{local{\dsh}theory} \\
+  \end{matharray}
+
+  \begin{rail}
+    'declaration' target? text
+    ;
+    'declare' target? (thmrefs + 'and')
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.declaration}{\mbox{\isa{\isacommand{declaration}}}}~\isa{d}] adds the declaration
+  function \isa{d} of ML type \verb|declaration|, to the current
+  local theory under construction.  In later application contexts, the
+  function is transformed according to the morphisms being involved in
+  the interpretation hierarchy.
+
+  \item [\hyperlink{command.declare}{\mbox{\isa{\isacommand{declare}}}}~\isa{thms}] declares theorems to the
+  current local theory context.  No theorem binding is involved here,
+  unlike \hyperlink{command.theorems}{\mbox{\isa{\isacommand{theorems}}}} or \hyperlink{command.lemmas}{\mbox{\isa{\isacommand{lemmas}}}} (cf.\
+  \secref{sec:axms-thms}), so \hyperlink{command.declare}{\mbox{\isa{\isacommand{declare}}}} only has the effect
+  of applying attributes as included in the theorem specification.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Locales \label{sec:locale}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Locales are named local contexts, consisting of a list of
+  declaration elements that are modeled after the Isar proof context
+  commands (cf.\ \secref{sec:proof-context}).%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Locale specifications%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{locale}\hypertarget{command.locale}{\hyperlink{command.locale}{\mbox{\isa{\isacommand{locale}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
+    \indexdef{}{command}{print\_locale}\hypertarget{command.print-locale}{\hyperlink{command.print-locale}{\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
+    \indexdef{}{command}{print\_locales}\hypertarget{command.print-locales}{\hyperlink{command.print-locales}{\mbox{\isa{\isacommand{print{\isacharunderscore}locales}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
+    \indexdef{}{method}{intro\_locales}\hypertarget{method.intro-locales}{\hyperlink{method.intro-locales}{\mbox{\isa{intro{\isacharunderscore}locales}}}} & : & \isarmeth \\
+    \indexdef{}{method}{unfold\_locales}\hypertarget{method.unfold-locales}{\hyperlink{method.unfold-locales}{\mbox{\isa{unfold{\isacharunderscore}locales}}}} & : & \isarmeth \\
+  \end{matharray}
+
+  \indexouternonterm{contextexpr}\indexouternonterm{contextelem}
+  \indexisarelem{fixes}\indexisarelem{constrains}\indexisarelem{assumes}
+  \indexisarelem{defines}\indexisarelem{notes}\indexisarelem{includes}
+  \begin{rail}
+    'locale' ('(open)')? name ('=' localeexpr)? 'begin'?
+    ;
+    'print\_locale' '!'? localeexpr
+    ;
+    localeexpr: ((contextexpr '+' (contextelem+)) | contextexpr | (contextelem+))
+    ;
+
+    contextexpr: nameref | '(' contextexpr ')' |
+    (contextexpr (name mixfix? +)) | (contextexpr + '+')
+    ;
+    contextelem: fixes | constrains | assumes | defines | notes
+    ;
+    fixes: 'fixes' ((name ('::' type)? structmixfix? | vars) + 'and')
+    ;
+    constrains: 'constrains' (name '::' type + 'and')
+    ;
+    assumes: 'assumes' (thmdecl? props + 'and')
+    ;
+    defines: 'defines' (thmdecl? prop proppat? + 'and')
+    ;
+    notes: 'notes' (thmdef? thmrefs + 'and')
+    ;
+    includes: 'includes' contextexpr
+    ;
+  \end{rail}
+
+  \begin{descr}
+  
+  \item [\hyperlink{command.locale}{\mbox{\isa{\isacommand{locale}}}}~\isa{{\isachardoublequote}loc\ {\isacharequal}\ import\ {\isacharplus}\ body{\isachardoublequote}}] defines a
+  new locale \isa{loc} as a context consisting of a certain view of
+  existing locales (\isa{import}) plus some additional elements
+  (\isa{body}).  Both \isa{import} and \isa{body} are optional;
+  the degenerate form \hyperlink{command.locale}{\mbox{\isa{\isacommand{locale}}}}~\isa{loc} defines an empty
+  locale, which may still be useful to collect declarations of facts
+  later on.  Type-inference on locale expressions automatically takes
+  care of the most general typing that the combined context elements
+  may acquire.
+
+  The \isa{import} consists of a structured context expression,
+  consisting of references to existing locales, renamed contexts, or
+  merged contexts.  Renaming uses positional notation: \isa{{\isachardoublequote}c\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n{\isachardoublequote}} means that (a prefix of) the fixed
+  parameters of context \isa{c} are named \isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub n{\isachardoublequote}}; a ``\isa{{\isacharunderscore}}'' (underscore) means to skip that
+  position.  Renaming by default deletes concrete syntax, but new
+  syntax may by specified with a mixfix annotation.  An exeption of
+  this rule is the special syntax declared with ``\isa{{\isachardoublequote}{\isacharparenleft}{\isasymSTRUCTURE}{\isacharparenright}{\isachardoublequote}}'' (see below), which is neither deleted nor can it
+  be changed.  Merging proceeds from left-to-right, suppressing any
+  duplicates stemming from different paths through the import
+  hierarchy.
+
+  The \isa{body} consists of basic context elements, further context
+  expressions may be included as well.
+
+  \begin{descr}
+
+  \item [\hyperlink{element.fixes}{\mbox{\isa{\isakeyword{fixes}}}}~\isa{{\isachardoublequote}x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isacharparenleft}mx{\isacharparenright}{\isachardoublequote}}] declares a local
+  parameter of type \isa{{\isasymtau}} and mixfix annotation \isa{mx} (both
+  are optional).  The special syntax declaration ``\isa{{\isachardoublequote}{\isacharparenleft}{\isasymSTRUCTURE}{\isacharparenright}{\isachardoublequote}}'' means that \isa{x} may be referenced
+  implicitly in this context.
+
+  \item [\hyperlink{element.constrains}{\mbox{\isa{\isakeyword{constrains}}}}~\isa{{\isachardoublequote}x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}{\isachardoublequote}}] introduces a type
+  constraint \isa{{\isasymtau}} on the local parameter \isa{x}.
+
+  \item [\hyperlink{element.assumes}{\mbox{\isa{\isakeyword{assumes}}}}~\isa{{\isachardoublequote}a{\isacharcolon}\ {\isasymphi}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ {\isasymphi}\isactrlsub n{\isachardoublequote}}]
+  introduces local premises, similar to \hyperlink{command.assume}{\mbox{\isa{\isacommand{assume}}}} within a
+  proof (cf.\ \secref{sec:proof-context}).
+
+  \item [\hyperlink{element.defines}{\mbox{\isa{\isakeyword{defines}}}}~\isa{{\isachardoublequote}a{\isacharcolon}\ x\ {\isasymequiv}\ t{\isachardoublequote}}] defines a previously
+  declared parameter.  This is similar to \hyperlink{command.def}{\mbox{\isa{\isacommand{def}}}} within a
+  proof (cf.\ \secref{sec:proof-context}), but \hyperlink{element.defines}{\mbox{\isa{\isakeyword{defines}}}}
+  takes an equational proposition instead of variable-term pair.  The
+  left-hand side of the equation may have additional arguments, e.g.\
+  ``\hyperlink{element.defines}{\mbox{\isa{\isakeyword{defines}}}}~\isa{{\isachardoublequote}f\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n\ {\isasymequiv}\ t{\isachardoublequote}}''.
+
+  \item [\hyperlink{element.notes}{\mbox{\isa{\isakeyword{notes}}}}~\isa{{\isachardoublequote}a\ {\isacharequal}\ b\isactrlsub {\isadigit{1}}\ {\isasymdots}\ b\isactrlsub n{\isachardoublequote}}]
+  reconsiders facts within a local context.  Most notably, this may
+  include arbitrary declarations in any attribute specifications
+  included here, e.g.\ a local \hyperlink{attribute.simp}{\mbox{\isa{simp}}} rule.
+
+  \item [\hyperlink{element.includes}{\mbox{\isa{\isakeyword{includes}}}}~\isa{c}] copies the specified context
+  in a statically scoped manner.  Only available in the long goal
+  format of \secref{sec:goals}.
+
+  In contrast, the initial \isa{import} specification of a locale
+  expression maintains a dynamic relation to the locales being
+  referenced (benefiting from any later fact declarations in the
+  obvious manner).
+
+  \end{descr}
+  
+  Note that ``\isa{{\isachardoublequote}{\isacharparenleft}{\isasymIS}\ p\isactrlsub {\isadigit{1}}\ {\isasymdots}\ p\isactrlsub n{\isacharparenright}{\isachardoublequote}}'' patterns given
+  in the syntax of \hyperlink{element.assumes}{\mbox{\isa{\isakeyword{assumes}}}} and \hyperlink{element.defines}{\mbox{\isa{\isakeyword{defines}}}} above
+  are illegal in locale definitions.  In the long goal format of
+  \secref{sec:goals}, term bindings may be included as expected,
+  though.
+  
+  \medskip By default, locale specifications are ``closed up'' by
+  turning the given text into a predicate definition \isa{loc{\isacharunderscore}axioms} and deriving the original assumptions as local lemmas
+  (modulo local definitions).  The predicate statement covers only the
+  newly specified assumptions, omitting the content of included locale
+  expressions.  The full cumulative view is only provided on export,
+  involving another predicate \isa{loc} that refers to the complete
+  specification text.
+  
+  In any case, the predicate arguments are those locale parameters
+  that actually occur in the respective piece of text.  Also note that
+  these predicates operate at the meta-level in theory, but the locale
+  packages attempts to internalize statements according to the
+  object-logic setup (e.g.\ replacing \isa{{\isasymAnd}} by \isa{{\isasymforall}}, and
+  \isa{{\isachardoublequote}{\isasymLongrightarrow}{\isachardoublequote}} by \isa{{\isachardoublequote}{\isasymlongrightarrow}{\isachardoublequote}} in HOL; see also
+  \secref{sec:object-logic}).  Separate introduction rules \isa{loc{\isacharunderscore}axioms{\isachardot}intro} and \isa{loc{\isachardot}intro} are provided as well.
+  
+  The \isa{{\isachardoublequote}{\isacharparenleft}open{\isacharparenright}{\isachardoublequote}} option of a locale specification prevents both
+  the current \isa{loc{\isacharunderscore}axioms} and cumulative \isa{loc} predicate
+  constructions.  Predicates are also omitted for empty specification
+  texts.
+
+  \item [\hyperlink{command.print-locale}{\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}}~\isa{{\isachardoublequote}import\ {\isacharplus}\ body{\isachardoublequote}}] prints the
+  specified locale expression in a flattened form.  The notable
+  special case \hyperlink{command.print-locale}{\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}}~\isa{loc} just prints the
+  contents of the named locale, but keep in mind that type-inference
+  will normalize type variables according to the usual alphabetical
+  order.  The command omits \hyperlink{element.notes}{\mbox{\isa{\isakeyword{notes}}}} elements by default.
+  Use \hyperlink{command.print-locale}{\mbox{\isa{\isacommand{print{\isacharunderscore}locale}}}}\isa{{\isachardoublequote}{\isacharbang}{\isachardoublequote}} to get them included.
+
+  \item [\hyperlink{command.print-locales}{\mbox{\isa{\isacommand{print{\isacharunderscore}locales}}}}] prints the names of all locales
+  of the current theory.
+
+  \item [\hyperlink{method.intro-locales}{\mbox{\isa{intro{\isacharunderscore}locales}}} and \hyperlink{method.unfold-locales}{\mbox{\isa{unfold{\isacharunderscore}locales}}}]
+  repeatedly expand all introduction rules of locale predicates of the
+  theory.  While \hyperlink{method.intro-locales}{\mbox{\isa{intro{\isacharunderscore}locales}}} only applies the \isa{loc{\isachardot}intro} introduction rules and therefore does not decend to
+  assumptions, \hyperlink{method.unfold-locales}{\mbox{\isa{unfold{\isacharunderscore}locales}}} is more aggressive and applies
+  \isa{loc{\isacharunderscore}axioms{\isachardot}intro} as well.  Both methods are aware of locale
+  specifications entailed by the context, both from target and
+  \hyperlink{element.includes}{\mbox{\isa{\isakeyword{includes}}}} statements, and from interpretations (see
+  below).  New goals that are entailed by the current context are
+  discharged automatically.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Interpretation of locales%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Locale expressions (more precisely, \emph{context expressions}) may
+  be instantiated, and the instantiated facts added to the current
+  context.  This requires a proof of the instantiated specification
+  and is called \emph{locale interpretation}.  Interpretation is
+  possible in theories and locales (command \hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}}) and also within a proof body (command \hyperlink{command.interpret}{\mbox{\isa{\isacommand{interpret}}}}).
