merged
authorhaftmann
Wed, 10 Feb 2010 08:54:56 +0100
changeset 35086 92a8c9ea5aa7
parent 35081 ab02eb4471b3 (current diff)
parent 35085 22bdb7f86a1e (diff)
child 35087 e385fa507468
child 35088 6591285a6a59
child 35090 88cc65ae046e
merged
src/HOL/Tools/Nitpick/nitpick_model.ML
--- a/NEWS	Wed Feb 10 00:51:54 2010 +0100
+++ b/NEWS	Wed Feb 10 08:54:56 2010 +0100
@@ -20,6 +20,15 @@
 consistent names suitable for name prefixes within the HOL theories.
 INCOMPATIBILITY.
 
+* Some generic constants have been put to appropriate theories:
+
+    inverse, divide: Rings
+
+INCOMPATIBILITY.
+
+* Class division ring also requires proof of fact divide_inverse.  However instantiation
+of parameter divide has also been required previously.  INCOMPATIBILITY.
+
 * More consistent naming of type classes involving orderings (and lattices):
 
     lower_semilattice                   ~> semilattice_inf
@@ -76,7 +85,7 @@
 
 * New theory Algebras contains generic algebraic structures and
 generic algebraic operations.  INCOMPATIBILTY: constants zero, one,
-plus, minus, uminus, times, inverse, divide, abs, sgn, less_eq and
+plus, minus, uminus, times, abs, sgn, less_eq and
 less have been moved from HOL.thy to Algebras.thy.
 
 * HOLogic.strip_psplit: types are returned in syntactic order, similar
--- a/src/HOL/Algebras.thy	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Algebras.thy	Wed Feb 10 08:54:56 2010 +0100
@@ -103,10 +103,6 @@
 class times =
   fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "*" 70)
 
-class inverse =
-  fixes inverse :: "'a \<Rightarrow> 'a"
-    and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "'/" 70)
-
 class abs =
   fixes abs :: "'a \<Rightarrow> 'a"
 begin
--- a/src/HOL/Decision_Procs/Approximation.thy	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Decision_Procs/Approximation.thy	Wed Feb 10 08:54:56 2010 +0100
@@ -2950,7 +2950,8 @@
                (\<Sum> i = 0..<Suc n. inverse (real (\<Prod> j \<in> {k..<k+i}. j)) * ?f i (real c) * (xs!x - real c)^i) +
                inverse (real (\<Prod> j \<in> {k..<k+Suc n}. j)) * ?f (Suc n) t * (xs!x - real c)^Suc n" (is "_ = ?T")
         unfolding funpow_Suc C_def[symmetric] setsum_move0 setprod_head_Suc
-        by (auto simp add: algebra_simps setsum_right_distrib[symmetric])
+        by (auto simp add: algebra_simps)
+          (simp only: mult_left_commute [of _ "inverse (real k)"] setsum_right_distrib [symmetric])
       finally have "?T \<in> {real l .. real u}" . }
     thus ?thesis using DERIV by blast
   qed
--- a/src/HOL/Decision_Procs/Dense_Linear_Order.thy	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Decision_Procs/Dense_Linear_Order.thy	Wed Feb 10 08:54:56 2010 +0100
@@ -655,7 +655,7 @@
     if h aconvc y then false else if h aconvc x then true else earlier t x y;
 
 fun dest_frac ct = case term_of ct of
-   Const (@{const_name Algebras.divide},_) $ a $ b=>
+   Const (@{const_name Rings.divide},_) $ a $ b=>
     Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b))
  | Const(@{const_name inverse}, _)$a => Rat.rat_of_quotient(1, HOLogic.dest_number a |> snd)
  | t => Rat.rat_of_int (snd (HOLogic.dest_number t))
--- a/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy	Wed Feb 10 08:54:56 2010 +0100
@@ -2946,7 +2946,7 @@
 fun num rT x = HOLogic.mk_number rT x;
 fun rrelT rT = [rT,rT] ---> rT;
 fun rrT rT = [rT, rT] ---> bT;
-fun divt rT = Const(@{const_name Algebras.divide},rrelT rT);
+fun divt rT = Const(@{const_name Rings.divide},rrelT rT);
 fun timest rT = Const(@{const_name Algebras.times},rrelT rT);
 fun plust rT = Const(@{const_name Algebras.plus},rrelT rT);
 fun minust rT = Const(@{const_name Algebras.minus},rrelT rT);
@@ -2974,7 +2974,7 @@
  | Const(@{const_name Algebras.minus},_)$a$b => @{code poly.Sub} (num_of_term m a, num_of_term m b)
  | Const(@{const_name Algebras.times},_)$a$b => @{code poly.Mul} (num_of_term m a, num_of_term m b)
  | Const(@{const_name Power.power},_)$a$n => @{code poly.Pw} (num_of_term m a, dest_nat n)
- | Const(@{const_name Algebras.divide},_)$a$b => @{code poly.C} (HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd)
+ | Const(@{const_name Rings.divide},_)$a$b => @{code poly.C} (HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd)
  | _ => (@{code poly.C} (HOLogic.dest_number t |> snd,1) 
          handle TERM _ => @{code poly.Bound} (AList.lookup (op aconv) m t |> the));
 
