merged
authorpaulson
Thu, 14 Jun 2018 14:23:48 +0100
changeset 68446 92ddca1edc43
parent 68441 3b11d48a711a (current diff)
parent 68445 c183a6a69f2d (diff)
child 68447 0beb927eed89
merged
src/HOL/Algebra/More_Finite_Product.thy
src/HOL/Algebra/More_Group.thy
src/HOL/Algebra/More_Ring.thy
--- a/src/HOL/Algebra/AbelCoset.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/AbelCoset.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -17,45 +17,42 @@
 
 definition
   a_r_coset    :: "[_, 'a set, 'a] \<Rightarrow> 'a set"    (infixl "+>\<index>" 60)
-  where "a_r_coset G = r_coset \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  where "a_r_coset G = r_coset (add_monoid G)"
 
 definition
   a_l_coset    :: "[_, 'a, 'a set] \<Rightarrow> 'a set"    (infixl "<+\<index>" 60)
-  where "a_l_coset G = l_coset \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  where "a_l_coset G = l_coset (add_monoid G)"
 
 definition
   A_RCOSETS  :: "[_, 'a set] \<Rightarrow> ('a set)set"   ("a'_rcosets\<index> _" [81] 80)
-  where "A_RCOSETS G H = RCOSETS \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> H"
+  where "A_RCOSETS G H = RCOSETS (add_monoid G) H"
 
 definition
   set_add  :: "[_, 'a set ,'a set] \<Rightarrow> 'a set" (infixl "<+>\<index>" 60)
-  where "set_add G = set_mult \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  where "set_add G = set_mult (add_monoid G)"
 
 definition
   A_SET_INV :: "[_,'a set] \<Rightarrow> 'a set"  ("a'_set'_inv\<index> _" [81] 80)
-  where "A_SET_INV G H = SET_INV \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> H"
+  where "A_SET_INV G H = SET_INV (add_monoid G) H"
 
 definition
   a_r_congruent :: "[('a,'b)ring_scheme, 'a set] \<Rightarrow> ('a*'a)set"  ("racong\<index>")
-  where "a_r_congruent G = r_congruent \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  where "a_r_congruent G = r_congruent (add_monoid G)"
 
 definition
   A_FactGroup :: "[('a,'b) ring_scheme, 'a set] \<Rightarrow> ('a set) monoid" (infixl "A'_Mod" 65)
     \<comment> \<open>Actually defined for groups rather than monoids\<close>
-  where "A_FactGroup G H = FactGroup \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> H"
+  where "A_FactGroup G H = FactGroup (add_monoid G) H"
 
 definition
   a_kernel :: "('a, 'm) ring_scheme \<Rightarrow> ('b, 'n) ring_scheme \<Rightarrow>  ('a \<Rightarrow> 'b) \<Rightarrow> 'a set"
     \<comment> \<open>the kernel of a homomorphism (additive)\<close>
-  where "a_kernel G H h =
-    kernel \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>
-      \<lparr>carrier = carrier H, mult = add H, one = zero H\<rparr> h"
+  where "a_kernel G H h = kernel (add_monoid G) (add_monoid H) h"
 
 locale abelian_group_hom = G?: abelian_group G + H?: abelian_group H
     for G (structure) and H (structure) +
   fixes h
-  assumes a_group_hom: "group_hom \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>
-                                  \<lparr>carrier = carrier H, mult = add H, one = zero H\<rparr> h"
+  assumes a_group_hom: "group_hom (add_monoid G) (add_monoid H) h"
 
 lemmas a_r_coset_defs =
   a_r_coset_def r_coset_def
@@ -63,8 +60,7 @@
 lemma a_r_coset_def':
   fixes G (structure)
   shows "H +> a \<equiv> \<Union>h\<in>H. {h \<oplus> a}"
-unfolding a_r_coset_defs
-by simp
+  unfolding a_r_coset_defs by simp
 
 lemmas a_l_coset_defs =
   a_l_coset_def l_coset_def
@@ -72,8 +68,7 @@
 lemma a_l_coset_def':
   fixes G (structure)
   shows "a <+ H \<equiv> \<Union>h\<in>H. {a \<oplus> h}"
-unfolding a_l_coset_defs
-by simp
+  unfolding a_l_coset_defs by simp
 
