--- a/src/HOL/ex/Tarski.thy Mon Jan 23 11:36:05 2006 +0100
+++ b/src/HOL/ex/Tarski.thy Mon Jan 23 11:36:50 2006 +0100
@@ -85,10 +85,10 @@
(| pset = S, order = induced S (order cl) |): CompleteLattice }"
syntax
- "@SL" :: "['a set, 'a potype] => bool" ("_ <\<subseteq> _" [51,50]50)
+ "@SL" :: "['a set, 'a potype] => bool" ("_ <<= _" [51,50]50)
translations
- "S <\<subseteq> cl" == "S : sublattice `` {cl}"
+ "S <<= cl" == "S : sublattice `` {cl}"
constdefs
dual :: "'a potype => 'a potype"
@@ -303,12 +303,12 @@
subsection {* sublattice *}
lemma (in PO) sublattice_imp_CL:
- "S <\<subseteq> cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"
+ "S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"
by (simp add: sublattice_def CompleteLattice_def A_def r_def)
lemma (in CL) sublatticeI:
"[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |]
- ==> S <\<subseteq> cl"
+ ==> S <<= cl"
by (simp add: sublattice_def A_def r_def)
@@ -659,7 +659,7 @@
lemma (in CLF) interval_is_sublattice:
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
- ==> interval r a b <\<subseteq> cl"
+ ==> interval r a b <<= cl"
apply (rule sublatticeI)
apply (simp add: interval_subset)
apply (rule CompleteLatticeI)
@@ -737,7 +737,7 @@
done
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"
-by (simp add: Y_subset_A [THEN lub_in_lattice])
+ by (rule Y_subset_A [THEN lub_in_lattice])
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"
apply (rule lub_least)