--- a/src/HOL/Fields.thy	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Fields.thy	Wed Feb 10 08:54:56 2010 +0100
@@ -14,8 +14,8 @@
 begin
 
 class field = comm_ring_1 + inverse +
-  assumes field_inverse:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
-  assumes divide_inverse: "a / b = a * inverse b"
+  assumes field_inverse: "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
+  assumes field_divide_inverse: "a / b = a * inverse b"
 begin
 
 subclass division_ring
@@ -24,6 +24,9 @@
   assume "a \<noteq> 0"
   thus "inverse a * a = 1" by (rule field_inverse)
   thus "a * inverse a = 1" by (simp only: mult_commute)
+next
+  fix a b :: 'a
+  show "a / b = a * inverse b" by (rule field_divide_inverse)
 qed
 
 subclass idom ..
--- a/src/HOL/Groebner_Basis.thy	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Groebner_Basis.thy	Wed Feb 10 08:54:56 2010 +0100
@@ -489,7 +489,13 @@
   by (simp add: add_divide_distrib)
 lemma add_num_frac: "y\<noteq> 0 \<Longrightarrow> z + (x::'a::{field, division_by_zero}) / y = (x + z*y) / y"
   by (simp add: add_divide_distrib)
-ML{* let open Conv in fconv_rule (arg_conv (arg1_conv (rewr_conv (mk_meta_eq @{thm mult_commute}))))   (@{thm divide_inverse} RS sym)end*}
+
+ML {*
+let open Conv
+in fconv_rule (arg_conv (arg1_conv (rewr_conv (mk_meta_eq @{thm mult_commute})))) (@{thm field_divide_inverse} RS sym)
+end
+*}
+
 ML{* 
 local
  val zr = @{cpat "0"}
@@ -527,13 +533,13 @@
     val (l,r) = Thm.dest_binop ct
     val T = ctyp_of_term l
   in (case (term_of l, term_of r) of
-      (Const(@{const_name Algebras.divide},_)$_$_, _) =>
+      (Const(@{const_name Rings.divide},_)$_$_, _) =>
         let val (x,y) = Thm.dest_binop l val z = r
             val _ = map (HOLogic.dest_number o term_of) [x,y,z]
             val ynz = prove_nz ss T y
         in SOME (implies_elim (instantiate' [SOME T] (map SOME [y,x,z]) add_frac_num) ynz)
         end
-     | (_, Const (@{const_name Algebras.divide},_)$_$_) =>
+     | (_, Const (@{const_name Rings.divide},_)$_$_) =>
         let val (x,y) = Thm.dest_binop r val z = l
             val _ = map (HOLogic.dest_number o term_of) [x,y,z]
             val ynz = prove_nz ss T y
@@ -543,49 +549,49 @@
   end
   handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE
 
- fun is_number (Const(@{const_name Algebras.divide},_)$a$b) = is_number a andalso is_number b
+ fun is_number (Const(@{const_name Rings.divide},_)$a$b) = is_number a andalso is_number b
    | is_number t = can HOLogic.dest_number t
 