 lemmas A_RCOSETS_defs =
   A_RCOSETS_def RCOSETS_def
@@ -81,8 +76,7 @@
 lemma A_RCOSETS_def':
   fixes G (structure)
   shows "a_rcosets H \<equiv> \<Union>a\<in>carrier G. {H +> a}"
-unfolding A_RCOSETS_defs
-by (fold a_r_coset_def, simp)
+  unfolding A_RCOSETS_defs by (fold a_r_coset_def, simp)
 
 lemmas set_add_defs =
   set_add_def set_mult_def
@@ -90,8 +84,7 @@
 lemma set_add_def':
   fixes G (structure)
   shows "H <+> K \<equiv> \<Union>h\<in>H. \<Union>k\<in>K. {h \<oplus> k}"
-unfolding set_add_defs
-by simp
+  unfolding set_add_defs by simp
 
 lemmas A_SET_INV_defs =
   A_SET_INV_def SET_INV_def
@@ -99,18 +92,53 @@
 lemma A_SET_INV_def':
   fixes G (structure)
   shows "a_set_inv H \<equiv> \<Union>h\<in>H. {\<ominus> h}"
-unfolding A_SET_INV_defs
-by (fold a_inv_def)
+  unfolding A_SET_INV_defs by (fold a_inv_def)
 
 
 subsubsection \<open>Cosets\<close>
 
+sublocale abelian_group <
+        add: group "(add_monoid G)"
+  rewrites "carrier (add_monoid G) =   carrier G"
+       and "   mult (add_monoid G) =       add G"
+       and "    one (add_monoid G) =      zero G"
+       and "  m_inv (add_monoid G) =     a_inv G"
+       and "finprod (add_monoid G) =    finsum G"
+       and "r_coset (add_monoid G) = a_r_coset G"
+       and "l_coset (add_monoid G) = a_l_coset G"
+       and "(\<lambda>a k. pow (add_monoid G) a k) = (\<lambda>a k. add_pow G k a)"
+  by (rule a_group)
+     (auto simp: m_inv_def a_inv_def finsum_def a_r_coset_def a_l_coset_def add_pow_def)
+
+context abelian_group
+begin
+
+thm add.coset_mult_assoc
+lemmas a_repr_independence' = add.repr_independence
+
+(*
+lemmas a_coset_add_assoc = add.coset_mult_assoc
+lemmas a_coset_add_zero [simp] = add.coset_mult_one
+lemmas a_coset_add_inv1 = add.coset_mult_inv1
+lemmas a_coset_add_inv2 = add.coset_mult_inv2
+lemmas a_coset_join1 = add.coset_join1
+lemmas a_coset_join2 = add.coset_join2
+lemmas a_solve_equation = add.solve_equation
+lemmas a_repr_independence = add.repr_independence
+lemmas a_rcosI = add.rcosI
+lemmas a_rcosetsI = add.rcosetsI
+*)
+
+end
+
 lemma (in abelian_group) a_coset_add_assoc:
      "[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
       ==> (M +> g) +> h = M +> (g \<oplus> h)"
 by (rule group.coset_mult_assoc [OF a_group,
     folded a_r_coset_def, simplified monoid_record_simps])
 
+thm abelian_group.a_coset_add_assoc
+
 lemma (in abelian_group) a_coset_add_zero [simp]:
   "M \<subseteq> carrier G ==> M +> \<zero> = M"
 by (rule group.coset_mult_one [OF a_group,
@@ -129,22 +157,22 @@
     folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
 
 lemma (in abelian_group) a_coset_join1:
-     "[| H +> x = H;  x \<in> carrier G;  subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> |] ==> x \<in> H"
+     "[| H +> x = H;  x \<in> carrier G;  subgroup H (add_monoid G) |] ==> x \<in> H"
 by (rule group.coset_join1 [OF a_group,
     folded a_r_coset_def, simplified monoid_record_simps])
 
 lemma (in abelian_group) a_solve_equation:
-    "\<lbrakk>subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>; x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> \<exists>h\<in>H. y = h \<oplus> x"
+    "\<lbrakk>subgroup H (add_monoid G); x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> \<exists>h\<in>H. y = h \<oplus> x"
 by (rule group.solve_equation [OF a_group,
     folded a_r_coset_def, simplified monoid_record_simps])
 
