--- a/src/HOL/Multivariate_Analysis/Multivariate_Analysis.thy Tue Jul 28 13:00:54 2015 +0200
+++ b/src/HOL/Multivariate_Analysis/Multivariate_Analysis.thy Tue Jul 28 16:34:08 2015 +0200
@@ -6,6 +6,7 @@
Ordered_Euclidean_Space
Complex_Analysis_Basics
Bounded_Continuous_Function
+ Uniform_Limit
begin
end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Multivariate_Analysis/Uniform_Limit.thy Tue Jul 28 16:34:08 2015 +0200
@@ -0,0 +1,350 @@
+(* Title: HOL/Multivariate_Analysis/Uniform_Limit.thy
+ Author: Christoph Traut, TU München
+ Author: Fabian Immler, TU München
+*)
+
+section \<open>Uniform Limit and Uniform Convergence\<close>
+
+theory Uniform_Limit
+imports Topology_Euclidean_Space
+begin
+
+definition uniformly_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b::metric_space) \<Rightarrow> ('a \<Rightarrow> 'b) filter"
+ where "uniformly_on S l = (INF e:{0 <..}. principal {f. \<forall>x\<in>S. dist (f x) (l x) < e})"
+
+abbreviation
+ "uniform_limit S f l \<equiv> filterlim f (uniformly_on S l)"
+
+lemma uniform_limit_iff:
+ "uniform_limit S f l F \<longleftrightarrow> (\<forall>e>0. \<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < e)"
+ unfolding filterlim_iff uniformly_on_def
+ by (subst eventually_INF_base)
+ (fastforce
+ simp: eventually_principal uniformly_on_def
+ intro: bexI[where x="min a b" for a b]
+ elim: eventually_elim1)+
+
+lemma uniform_limitD:
+ "uniform_limit S f l F \<Longrightarrow> e > 0 \<Longrightarrow> \<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < e"
+ by (simp add: uniform_limit_iff)
+
+lemma uniform_limitI:
+ "(\<And>e. e > 0 \<Longrightarrow> \<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < e) \<Longrightarrow> uniform_limit S f l F"
+ by (simp add: uniform_limit_iff)
+
+lemma uniform_limit_sequentially_iff:
+ "uniform_limit S f l sequentially \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> S. dist (f n x) (l x) < e)"
+ unfolding uniform_limit_iff eventually_sequentially ..
+
+lemma uniform_limit_at_iff:
+ "uniform_limit S f l (at x) \<longleftrightarrow>
+ (\<forall>e>0. \<exists>d>0. \<forall>z. 0 < dist z x \<and> dist z x < d \<longrightarrow> (\<forall>x\<in>S. dist (f z x) (l x) < e))"
+ unfolding uniform_limit_iff eventually_at2 ..
+
+lemma uniform_limit_at_le_iff:
+ "uniform_limit S f l (at x) \<longleftrightarrow>
+ (\<forall>e>0. \<exists>d>0. \<forall>z. 0 < dist z x \<and> dist z x < d \<longrightarrow> (\<forall>x\<in>S. dist (f z x) (l x) \<le> e))"
+ unfolding uniform_limit_iff eventually_at2
+ by (fastforce dest: spec[where x = "e / 2" for e])
+
+lemma swap_uniform_limit:
+ assumes f: "\<forall>\<^sub>F n in F. (f n ---> g n) (at x within S)"
+ assumes g: "(g ---> l) F"
+ assumes uc: "uniform_limit S f h F"
+ assumes "\<not>trivial_limit F"
+ shows "(h ---> l) (at x within S)"
+proof (rule tendstoI)
+ fix e :: real
+ def e' \<equiv> "e/3"
+ assume "0 < e"
+ then have "0 < e'" by (simp add: e'_def)
+ from uniform_limitD[OF uc `0 < e'`]