  val is_number = is_number o term_of
 
  fun proc3 phi ss ct =
   (case term_of ct of
-    Const(@{const_name Algebras.less},_)$(Const(@{const_name Algebras.divide},_)$_$_)$_ =>
+    Const(@{const_name Algebras.less},_)$(Const(@{const_name Rings.divide},_)$_$_)$_ =>
       let
         val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
         val _ = map is_number [a,b,c]
         val T = ctyp_of_term c
         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_less_eq"}
       in SOME (mk_meta_eq th) end
-  | Const(@{const_name Algebras.less_eq},_)$(Const(@{const_name Algebras.divide},_)$_$_)$_ =>
+  | Const(@{const_name Algebras.less_eq},_)$(Const(@{const_name Rings.divide},_)$_$_)$_ =>
       let
         val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
         val _ = map is_number [a,b,c]
         val T = ctyp_of_term c
         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_le_eq"}
       in SOME (mk_meta_eq th) end
-  | Const("op =",_)$(Const(@{const_name Algebras.divide},_)$_$_)$_ =>
+  | Const("op =",_)$(Const(@{const_name Rings.divide},_)$_$_)$_ =>
       let
         val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
         val _ = map is_number [a,b,c]
         val T = ctyp_of_term c
         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_eq_eq"}
       in SOME (mk_meta_eq th) end
-  | Const(@{const_name Algebras.less},_)$_$(Const(@{const_name Algebras.divide},_)$_$_) =>
+  | Const(@{const_name Algebras.less},_)$_$(Const(@{const_name Rings.divide},_)$_$_) =>
     let
       val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
         val _ = map is_number [a,b,c]
         val T = ctyp_of_term c
         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "less_divide_eq"}
       in SOME (mk_meta_eq th) end
-  | Const(@{const_name Algebras.less_eq},_)$_$(Const(@{const_name Algebras.divide},_)$_$_) =>
+  | Const(@{const_name Algebras.less_eq},_)$_$(Const(@{const_name Rings.divide},_)$_$_) =>
     let
       val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
         val _ = map is_number [a,b,c]
         val T = ctyp_of_term c
         val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "le_divide_eq"}
       in SOME (mk_meta_eq th) end
-  | Const("op =",_)$_$(Const(@{const_name Algebras.divide},_)$_$_) =>
+  | Const("op =",_)$_$(Const(@{const_name Rings.divide},_)$_$_) =>
     let
       val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
         val _ = map is_number [a,b,c]
@@ -628,9 +634,9 @@
            @{thm "times_divide_eq_left"}, @{thm "divide_divide_eq_right"},
            @{thm "diff_def"}, @{thm "minus_divide_left"},
            @{thm "Numeral1_eq1_nat"}, @{thm "add_divide_distrib"} RS sym,
-           @{thm divide_inverse} RS sym, @{thm inverse_divide}, 
+           @{thm field_divide_inverse} RS sym, @{thm inverse_divide}, 
            fconv_rule (arg_conv (arg1_conv (rewr_conv (mk_meta_eq @{thm mult_commute}))))   
-           (@{thm divide_inverse} RS sym)]
+           (@{thm field_divide_inverse} RS sym)]
 
 val comp_conv = (Simplifier.rewrite
 (HOL_basic_ss addsimps @{thms "Groebner_Basis.comp_arith"}
@@ -645,15 +651,15 @@
 
 fun numeral_is_const ct =
   case term_of ct of
-   Const (@{const_name Algebras.divide},_) $ a $ b =>
+   Const (@{const_name Rings.divide},_) $ a $ b =>
      can HOLogic.dest_number a andalso can HOLogic.dest_number b
- | Const (@{const_name Algebras.inverse},_)$t => can HOLogic.dest_number t
+ | Const (@{const_name Rings.inverse},_)$t => can HOLogic.dest_number t
  | t => can HOLogic.dest_number t
 
 fun dest_const ct = ((case term_of ct of
-   Const (@{const_name Algebras.divide},_) $ a $ b=>
+   Const (@{const_name Rings.divide},_) $ a $ b=>
     Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b))
- | Const (@{const_name Algebras.inverse},_)$t => 
+ | Const (@{const_name Rings.inverse},_)$t => 
                Rat.inv (Rat.rat_of_int (snd (HOLogic.dest_number t)))
  | t => Rat.rat_of_int (snd (HOLogic.dest_number t))) 
    handle TERM _ => error "ring_dest_const")
--- a/src/HOL/Import/HOL/real.imp	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Import/HOL/real.imp	Wed Feb 10 08:54:56 2010 +0100
@@ -17,7 +17,7 @@
   "real_ge" > "HOL4Compat.real_ge"
   "pow" > "Power.power_class.power" :: "real => nat => real"
   "abs" > "Algebras.abs" :: "real => real"
-  "/" > "Algebras.divide" :: "real => real => real"
+  "/" > "Ring.divide" :: "real => real => real"
 