 lemma (in abelian_group) a_repr_independence:
-     "\<lbrakk>y \<in> H +> x;  x \<in> carrier G; subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> \<rbrakk> \<Longrightarrow> H +> x = H +> y"
-by (rule group.repr_independence [OF a_group,
-    folded a_r_coset_def, simplified monoid_record_simps])
+  "\<lbrakk> y \<in> H +> x; x \<in> carrier G; subgroup H (add_monoid G) \<rbrakk> \<Longrightarrow>
+     H +> x = H +> y"
+  using a_repr_independence' by (simp add: a_r_coset_def)
 
 lemma (in abelian_group) a_coset_join2:
-     "\<lbrakk>x \<in> carrier G;  subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>; x\<in>H\<rbrakk> \<Longrightarrow> H +> x = H"
+     "\<lbrakk>x \<in> carrier G;  subgroup H (add_monoid G); x\<in>H\<rbrakk> \<Longrightarrow> H +> x = H"
 by (rule group.coset_join2 [OF a_group,
     folded a_r_coset_def, simplified monoid_record_simps])
 
@@ -167,23 +195,15 @@
 lemma (in abelian_group) a_transpose_inv:
      "[| x \<oplus> y = z;  x \<in> carrier G;  y \<in> carrier G;  z \<in> carrier G |]
       ==> (\<ominus> x) \<oplus> z = y"
-by (rule group.transpose_inv [OF a_group,
-    folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
+  using r_neg1 by blast
 
-(*
---"duplicate"
-lemma (in abelian_group) a_rcos_self:
-     "[| x \<in> carrier G; subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> |] ==> x \<in> H +> x"
-by (rule group.rcos_self [OF a_group,
-    folded a_r_coset_def, simplified monoid_record_simps])
-*)
 
 
 subsubsection \<open>Subgroups\<close>
 
 locale additive_subgroup =
   fixes H and G (structure)
-  assumes a_subgroup: "subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  assumes a_subgroup: "subgroup H (add_monoid G)"
 
 lemma (in additive_subgroup) is_additive_subgroup:
   shows "additive_subgroup H G"
@@ -191,7 +211,7 @@
 
 lemma additive_subgroupI:
   fixes G (structure)
-  assumes a_subgroup: "subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  assumes a_subgroup: "subgroup H (add_monoid G)"
   shows "additive_subgroup H G"
 by (rule additive_subgroup.intro) (rule a_subgroup)
 
@@ -221,18 +241,18 @@
 text \<open>Every subgroup of an \<open>abelian_group\<close> is normal\<close>
 
 locale abelian_subgroup = additive_subgroup + abelian_group G +
-  assumes a_normal: "normal H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  assumes a_normal: "normal H (add_monoid G)"
 
 lemma (in abelian_subgroup) is_abelian_subgroup:
   shows "abelian_subgroup H G"
 by (rule abelian_subgroup_axioms)
 
 lemma abelian_subgroupI:
-  assumes a_normal: "normal H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  assumes a_normal: "normal H (add_monoid G)"
       and a_comm: "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<oplus>\<^bsub>G\<^esub> y = y \<oplus>\<^bsub>G\<^esub> x"
   shows "abelian_subgroup H G"
 proof -
-  interpret normal "H" "\<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  interpret normal "H" "(add_monoid G)"
     by (rule a_normal)
 
   show "abelian_subgroup H G"
@@ -241,13 +261,13 @@
 
 lemma abelian_subgroupI2:
   fixes G (structure)
-  assumes a_comm_group: "comm_group \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
-      and a_subgroup: "subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  assumes a_comm_group: "comm_group (add_monoid G)"
+      and a_subgroup: "subgroup H (add_monoid G)"
   shows "abelian_subgroup H G"
 proof -
-  interpret comm_group "\<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  interpret comm_group "(add_monoid G)"
     by (rule a_comm_group)
-  interpret subgroup "H" "\<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  interpret subgroup "H" "(add_monoid G)"
     by (rule a_subgroup)
 