+ have "\<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (h x) (f n x) < e'"
+ by (simp add: dist_commute)
+ moreover
+ from f
+ have "\<forall>\<^sub>F n in F. \<forall>\<^sub>F x in at x within S. dist (g n) (f n x) < e'"
+ by eventually_elim (auto dest!: tendstoD[OF _ `0 < e'`] simp: dist_commute)
+ moreover
+ from tendstoD[OF g `0 < e'`] have "\<forall>\<^sub>F x in F. dist l (g x) < e'"
+ by (simp add: dist_commute)
+ ultimately
+ have "\<forall>\<^sub>F _ in F. \<forall>\<^sub>F x in at x within S. dist (h x) l < e"
+ proof eventually_elim
+ case (elim n)
+ note fh = elim(1)
+ note gl = elim(3)
+ have "\<forall>\<^sub>F x in at x within S. x \<in> S"
+ by (auto simp: eventually_at_filter)
+ with elim(2)
+ show ?case
+ proof eventually_elim
+ case (elim x)
+ from fh[rule_format, OF `x \<in> S`] elim(1)
+ have "dist (h x) (g n) < e' + e'"
+ by (rule dist_triangle_lt[OF add_strict_mono])
+ from dist_triangle_lt[OF add_strict_mono, OF this gl]
+ show ?case by (simp add: e'_def)
+ qed
+ qed
+ thus "\<forall>\<^sub>F x in at x within S. dist (h x) l < e"
+ using eventually_happens by (metis `\<not>trivial_limit F`)
+qed
+
+lemma
+ tendsto_uniform_limitI:
+ assumes "uniform_limit S f l F"
+ assumes "x \<in> S"
+ shows "((\<lambda>y. f y x) ---> l x) F"
+ using assms
+ by (auto intro!: tendstoI simp: eventually_elim1 dest!: uniform_limitD)
+
+lemma uniform_limit_theorem:
+ assumes c: "\<forall>\<^sub>F n in F. continuous_on A (f n)"
+ assumes ul: "uniform_limit A f l F"
+ assumes "\<not> trivial_limit F"
+ shows "continuous_on A l"
+ unfolding continuous_on_def
+proof safe
+ fix x assume "x \<in> A"
+ then have "\<forall>\<^sub>F n in F. (f n ---> f n x) (at x within A)" "((\<lambda>n. f n x) ---> l x) F"
+ using c ul
+ by (auto simp: continuous_on_def eventually_elim1 tendsto_uniform_limitI)
+ then show "(l ---> l x) (at x within A)"
+ by (rule swap_uniform_limit) fact+
+qed
+
+lemma weierstrass_m_test:
+fixes f :: "_ \<Rightarrow> _ \<Rightarrow> _ :: banach"
+assumes "\<And>n x. x \<in> A \<Longrightarrow> norm (f n x) \<le> M n"
+assumes "summable M"
+shows "uniform_limit A (\<lambda>n x. \<Sum>i<n. f i x) (\<lambda>x. suminf (\<lambda>i. f i x)) sequentially"
+proof (rule uniform_limitI)
+ fix e :: real
+ assume "0 < e"
+ from suminf_exist_split[OF `0 < e` `summable M`]
+ have "\<forall>\<^sub>F k in sequentially. norm (\<Sum>i. M (i + k)) < e"
+ by (auto simp: eventually_sequentially)
+ thus "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>A. dist (\<Sum>i<n. f i x) (\<Sum>i. f i x) < e"
+ proof eventually_elim
+ case (elim k)
+ show ?case
+ proof safe
+ fix x assume "x \<in> A"
+ have "\<exists>N. \<forall>n\<ge>N. norm (f n x) \<le> M n"
+ using assms(1)[OF `x \<in> A`] by simp
+ hence summable_norm_f: "summable (\<lambda>n. norm (f n x))"
+ by(rule summable_norm_comparison_test[OF _ `summable M`])
+ have summable_f: "summable (\<lambda>n. f n x)"
+ using summable_norm_cancel[OF summable_norm_f] .
