merged
authorwenzelm
Tue, 03 Nov 2015 18:11:59 +0100
changeset 61564 6d513469f9b2
parent 61554 84901b8aa4f5 (diff)
parent 61563 91c3aedbfc5e (current diff)
child 61565 352c73a689da
merged
src/Pure/Concurrent/simple_thread.ML
src/Pure/Concurrent/simple_thread.scala
--- a/CONTRIBUTORS	Tue Nov 03 17:53:09 2015 +0100
+++ b/CONTRIBUTORS	Tue Nov 03 18:11:59 2015 +0100
@@ -6,6 +6,9 @@
 Contributions to this Isabelle version
 --------------------------------------
 
+* Autumn 2015: Chaitanya Mangla, Lawrence C Paulson, and Manuel Eberl
+  A large number of additional binomial identities.
+
 * Summer 2015: Daniel Matichuk, NICTA and Makarius Wenzel
   Isar subgoal command for proof structure within unstructured proof
   scripts.
--- a/src/HOL/Binomial.thy	Tue Nov 03 17:53:09 2015 +0100
+++ b/src/HOL/Binomial.thy	Tue Nov 03 18:11:59 2015 +0100
@@ -3,6 +3,7 @@
     Copyright   : 1998  University of Cambridge
     Conversion to Isar and new proofs by Lawrence C Paulson, 2004
     The integer version of factorial and other additions by Jeremy Avigad.
+    Additional binomial identities by Chaitanya Mangla and Manuel Eberl
 *)
 
 section\<open>Factorial Function, Binomial Coefficients and Binomial Theorem\<close>
@@ -13,7 +14,7 @@
 
 subsection \<open>Factorial\<close>
 
-fun fact :: "nat \<Rightarrow> ('a::semiring_char_0)"
+fun (in semiring_char_0) fact :: "nat \<Rightarrow> 'a"
   where "fact 0 = 1" | "fact (Suc n) = of_nat (Suc n) * fact n"
 
 lemmas fact_Suc = fact.simps(2)
@@ -442,7 +443,7 @@
 
 text \<open>See @{url "http://en.wikipedia.org/wiki/Pochhammer_symbol"}\<close>
 
-definition "pochhammer (a::'a::comm_semiring_1) n =
+definition (in comm_semiring_1) "pochhammer (a :: 'a) n =
   (if n = 0 then 1 else setprod (\<lambda>n. a + of_nat n) {0 .. n - 1})"
 
 lemma pochhammer_0 [simp]: "pochhammer a 0 = 1"
@@ -621,6 +622,40 @@
   "m \<le> n \<Longrightarrow> pochhammer z n = pochhammer z m * pochhammer (z + of_nat m) (n - m)"
   using pochhammer_product'[of z m "n - m"] by simp
 