   show "abelian_subgroup H G"
@@ -264,13 +284,10 @@
 
 lemma abelian_subgroupI3:
   fixes G (structure)
-  assumes asg: "additive_subgroup H G"
-      and ag: "abelian_group G"
+  assumes "additive_subgroup H G"
+    and "abelian_group G"
   shows "abelian_subgroup H G"
-apply (rule abelian_subgroupI2)
- apply (rule abelian_group.a_comm_group[OF ag])
-apply (rule additive_subgroup.a_subgroup[OF asg])
-done
+  using assms abelian_subgroupI2 abelian_group.a_comm_group additive_subgroup_def by blast
 
 lemma (in abelian_subgroup) a_coset_eq:
      "(\<forall>x \<in> carrier G. H +> x = x <+ H)"
@@ -289,15 +306,14 @@
 
 text\<open>Alternative characterization of normal subgroups\<close>
 lemma (in abelian_group) a_normal_inv_iff:
-     "(N \<lhd> \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>) = 
-      (subgroup N \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> \<and> (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<oplus> h \<oplus> (\<ominus> x) \<in> N))"
+     "(N \<lhd> (add_monoid G)) = 
+      (subgroup N (add_monoid G) & (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<oplus> h \<oplus> (\<ominus> x) \<in> N))"
       (is "_ = ?rhs")
 by (rule group.normal_inv_iff [OF a_group,
     folded a_inv_def, simplified monoid_record_simps])
 
 lemma (in abelian_group) a_lcos_m_assoc:
-     "[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
-      ==> g <+ (h <+ M) = (g \<oplus> h) <+ M"
+  "\<lbrakk> M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G \<rbrakk> \<Longrightarrow> g <+ (h <+ M) = (g \<oplus> h) <+ M"
 by (rule group.lcos_m_assoc [OF a_group,
     folded a_l_coset_def, simplified monoid_record_simps])
 
@@ -308,33 +324,28 @@
 
 
 lemma (in abelian_group) a_l_coset_subset_G:
-     "[| H \<subseteq> carrier G; x \<in> carrier G |] ==> x <+ H \<subseteq> carrier G"
+  "\<lbrakk> H \<subseteq> carrier G; x \<in> carrier G \<rbrakk> \<Longrightarrow> x <+ H \<subseteq> carrier G"
 by (rule group.l_coset_subset_G [OF a_group,
     folded a_l_coset_def, simplified monoid_record_simps])
 
 
 lemma (in abelian_group) a_l_coset_swap:
-     "\<lbrakk>y \<in> x <+ H;  x \<in> carrier G;  subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>\<rbrakk> \<Longrightarrow> x \<in> y <+ H"
+     "\<lbrakk>y \<in> x <+ H;  x \<in> carrier G;  subgroup H (add_monoid G)\<rbrakk> \<Longrightarrow> x \<in> y <+ H"
 by (rule group.l_coset_swap [OF a_group,
     folded a_l_coset_def, simplified monoid_record_simps])
 
 lemma (in abelian_group) a_l_coset_carrier:
-     "[| y \<in> x <+ H;  x \<in> carrier G;  subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> |] ==> y \<in> carrier G"
+     "[| y \<in> x <+ H;  x \<in> carrier G;  subgroup H (add_monoid G) |] ==> y \<in> carrier G"
 by (rule group.l_coset_carrier [OF a_group,
     folded a_l_coset_def, simplified monoid_record_simps])
 
 lemma (in abelian_group) a_l_repr_imp_subset:
-  assumes y: "y \<in> x <+ H" and x: "x \<in> carrier G" and sb: "subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  assumes "y \<in> x <+ H" "x \<in> carrier G" "subgroup H (add_monoid G)"
   shows "y <+ H \<subseteq> x <+ H"
-apply (rule group.l_repr_imp_subset [OF a_group,
-    folded a_l_coset_def, simplified monoid_record_simps])
-apply (rule y)
-apply (rule x)
-apply (rule sb)
-done
+  by (metis (full_types) a_l_coset_defs(1) add.l_repr_independence assms set_eq_subset)
 
 lemma (in abelian_group) a_l_repr_independence:
-  assumes y: "y \<in> x <+ H" and x: "x \<in> carrier G" and sb: "subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  assumes y: "y \<in> x <+ H" and x: "x \<in> carrier G" and sb: "subgroup H (add_monoid G)"
   shows "x <+ H = y <+ H"
 apply (rule group.l_repr_independence [OF a_group,
     folded a_l_coset_def, simplified monoid_record_simps])
@@ -348,7 +359,7 @@
 by (rule group.setmult_subset_G [OF a_group,
     folded set_add_def, simplified monoid_record_simps])
 