 thm_maps
   "sup_def" > "HOL4Real.real.sup_def"
@@ -31,7 +31,7 @@
   "real_lt" > "Orderings.linorder_not_le"
   "real_gt" > "HOL4Compat.real_gt"
   "real_ge" > "HOL4Compat.real_ge"
-  "real_div" > "Rings.field_class.divide_inverse"
+  "real_div" > "Ring.divide_inverse"
   "pow" > "HOL4Compat.pow"
   "abs" > "HOL4Compat.abs"
   "SUP_LEMMA3" > "HOL4Real.real.SUP_LEMMA3"
--- a/src/HOL/Import/HOL/realax.imp	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Import/HOL/realax.imp	Wed Feb 10 08:54:56 2010 +0100
@@ -33,7 +33,7 @@
   "real_add" > "Algebras.plus_class.plus" :: "real => real => real"
   "real_1" > "Algebras.one_class.one" :: "real"
   "real_0" > "Algebras.zero_class.zero" :: "real"
-  "inv" > "Algebras.divide_class.inverse" :: "real => real"
+  "inv" > "Ring.inverse" :: "real => real"
   "hreal_of_treal" > "HOL4Real.realax.hreal_of_treal"
 
 thm_maps
--- a/src/HOL/NSA/StarDef.thy	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/NSA/StarDef.thy	Wed Feb 10 08:54:56 2010 +0100
@@ -893,6 +893,7 @@
 apply (intro_classes)
 apply (transfer, erule left_inverse)
 apply (transfer, erule right_inverse)
+apply (transfer, fact divide_inverse)
 done
 
 instance star :: (field) field
--- a/src/HOL/Rings.thy	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Rings.thy	Wed Feb 10 08:54:56 2010 +0100
@@ -410,9 +410,14 @@
 
 end
 
+class inverse =
+  fixes inverse :: "'a \<Rightarrow> 'a"
+    and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "'/" 70)
+
 class division_ring = ring_1 + inverse +
   assumes left_inverse [simp]:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
   assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1"
+  assumes divide_inverse: "a / b = a * inverse b"
 begin
 
 subclass ring_1_no_zero_divisors
--- a/src/HOL/Tools/Nitpick/nitpick_model.ML	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_model.ML	Wed Feb 10 08:54:56 2010 +0100
@@ -88,7 +88,7 @@
     Const (nth_atom_name pool "" T j k, T)
 
 (* term -> real *)
-fun extract_real_number (Const (@{const_name Algebras.divide}, _) $ t1 $ t2) =
+fun extract_real_number (Const (@{const_name Rings.divide}, _) $ t1 $ t2) =
     real (snd (HOLogic.dest_number t1)) / real (snd (HOLogic.dest_number t2))
   | extract_real_number t = real (snd (HOLogic.dest_number t))
 (* term * term -> order *)
@@ -459,7 +459,7 @@
                            0 => mk_num 0
                          | n1 => case HOLogic.dest_number t2 |> snd of
                                    1 => mk_num n1
-                                 | n2 => Const (@{const_name Algebras.divide},
+                                 | n2 => Const (@{const_name Rings.divide},
                                                 num_T --> num_T --> num_T)
                                          $ mk_num n1 $ mk_num n2)
                       | _ => raise TERM ("Nitpick_Model.reconstruct_term.\
--- a/src/HOL/Tools/lin_arith.ML	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Tools/lin_arith.ML	Wed Feb 10 08:54:56 2010 +0100
@@ -150,7 +150,7 @@
               (SOME t', m'') => (SOME (mC $ s' $ t'), m'')
             | (NONE,    m'') => (SOME s', m''))
         | (NONE,    m') => demult (t, m')))
-    | demult ((mC as Const (@{const_name Algebras.divide}, _)) $ s $ t, m) =
+    | demult ((mC as Const (@{const_name Rings.divide}, _)) $ s $ t, m) =
       (* FIXME: Shouldn't we simplify nested quotients, e.g. '(s/t)/u' could
          become 's/(t*u)', and '(s*t)/u' could become 's*(t/u)' ?   Note that
          if we choose to do so here, the simpset used by arith must be able to
@@ -212,7 +212,7 @@
         (case demult inj_consts (all, m) of
            (NONE,   m') => (p, Rat.add i m')
          | (SOME u, m') => add_atom u m' pi)
-    | poly (all as Const (@{const_name Algebras.divide}, _) $ _ $ _, m, pi as (p, i)) =
+    | poly (all as Const (@{const_name Rings.divide}, _) $ _ $ _, m, pi as (p, i)) =
         (case demult inj_consts (all, m) of
            (NONE,   m') => (p, Rat.add i m')
          | (SOME u, m') => add_atom u m' pi)
--- a/src/HOL/Tools/numeral_simprocs.ML	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/Tools/numeral_simprocs.ML	Wed Feb 10 08:54:56 2010 +0100
@@ -96,7 +96,7 @@
   Fractions are reduced later by the cancel_numeral_factor simproc.*)
 fun add_frac ((p1, q1), (p2, q2)) = (p1 * q2 + p2 * q1, q1 * q2);
 