+lemma pochhammer_times_pochhammer_half:
+  fixes z :: "'a :: field_char_0"
+  shows "pochhammer z (Suc n) * pochhammer (z + 1/2) (Suc n) = (\<Prod>k=0..2*n+1. z + of_nat k / 2)"
+proof (induction n)
+  case (Suc n)
+  def n' \<equiv> "Suc n"
+  have "pochhammer z (Suc n') * pochhammer (z + 1 / 2) (Suc n') =
+          (pochhammer z n' * pochhammer (z + 1 / 2) n') * 
+          ((z + of_nat n') * (z + 1/2 + of_nat n'))" (is "_ = _ * ?A")
+     by (simp_all add: pochhammer_rec' mult_ac)
+  also have "?A = (z + of_nat (Suc (2 * n + 1)) / 2) * (z + of_nat (Suc (Suc (2 * n + 1))) / 2)"
+    (is "_ = ?A") by (simp add: field_simps n'_def of_nat_mult)
+  also note Suc[folded n'_def]
+  also have "(\<Prod>k = 0..2 * n + 1. z + of_nat k / 2) * ?A = (\<Prod>k = 0..2 * Suc n + 1. z + of_nat k / 2)"
+    by (simp add: setprod_nat_ivl_Suc)
+  finally show ?case by (simp add: n'_def)
+qed (simp add: setprod_nat_ivl_Suc)
+
+lemma pochhammer_double:
+  fixes z :: "'a :: field_char_0"
+  shows "pochhammer (2 * z) (2 * n) = of_nat (2^(2*n)) * pochhammer z n * pochhammer (z+1/2) n"
+proof (induction n)
+  case (Suc n)
+  have "pochhammer (2 * z) (2 * (Suc n)) = pochhammer (2 * z) (2 * n) * 
+          (2 * (z + of_nat n)) * (2 * (z + of_nat n) + 1)"
+    by (simp add: pochhammer_rec' ac_simps of_nat_mult)
+  also note Suc
+  also have "of_nat (2 ^ (2 * n)) * pochhammer z n * pochhammer (z + 1/2) n *
+                 (2 * (z + of_nat n)) * (2 * (z + of_nat n) + 1) =
+             of_nat (2 ^ (2 * (Suc n))) * pochhammer z (Suc n) * pochhammer (z + 1/2) (Suc n)"
+    by (simp add: of_nat_mult field_simps pochhammer_rec')
+  finally show ?case .
+qed simp
+
 lemma pochhammer_absorb_comp:
   "((r :: 'a :: comm_ring_1) - of_nat k) * pochhammer (- r) k = r * pochhammer (-r + 1) k" 
   (is "?lhs = ?rhs")
@@ -633,7 +668,7 @@
 
 subsection\<open>Generalized binomial coefficients\<close>
 
-definition gbinomial :: "'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a" (infixl "gchoose" 65)
+definition (in field_char_0) gbinomial :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixl "gchoose" 65)
   where "a gchoose n =
     (if n = 0 then 1 else (setprod (\<lambda>i. a - of_nat i) {0 .. n - 1}) / (fact n))"
 
@@ -654,6 +689,15 @@
       eq setprod.distrib[symmetric])
 qed
 
+lemma gbinomial_pochhammer':
+  "(s :: 'a :: field_char_0) gchoose n = pochhammer (s - of_nat n + 1) n / fact n"
+proof -
+  have "s gchoose n = ((-1)^n * (-1)^n) * pochhammer (s - of_nat n + 1) n / fact n"
+    by (simp add: gbinomial_pochhammer pochhammer_minus mult_ac)
+  also have "(-1 :: 'a)^n * (-1)^n = 1" by (subst power_add [symmetric]) simp
+  finally show ?thesis by simp
+qed
+
 lemma binomial_gbinomial: 
     "of_nat (n choose k) = (of_nat n gchoose k :: 'a::field_char_0)"
 proof -
--- a/src/HOL/Complex.thy	Tue Nov 03 17:53:09 2015 +0100
+++ b/src/HOL/Complex.thy	Tue Nov 03 18:11:59 2015 +0100
@@ -166,6 +166,12 @@
 
 lemma Im_divide_numeral [simp]: "Im (z / numeral w) = Im z / numeral w"
   by (simp add: Im_divide sqr_conv_mult)
+  
+lemma Re_divide_of_nat: "Re (z / of_nat n) = Re z / of_nat n"
+  by (cases n) (simp_all add: Re_divide divide_simps power2_eq_square del: of_nat_Suc)
+
+lemma Im_divide_of_nat: "Im (z / of_nat n) = Im z / of_nat n"
+  by (cases n) (simp_all add: Im_divide divide_simps power2_eq_square del: of_nat_Suc)
 
 lemma of_real_Re [simp]:
     "z \<in> \<real> \<Longrightarrow> of_real (Re z) = z"
--- a/src/HOL/Deriv.thy	Tue Nov 03 17:53:09 2015 +0100
+++ b/src/HOL/Deriv.thy	Tue Nov 03 18:11:59 2015 +0100
@@ -745,7 +745,7 @@
   by (rule DERIV_continuous)
 