-lemma (in abelian_group) subgroup_add_id: "subgroup H \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> \<Longrightarrow> H <+> H = H"
+lemma (in abelian_group) subgroup_add_id: "subgroup H (add_monoid G) \<Longrightarrow> H <+> H = H"
 by (rule group.subgroup_mult_id [OF a_group,
     folded set_add_def, simplified monoid_record_simps])
 
@@ -427,8 +438,7 @@
 lemma (in abelian_group) a_card_cosets_equal:
      "\<lbrakk>c \<in> a_rcosets H;  H \<subseteq> carrier G; finite(carrier G)\<rbrakk>
       \<Longrightarrow> card c = card H"
-by (rule group.card_cosets_equal [OF a_group,
-    folded A_RCOSETS_def, simplified monoid_record_simps])
+  by (simp add: A_RCOSETS_defs(1) add.card_rcosets_equal)
 
 lemma (in abelian_group) rcosets_subset_PowG:
      "additive_subgroup H G  \<Longrightarrow> a_rcosets H \<subseteq> Pow(carrier G)"
@@ -509,7 +519,7 @@
 text\<open>The coset map is a homomorphism from @{term G} to the quotient group
   @{term "G Mod H"}\<close>
 lemma (in abelian_subgroup) a_r_coset_hom_A_Mod:
-  "(\<lambda>a. H +> a) \<in> hom \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> (G A_Mod H)"
+  "(\<lambda>a. H +> a) \<in> hom (add_monoid G) (G A_Mod H)"
 by (rule normal.r_coset_hom_Mod [OF a_normal,
     folded A_FactGroup_def a_r_coset_def, simplified monoid_record_simps])
 
@@ -535,8 +545,8 @@
 lemma abelian_group_homI:
   assumes "abelian_group G"
   assumes "abelian_group H"
-  assumes a_group_hom: "group_hom \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>
-                                  \<lparr>carrier = carrier H, mult = add H, one = zero H\<rparr> h"
+  assumes a_group_hom: "group_hom (add_monoid G)
+                                  (add_monoid H) h"
   shows "abelian_group_hom G H h"
 proof -
   interpret G: abelian_group G by fact
@@ -614,7 +624,7 @@
 
 lemma (in abelian_group_hom) A_FactGroup_hom:
      "(\<lambda>X. the_elem (h`X)) \<in> hom (G A_Mod (a_kernel G H h))
-          \<lparr>carrier = carrier H, mult = add H, one = zero H\<rparr>"
+          (add_monoid H)"
 by (rule group_hom.FactGroup_hom[OF a_group_hom,
     folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
 
@@ -633,13 +643,16 @@
 
 text\<open>If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
  quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.\<close>
-theorem (in abelian_group_hom) A_FactGroup_iso:
+theorem (in abelian_group_hom) A_FactGroup_iso_set:
   "h ` carrier G = carrier H
-   \<Longrightarrow> (\<lambda>X. the_elem (h`X)) \<in> (G A_Mod (a_kernel G H h)) \<cong>
-          \<lparr>carrier = carrier H, mult = add H, one = zero H\<rparr>"
-by (rule group_hom.FactGroup_iso[OF a_group_hom,
+   \<Longrightarrow> (\<lambda>X. the_elem (h`X)) \<in> iso (G A_Mod (a_kernel G H h)) (add_monoid H)"
+by (rule group_hom.FactGroup_iso_set[OF a_group_hom,
     folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
 