+
+  \begin{matharray}{rcl}
+    \indexdef{}{command}{interpretation}\hypertarget{command.interpretation}{\hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}}} & : & \isartrans{theory}{proof(prove)} \\
+    \indexdef{}{command}{interpret}\hypertarget{command.interpret}{\hyperlink{command.interpret}{\mbox{\isa{\isacommand{interpret}}}}} & : & \isartrans{proof(state) ~|~ proof(chain)}{proof(prove)} \\
+    \indexdef{}{command}{print\_interps}\hypertarget{command.print-interps}{\hyperlink{command.print-interps}{\mbox{\isa{\isacommand{print{\isacharunderscore}interps}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : &  \isarkeep{theory~|~proof} \\
+  \end{matharray}
+
+  \indexouternonterm{interp}
+  \begin{rail}
+    'interpretation' (interp | name ('<' | subseteq) contextexpr)
+    ;
+    'interpret' interp
+    ;
+    'print\_interps' '!'? name
+    ;
+    instantiation: ('[' (inst+) ']')?
+    ;
+    interp: thmdecl? \\ (contextexpr instantiation |
+      name instantiation 'where' (thmdecl? prop + 'and'))
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}}~\isa{{\isachardoublequote}expr\ insts\ {\isasymWHERE}\ eqns{\isachardoublequote}}]
+
+  The first form of \hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}} interprets \isa{expr} in the theory.  The instantiation is given as a list of terms
+  \isa{insts} and is positional.  All parameters must receive an
+  instantiation term --- with the exception of defined parameters.
+  These are, if omitted, derived from the defining equation and other
+  instantiations.  Use ``\isa{{\isacharunderscore}}'' to omit an instantiation term.
+
+  The command generates proof obligations for the instantiated
+  specifications (assumes and defines elements).  Once these are
+  discharged by the user, instantiated facts are added to the theory
+  in a post-processing phase.
+
+  Additional equations, which are unfolded in facts during
+  post-processing, may be given after the keyword \hyperlink{keyword.where}{\mbox{\isa{\isakeyword{where}}}}.
+  This is useful for interpreting concepts introduced through
+  definition specification elements.  The equations must be proved.
+  Note that if equations are present, the context expression is
+  restricted to a locale name.
+
+  The command is aware of interpretations already active in the
+  theory.  No proof obligations are generated for those, neither is
+  post-processing applied to their facts.  This avoids duplication of
+  interpreted facts, in particular.  Note that, in the case of a
+  locale with import, parts of the interpretation may already be
+  active.  The command will only generate proof obligations and
+  process facts for new parts.
+
+  The context expression may be preceded by a name and/or attributes.
+  These take effect in the post-processing of facts.  The name is used
+  to prefix fact names, for example to avoid accidental hiding of
+  other facts.  Attributes are applied after attributes of the
+  interpreted facts.
+
+  Adding facts to locales has the effect of adding interpreted facts
+  to the theory for all active interpretations also.  That is,
+  interpretations dynamically participate in any facts added to
+  locales.
+
+  \item [\hyperlink{command.interpretation}{\mbox{\isa{\isacommand{interpretation}}}}~\isa{{\isachardoublequote}name\ {\isasymsubseteq}\ expr{\isachardoublequote}}]
+
+  This form of the command interprets \isa{expr} in the locale
+  \isa{name}.  It requires a proof that the specification of \isa{name} implies the specification of \isa{expr}.  As in the
+  localized version of the theorem command, the proof is in the
+  context of \isa{name}.  After the proof obligation has been
+  dischared, the facts of \isa{expr} become part of locale \isa{name} as \emph{derived} context elements and are available when the
+  context \isa{name} is subsequently entered.  Note that, like
+  import, this is dynamic: facts added to a locale part of \isa{expr} after interpretation become also available in \isa{name}.
+  Like facts of renamed context elements, facts obtained by
+  interpretation may be accessed by prefixing with the parameter
+  renaming (where the parameters are separated by ``\isa{{\isacharunderscore}}'').
+
+  Unlike interpretation in theories, instantiation is confined to the
+  renaming of parameters, which may be specified as part of the
+  context expression \isa{expr}.  Using defined parameters in \isa{name} one may achieve an effect similar to instantiation, though.
+
+  Only specification fragments of \isa{expr} that are not already
+  part of \isa{name} (be it imported, derived or a derived fragment
+  of the import) are considered by interpretation.  This enables
+  circular interpretations.
+
+  If interpretations of \isa{name} exist in the current theory, the
+  command adds interpretations for \isa{expr} as well, with the same
+  prefix and attributes, although only for fragments of \isa{expr}
+  that are not interpreted in the theory already.
+
+  \item [\hyperlink{command.interpret}{\mbox{\isa{\isacommand{interpret}}}}~\isa{{\isachardoublequote}expr\ insts\ {\isasymWHERE}\ eqns{\isachardoublequote}}]
+  interprets \isa{expr} in the proof context and is otherwise
+  similar to interpretation in theories.
+
+  \item [\hyperlink{command.print-interps}{\mbox{\isa{\isacommand{print{\isacharunderscore}interps}}}}~\isa{loc}] prints the
+  interpretations of a particular locale \isa{loc} that are active
+  in the current context, either theory or proof context.  The
+  exclamation point argument triggers printing of \emph{witness}
+  theorems justifying interpretations.  These are normally omitted
+  from the output.
+  
+  \end{descr}
+
+  \begin{warn}
+    Since attributes are applied to interpreted theorems,
+    interpretation may modify the context of common proof tools, e.g.\
+    the Simplifier or Classical Reasoner.  Since the behavior of such
+    automated reasoning tools is \emph{not} stable under
+    interpretation morphisms, manual declarations might have to be
+    issued.
+  \end{warn}
+
+  \begin{warn}
+    An interpretation in a theory may subsume previous
+    interpretations.  This happens if the same specification fragment
+    is interpreted twice and the instantiation of the second
+    interpretation is more general than the interpretation of the
+    first.  A warning is issued, since it is likely that these could
+    have been generalized in the first place.  The locale package does
+    not attempt to remove subsumed interpretations.
+  \end{warn}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Classes \label{sec:class}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A class is a particular locale with \emph{exactly one} type variable
+  \isa{{\isasymalpha}}.  Beyond the underlying locale, a corresponding type class
+  is established which is interpreted logically as axiomatic type
+  class \cite{Wenzel:1997:TPHOL} whose logical content are the
+  assumptions of the locale.  Thus, classes provide the full
+  generality of locales combined with the commodity of type classes
+  (notably type-inference).  See \cite{isabelle-classes} for a short
+  tutorial.
+
+  \begin{matharray}{rcl}
+    \indexdef{}{command}{class}\hypertarget{command.class}{\hyperlink{command.class}{\mbox{\isa{\isacommand{class}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
+    \indexdef{}{command}{instantiation}\hypertarget{command.instantiation}{\hyperlink{command.instantiation}{\mbox{\isa{\isacommand{instantiation}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
+    \indexdef{}{command}{instance}\hypertarget{command.instance}{\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
+    \indexdef{}{command}{subclass}\hypertarget{command.subclass}{\hyperlink{command.subclass}{\mbox{\isa{\isacommand{subclass}}}}} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
+    \indexdef{}{command}{print\_classes}\hypertarget{command.print-classes}{\hyperlink{command.print-classes}{\mbox{\isa{\isacommand{print{\isacharunderscore}classes}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\
+    \indexdef{}{method}{intro\_classes}\hypertarget{method.intro-classes}{\hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}}} & : & \isarmeth \\
+  \end{matharray}
+
+  \begin{rail}
+    'class' name '=' ((superclassexpr '+' (contextelem+)) | superclassexpr | (contextelem+)) \\
+      'begin'?
+    ;
+    'instantiation' (nameref + 'and') '::' arity 'begin'
+    ;
+    'instance'
+    ;
+    'subclass' target? nameref
+    ;
+    'print\_classes'
+    ;
+
+    superclassexpr: nameref | (nameref '+' superclassexpr)
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.class}{\mbox{\isa{\isacommand{class}}}}~\isa{{\isachardoublequote}c\ {\isacharequal}\ superclasses\ {\isacharplus}\ body{\isachardoublequote}}] defines
+  a new class \isa{c}, inheriting from \isa{superclasses}.  This
+  introduces a locale \isa{c} with import of all locales \isa{superclasses}.
+
+  Any \hyperlink{element.fixes}{\mbox{\isa{\isakeyword{fixes}}}} in \isa{body} are lifted to the global
+  theory level (\emph{class operations} \isa{{\isachardoublequote}f\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ f\isactrlsub n{\isachardoublequote}} of class \isa{c}), mapping the local type parameter
+  \isa{{\isasymalpha}} to a schematic type variable \isa{{\isachardoublequote}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isachardoublequote}}.
+
+  Likewise, \hyperlink{element.assumes}{\mbox{\isa{\isakeyword{assumes}}}} in \isa{body} are also lifted,
+  mapping each local parameter \isa{{\isachardoublequote}f\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}{\isachardoublequote}} to its
+  corresponding global constant \isa{{\isachardoublequote}f\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}{\isachardoublequote}}.  The
+  corresponding introduction rule is provided as \isa{c{\isacharunderscore}class{\isacharunderscore}axioms{\isachardot}intro}.  This rule should be rarely needed directly
+  --- the \hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}} method takes care of the details of
+  class membership proofs.
+
+  \item [\hyperlink{command.instantiation}{\mbox{\isa{\isacommand{instantiation}}}}~\isa{{\isachardoublequote}t\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlsub n{\isacharparenright}\ s\ {\isasymBEGIN}{\isachardoublequote}}] opens a theory target (cf.\
+  \secref{sec:target}) which allows to specify class operations \isa{{\isachardoublequote}f\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ f\isactrlsub n{\isachardoublequote}} corresponding to sort \isa{s} at the
+  particular type instance \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ s\isactrlsub n{\isacharparenright}\ t{\isachardoublequote}}.  A plain \hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}} command
+  in the target body poses a goal stating these type arities.  The
+  target is concluded by an \indexref{local}{command}{end}\hyperlink{command.local.end}{\mbox{\isa{\isacommand{end}}}} command.
+
+  Note that a list of simultaneous type constructors may be given;
+  this corresponds nicely to mutual recursive type definitions, e.g.\
+  in Isabelle/HOL.
+
+  \item [\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}] in an instantiation target body sets
+  up a goal stating the type arities claimed at the opening \hyperlink{command.instantiation}{\mbox{\isa{\isacommand{instantiation}}}}.  The proof would usually proceed by \hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}}, and then establish the characteristic theorems of
+  the type classes involved.  After finishing the proof, the
+  background theory will be augmented by the proven type arities.
+
+  \item [\hyperlink{command.subclass}{\mbox{\isa{\isacommand{subclass}}}}~\isa{c}] in a class context for class
+  \isa{d} sets up a goal stating that class \isa{c} is logically
+  contained in class \isa{d}.  After finishing the proof, class
+  \isa{d} is proven to be subclass \isa{c} and the locale \isa{c} is interpreted into \isa{d} simultaneously.
+
+  \item [\hyperlink{command.print-classes}{\mbox{\isa{\isacommand{print{\isacharunderscore}classes}}}}] prints all classes in the current
+  theory.
+
+  \item [\hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}}] repeatedly expands all class
+  introduction rules of this theory.  Note that this method usually
+  needs not be named explicitly, as it is already included in the
+  default proof step (e.g.\ of \hyperlink{command.proof}{\mbox{\isa{\isacommand{proof}}}}).  In particular,
+  instantiation of trivial (syntactic) classes may be performed by a
+  single ``\hyperlink{command.ddot}{\mbox{\isa{\isacommand{{\isachardot}{\isachardot}}}}}'' proof step.