-val mk_divide = HOLogic.mk_binop @{const_name Algebras.divide};
+val mk_divide = HOLogic.mk_binop @{const_name Rings.divide};
 
 (*Build term (p / q) * t*)
 fun mk_fcoeff ((p, q), t) =
@@ -105,7 +105,7 @@
 
 (*Express t as a product of a fraction with other sorted terms*)
 fun dest_fcoeff sign (Const (@{const_name Algebras.uminus}, _) $ t) = dest_fcoeff (~sign) t
-  | dest_fcoeff sign (Const (@{const_name Algebras.divide}, _) $ t $ u) =
+  | dest_fcoeff sign (Const (@{const_name Rings.divide}, _) $ t $ u) =
     let val (p, t') = dest_coeff sign t
         val (q, u') = dest_coeff 1 u
     in (mk_frac (p, q), mk_divide (t', u')) end
@@ -391,8 +391,8 @@
 structure DivideCancelNumeralFactor = CancelNumeralFactorFun
  (open CancelNumeralFactorCommon
   val prove_conv = Arith_Data.prove_conv
-  val mk_bal   = HOLogic.mk_binop @{const_name Algebras.divide}
-  val dest_bal = HOLogic.dest_bin @{const_name Algebras.divide} Term.dummyT
+  val mk_bal   = HOLogic.mk_binop @{const_name Rings.divide}
+  val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} Term.dummyT
   val cancel = @{thm mult_divide_mult_cancel_left} RS trans
   val neg_exchanges = false
 )
@@ -570,8 +570,8 @@
 structure DivideCancelFactor = ExtractCommonTermFun
  (open CancelFactorCommon
   val prove_conv = Arith_Data.prove_conv
-  val mk_bal   = HOLogic.mk_binop @{const_name Algebras.divide}
-  val dest_bal = HOLogic.dest_bin @{const_name Algebras.divide} Term.dummyT
+  val mk_bal   = HOLogic.mk_binop @{const_name Rings.divide}
+  val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} Term.dummyT
   fun simp_conv _ _ = SOME @{thm mult_divide_mult_cancel_left_if}
 );
 
--- a/src/HOL/ex/SVC_Oracle.thy	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/ex/SVC_Oracle.thy	Wed Feb 10 08:54:56 2010 +0100
@@ -65,7 +65,7 @@
     (*abstraction of a real/rational expression*)
     fun rat ((c as Const(@{const_name Algebras.plus}, _)) $ x $ y) = c $ (rat x) $ (rat y)
       | rat ((c as Const(@{const_name Algebras.minus}, _)) $ x $ y) = c $ (rat x) $ (rat y)
-      | rat ((c as Const(@{const_name Algebras.divide}, _)) $ x $ y) = c $ (rat x) $ (rat y)
+      | rat ((c as Const(@{const_name Rings.divide}, _)) $ x $ y) = c $ (rat x) $ (rat y)
       | rat ((c as Const(@{const_name Algebras.times}, _)) $ x $ y) = c $ (rat x) $ (rat y)
       | rat ((c as Const(@{const_name Algebras.uminus}, _)) $ x) = c $ (rat x)
       | rat t = lit t
--- a/src/HOL/ex/svc_funcs.ML	Wed Feb 10 00:51:54 2010 +0100
+++ b/src/HOL/ex/svc_funcs.ML	Wed Feb 10 08:54:56 2010 +0100
@@ -173,7 +173,7 @@
       | tm (Const(@{const_name Algebras.times}, T) $ x $ y) =
           if is_numeric_op T then Interp("*", [tm x, tm y])
           else fail t
-      | tm (Const(@{const_name Algebras.inverse}, T) $ x) =
+      | tm (Const(@{const_name Rings.inverse}, T) $ x) =
           if domain_type T = HOLogic.realT then
               Rat(1, litExp x)
           else fail t