+corollary (in abelian_group_hom) A_FactGroup_iso :
+  "h ` carrier G = carrier H
+   \<Longrightarrow>  (G A_Mod (a_kernel G H h)) \<cong>  (add_monoid H)"
+  using A_FactGroup_iso_set unfolding is_iso_def by auto
 
 subsubsection \<open>Cosets\<close>
 
--- a/src/HOL/Algebra/Congruence.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/Congruence.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -43,6 +43,10 @@
   where "class_of\<^bsub>S\<^esub> x = {y \<in> carrier S. x .=\<^bsub>S\<^esub> y}"
 
 definition
+  eq_classes :: "_ \<Rightarrow> ('a set) set" ("classes\<index>")
+  where "classes\<^bsub>S\<^esub> = {class_of\<^bsub>S\<^esub> x | x. x \<in> carrier S}"
+
+definition
   eq_closure_of :: "_ \<Rightarrow> 'a set \<Rightarrow> 'a set" ("closure'_of\<index>")
   where "closure_of\<^bsub>S\<^esub> A = {y \<in> carrier S. y .\<in>\<^bsub>S\<^esub> A}"
 
@@ -69,235 +73,148 @@
     and trans [trans]:
       "\<lbrakk> x .= y; y .= z; x \<in> carrier S; y \<in> carrier S; z \<in> carrier S \<rbrakk> \<Longrightarrow> x .= z"
 
+lemma equivalenceI:
+  fixes P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and E :: "'a set"
+  assumes refl: "\<And>x.     \<lbrakk> x \<in> E \<rbrakk> \<Longrightarrow> P x x"
+    and    sym: "\<And>x y.   \<lbrakk> x \<in> E; y \<in> E \<rbrakk> \<Longrightarrow> P x y \<Longrightarrow> P y x"
+    and  trans: "\<And>x y z. \<lbrakk> x \<in> E; y \<in> E; z \<in> E \<rbrakk> \<Longrightarrow> P x y \<Longrightarrow> P y z \<Longrightarrow> P x z"
+  shows "equivalence \<lparr> carrier = E, eq = P \<rparr>"
+  unfolding equivalence_def using assms
+  by (metis eq_object.select_convs(1) partial_object.select_convs(1))
+
+locale partition =
+  fixes A :: "'a set" and B :: "('a set) set"
+  assumes unique_class: "\<And>a. a \<in> A \<Longrightarrow> \<exists>!b \<in> B. a \<in> b"
+    and incl: "\<And>b. b \<in> B \<Longrightarrow> b \<subseteq> A"
+
+lemma equivalence_subset:
+  assumes "equivalence L" "A \<subseteq> carrier L"
+  shows "equivalence (L\<lparr> carrier := A \<rparr>)"
+proof -
+  interpret L: equivalence L
+    by (simp add: assms)
+  show ?thesis
+    by (unfold_locales, simp_all add: L.sym assms rev_subsetD, meson L.trans assms(2) contra_subsetD)
+qed
+
+
 (* Lemmas by Stephan Hohe *)
 
 lemma elemI:
   fixes R (structure)
-  assumes "a' \<in> A" and "a .= a'"
+  assumes "a' \<in> A" "a .= a'"
   shows "a .\<in> A"
-unfolding elem_def
-using assms
-by fast
+  unfolding elem_def using assms by auto
 
 lemma (in equivalence) elem_exact:
-  assumes "a \<in> carrier S" and "a \<in> A"
+  assumes "a \<in> carrier S" "a \<in> A"
   shows "a .\<in> A"
-using assms
-by (fast intro: elemI)
+  unfolding elem_def using assms by auto
 
 lemma elemE:
   fixes S (structure)
   assumes "a .\<in> A"
     and "\<And>a'. \<lbrakk>a' \<in> A; a .= a'\<rbrakk> \<Longrightarrow> P"
   shows "P"
-using assms
-unfolding elem_def
-by fast
+  using assms unfolding elem_def by auto
 
 lemma (in equivalence) elem_cong_l [trans]:
-  assumes cong: "a' .= a"
-    and a: "a .\<in> A"
-    and carr: "a \<in> carrier S"  "a' \<in> carrier S"
-    and Acarr: "A \<subseteq> carrier S"
+  assumes "a \<in> carrier S"  "a' \<in> carrier S" "A \<subseteq> carrier S"
+    and "a' .= a" "a .\<in> A"
   shows "a' .\<in> A"
-using a
-apply (elim elemE, intro elemI)
-proof assumption
-  fix b
-  assume bA: "b \<in> A"
-  note [simp] = carr bA[THEN subsetD[OF Acarr]]
-  note cong
-  also assume "a .= b"
-  finally show "a' .= b" by simp
-qed
+  using assms by (meson elem_def trans subsetCE)
 