 
   \end{descr}%
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
+\isamarkupsubsection{The class target%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+%FIXME check
+
+  A named context may refer to a locale (cf.\ \secref{sec:target}).
+  If this locale is also a class \isa{c}, apart from the common
+  locale target behaviour the following happens.
+
+  \begin{itemize}
+
+  \item Local constant declarations \isa{{\isachardoublequote}g{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}{\isachardoublequote}} referring to the
+  local type parameter \isa{{\isasymalpha}} and local parameters \isa{{\isachardoublequote}f{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}{\isachardoublequote}}
+  are accompanied by theory-level constants \isa{{\isachardoublequote}g{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}{\isachardoublequote}}
+  referring to theory-level class operations \isa{{\isachardoublequote}f{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}{\isachardoublequote}}.
+
+  \item Local theorem bindings are lifted as are assumptions.
+
+  \item Local syntax refers to local operations \isa{{\isachardoublequote}g{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}{\isachardoublequote}} and
+  global operations \isa{{\isachardoublequote}g{\isacharbrackleft}{\isacharquery}{\isasymalpha}\ {\isacharcolon}{\isacharcolon}\ c{\isacharbrackright}{\isachardoublequote}} uniformly.  Type inference
+  resolves ambiguities.  In rare cases, manual type annotations are
+  needed.
+  
+  \end{itemize}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Axiomatic type classes \label{sec:axclass}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{warn}
+  This describes the old interface to axiomatic type-classes in
+  Isabelle.  See \secref{sec:class} for a more recent higher-level
+  view on the same ideas.
+  \end{warn}
+
+  \begin{matharray}{rcl}
+    \indexdef{}{command}{axclass}\hypertarget{command.axclass}{\hyperlink{command.axclass}{\mbox{\isa{\isacommand{axclass}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{instance}\hypertarget{command.instance}{\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}} & : & \isartrans{theory}{proof(prove)} \\
+  \end{matharray}
+
+  Axiomatic type classes are Isabelle/Pure's primitive
+  \emph{definitional} interface to type classes.  For practical
+  applications, you should consider using classes
+  (cf.~\secref{sec:classes}) which provide high level interface.
+
+  \begin{rail}
+    'axclass' classdecl (axmdecl prop +)
+    ;
+    'instance' (nameref ('<' | subseteq) nameref | nameref '::' arity)
+    ;
+  \end{rail}
+
+  \begin{descr}
+  
+  \item [\hyperlink{command.axclass}{\mbox{\isa{\isacommand{axclass}}}}~\isa{{\isachardoublequote}c\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n\ axms{\isachardoublequote}}] defines an axiomatic type class as the intersection of
+  existing classes, with additional axioms holding.  Class axioms may
+  not contain more than one type variable.  The class axioms (with
+  implicit sort constraints added) are bound to the given names.
+  Furthermore a class introduction rule is generated (being bound as
+  \isa{c{\isacharunderscore}class{\isachardot}intro}); this rule is employed by method \hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}} to support instantiation proofs of this class.
+  
+  The ``class axioms'' are stored as theorems according to the given
+  name specifications, adding \isa{{\isachardoublequote}c{\isacharunderscore}class{\isachardoublequote}} as name space prefix;
+  the same facts are also stored collectively as \isa{c{\isacharunderscore}class{\isachardot}axioms}.
+  
+  \item [\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}~\isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{2}}{\isachardoublequote}} and
+  \hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}}~\isa{{\isachardoublequote}t\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlsub n{\isacharparenright}\ s{\isachardoublequote}}]
+  setup a goal stating a class relation or type arity.  The proof
+  would usually proceed by \hyperlink{method.intro-classes}{\mbox{\isa{intro{\isacharunderscore}classes}}}, and then establish
+  the characteristic theorems of the type classes involved.  After
+  finishing the proof, the theory will be augmented by a type
+  signature declaration corresponding to the resulting theorem.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Unrestricted overloading%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Isabelle/Pure's definitional schemes support certain forms of
+  overloading (see \secref{sec:consts}).  At most occassions
+  overloading will be used in a Haskell-like fashion together with
+  type classes by means of \hyperlink{command.instantiation}{\mbox{\isa{\isacommand{instantiation}}}} (see
+  \secref{sec:class}).  Sometimes low-level overloading is desirable.
+  The \hyperlink{command.overloading}{\mbox{\isa{\isacommand{overloading}}}} target provides a convenient view for
+  end-users.
+
+  \begin{matharray}{rcl}
+    \indexdef{}{command}{overloading}\hypertarget{command.overloading}{\hyperlink{command.overloading}{\mbox{\isa{\isacommand{overloading}}}}} & : & \isartrans{theory}{local{\dsh}theory} \\
+  \end{matharray}
+
+  \begin{rail}
+    'overloading' \\
+    ( string ( '==' | equiv ) term ( '(' 'unchecked' ')' )? + ) 'begin'
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.overloading}{\mbox{\isa{\isacommand{overloading}}}}~\isa{{\isachardoublequote}x\isactrlsub {\isadigit{1}}\ {\isasymequiv}\ c\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\isactrlsub {\isadigit{1}}\ {\isasymAND}\ {\isasymdots}\ x\isactrlsub n\ {\isasymequiv}\ c\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\isactrlsub n\ {\isasymBEGIN}{\isachardoublequote}}]
+  opens a theory target (cf.\ \secref{sec:target}) which allows to
+  specify constants with overloaded definitions.  These are identified
+  by an explicitly given mapping from variable names \isa{{\isachardoublequote}x\isactrlsub i{\isachardoublequote}} to constants \isa{{\isachardoublequote}c\isactrlsub i{\isachardoublequote}} at particular type
+  instances.  The definitions themselves are established using common
+  specification tools, using the names \isa{{\isachardoublequote}x\isactrlsub i{\isachardoublequote}} as
+  reference to the corresponding constants.  The target is concluded
+  by \hyperlink{command.local.end}{\mbox{\isa{\isacommand{end}}}}.
+
+  A \isa{{\isachardoublequote}{\isacharparenleft}unchecked{\isacharparenright}{\isachardoublequote}} option disables global dependency checks for
+  the corresponding definition, which is occasionally useful for
+  exotic overloading.  It is at the discretion of the user to avoid
+  malformed theory specifications!
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Incorporating ML code \label{sec:ML}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{use}\hypertarget{command.use}{\hyperlink{command.use}{\mbox{\isa{\isacommand{use}}}}} & : & \isarkeep{theory~|~local{\dsh}theory} \\
+    \indexdef{}{command}{ML}\hypertarget{command.ML}{\hyperlink{command.ML}{\mbox{\isa{\isacommand{ML}}}}} & : & \isarkeep{theory~|~local{\dsh}theory} \\
+    \indexdef{}{command}{ML\_val}\hypertarget{command.ML-val}{\hyperlink{command.ML-val}{\mbox{\isa{\isacommand{ML{\isacharunderscore}val}}}}} & : & \isartrans{\cdot}{\cdot} \\
+    \indexdef{}{command}{ML\_command}\hypertarget{command.ML-command}{\hyperlink{command.ML-command}{\mbox{\isa{\isacommand{ML{\isacharunderscore}command}}}}} & : & \isartrans{\cdot}{\cdot} \\
+    \indexdef{}{command}{setup}\hypertarget{command.setup}{\hyperlink{command.setup}{\mbox{\isa{\isacommand{setup}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{method\_setup}\hypertarget{command.method-setup}{\hyperlink{command.method-setup}{\mbox{\isa{\isacommand{method{\isacharunderscore}setup}}}}} & : & \isartrans{theory}{theory} \\
+  \end{matharray}
+
+  \begin{rail}
+    'use' name
+    ;
+    ('ML' | 'ML\_val' | 'ML\_command' | 'setup') text
+    ;
+    'method\_setup' name '=' text text
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.use}{\mbox{\isa{\isacommand{use}}}}~\isa{{\isachardoublequote}file{\isachardoublequote}}] reads and executes ML
+  commands from \isa{{\isachardoublequote}file{\isachardoublequote}}.  The current theory context is passed
+  down to the ML toplevel and may be modified, using \verb|"Context.>>"| or derived ML commands.  The file name is checked with
+  the \indexref{}{keyword}{uses}\hyperlink{keyword.uses}{\mbox{\isa{\isakeyword{uses}}}} dependency declaration given in the theory
+  header (see also \secref{sec:begin-thy}).
+  
+  \item [\hyperlink{command.ML}{\mbox{\isa{\isacommand{ML}}}}~\isa{{\isachardoublequote}text{\isachardoublequote}}] is similar to \hyperlink{command.use}{\mbox{\isa{\isacommand{use}}}}, but executes ML commands directly from the given \isa{{\isachardoublequote}text{\isachardoublequote}}.
+
+  \item [\hyperlink{command.ML-val}{\mbox{\isa{\isacommand{ML{\isacharunderscore}val}}}} and \hyperlink{command.ML-command}{\mbox{\isa{\isacommand{ML{\isacharunderscore}command}}}}] are
+  diagnostic versions of \hyperlink{command.ML}{\mbox{\isa{\isacommand{ML}}}}, which means that the context
+  may not be updated.  \hyperlink{command.ML-val}{\mbox{\isa{\isacommand{ML{\isacharunderscore}val}}}} echos the bindings produced
+  at the ML toplevel, but \hyperlink{command.ML-command}{\mbox{\isa{\isacommand{ML{\isacharunderscore}command}}}} is silent.
+  
+  \item [\hyperlink{command.setup}{\mbox{\isa{\isacommand{setup}}}}~\isa{{\isachardoublequote}text{\isachardoublequote}}] changes the current theory
+  context by applying \isa{{\isachardoublequote}text{\isachardoublequote}}, which refers to an ML expression
+  of type \verb|"theory -> theory"|.  This enables to initialize
+  any object-logic specific tools and packages written in ML, for
+  example.
+  
+  \item [\hyperlink{command.method-setup}{\mbox{\isa{\isacommand{method{\isacharunderscore}setup}}}}~\isa{{\isachardoublequote}name\ {\isacharequal}\ text\ description{\isachardoublequote}}]
+  defines a proof method in the current theory.  The given \isa{{\isachardoublequote}text{\isachardoublequote}} has to be an ML expression of type \verb|"Args.src ->|\isasep\isanewline%
+\verb|  Proof.context -> Proof.method"|.  Parsing concrete method syntax
+  from \verb|Args.src| input can be quite tedious in general.  The
+  following simple examples are for methods without any explicit
+  arguments, or a list of theorems, respectively.
+
+%FIXME proper antiquotations
+{\footnotesize
+\begin{verbatim}
+ Method.no_args (Method.METHOD (fn facts => foobar_tac))
+ Method.thms_args (fn thms => Method.METHOD (fn facts => foobar_tac))
+ Method.ctxt_args (fn ctxt => Method.METHOD (fn facts => foobar_tac))
+ Method.thms_ctxt_args (fn thms => fn ctxt =>
+    Method.METHOD (fn facts => foobar_tac))
+\end{verbatim}
+}
+
+  Note that mere tactic emulations may ignore the \isa{facts}
+  parameter above.  Proper proof methods would do something
+  appropriate with the list of current facts, though.  Single-rule
+  methods usually do strict forward-chaining (e.g.\ by using \verb|Drule.multi_resolves|), while automatic ones just insert the facts
+  using \verb|Method.insert_tac| before applying the main tactic.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Primitive specification elements%
+}
+\isamarkuptrue%
+%
+\isamarkupsubsection{Type classes and sorts \label{sec:classes}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcll}
+    \indexdef{}{command}{classes}\hypertarget{command.classes}{\hyperlink{command.classes}{\mbox{\isa{\isacommand{classes}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{classrel}\hypertarget{command.classrel}{\hyperlink{command.classrel}{\mbox{\isa{\isacommand{classrel}}}}} & : & \isartrans{theory}{theory} & (axiomatic!) \\
+    \indexdef{}{command}{defaultsort}\hypertarget{command.defaultsort}{\hyperlink{command.defaultsort}{\mbox{\isa{\isacommand{defaultsort}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{class\_deps}\hypertarget{command.class-deps}{\hyperlink{command.class-deps}{\mbox{\isa{\isacommand{class{\isacharunderscore}deps}}}}} & : & \isarkeep{theory~|~proof} \\
+  \end{matharray}
+
+  \begin{rail}
+    'classes' (classdecl +)
+    ;
+    'classrel' (nameref ('<' | subseteq) nameref + 'and')
+    ;
+    'defaultsort' sort
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.classes}{\mbox{\isa{\isacommand{classes}}}}~\isa{{\isachardoublequote}c\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n{\isachardoublequote}}]
+  declares class \isa{c} to be a subclass of existing classes \isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n{\isachardoublequote}}.  Cyclic class structures are not permitted.