+ have summable_norm_f_plus_k: "summable (\<lambda>i. norm (f (i + k) x))"
+ using summable_ignore_initial_segment[OF summable_norm_f]
+ by auto
+ have summable_M_plus_k: "summable (\<lambda>i. M (i + k))"
+ using summable_ignore_initial_segment[OF `summable M`]
+ by auto
+
+ have "dist (\<Sum>i<k. f i x) (\<Sum>i. f i x) = norm ((\<Sum>i. f i x) - (\<Sum>i<k. f i x))"
+ using dist_norm dist_commute by (subst dist_commute)
+ also have "... = norm (\<Sum>i. f (i + k) x)"
+ using suminf_minus_initial_segment[OF summable_f, where k=k] by simp
+ also have "... \<le> (\<Sum>i. norm (f (i + k) x))"
+ using summable_norm[OF summable_norm_f_plus_k] .
+ also have "... \<le> (\<Sum>i. M (i + k))"
+ by (rule suminf_le[OF _ summable_norm_f_plus_k summable_M_plus_k])
+ (simp add: assms(1)[OF `x \<in> A`])
+ finally show "dist (\<Sum>i<k. f i x) (\<Sum>i. f i x) < e"
+ using elim by auto
+ qed
+ qed
+qed
+
+lemma uniform_limit_eq_rhs: "uniform_limit X f l F \<Longrightarrow> l = m \<Longrightarrow> uniform_limit X f m F"
+ by simp
+
+named_theorems uniform_limit_intros "introduction rules for uniform_limit"
+setup {*
+ Global_Theory.add_thms_dynamic (@{binding uniform_limit_eq_intros},
+ fn context =>
+ Named_Theorems.get (Context.proof_of context) @{named_theorems uniform_limit_intros}
+ |> map_filter (try (fn thm => @{thm uniform_limit_eq_rhs} OF [thm])))
+*}
+
+lemma (in bounded_linear) uniform_limit[uniform_limit_intros]:
+ assumes "uniform_limit X g l F"
+ shows "uniform_limit X (\<lambda>a b. f (g a b)) (\<lambda>a. f (l a)) F"
+proof (rule uniform_limitI)
+ fix e::real
+ from pos_bounded obtain K
+ where K: "\<And>x y. dist (f x) (f y) \<le> K * dist x y" "K > 0"
+ by (auto simp: ac_simps dist_norm diff[symmetric])
+ assume "0 < e" with `K > 0` have "e / K > 0" by simp
+ from uniform_limitD[OF assms this]
+ show "\<forall>\<^sub>F n in F. \<forall>x\<in>X. dist (f (g n x)) (f (l x)) < e"
+ by eventually_elim (metis le_less_trans mult.commute pos_less_divide_eq K)
+qed
+
+lemmas bounded_linear_uniform_limit_intros[uniform_limit_intros] =
+ bounded_linear.uniform_limit[OF bounded_linear_Im]
+ bounded_linear.uniform_limit[OF bounded_linear_Re]
+ bounded_linear.uniform_limit[OF bounded_linear_cnj]
+ bounded_linear.uniform_limit[OF bounded_linear_fst]
+ bounded_linear.uniform_limit[OF bounded_linear_snd]
+ bounded_linear.uniform_limit[OF bounded_linear_zero]
+ bounded_linear.uniform_limit[OF bounded_linear_of_real]
+ bounded_linear.uniform_limit[OF bounded_linear_inner_left]
+ bounded_linear.uniform_limit[OF bounded_linear_inner_right]
+ bounded_linear.uniform_limit[OF bounded_linear_divide]
+ bounded_linear.uniform_limit[OF bounded_linear_scaleR_right]
+ bounded_linear.uniform_limit[OF bounded_linear_mult_left]
+ bounded_linear.uniform_limit[OF bounded_linear_mult_right]
+ bounded_linear.uniform_limit[OF bounded_linear_scaleR_left]
+
+lemmas uniform_limit_uminus[uniform_limit_intros] =
+ bounded_linear.uniform_limit[OF bounded_linear_minus[OF bounded_linear_ident]]
+