 lemma DERIV_continuous_on:
-  "(\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative D) (at x)) \<Longrightarrow> continuous_on s f"
+  "(\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative (D x)) (at x)) \<Longrightarrow> continuous_on s f"
   by (metis DERIV_continuous continuous_at_imp_continuous_on)
 
 lemma DERIV_mult':
--- a/src/HOL/Int.thy	Tue Nov 03 17:53:09 2015 +0100
+++ b/src/HOL/Int.thy	Tue Nov 03 18:11:59 2015 +0100
@@ -686,6 +686,9 @@
 lemma Ints_1 [simp]: "1 \<in> \<int>"
   using Ints_of_int [of "1"] by simp
 
+lemma Ints_numeral [simp]: "numeral n \<in> \<int>"
+  by (subst of_nat_numeral [symmetric], rule Ints_of_nat)
+
 lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>"
 apply (auto simp add: Ints_def)
 apply (rule range_eqI)
--- a/src/HOL/Library/Formal_Power_Series.thy	Tue Nov 03 17:53:09 2015 +0100
+++ b/src/HOL/Library/Formal_Power_Series.thy	Tue Nov 03 18:11:59 2015 +0100
@@ -3115,7 +3115,7 @@
   then show ?thesis by simp
 qed
 
-lemma fps_minomial_minus_one: "fps_binomial (- 1) = inverse (1 + X)"
+lemma fps_binomial_minus_one: "fps_binomial (- 1) = inverse (1 + X)"
   (is "?l = inverse ?r")
 proof-
   have th: "?r$0 \<noteq> 0" by simp
--- a/src/HOL/Limits.thy	Tue Nov 03 17:53:09 2015 +0100
+++ b/src/HOL/Limits.thy	Tue Nov 03 18:11:59 2015 +0100
@@ -1148,6 +1148,32 @@
   qed
 qed
 
+lemma tendsto_add_filterlim_at_infinity:
+  assumes "(f ---> (c :: 'b :: real_normed_vector)) (F :: 'a filter)"
+  assumes "filterlim g at_infinity F"
+  shows   "filterlim (\<lambda>x. f x + g x) at_infinity F"
+proof (subst filterlim_at_infinity[OF order_refl], safe)
+  fix r :: real assume r: "r > 0"
+  from assms(1) have "((\<lambda>x. norm (f x)) ---> norm c) F" by (rule tendsto_norm)
+  hence "eventually (\<lambda>x. norm (f x) < norm c + 1) F" by (rule order_tendstoD) simp_all
+  moreover from r have "r + norm c + 1 > 0" by (intro add_pos_nonneg) simp_all 
+  with assms(2) have "eventually (\<lambda>x. norm (g x) \<ge> r + norm c + 1) F"
+    unfolding filterlim_at_infinity[OF order_refl] by (elim allE[of _ "r + norm c + 1"]) simp_all
+  ultimately show "eventually (\<lambda>x. norm (f x + g x) \<ge> r) F"
+  proof eventually_elim
+    fix x :: 'a assume A: "norm (f x) < norm c + 1" and B: "r + norm c + 1 \<le> norm (g x)"
+    from A B have "r \<le> norm (g x) - norm (f x)" by simp
+    also have "norm (g x) - norm (f x) \<le> norm (g x + f x)" by (rule norm_diff_ineq)
+    finally show "r \<le> norm (f x + g x)" by (simp add: add_ac)
+  qed
+qed
+
+lemma tendsto_add_filterlim_at_infinity':
+  assumes "filterlim f at_infinity F"
+  assumes "(g ---> (c :: 'b :: real_normed_vector)) (F :: 'a filter)"
+  shows   "filterlim (\<lambda>x. f x + g x) at_infinity F"
+  by (subst add.commute) (rule tendsto_add_filterlim_at_infinity assms)+
+
 lemma filterlim_inverse_at_right_top: "LIM x at_top. inverse x :> at_right (0::real)"
   unfolding filterlim_at
   by (auto simp: eventually_at_top_dense)
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Tue Nov 03 17:53:09 2015 +0100
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Tue Nov 03 18:11:59 2015 +0100
@@ -3164,6 +3164,9 @@
   unfolding bounded_any_center [where a=0]
   by (simp add: dist_norm)
 