+
+  \item [\hyperlink{command.classrel}{\mbox{\isa{\isacommand{classrel}}}}~\isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{2}}{\isachardoublequote}}] states
+  subclass relations between existing classes \isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}{\isachardoublequote}} and
+  \isa{{\isachardoublequote}c\isactrlsub {\isadigit{2}}{\isachardoublequote}}.  This is done axiomatically!  The \indexref{}{command}{instance}\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}} command (see \secref{sec:axclass}) provides a way to
+  introduce proven class relations.
+
+  \item [\hyperlink{command.defaultsort}{\mbox{\isa{\isacommand{defaultsort}}}}~\isa{s}] makes sort \isa{s} the
+  new default sort for any type variables given without sort
+  constraints.  Usually, the default sort would be only changed when
+  defining a new object-logic.
+
+  \item [\hyperlink{command.class-deps}{\mbox{\isa{\isacommand{class{\isacharunderscore}deps}}}}] visualizes the subclass relation,
+  using Isabelle's graph browser tool (see also \cite{isabelle-sys}).
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Types and type abbreviations \label{sec:types-pure}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcll}
+    \indexdef{}{command}{types}\hypertarget{command.types}{\hyperlink{command.types}{\mbox{\isa{\isacommand{types}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{typedecl}\hypertarget{command.typedecl}{\hyperlink{command.typedecl}{\mbox{\isa{\isacommand{typedecl}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{nonterminals}\hypertarget{command.nonterminals}{\hyperlink{command.nonterminals}{\mbox{\isa{\isacommand{nonterminals}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{arities}\hypertarget{command.arities}{\hyperlink{command.arities}{\mbox{\isa{\isacommand{arities}}}}} & : & \isartrans{theory}{theory} & (axiomatic!) \\
+  \end{matharray}
+
+  \begin{rail}
+    'types' (typespec '=' type infix? +)
+    ;
+    'typedecl' typespec infix?
+    ;
+    'nonterminals' (name +)
+    ;
+    'arities' (nameref '::' arity +)
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.types}{\mbox{\isa{\isacommand{types}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t\ {\isacharequal}\ {\isasymtau}{\isachardoublequote}}]
+  introduces \emph{type synonym} \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t{\isachardoublequote}}
+  for existing type \isa{{\isachardoublequote}{\isasymtau}{\isachardoublequote}}.  Unlike actual type definitions, as
+  are available in Isabelle/HOL for example, type synonyms are just
+  purely syntactic abbreviations without any logical significance.
+  Internally, type synonyms are fully expanded.
+  
+  \item [\hyperlink{command.typedecl}{\mbox{\isa{\isacommand{typedecl}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t{\isachardoublequote}}]
+  declares a new type constructor \isa{t}, intended as an actual
+  logical type (of the object-logic, if available).
+
+  \item [\hyperlink{command.nonterminals}{\mbox{\isa{\isacommand{nonterminals}}}}~\isa{c}] declares type
+  constructors \isa{c} (without arguments) to act as purely
+  syntactic types, i.e.\ nonterminal symbols of Isabelle's inner
+  syntax of terms or types.
+
+  \item [\hyperlink{command.arities}{\mbox{\isa{\isacommand{arities}}}}~\isa{{\isachardoublequote}t\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlsub n{\isacharparenright}\ s{\isachardoublequote}}] augments Isabelle's order-sorted signature of types by new type
+  constructor arities.  This is done axiomatically!  The \indexref{}{command}{instance}\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}} command (see \S\ref{sec:axclass}) provides a way to
+  introduce proven type arities.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Constants and definitions \label{sec:consts}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Definitions essentially express abbreviations within the logic.  The
+  simplest form of a definition is \isa{{\isachardoublequote}c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\ {\isasymequiv}\ t{\isachardoublequote}}, where \isa{c} is a newly declared constant.  Isabelle also allows derived forms
+  where the arguments of \isa{c} appear on the left, abbreviating a
+  prefix of \isa{{\isasymlambda}}-abstractions, e.g.\ \isa{{\isachardoublequote}c\ {\isasymequiv}\ {\isasymlambda}x\ y{\isachardot}\ t{\isachardoublequote}} may be
+  written more conveniently as \isa{{\isachardoublequote}c\ x\ y\ {\isasymequiv}\ t{\isachardoublequote}}.  Moreover,
+  definitions may be weakened by adding arbitrary pre-conditions:
+  \isa{{\isachardoublequote}A\ {\isasymLongrightarrow}\ c\ x\ y\ {\isasymequiv}\ t{\isachardoublequote}}.
+
+  \medskip The built-in well-formedness conditions for definitional
+  specifications are:
+
+  \begin{itemize}
+
+  \item Arguments (on the left-hand side) must be distinct variables.
+
+  \item All variables on the right-hand side must also appear on the
+  left-hand side.
+
+  \item All type variables on the right-hand side must also appear on
+  the left-hand side; this prohibits \isa{{\isachardoublequote}{\isadigit{0}}\ {\isacharcolon}{\isacharcolon}\ nat\ {\isasymequiv}\ length\ {\isacharparenleft}{\isacharbrackleft}{\isacharbrackright}\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ list{\isacharparenright}{\isachardoublequote}} for example.
+
+  \item The definition must not be recursive.  Most object-logics
+  provide definitional principles that can be used to express
+  recursion safely.
+
+  \end{itemize}
+
+  Overloading means that a constant being declared as \isa{{\isachardoublequote}c\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ decl{\isachardoublequote}} may be defined separately on type instances \isa{{\isachardoublequote}c\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}{\isasymbeta}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymbeta}\isactrlsub n{\isacharparenright}\ t\ decl{\isachardoublequote}} for each type constructor \isa{t}.  The right-hand side may mention overloaded constants
+  recursively at type instances corresponding to the immediate
+  argument types \isa{{\isachardoublequote}{\isasymbeta}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymbeta}\isactrlsub n{\isachardoublequote}}.  Incomplete
+  specification patterns impose global constraints on all occurrences,
+  e.g.\ \isa{{\isachardoublequote}d\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymtimes}\ {\isasymalpha}{\isachardoublequote}} on the left-hand side means that all
+  corresponding occurrences on some right-hand side need to be an
+  instance of this, general \isa{{\isachardoublequote}d\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymtimes}\ {\isasymbeta}{\isachardoublequote}} will be disallowed.
+
+  \begin{matharray}{rcl}
+    \indexdef{}{command}{consts}\hypertarget{command.consts}{\hyperlink{command.consts}{\mbox{\isa{\isacommand{consts}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{defs}\hypertarget{command.defs}{\hyperlink{command.defs}{\mbox{\isa{\isacommand{defs}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{constdefs}\hypertarget{command.constdefs}{\hyperlink{command.constdefs}{\mbox{\isa{\isacommand{constdefs}}}}} & : & \isartrans{theory}{theory} \\
+  \end{matharray}
+
+  \begin{rail}
+    'consts' ((name '::' type mixfix?) +)
+    ;
+    'defs' ('(' 'unchecked'? 'overloaded'? ')')? \\ (axmdecl prop +)
+    ;
+  \end{rail}
+
+  \begin{rail}
+    'constdefs' structs? (constdecl? constdef +)
+    ;
+
+    structs: '(' 'structure' (vars + 'and') ')'
+    ;
+    constdecl:  ((name '::' type mixfix | name '::' type | name mixfix) 'where'?) | name 'where'
+    ;
+    constdef: thmdecl? prop
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.consts}{\mbox{\isa{\isacommand{consts}}}}~\isa{{\isachardoublequote}c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}{\isachardoublequote}}] declares constant
+  \isa{c} to have any instance of type scheme \isa{{\isasymsigma}}.  The
+  optional mixfix annotations may attach concrete syntax to the
+  constants declared.
+  
+  \item [\hyperlink{command.defs}{\mbox{\isa{\isacommand{defs}}}}~\isa{{\isachardoublequote}name{\isacharcolon}\ eqn{\isachardoublequote}}] introduces \isa{eqn}
+  as a definitional axiom for some existing constant.
+  
+  The \isa{{\isachardoublequote}{\isacharparenleft}unchecked{\isacharparenright}{\isachardoublequote}} option disables global dependency checks
+  for this definition, which is occasionally useful for exotic
+  overloading.  It is at the discretion of the user to avoid malformed
+  theory specifications!
+  
+  The \isa{{\isachardoublequote}{\isacharparenleft}overloaded{\isacharparenright}{\isachardoublequote}} option declares definitions to be
+  potentially overloaded.  Unless this option is given, a warning
+  message would be issued for any definitional equation with a more
+  special type than that of the corresponding constant declaration.
+  
+  \item [\hyperlink{command.constdefs}{\mbox{\isa{\isacommand{constdefs}}}}] provides a streamlined combination of
+  constants declarations and definitions: type-inference takes care of
+  the most general typing of the given specification (the optional
+  type constraint may refer to type-inference dummies ``\isa{{\isacharunderscore}}'' as usual).  The resulting type declaration needs to agree with
+  that of the specification; overloading is \emph{not} supported here!
+  
+  The constant name may be omitted altogether, if neither type nor
+  syntax declarations are given.  The canonical name of the
+  definitional axiom for constant \isa{c} will be \isa{c{\isacharunderscore}def},
+  unless specified otherwise.  Also note that the given list of
+  specifications is processed in a strictly sequential manner, with
+  type-checking being performed independently.
+  
+  An optional initial context of \isa{{\isachardoublequote}{\isacharparenleft}structure{\isacharparenright}{\isachardoublequote}} declarations
+  admits use of indexed syntax, using the special symbol \verb|\<index>| (printed as ``\isa{{\isachardoublequote}{\isasymindex}{\isachardoublequote}}'').  The latter concept is
+  particularly useful with locales (see also \S\ref{sec:locale}).
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Axioms and theorems \label{sec:axms-thms}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcll}
+    \indexdef{}{command}{axioms}\hypertarget{command.axioms}{\hyperlink{command.axioms}{\mbox{\isa{\isacommand{axioms}}}}} & : & \isartrans{theory}{theory} & (axiomatic!) \\
+    \indexdef{}{command}{lemmas}\hypertarget{command.lemmas}{\hyperlink{command.lemmas}{\mbox{\isa{\isacommand{lemmas}}}}} & : & \isarkeep{local{\dsh}theory} \\
+    \indexdef{}{command}{theorems}\hypertarget{command.theorems}{\hyperlink{command.theorems}{\mbox{\isa{\isacommand{theorems}}}}} & : & isarkeep{local{\dsh}theory} \\
+  \end{matharray}
+
+  \begin{rail}
+    'axioms' (axmdecl prop +)
+    ;
+    ('lemmas' | 'theorems') target? (thmdef? thmrefs + 'and')
+    ;
+  \end{rail}
+
+  \begin{descr}
+  
+  \item [\hyperlink{command.axioms}{\mbox{\isa{\isacommand{axioms}}}}~\isa{{\isachardoublequote}a{\isacharcolon}\ {\isasymphi}{\isachardoublequote}}] introduces arbitrary
+  statements as axioms of the meta-logic.  In fact, axioms are
+  ``axiomatic theorems'', and may be referred later just as any other
+  theorem.
+  
+  Axioms are usually only introduced when declaring new logical
+  systems.  Everyday work is typically done the hard way, with proper
+  definitions and proven theorems.
+  
+  \item [\hyperlink{command.lemmas}{\mbox{\isa{\isacommand{lemmas}}}}~\isa{{\isachardoublequote}a\ {\isacharequal}\ b\isactrlsub {\isadigit{1}}\ {\isasymdots}\ b\isactrlsub n{\isachardoublequote}}]
+  retrieves and stores existing facts in the theory context, or the
+  specified target context (see also \secref{sec:target}).  Typical
+  applications would also involve attributes, to declare Simplifier
+  rules, for example.