+lemma uniform_limit_add[uniform_limit_intros]:
+ fixes f g::"'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_vector"
+ assumes "uniform_limit X f l F"
+ assumes "uniform_limit X g m F"
+ shows "uniform_limit X (\<lambda>a b. f a b + g a b) (\<lambda>a. l a + m a) F"
+proof (rule uniform_limitI)
+ fix e::real
+ assume "0 < e"
+ hence "0 < e / 2" by simp
+ from
+ uniform_limitD[OF assms(1) this]
+ uniform_limitD[OF assms(2) this]
+ show "\<forall>\<^sub>F n in F. \<forall>x\<in>X. dist (f n x + g n x) (l x + m x) < e"
+ by eventually_elim (simp add: dist_triangle_add_half)
+qed
+
+lemma uniform_limit_minus[uniform_limit_intros]:
+ fixes f g::"'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_vector"
+ assumes "uniform_limit X f l F"
+ assumes "uniform_limit X g m F"
+ shows "uniform_limit X (\<lambda>a b. f a b - g a b) (\<lambda>a. l a - m a) F"
+ unfolding diff_conv_add_uminus
+ by (rule uniform_limit_intros assms)+
+
+lemma (in bounded_bilinear) bounded_uniform_limit[uniform_limit_intros]:
+ assumes "uniform_limit X f l F"
+ assumes "uniform_limit X g m F"
+ assumes "bounded (m ` X)"
+ assumes "bounded (l ` X)"
+ shows "uniform_limit X (\<lambda>a b. prod (f a b) (g a b)) (\<lambda>a. prod (l a) (m a)) F"
+proof (rule uniform_limitI)
+ fix e::real
+ from pos_bounded obtain K where K:
+ "0 < K" "\<And>a b. norm (prod a b) \<le> norm a * norm b * K"
+ by auto
+ hence "sqrt (K*4) > 0" by simp
+
+ from assms obtain Km Kl
+ where Km: "Km > 0" "\<And>x. x \<in> X \<Longrightarrow> norm (m x) \<le> Km"
+ and Kl: "Kl > 0" "\<And>x. x \<in> X \<Longrightarrow> norm (l x) \<le> Kl"
+ by (auto simp: bounded_pos)
+ hence "K * Km * 4 > 0" "K * Kl * 4 > 0"
+ using `K > 0`
+ by simp_all
+ assume "0 < e"
+
+ hence "sqrt e > 0" by simp
+ from uniform_limitD[OF assms(1) divide_pos_pos[OF this `sqrt (K*4) > 0`]]
+ uniform_limitD[OF assms(2) divide_pos_pos[OF this `sqrt (K*4) > 0`]]
+ uniform_limitD[OF assms(1) divide_pos_pos[OF `e > 0` `K * Km * 4 > 0`]]
+ uniform_limitD[OF assms(2) divide_pos_pos[OF `e > 0` `K * Kl * 4 > 0`]]
+ show "\<forall>\<^sub>F n in F. \<forall>x\<in>X. dist (prod (f n x) (g n x)) (prod (l x) (m x)) < e"
+ proof eventually_elim
+ case (elim n)
+ show ?case
+ proof safe
+ fix x assume "x \<in> X"
+ have "dist (prod (f n x) (g n x)) (prod (l x) (m x)) \<le>
+ norm (prod (f n x - l x) (g n x - m x)) +
+ norm (prod (f n x - l x) (m x)) +
+ norm (prod (l x) (g n x - m x))"
+ by (auto simp: dist_norm prod_diff_prod intro: order_trans norm_triangle_ineq add_mono)
+ also note K(2)[of "f n x - l x" "g n x - m x"]
+ also from elim(1)[THEN bspec, OF `_ \<in> X`, unfolded dist_norm]
+ have "norm (f n x - l x) \<le> sqrt e / sqrt (K * 4)"
+ by simp
+ also from elim(2)[THEN bspec, OF `_ \<in> X`, unfolded dist_norm]
+ have "norm (g n x - m x) \<le> sqrt e / sqrt (K * 4)"
+ by simp
+ also have "sqrt e / sqrt (K * 4) * (sqrt e / sqrt (K * 4)) * K = e / 4"
+ using `K > 0` `e > 0` by auto
+ also note K(2)[of "f n x - l x" "m x"]
+ also note K(2)[of "l x" "g n x - m x"]