+lemma bdd_above_norm: "bdd_above (norm ` X) \<longleftrightarrow> bounded X"
+  by (simp add: bounded_iff bdd_above_def)
+
 lemma bounded_realI:
   assumes "\<forall>x\<in>s. abs (x::real) \<le> B"
   shows "bounded s"
--- a/src/HOL/Multivariate_Analysis/Uniform_Limit.thy	Tue Nov 03 17:53:09 2015 +0100
+++ b/src/HOL/Multivariate_Analysis/Uniform_Limit.thy	Tue Nov 03 18:11:59 2015 +0100
@@ -479,4 +479,22 @@
   "uniform_limit J f g F \<Longrightarrow> I \<subseteq> J \<Longrightarrow> uniform_limit I f g F"
   by (auto intro!: uniform_limitI dest!: uniform_limitD intro: eventually_rev_mono)
 
+
+
+lemma uniformly_convergent_add:
+  "uniformly_convergent_on A f \<Longrightarrow> uniformly_convergent_on A g\<Longrightarrow>
+      uniformly_convergent_on A (\<lambda>k x. f k x + g k x :: 'a :: {real_normed_algebra})"
+  unfolding uniformly_convergent_on_def by (blast dest: uniform_limit_add)
+
+lemma uniformly_convergent_minus:
+  "uniformly_convergent_on A f \<Longrightarrow> uniformly_convergent_on A g\<Longrightarrow>
+      uniformly_convergent_on A (\<lambda>k x. f k x - g k x :: 'a :: {real_normed_algebra})"
+  unfolding uniformly_convergent_on_def by (blast dest: uniform_limit_minus)
+
+lemma uniformly_convergent_mult:
+  "uniformly_convergent_on A f \<Longrightarrow> 
+      uniformly_convergent_on A (\<lambda>k x. c * f k x :: 'a :: {real_normed_algebra})"
+  unfolding uniformly_convergent_on_def
+  by (blast dest: bounded_linear_uniform_limit_intros(13))
+
 end
\ No newline at end of file
--- a/src/HOL/Transcendental.thy	Tue Nov 03 17:53:09 2015 +0100
+++ b/src/HOL/Transcendental.thy	Tue Nov 03 18:11:59 2015 +0100
@@ -792,6 +792,29 @@
     done
 qed
 
+lemma termdiffs_strong_converges_everywhere:
+    fixes K x :: "'a::{real_normed_field,banach}"
+  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
+  shows   "((\<lambda>x. \<Sum>n. c n * x^n) has_field_derivative (\<Sum>n. diffs c n * x^n)) (at x)"
+  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
+  by (force simp del: of_real_add)
+  
+lemma isCont_powser:
+  fixes K x :: "'a::{real_normed_field,banach}"
+  assumes "summable (\<lambda>n. c n * K ^ n)"
+  assumes "norm x < norm K"
+  shows   "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
+  using termdiffs_strong[OF assms] by (blast intro!: DERIV_isCont)
+  
+lemmas isCont_powser' = isCont_o2[OF _ isCont_powser]
+
+lemma isCont_powser_converges_everywhere:
+  fixes K x :: "'a::{real_normed_field,banach}"
+  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
+  shows   "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
+  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
+  by (force intro!: DERIV_isCont simp del: of_real_add)
+
 lemma powser_limit_0: 
   fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
   assumes s: "0 < s"