+  
+  \item [\hyperlink{command.theorems}{\mbox{\isa{\isacommand{theorems}}}}] is essentially the same as \hyperlink{command.lemmas}{\mbox{\isa{\isacommand{lemmas}}}}, but marks the result as a different kind of facts.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Oracles%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{oracle}\hypertarget{command.oracle}{\hyperlink{command.oracle}{\mbox{\isa{\isacommand{oracle}}}}} & : & \isartrans{theory}{theory} \\
+  \end{matharray}
+
+  The oracle interface promotes a given ML function \verb|theory -> T -> term| to \verb|theory -> T -> thm|, for some
+  type \verb|T| given by the user.  This acts like an infinitary
+  specification of axioms -- there is no internal check of the
+  correctness of the results!  The inference kernel records oracle
+  invocations within the internal derivation object of theorems, and
+  the pretty printer attaches ``\isa{{\isachardoublequote}{\isacharbrackleft}{\isacharbang}{\isacharbrackright}{\isachardoublequote}}'' to indicate results
+  that are not fully checked by Isabelle inferences.
+
+  \begin{rail}
+    'oracle' name '(' type ')' '=' text
+    ;
+  \end{rail}
+
+  \begin{descr}
+
+  \item [\hyperlink{command.oracle}{\mbox{\isa{\isacommand{oracle}}}}~\isa{{\isachardoublequote}name\ {\isacharparenleft}type{\isacharparenright}\ {\isacharequal}\ text{\isachardoublequote}}] turns the
+  given ML expression \isa{{\isachardoublequote}text{\isachardoublequote}} of type
+  \verb|theory ->|~\isa{{\isachardoublequote}type{\isachardoublequote}}~\verb|-> term| into an
+  ML function of type
+  \verb|theory ->|~\isa{{\isachardoublequote}type{\isachardoublequote}}~\verb|-> thm|, which is
+  bound to the global identifier \verb|name|.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Name spaces%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{global}\hypertarget{command.global}{\hyperlink{command.global}{\mbox{\isa{\isacommand{global}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{local}\hypertarget{command.local}{\hyperlink{command.local}{\mbox{\isa{\isacommand{local}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{hide}\hypertarget{command.hide}{\hyperlink{command.hide}{\mbox{\isa{\isacommand{hide}}}}} & : & \isartrans{theory}{theory} \\
+  \end{matharray}
+
+  \begin{rail}
+    'hide' ('(open)')? name (nameref + )
+    ;
+  \end{rail}
+
+  Isabelle organizes any kind of name declarations (of types,
+  constants, theorems etc.) by separate hierarchically structured name
+  spaces.  Normally the user does not have to control the behavior of
+  name spaces by hand, yet the following commands provide some way to
+  do so.
+
+  \begin{descr}
+
+  \item [\hyperlink{command.global}{\mbox{\isa{\isacommand{global}}}} and \hyperlink{command.local}{\mbox{\isa{\isacommand{local}}}}] change the
+  current name declaration mode.  Initially, theories start in
+  \hyperlink{command.local}{\mbox{\isa{\isacommand{local}}}} mode, causing all names to be automatically
+  qualified by the theory name.  Changing this to \hyperlink{command.global}{\mbox{\isa{\isacommand{global}}}}
+  causes all names to be declared without the theory prefix, until
+  \hyperlink{command.local}{\mbox{\isa{\isacommand{local}}}} is declared again.
+  
+  Note that global names are prone to get hidden accidently later,
+  when qualified names of the same base name are introduced.
+  
+  \item [\hyperlink{command.hide}{\mbox{\isa{\isacommand{hide}}}}~\isa{{\isachardoublequote}space\ names{\isachardoublequote}}] fully removes
+  declarations from a given name space (which may be \isa{{\isachardoublequote}class{\isachardoublequote}},
+  \isa{{\isachardoublequote}type{\isachardoublequote}}, \isa{{\isachardoublequote}const{\isachardoublequote}}, or \isa{{\isachardoublequote}fact{\isachardoublequote}}); with the \isa{{\isachardoublequote}{\isacharparenleft}open{\isacharparenright}{\isachardoublequote}} option, only the base name is hidden.  Global
+  (unqualified) names may never be hidden.
+  
+  Note that hiding name space accesses has no impact on logical
+  declarations -- they remain valid internally.  Entities that are no
+  longer accessible to the user are printed with the special qualifier
+  ``\isa{{\isachardoublequote}{\isacharquery}{\isacharquery}{\isachardoublequote}}'' prefixed to the full internal name.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Syntax and translations \label{sec:syn-trans}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{syntax}\hypertarget{command.syntax}{\hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{no\_syntax}\hypertarget{command.no-syntax}{\hyperlink{command.no-syntax}{\mbox{\isa{\isacommand{no{\isacharunderscore}syntax}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{translations}\hypertarget{command.translations}{\hyperlink{command.translations}{\mbox{\isa{\isacommand{translations}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{no\_translations}\hypertarget{command.no-translations}{\hyperlink{command.no-translations}{\mbox{\isa{\isacommand{no{\isacharunderscore}translations}}}}} & : & \isartrans{theory}{theory} \\
+  \end{matharray}
+
+  \begin{rail}
+    ('syntax' | 'no\_syntax') mode? (constdecl +)
+    ;
+    ('translations' | 'no\_translations') (transpat ('==' | '=>' | '<=' | rightleftharpoons | rightharpoonup | leftharpoondown) transpat +)
+    ;
+
+    mode: ('(' ( name | 'output' | name 'output' ) ')')
+    ;
+    transpat: ('(' nameref ')')? string
+    ;
+  \end{rail}
+
+  \begin{descr}
+  
+  \item [\hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}}~\isa{{\isachardoublequote}{\isacharparenleft}mode{\isacharparenright}\ decls{\isachardoublequote}}] is similar to
+  \hyperlink{command.consts}{\mbox{\isa{\isacommand{consts}}}}~\isa{decls}, except that the actual logical
+  signature extension is omitted.  Thus the context free grammar of
+  Isabelle's inner syntax may be augmented in arbitrary ways,
+  independently of the logic.  The \isa{mode} argument refers to the
+  print mode that the grammar rules belong; unless the \indexref{}{keyword}{output}\hyperlink{keyword.output}{\mbox{\isa{\isakeyword{output}}}} indicator is given, all productions are added both to the
+  input and output grammar.
+  
+  \item [\hyperlink{command.no-syntax}{\mbox{\isa{\isacommand{no{\isacharunderscore}syntax}}}}~\isa{{\isachardoublequote}{\isacharparenleft}mode{\isacharparenright}\ decls{\isachardoublequote}}] removes
+  grammar declarations (and translations) resulting from \isa{decls}, which are interpreted in the same manner as for \hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}} above.
+  
+  \item [\hyperlink{command.translations}{\mbox{\isa{\isacommand{translations}}}}~\isa{rules}] specifies syntactic
+  translation rules (i.e.\ macros): parse~/ print rules (\isa{{\isachardoublequote}{\isasymrightleftharpoons}{\isachardoublequote}}),
+  parse rules (\isa{{\isachardoublequote}{\isasymrightharpoonup}{\isachardoublequote}}), or print rules (\isa{{\isachardoublequote}{\isasymleftharpoondown}{\isachardoublequote}}).
+  Translation patterns may be prefixed by the syntactic category to be
+  used for parsing; the default is \isa{logic}.
+  
+  \item [\hyperlink{command.no-translations}{\mbox{\isa{\isacommand{no{\isacharunderscore}translations}}}}~\isa{rules}] removes syntactic
+  translation rules, which are interpreted in the same manner as for
+  \hyperlink{command.translations}{\mbox{\isa{\isacommand{translations}}}} above.
+
+  \end{descr}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Syntax translation functions%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\begin{matharray}{rcl}
+    \indexdef{}{command}{parse\_ast\_translation}\hypertarget{command.parse-ast-translation}{\hyperlink{command.parse-ast-translation}{\mbox{\isa{\isacommand{parse{\isacharunderscore}ast{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{parse\_translation}\hypertarget{command.parse-translation}{\hyperlink{command.parse-translation}{\mbox{\isa{\isacommand{parse{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{print\_translation}\hypertarget{command.print-translation}{\hyperlink{command.print-translation}{\mbox{\isa{\isacommand{print{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{typed\_print\_translation}\hypertarget{command.typed-print-translation}{\hyperlink{command.typed-print-translation}{\mbox{\isa{\isacommand{typed{\isacharunderscore}print{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{print\_ast\_translation}\hypertarget{command.print-ast-translation}{\hyperlink{command.print-ast-translation}{\mbox{\isa{\isacommand{print{\isacharunderscore}ast{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
+    \indexdef{}{command}{token\_translation}\hypertarget{command.token-translation}{\hyperlink{command.token-translation}{\mbox{\isa{\isacommand{token{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
+  \end{matharray}
+
+  \begin{rail}
+  ( 'parse\_ast\_translation' | 'parse\_translation' | 'print\_translation' |
+    'typed\_print\_translation' | 'print\_ast\_translation' ) ('(advanced)')? text
+  ;
+
+  'token\_translation' text
+  ;
+  \end{rail}
+
+  Syntax translation functions written in ML admit almost arbitrary
+  manipulations of Isabelle's inner syntax.  Any of the above commands
+  have a single \railqtok{text} argument that refers to an ML
+  expression of appropriate type, which are as follows by default:
+
+%FIXME proper antiquotations
+\begin{ttbox}
+val parse_ast_translation   : (string * (ast list -> ast)) list
+val parse_translation       : (string * (term list -> term)) list
+val print_translation       : (string * (term list -> term)) list
+val typed_print_translation :
+  (string * (bool -> typ -> term list -> term)) list
+val print_ast_translation   : (string * (ast list -> ast)) list
+val token_translation       :
+  (string * string * (string -> string * real)) list
+\end{ttbox}
+
+  If the \isa{{\isachardoublequote}{\isacharparenleft}advanced{\isacharparenright}{\isachardoublequote}} option is given, the corresponding
+  translation functions may depend on the current theory or proof
+  context.  This allows to implement advanced syntax mechanisms, as
+  translations functions may refer to specific theory declarations or
+  auxiliary proof data.
+
+  See also \cite[\S8]{isabelle-ref} for more information on the
+  general concept of syntax transformations in Isabelle.
+
+%FIXME proper antiquotations
+\begin{ttbox}
+val parse_ast_translation:
+  (string * (Context.generic -> ast list -> ast)) list
+val parse_translation:
+  (string * (Context.generic -> term list -> term)) list
+val print_translation:
+  (string * (Context.generic -> term list -> term)) list
+val typed_print_translation:
+  (string * (Context.generic -> bool -> typ -> term list -> term)) list
+val print_ast_translation:
+  (string * (Context.generic -> ast list -> ast)) list
+\end{ttbox}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
 \isadelimtheory
 %
 \endisadelimtheory
--- a/doc-src/IsarRef/Thy/document/pure.tex	Mon Jun 02 22:50:27 2008 +0200
+++ b/doc-src/IsarRef/Thy/document/pure.tex	Mon Jun 02 22:50:29 2008 +0200
@@ -24,629 +24,6 @@
 }
 \isamarkuptrue%
 %
-\begin{isamarkuptext}%
-Subsequently, we introduce the main part of Pure theory and proof
-  commands, together with fundamental proof methods and attributes.
-  \Chref{ch:gen-tools} describes further Isar elements provided by
-  generic tools and packages (such as the Simplifier) that are either
-  part of Pure Isabelle or pre-installed in most object logics.
-  Specific language elements introduced by the major object-logics are
-  described in \chref{ch:hol} (Isabelle/HOL), \chref{ch:holcf}
-  (Isabelle/HOLCF), and \chref{ch:zf} (Isabelle/ZF).  Nevertheless,
-  examples given in the generic parts will usually refer to
-  Isabelle/HOL as well.
-
-  \medskip Isar commands may be either \emph{proper} document
-  constructors, or \emph{improper commands}.  Some proof methods and
-  attributes introduced later are classified as improper as well.