+ also from elim(3)[THEN bspec, OF `_ \<in> X`, unfolded dist_norm]
+ have "norm (f n x - l x) \<le> e / (K * Km * 4)"
+ by simp
+ also from elim(4)[THEN bspec, OF `_ \<in> X`, unfolded dist_norm]
+ have "norm (g n x - m x) \<le> e / (K * Kl * 4)"
+ by simp
+ also note Kl(2)[OF `_ \<in> X`]
+ also note Km(2)[OF `_ \<in> X`]
+ also have "e / (K * Km * 4) * Km * K = e / 4"
+ using `K > 0` `Km > 0` by simp
+ also have " Kl * (e / (K * Kl * 4)) * K = e / 4"
+ using `K > 0` `Kl > 0` by simp
+ also have "e / 4 + e / 4 + e / 4 < e" using `e > 0` by simp
+ finally show "dist (prod (f n x) (g n x)) (prod (l x) (m x)) < e"
+ using `K > 0` `Kl > 0` `Km > 0` `e > 0`
+ by (simp add: algebra_simps mult_right_mono divide_right_mono)
+ qed
+ qed
+qed
+
+lemmas bounded_bilinear_bounded_uniform_limit_intros[uniform_limit_intros] =
+ bounded_bilinear.bounded_uniform_limit[OF Inner_Product.bounded_bilinear_inner]
+ bounded_bilinear.bounded_uniform_limit[OF Real_Vector_Spaces.bounded_bilinear_mult]
+ bounded_bilinear.bounded_uniform_limit[OF Real_Vector_Spaces.bounded_bilinear_scaleR]
+
+lemma metric_uniform_limit_imp_uniform_limit:
+ assumes f: "uniform_limit S f a F"
+ assumes le: "eventually (\<lambda>x. \<forall>y\<in>S. dist (g x y) (b y) \<le> dist (f x y) (a y)) F"
+ shows "uniform_limit S g b F"
+proof (rule uniform_limitI)
+ fix e :: real assume "0 < e"
+ from uniform_limitD[OF f this] le
+ show "\<forall>\<^sub>F x in F. \<forall>y\<in>S. dist (g x y) (b y) < e"
+ by eventually_elim force
+qed
+
+lemma uniform_limit_null_comparison:
+ assumes "\<forall>\<^sub>F x in F. \<forall>a\<in>S. norm (f x a) \<le> g x a"
+ assumes "uniform_limit S g (\<lambda>_. 0) F"
+ shows "uniform_limit S f (\<lambda>_. 0) F"
+ using assms(2)
+proof (rule metric_uniform_limit_imp_uniform_limit)
+ show "\<forall>\<^sub>F x in F. \<forall>y\<in>S. dist (f x y) 0 \<le> dist (g x y) 0"
+ using assms(1) by (rule eventually_elim1) (force simp add: dist_norm)
+qed
+
+lemma uniform_limit_on_union:
+ "uniform_limit I f g F \<Longrightarrow> uniform_limit J f g F \<Longrightarrow> uniform_limit (I \<union> J) f g F"
+ by (auto intro!: uniform_limitI dest!: uniform_limitD elim: eventually_elim2)
+
+lemma uniform_limit_on_empty:
+ "uniform_limit {} f g F"
+ by (auto intro!: uniform_limitI)
+
+lemma uniform_limit_on_UNION:
+ assumes "finite S"
+ assumes "\<And>s. s \<in> S \<Longrightarrow> uniform_limit (h s) f g F"
+ shows "uniform_limit (UNION S h) f g F"
+ using assms
+ by induct (auto intro: uniform_limit_on_empty uniform_limit_on_union)
+
+lemma uniform_limit_on_Union:
+ assumes "finite I"
+ assumes "\<And>J. J \<in> I \<Longrightarrow> uniform_limit J f g F"
+ shows "uniform_limit (Union I) f g F"
+ by (metis SUP_identity_eq assms uniform_limit_on_UNION)
+
+lemma uniform_limit_on_subset:
+ "uniform_limit J f g F \<Longrightarrow> I \<subseteq> J \<Longrightarrow> uniform_limit I f g F"
+ by (auto intro!: uniform_limitI dest!: uniform_limitD intro: eventually_rev_mono)
+
+end
\ No newline at end of file