-  Improper Isar language elements, which are subsequently marked by
-  ``\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}}'', are often helpful when developing proof
-  documents, while their use is discouraged for the final
-  human-readable outcome.  Typical examples are diagnostic commands
-  that print terms or theorems according to the current context; other
-  commands emulate old-style tactical theorem proving.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsection{Theory commands%
-}
-\isamarkuptrue%
-%
-\isamarkupsubsection{Markup commands \label{sec:markup-thy}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{chapter}\hypertarget{command.chapter}{\hyperlink{command.chapter}{\mbox{\isa{\isacommand{chapter}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{command}{section}\hypertarget{command.section}{\hyperlink{command.section}{\mbox{\isa{\isacommand{section}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{command}{subsection}\hypertarget{command.subsection}{\hyperlink{command.subsection}{\mbox{\isa{\isacommand{subsection}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{command}{subsubsection}\hypertarget{command.subsubsection}{\hyperlink{command.subsubsection}{\mbox{\isa{\isacommand{subsubsection}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{command}{text}\hypertarget{command.text}{\hyperlink{command.text}{\mbox{\isa{\isacommand{text}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{command}{text\_raw}\hypertarget{command.text-raw}{\hyperlink{command.text-raw}{\mbox{\isa{\isacommand{text{\isacharunderscore}raw}}}}} & : & \isarkeep{local{\dsh}theory} \\
-  \end{matharray}
-
-  Apart from formal comments (see \secref{sec:comments}), markup
-  commands provide a structured way to insert text into the document
-  generated from a theory (see \cite{isabelle-sys} for more
-  information on Isabelle's document preparation tools).
-
-  \begin{rail}
-    ('chapter' | 'section' | 'subsection' | 'subsubsection' | 'text') target? text
-    ;
-    'text\_raw' text
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.chapter}{\mbox{\isa{\isacommand{chapter}}}}, \hyperlink{command.section}{\mbox{\isa{\isacommand{section}}}}, \hyperlink{command.subsection}{\mbox{\isa{\isacommand{subsection}}}}, and \hyperlink{command.subsubsection}{\mbox{\isa{\isacommand{subsubsection}}}}] mark chapter and
-  section headings.
-
-  \item [\hyperlink{command.text}{\mbox{\isa{\isacommand{text}}}}] specifies paragraphs of plain text.
-
-  \item [\hyperlink{command.text-raw}{\mbox{\isa{\isacommand{text{\isacharunderscore}raw}}}}] inserts {\LaTeX} source into the
-  output, without additional markup.  Thus the full range of document
-  manipulations becomes available.
-
-  \end{descr}
-
-  The \isa{{\isachardoublequote}text{\isachardoublequote}} argument of these markup commands (except for
-  \hyperlink{command.text-raw}{\mbox{\isa{\isacommand{text{\isacharunderscore}raw}}}}) may contain references to formal entities
-  (``antiquotations'', see also \secref{sec:antiq}).  These are
-  interpreted in the present theory context, or the named \isa{{\isachardoublequote}target{\isachardoublequote}}.
-
-  Any of these markup elements corresponds to a {\LaTeX} command with
-  the name prefixed by \verb|\isamarkup|.  For the sectioning
-  commands this is a plain macro with a single argument, e.g.\
-  \verb|\isamarkupchapter{|\isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}}\verb|}| for
-  \hyperlink{command.chapter}{\mbox{\isa{\isacommand{chapter}}}}.  The \hyperlink{command.text}{\mbox{\isa{\isacommand{text}}}} markup results in a
-  {\LaTeX} environment \verb|\begin{isamarkuptext}| \isa{{\isachardoublequote}{\isasymdots}{\isachardoublequote}} \verb|\end{isamarkuptext}|, while \hyperlink{command.text-raw}{\mbox{\isa{\isacommand{text{\isacharunderscore}raw}}}}
-  causes the text to be inserted directly into the {\LaTeX} source.
-
-  \medskip Additional markup commands are available for proofs (see
-  \secref{sec:markup-prf}).  Also note that the \indexref{}{command}{header}\hyperlink{command.header}{\mbox{\isa{\isacommand{header}}}} declaration (see \secref{sec:begin-thy}) admits to insert
-  section markup just preceding the actual theory definition.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Type classes and sorts \label{sec:classes}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcll}
-    \indexdef{}{command}{classes}\hypertarget{command.classes}{\hyperlink{command.classes}{\mbox{\isa{\isacommand{classes}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{classrel}\hypertarget{command.classrel}{\hyperlink{command.classrel}{\mbox{\isa{\isacommand{classrel}}}}} & : & \isartrans{theory}{theory} & (axiomatic!) \\
-    \indexdef{}{command}{defaultsort}\hypertarget{command.defaultsort}{\hyperlink{command.defaultsort}{\mbox{\isa{\isacommand{defaultsort}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{class\_deps}\hypertarget{command.class-deps}{\hyperlink{command.class-deps}{\mbox{\isa{\isacommand{class{\isacharunderscore}deps}}}}} & : & \isarkeep{theory~|~proof} \\
-  \end{matharray}
-
-  \begin{rail}
-    'classes' (classdecl +)
-    ;
-    'classrel' (nameref ('<' | subseteq) nameref + 'and')
-    ;
-    'defaultsort' sort
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.classes}{\mbox{\isa{\isacommand{classes}}}}~\isa{{\isachardoublequote}c\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n{\isachardoublequote}}]
-  declares class \isa{c} to be a subclass of existing classes \isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlsub n{\isachardoublequote}}.  Cyclic class structures are not permitted.
-
-  \item [\hyperlink{command.classrel}{\mbox{\isa{\isacommand{classrel}}}}~\isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{2}}{\isachardoublequote}}] states
-  subclass relations between existing classes \isa{{\isachardoublequote}c\isactrlsub {\isadigit{1}}{\isachardoublequote}} and
-  \isa{{\isachardoublequote}c\isactrlsub {\isadigit{2}}{\isachardoublequote}}.  This is done axiomatically!  The \indexref{}{command}{instance}\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}} command (see \secref{sec:axclass}) provides a way to
-  introduce proven class relations.
-
-  \item [\hyperlink{command.defaultsort}{\mbox{\isa{\isacommand{defaultsort}}}}~\isa{s}] makes sort \isa{s} the
-  new default sort for any type variables given without sort
-  constraints.  Usually, the default sort would be only changed when
-  defining a new object-logic.
-
-  \item [\hyperlink{command.class-deps}{\mbox{\isa{\isacommand{class{\isacharunderscore}deps}}}}] visualizes the subclass relation,
-  using Isabelle's graph browser tool (see also \cite{isabelle-sys}).
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Primitive types and type abbreviations \label{sec:types-pure}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcll}
-    \indexdef{}{command}{types}\hypertarget{command.types}{\hyperlink{command.types}{\mbox{\isa{\isacommand{types}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{typedecl}\hypertarget{command.typedecl}{\hyperlink{command.typedecl}{\mbox{\isa{\isacommand{typedecl}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{nonterminals}\hypertarget{command.nonterminals}{\hyperlink{command.nonterminals}{\mbox{\isa{\isacommand{nonterminals}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{arities}\hypertarget{command.arities}{\hyperlink{command.arities}{\mbox{\isa{\isacommand{arities}}}}} & : & \isartrans{theory}{theory} & (axiomatic!) \\
-  \end{matharray}
-
-  \begin{rail}
-    'types' (typespec '=' type infix? +)
-    ;
-    'typedecl' typespec infix?
-    ;
-    'nonterminals' (name +)
-    ;
-    'arities' (nameref '::' arity +)
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.types}{\mbox{\isa{\isacommand{types}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t\ {\isacharequal}\ {\isasymtau}{\isachardoublequote}}]
-  introduces \emph{type synonym} \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t{\isachardoublequote}}
-  for existing type \isa{{\isachardoublequote}{\isasymtau}{\isachardoublequote}}.  Unlike actual type definitions, as
-  are available in Isabelle/HOL for example, type synonyms are just
-  purely syntactic abbreviations without any logical significance.
-  Internally, type synonyms are fully expanded.
-  
-  \item [\hyperlink{command.typedecl}{\mbox{\isa{\isacommand{typedecl}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t{\isachardoublequote}}]
-  declares a new type constructor \isa{t}, intended as an actual
-  logical type (of the object-logic, if available).
-
-  \item [\hyperlink{command.nonterminals}{\mbox{\isa{\isacommand{nonterminals}}}}~\isa{c}] declares type
-  constructors \isa{c} (without arguments) to act as purely
-  syntactic types, i.e.\ nonterminal symbols of Isabelle's inner
-  syntax of terms or types.
-
-  \item [\hyperlink{command.arities}{\mbox{\isa{\isacommand{arities}}}}~\isa{{\isachardoublequote}t\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlsub n{\isacharparenright}\ s{\isachardoublequote}}] augments Isabelle's order-sorted signature of types by new type
-  constructor arities.  This is done axiomatically!  The \indexref{}{command}{instance}\hyperlink{command.instance}{\mbox{\isa{\isacommand{instance}}}} command (see \S\ref{sec:axclass}) provides a way to
-  introduce proven type arities.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Primitive constants and definitions \label{sec:consts}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Definitions essentially express abbreviations within the logic.  The
-  simplest form of a definition is \isa{{\isachardoublequote}c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\ {\isasymequiv}\ t{\isachardoublequote}}, where \isa{c} is a newly declared constant.  Isabelle also allows derived forms
-  where the arguments of \isa{c} appear on the left, abbreviating a
-  prefix of \isa{{\isasymlambda}}-abstractions, e.g.\ \isa{{\isachardoublequote}c\ {\isasymequiv}\ {\isasymlambda}x\ y{\isachardot}\ t{\isachardoublequote}} may be
-  written more conveniently as \isa{{\isachardoublequote}c\ x\ y\ {\isasymequiv}\ t{\isachardoublequote}}.  Moreover,
-  definitions may be weakened by adding arbitrary pre-conditions:
-  \isa{{\isachardoublequote}A\ {\isasymLongrightarrow}\ c\ x\ y\ {\isasymequiv}\ t{\isachardoublequote}}.
-
-  \medskip The built-in well-formedness conditions for definitional
-  specifications are:
-
-  \begin{itemize}
-
-  \item Arguments (on the left-hand side) must be distinct variables.
-
-  \item All variables on the right-hand side must also appear on the
-  left-hand side.
-
-  \item All type variables on the right-hand side must also appear on
-  the left-hand side; this prohibits \isa{{\isachardoublequote}{\isadigit{0}}\ {\isacharcolon}{\isacharcolon}\ nat\ {\isasymequiv}\ length\ {\isacharparenleft}{\isacharbrackleft}{\isacharbrackright}\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ list{\isacharparenright}{\isachardoublequote}} for example.
-
-  \item The definition must not be recursive.  Most object-logics
-  provide definitional principles that can be used to express
-  recursion safely.
-
-  \end{itemize}
-
-  Overloading means that a constant being declared as \isa{{\isachardoublequote}c\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ decl{\isachardoublequote}} may be defined separately on type instances \isa{{\isachardoublequote}c\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}{\isasymbeta}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymbeta}\isactrlsub n{\isacharparenright}\ t\ decl{\isachardoublequote}} for each type constructor \isa{t}.  The right-hand side may mention overloaded constants
-  recursively at type instances corresponding to the immediate
-  argument types \isa{{\isachardoublequote}{\isasymbeta}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymbeta}\isactrlsub n{\isachardoublequote}}.  Incomplete
-  specification patterns impose global constraints on all occurrences,
-  e.g.\ \isa{{\isachardoublequote}d\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymtimes}\ {\isasymalpha}{\isachardoublequote}} on the left-hand side means that all
-  corresponding occurrences on some right-hand side need to be an
-  instance of this, general \isa{{\isachardoublequote}d\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymtimes}\ {\isasymbeta}{\isachardoublequote}} will be disallowed.
-
-  \begin{matharray}{rcl}
-    \indexdef{}{command}{consts}\hypertarget{command.consts}{\hyperlink{command.consts}{\mbox{\isa{\isacommand{consts}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{defs}\hypertarget{command.defs}{\hyperlink{command.defs}{\mbox{\isa{\isacommand{defs}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{constdefs}\hypertarget{command.constdefs}{\hyperlink{command.constdefs}{\mbox{\isa{\isacommand{constdefs}}}}} & : & \isartrans{theory}{theory} \\
-  \end{matharray}
-
-  \begin{rail}
-    'consts' ((name '::' type mixfix?) +)
-    ;
-    'defs' ('(' 'unchecked'? 'overloaded'? ')')? \\ (axmdecl prop +)
-    ;
-  \end{rail}
-
-  \begin{rail}
-    'constdefs' structs? (constdecl? constdef +)
-    ;
-
-    structs: '(' 'structure' (vars + 'and') ')'
-    ;
-    constdecl:  ((name '::' type mixfix | name '::' type | name mixfix) 'where'?) | name 'where'
-    ;
-    constdef: thmdecl? prop
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.consts}{\mbox{\isa{\isacommand{consts}}}}~\isa{{\isachardoublequote}c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}{\isachardoublequote}}] declares constant
-  \isa{c} to have any instance of type scheme \isa{{\isasymsigma}}.  The
-  optional mixfix annotations may attach concrete syntax to the
-  constants declared.
-  
-  \item [\hyperlink{command.defs}{\mbox{\isa{\isacommand{defs}}}}~\isa{{\isachardoublequote}name{\isacharcolon}\ eqn{\isachardoublequote}}] introduces \isa{eqn}
-  as a definitional axiom for some existing constant.
-  
-  The \isa{{\isachardoublequote}{\isacharparenleft}unchecked{\isacharparenright}{\isachardoublequote}} option disables global dependency checks
-  for this definition, which is occasionally useful for exotic
-  overloading.  It is at the discretion of the user to avoid malformed
-  theory specifications!
-  
-  The \isa{{\isachardoublequote}{\isacharparenleft}overloaded{\isacharparenright}{\isachardoublequote}} option declares definitions to be
-  potentially overloaded.  Unless this option is given, a warning
-  message would be issued for any definitional equation with a more
-  special type than that of the corresponding constant declaration.
-  
-  \item [\hyperlink{command.constdefs}{\mbox{\isa{\isacommand{constdefs}}}}] provides a streamlined combination of
-  constants declarations and definitions: type-inference takes care of
-  the most general typing of the given specification (the optional
-  type constraint may refer to type-inference dummies ``\isa{{\isacharunderscore}}'' as usual).  The resulting type declaration needs to agree with
-  that of the specification; overloading is \emph{not} supported here!
-  
-  The constant name may be omitted altogether, if neither type nor
-  syntax declarations are given.  The canonical name of the
-  definitional axiom for constant \isa{c} will be \isa{c{\isacharunderscore}def},
-  unless specified otherwise.  Also note that the given list of
-  specifications is processed in a strictly sequential manner, with
-  type-checking being performed independently.
-  
-  An optional initial context of \isa{{\isachardoublequote}{\isacharparenleft}structure{\isacharparenright}{\isachardoublequote}} declarations
-  admits use of indexed syntax, using the special symbol \verb|\<index>| (printed as ``\isa{{\isachardoublequote}{\isasymindex}{\isachardoublequote}}'').  The latter concept is
-  particularly useful with locales (see also \S\ref{sec:locale}).
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Syntax and translations \label{sec:syn-trans}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{syntax}\hypertarget{command.syntax}{\hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{no\_syntax}\hypertarget{command.no-syntax}{\hyperlink{command.no-syntax}{\mbox{\isa{\isacommand{no{\isacharunderscore}syntax}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{translations}\hypertarget{command.translations}{\hyperlink{command.translations}{\mbox{\isa{\isacommand{translations}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{no\_translations}\hypertarget{command.no-translations}{\hyperlink{command.no-translations}{\mbox{\isa{\isacommand{no{\isacharunderscore}translations}}}}} & : & \isartrans{theory}{theory} \\
-  \end{matharray}
-
-  \begin{rail}
-    ('syntax' | 'no\_syntax') mode? (constdecl +)
-    ;
-    ('translations' | 'no\_translations') (transpat ('==' | '=>' | '<=' | rightleftharpoons | rightharpoonup | leftharpoondown) transpat +)
-    ;
-
-    mode: ('(' ( name | 'output' | name 'output' ) ')')
-    ;
-    transpat: ('(' nameref ')')? string
-    ;
-  \end{rail}
-
-  \begin{descr}
-  
-  \item [\hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}}~\isa{{\isachardoublequote}{\isacharparenleft}mode{\isacharparenright}\ decls{\isachardoublequote}}] is similar to
-  \hyperlink{command.consts}{\mbox{\isa{\isacommand{consts}}}}~\isa{decls}, except that the actual logical
-  signature extension is omitted.  Thus the context free grammar of
-  Isabelle's inner syntax may be augmented in arbitrary ways,
-  independently of the logic.  The \isa{mode} argument refers to the
-  print mode that the grammar rules belong; unless the \indexref{}{keyword}{output}\hyperlink{keyword.output}{\mbox{\isa{\isakeyword{output}}}} indicator is given, all productions are added both to the
-  input and output grammar.
-  
-  \item [\hyperlink{command.no-syntax}{\mbox{\isa{\isacommand{no{\isacharunderscore}syntax}}}}~\isa{{\isachardoublequote}{\isacharparenleft}mode{\isacharparenright}\ decls{\isachardoublequote}}] removes
-  grammar declarations (and translations) resulting from \isa{decls}, which are interpreted in the same manner as for \hyperlink{command.syntax}{\mbox{\isa{\isacommand{syntax}}}} above.
-  
-  \item [\hyperlink{command.translations}{\mbox{\isa{\isacommand{translations}}}}~\isa{rules}] specifies syntactic
-  translation rules (i.e.\ macros): parse~/ print rules (\isa{{\isachardoublequote}{\isasymrightleftharpoons}{\isachardoublequote}}),
-  parse rules (\isa{{\isachardoublequote}{\isasymrightharpoonup}{\isachardoublequote}}), or print rules (\isa{{\isachardoublequote}{\isasymleftharpoondown}{\isachardoublequote}}).
-  Translation patterns may be prefixed by the syntactic category to be
-  used for parsing; the default is \isa{logic}.
-  
-  \item [\hyperlink{command.no-translations}{\mbox{\isa{\isacommand{no{\isacharunderscore}translations}}}}~\isa{rules}] removes syntactic
-  translation rules, which are interpreted in the same manner as for
-  \hyperlink{command.translations}{\mbox{\isa{\isacommand{translations}}}} above.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Axioms and theorems \label{sec:axms-thms}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcll}
-    \indexdef{}{command}{axioms}\hypertarget{command.axioms}{\hyperlink{command.axioms}{\mbox{\isa{\isacommand{axioms}}}}} & : & \isartrans{theory}{theory} & (axiomatic!) \\
-    \indexdef{}{command}{lemmas}\hypertarget{command.lemmas}{\hyperlink{command.lemmas}{\mbox{\isa{\isacommand{lemmas}}}}} & : & \isarkeep{local{\dsh}theory} \\
-    \indexdef{}{command}{theorems}\hypertarget{command.theorems}{\hyperlink{command.theorems}{\mbox{\isa{\isacommand{theorems}}}}} & : & isarkeep{local{\dsh}theory} \\
-  \end{matharray}
-
-  \begin{rail}
-    'axioms' (axmdecl prop +)
-    ;
-    ('lemmas' | 'theorems') target? (thmdef? thmrefs + 'and')
-    ;
-  \end{rail}
-
-  \begin{descr}
-  
-  \item [\hyperlink{command.axioms}{\mbox{\isa{\isacommand{axioms}}}}~\isa{{\isachardoublequote}a{\isacharcolon}\ {\isasymphi}{\isachardoublequote}}] introduces arbitrary
-  statements as axioms of the meta-logic.  In fact, axioms are
-  ``axiomatic theorems'', and may be referred later just as any other
-  theorem.
-  
-  Axioms are usually only introduced when declaring new logical
-  systems.  Everyday work is typically done the hard way, with proper
-  definitions and proven theorems.
-  
-  \item [\hyperlink{command.lemmas}{\mbox{\isa{\isacommand{lemmas}}}}~\isa{{\isachardoublequote}a\ {\isacharequal}\ b\isactrlsub {\isadigit{1}}\ {\isasymdots}\ b\isactrlsub n{\isachardoublequote}}]
-  retrieves and stores existing facts in the theory context, or the
-  specified target context (see also \secref{sec:target}).  Typical
-  applications would also involve attributes, to declare Simplifier
-  rules, for example.
-  
-  \item [\hyperlink{command.theorems}{\mbox{\isa{\isacommand{theorems}}}}] is essentially the same as \hyperlink{command.lemmas}{\mbox{\isa{\isacommand{lemmas}}}}, but marks the result as a different kind of facts.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Name spaces%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{global}\hypertarget{command.global}{\hyperlink{command.global}{\mbox{\isa{\isacommand{global}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{local}\hypertarget{command.local}{\hyperlink{command.local}{\mbox{\isa{\isacommand{local}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{hide}\hypertarget{command.hide}{\hyperlink{command.hide}{\mbox{\isa{\isacommand{hide}}}}} & : & \isartrans{theory}{theory} \\
-  \end{matharray}
-
-  \begin{rail}
-    'hide' ('(open)')? name (nameref + )
-    ;
-  \end{rail}
-
-  Isabelle organizes any kind of name declarations (of types,
-  constants, theorems etc.) by separate hierarchically structured name
-  spaces.  Normally the user does not have to control the behavior of
-  name spaces by hand, yet the following commands provide some way to
-  do so.
-
-  \begin{descr}
-
-  \item [\hyperlink{command.global}{\mbox{\isa{\isacommand{global}}}} and \hyperlink{command.local}{\mbox{\isa{\isacommand{local}}}}] change the
-  current name declaration mode.  Initially, theories start in
-  \hyperlink{command.local}{\mbox{\isa{\isacommand{local}}}} mode, causing all names to be automatically
-  qualified by the theory name.  Changing this to \hyperlink{command.global}{\mbox{\isa{\isacommand{global}}}}
-  causes all names to be declared without the theory prefix, until
-  \hyperlink{command.local}{\mbox{\isa{\isacommand{local}}}} is declared again.
-  
-  Note that global names are prone to get hidden accidently later,
-  when qualified names of the same base name are introduced.
-  
-  \item [\hyperlink{command.hide}{\mbox{\isa{\isacommand{hide}}}}~\isa{{\isachardoublequote}space\ names{\isachardoublequote}}] fully removes
-  declarations from a given name space (which may be \isa{{\isachardoublequote}class{\isachardoublequote}},
-  \isa{{\isachardoublequote}type{\isachardoublequote}}, \isa{{\isachardoublequote}const{\isachardoublequote}}, or \isa{{\isachardoublequote}fact{\isachardoublequote}}); with the \isa{{\isachardoublequote}{\isacharparenleft}open{\isacharparenright}{\isachardoublequote}} option, only the base name is hidden.  Global
-  (unqualified) names may never be hidden.
-  
-  Note that hiding name space accesses has no impact on logical
-  declarations -- they remain valid internally.  Entities that are no
-  longer accessible to the user are printed with the special qualifier
-  ``\isa{{\isachardoublequote}{\isacharquery}{\isacharquery}{\isachardoublequote}}'' prefixed to the full internal name.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Incorporating ML code \label{sec:ML}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{use}\hypertarget{command.use}{\hyperlink{command.use}{\mbox{\isa{\isacommand{use}}}}} & : & \isarkeep{theory~|~local{\dsh}theory} \\
-    \indexdef{}{command}{ML}\hypertarget{command.ML}{\hyperlink{command.ML}{\mbox{\isa{\isacommand{ML}}}}} & : & \isarkeep{theory~|~local{\dsh}theory} \\
-    \indexdef{}{command}{ML\_val}\hypertarget{command.ML-val}{\hyperlink{command.ML-val}{\mbox{\isa{\isacommand{ML{\isacharunderscore}val}}}}} & : & \isartrans{\cdot}{\cdot} \\
-    \indexdef{}{command}{ML\_command}\hypertarget{command.ML-command}{\hyperlink{command.ML-command}{\mbox{\isa{\isacommand{ML{\isacharunderscore}command}}}}} & : & \isartrans{\cdot}{\cdot} \\
-    \indexdef{}{command}{setup}\hypertarget{command.setup}{\hyperlink{command.setup}{\mbox{\isa{\isacommand{setup}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{method\_setup}\hypertarget{command.method-setup}{\hyperlink{command.method-setup}{\mbox{\isa{\isacommand{method{\isacharunderscore}setup}}}}} & : & \isartrans{theory}{theory} \\
-  \end{matharray}
-
-  \begin{rail}
-    'use' name
-    ;
-    ('ML' | 'ML\_val' | 'ML\_command' | 'setup') text
-    ;
-    'method\_setup' name '=' text text
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.use}{\mbox{\isa{\isacommand{use}}}}~\isa{{\isachardoublequote}file{\isachardoublequote}}] reads and executes ML
-  commands from \isa{{\isachardoublequote}file{\isachardoublequote}}.  The current theory context is passed
-  down to the ML toplevel and may be modified, using \verb|"Context.>>"| or derived ML commands.  The file name is checked with
-  the \indexref{}{keyword}{uses}\hyperlink{keyword.uses}{\mbox{\isa{\isakeyword{uses}}}} dependency declaration given in the theory
-  header (see also \secref{sec:begin-thy}).
-  
-  \item [\hyperlink{command.ML}{\mbox{\isa{\isacommand{ML}}}}~\isa{{\isachardoublequote}text{\isachardoublequote}}] is similar to \hyperlink{command.use}{\mbox{\isa{\isacommand{use}}}}, but executes ML commands directly from the given \isa{{\isachardoublequote}text{\isachardoublequote}}.
-
-  \item [\hyperlink{command.ML-val}{\mbox{\isa{\isacommand{ML{\isacharunderscore}val}}}} and \hyperlink{command.ML-command}{\mbox{\isa{\isacommand{ML{\isacharunderscore}command}}}}] are
-  diagnostic versions of \hyperlink{command.ML}{\mbox{\isa{\isacommand{ML}}}}, which means that the context
-  may not be updated.  \hyperlink{command.ML-val}{\mbox{\isa{\isacommand{ML{\isacharunderscore}val}}}} echos the bindings produced
-  at the ML toplevel, but \hyperlink{command.ML-command}{\mbox{\isa{\isacommand{ML{\isacharunderscore}command}}}} is silent.
-  
-  \item [\hyperlink{command.setup}{\mbox{\isa{\isacommand{setup}}}}~\isa{{\isachardoublequote}text{\isachardoublequote}}] changes the current theory
-  context by applying \isa{{\isachardoublequote}text{\isachardoublequote}}, which refers to an ML expression
-  of type \verb|"theory -> theory"|.  This enables to initialize
-  any object-logic specific tools and packages written in ML, for
-  example.
-  
-  \item [\hyperlink{command.method-setup}{\mbox{\isa{\isacommand{method{\isacharunderscore}setup}}}}~\isa{{\isachardoublequote}name\ {\isacharequal}\ text\ description{\isachardoublequote}}]
-  defines a proof method in the current theory.  The given \isa{{\isachardoublequote}text{\isachardoublequote}} has to be an ML expression of type \verb|"Args.src ->|\isasep\isanewline%
-\verb|  Proof.context -> Proof.method"|.  Parsing concrete method syntax
-  from \verb|Args.src| input can be quite tedious in general.  The
-  following simple examples are for methods without any explicit
-  arguments, or a list of theorems, respectively.
-
-%FIXME proper antiquotations
-{\footnotesize
-\begin{verbatim}
- Method.no_args (Method.METHOD (fn facts => foobar_tac))
- Method.thms_args (fn thms => Method.METHOD (fn facts => foobar_tac))
- Method.ctxt_args (fn ctxt => Method.METHOD (fn facts => foobar_tac))
- Method.thms_ctxt_args (fn thms => fn ctxt =>
-    Method.METHOD (fn facts => foobar_tac))
-\end{verbatim}
-}
-
-  Note that mere tactic emulations may ignore the \isa{facts}
-  parameter above.  Proper proof methods would do something
-  appropriate with the list of current facts, though.  Single-rule
-  methods usually do strict forward-chaining (e.g.\ by using \verb|Drule.multi_resolves|), while automatic ones just insert the facts
-  using \verb|Method.insert_tac| before applying the main tactic.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Syntax translation functions%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{parse\_ast\_translation}\hypertarget{command.parse-ast-translation}{\hyperlink{command.parse-ast-translation}{\mbox{\isa{\isacommand{parse{\isacharunderscore}ast{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{parse\_translation}\hypertarget{command.parse-translation}{\hyperlink{command.parse-translation}{\mbox{\isa{\isacommand{parse{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{print\_translation}\hypertarget{command.print-translation}{\hyperlink{command.print-translation}{\mbox{\isa{\isacommand{print{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{typed\_print\_translation}\hypertarget{command.typed-print-translation}{\hyperlink{command.typed-print-translation}{\mbox{\isa{\isacommand{typed{\isacharunderscore}print{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{print\_ast\_translation}\hypertarget{command.print-ast-translation}{\hyperlink{command.print-ast-translation}{\mbox{\isa{\isacommand{print{\isacharunderscore}ast{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
-    \indexdef{}{command}{token\_translation}\hypertarget{command.token-translation}{\hyperlink{command.token-translation}{\mbox{\isa{\isacommand{token{\isacharunderscore}translation}}}}} & : & \isartrans{theory}{theory} \\
-  \end{matharray}
-
-  \begin{rail}
-  ( 'parse\_ast\_translation' | 'parse\_translation' | 'print\_translation' |
-    'typed\_print\_translation' | 'print\_ast\_translation' ) ('(advanced)')? text
-  ;
-
-  'token\_translation' text
-  ;
-  \end{rail}
-
-  Syntax translation functions written in ML admit almost arbitrary
-  manipulations of Isabelle's inner syntax.  Any of the above commands
-  have a single \railqtok{text} argument that refers to an ML
-  expression of appropriate type, which are as follows by default:
-
-%FIXME proper antiquotations
-\begin{ttbox}
-val parse_ast_translation   : (string * (ast list -> ast)) list
-val parse_translation       : (string * (term list -> term)) list
-val print_translation       : (string * (term list -> term)) list
-val typed_print_translation :
-  (string * (bool -> typ -> term list -> term)) list
-val print_ast_translation   : (string * (ast list -> ast)) list
-val token_translation       :
-  (string * string * (string -> string * real)) list
-\end{ttbox}
-
-  If the \isa{{\isachardoublequote}{\isacharparenleft}advanced{\isacharparenright}{\isachardoublequote}} option is given, the corresponding
-  translation functions may depend on the current theory or proof
-  context.  This allows to implement advanced syntax mechanisms, as
-  translations functions may refer to specific theory declarations or
-  auxiliary proof data.
-
-  See also \cite[\S8]{isabelle-ref} for more information on the
-  general concept of syntax transformations in Isabelle.
-
-%FIXME proper antiquotations
-\begin{ttbox}
-val parse_ast_translation:
-  (string * (Context.generic -> ast list -> ast)) list
-val parse_translation:
-  (string * (Context.generic -> term list -> term)) list
-val print_translation:
-  (string * (Context.generic -> term list -> term)) list
-val typed_print_translation:
-  (string * (Context.generic -> bool -> typ -> term list -> term)) list
-val print_ast_translation:
-  (string * (Context.generic -> ast list -> ast)) list
-\end{ttbox}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Oracles%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{oracle}\hypertarget{command.oracle}{\hyperlink{command.oracle}{\mbox{\isa{\isacommand{oracle}}}}} & : & \isartrans{theory}{theory} \\
-  \end{matharray}
-
-  The oracle interface promotes a given ML function \verb|theory -> T -> term| to \verb|theory -> T -> thm|, for some
-  type \verb|T| given by the user.  This acts like an infinitary
-  specification of axioms -- there is no internal check of the
-  correctness of the results!  The inference kernel records oracle
-  invocations within the internal derivation object of theorems, and
-  the pretty printer attaches ``\isa{{\isachardoublequote}{\isacharbrackleft}{\isacharbang}{\isacharbrackright}{\isachardoublequote}}'' to indicate results
-  that are not fully checked by Isabelle inferences.
-
-  \begin{rail}
-    'oracle' name '(' type ')' '=' text
-    ;
-  \end{rail}
-
-  \begin{descr}
-
-  \item [\hyperlink{command.oracle}{\mbox{\isa{\isacommand{oracle}}}}~\isa{{\isachardoublequote}name\ {\isacharparenleft}type{\isacharparenright}\ {\isacharequal}\ text{\isachardoublequote}}] turns the
-  given ML expression \isa{{\isachardoublequote}text{\isachardoublequote}} of type
-  \verb|theory ->|~\isa{{\isachardoublequote}type{\isachardoublequote}}~\verb|-> term| into an
-  ML function of type
-  \verb|theory ->|~\isa{{\isachardoublequote}type{\isachardoublequote}}~\verb|-> thm|, which is
-  bound to the global identifier \verb|name|.
-
-  \end{descr}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsection{Proof commands%
-}
-\isamarkuptrue%
-%
-\isamarkupsubsection{Markup commands \label{sec:markup-prf}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\begin{matharray}{rcl}
-    \indexdef{}{command}{sect}\hypertarget{command.sect}{\hyperlink{command.sect}{\mbox{\isa{\isacommand{sect}}}}} & : & \isartrans{proof}{proof} \\
-    \indexdef{}{command}{subsect}\hypertarget{command.subsect}{\hyperlink{command.subsect}{\mbox{\isa{\isacommand{subsect}}}}} & : & \isartrans{proof}{proof} \\
-    \indexdef{}{command}{subsubsect}\hypertarget{command.subsubsect}{\hyperlink{command.subsubsect}{\mbox{\isa{\isacommand{subsubsect}}}}} & : & \isartrans{proof}{proof} \\
-    \indexdef{}{command}{txt}\hypertarget{command.txt}{\hyperlink{command.txt}{\mbox{\isa{\isacommand{txt}}}}} & : & \isartrans{proof}{proof} \\
-    \indexdef{}{command}{txt\_raw}\hypertarget{command.txt-raw}{\hyperlink{command.txt-raw}{\mbox{\isa{\isacommand{txt{\isacharunderscore}raw}}}}} & : & \isartrans{proof}{proof} \\
-  \end{matharray}
-
-  These markup commands for proof mode closely correspond to the ones
-  of theory mode (see \S\ref{sec:markup-thy}).
-
-  \begin{rail}
-    ('sect' | 'subsect' | 'subsubsect' | 'txt' | 'txt\_raw') text
-    ;
-  \end{rail}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
 \isamarkupsection{Other commands%
 }
 \isamarkuptrue%
@@ -871,15 +248,11 @@
     \indexdef{}{command}{cd}\hypertarget{command.cd}{\hyperlink{command.cd}{\mbox{\isa{\isacommand{cd}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{\cdot} \\
     \indexdef{}{command}{pwd}\hypertarget{command.pwd}{\hyperlink{command.pwd}{\mbox{\isa{\isacommand{pwd}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{\cdot} \\
     \indexdef{}{command}{use\_thy}\hypertarget{command.use-thy}{\hyperlink{command.use-thy}{\mbox{\isa{\isacommand{use{\isacharunderscore}thy}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{\cdot} \\
-    \indexdef{}{command}{display\_drafts}\hypertarget{command.display-drafts}{\hyperlink{command.display-drafts}{\mbox{\isa{\isacommand{display{\isacharunderscore}drafts}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{\cdot} \\
-    \indexdef{}{command}{print\_drafts}\hypertarget{command.print-drafts}{\hyperlink{command.print-drafts}{\mbox{\isa{\isacommand{print{\isacharunderscore}drafts}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{\cdot} \\
   \end{matharray}
 
   \begin{rail}
     ('cd' | 'use\_thy' | 'update\_thy') name
     ;
-    ('display\_drafts' | 'print\_drafts') (name +)
-    ;
   \end{rail}
 
   \begin{descr}
@@ -893,11 +266,6 @@
   These system commands are scarcely used when working interactively,
   since loading of theories is done automatically as required.
 
-  \item [\hyperlink{command.display-drafts}{\mbox{\isa{\isacommand{display{\isacharunderscore}drafts}}}}~\isa{paths} and \hyperlink{command.print-drafts}{\mbox{\isa{\isacommand{print{\isacharunderscore}drafts}}}}~\isa{paths}] perform simple output of a given list
-  of raw source files.  Only those symbols that do not require
-  additional {\LaTeX} packages are displayed properly, everything else
-  is left verbatim.
-
   \end{descr}%
 \end{isamarkuptext}%
 \isamarkuptrue%