 lemma (in equivalence) elem_subsetD:
-  assumes "A \<subseteq> B"
-    and aA: "a .\<in> A"
+  assumes "A \<subseteq> B" "a .\<in> A"
   shows "a .\<in> B"
-using assms
-by (fast intro: elemI elim: elemE dest: subsetD)
+  using assms by (fast intro: elemI elim: elemE dest: subsetD)
 
 lemma (in equivalence) mem_imp_elem [simp, intro]:
-  "\<lbrakk> x \<in> A; x \<in> carrier S \<rbrakk> \<Longrightarrow> x .\<in> A"
-  unfolding elem_def by blast
+  assumes "x \<in> carrier S"
+  shows "x \<in> A \<Longrightarrow> x .\<in> A"
+  using assms unfolding elem_def by blast
 
 lemma set_eqI:
   fixes R (structure)
-  assumes ltr: "\<And>a. a \<in> A \<Longrightarrow> a .\<in> B"
-    and rtl: "\<And>b. b \<in> B \<Longrightarrow> b .\<in> A"
+  assumes "\<And>a. a \<in> A \<Longrightarrow> a .\<in> B"
+    and   "\<And>b. b \<in> B \<Longrightarrow> b .\<in> A"
   shows "A {.=} B"
-unfolding set_eq_def
-by (fast intro: ltr rtl)
+  using assms unfolding set_eq_def by auto
 
 lemma set_eqI2:
   fixes R (structure)
-  assumes ltr: "\<And>a b. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a .= b"
-    and rtl: "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. b .= a"
+  assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b \<in> B. a .= b"
+    and   "\<And>b. b \<in> B \<Longrightarrow> \<exists>a \<in> A. b .= a"
   shows "A {.=} B"
-  by (intro set_eqI, unfold elem_def) (fast intro: ltr rtl)+
+  using assms by (simp add: set_eqI elem_def)  
 
 lemma set_eqD1:
   fixes R (structure)
-  assumes AA': "A {.=} A'"
-    and "a \<in> A"
+  assumes "A {.=} A'" and "a \<in> A"
   shows "\<exists>a'\<in>A'. a .= a'"
-using assms
-unfolding set_eq_def elem_def
-by fast
+  using assms by (simp add: set_eq_def elem_def)
 
 lemma set_eqD2:
   fixes R (structure)
-  assumes AA': "A {.=} A'"
-    and "a' \<in> A'"
+  assumes "A {.=} A'" and "a' \<in> A'"
   shows "\<exists>a\<in>A. a' .= a"
-using assms
-unfolding set_eq_def elem_def
-by fast
+  using assms by (simp add: set_eq_def elem_def)
 
 lemma set_eqE:
   fixes R (structure)
-  assumes AB: "A {.=} B"
-    and r: "\<lbrakk>\<forall>a\<in>A. a .\<in> B; \<forall>b\<in>B. b .\<in> A\<rbrakk> \<Longrightarrow> P"
+  assumes "A {.=} B"
+    and "\<lbrakk> \<forall>a \<in> A. a .\<in> B; \<forall>b \<in> B. b .\<in> A \<rbrakk> \<Longrightarrow> P"
   shows "P"
-using AB
-unfolding set_eq_def
-by (blast dest: r)
+  using assms unfolding set_eq_def by blast
 
 lemma set_eqE2:
   fixes R (structure)
-  assumes AB: "A {.=} B"
-    and r: "\<lbrakk>\<forall>a\<in>A. (\<exists>b\<in>B. a .= b); \<forall>b\<in>B. (\<exists>a\<in>A. b .= a)\<rbrakk> \<Longrightarrow> P"
+  assumes "A {.=} B"
+    and "\<lbrakk> \<forall>a \<in> A. \<exists>b \<in> B. a .= b; \<forall>b \<in> B. \<exists>a \<in> A. b .= a \<rbrakk> \<Longrightarrow> P"
   shows "P"
-using AB
-unfolding set_eq_def elem_def
-by (blast dest: r)
+  using assms unfolding set_eq_def by (simp add: elem_def) 
 
 lemma set_eqE':
   fixes R (structure)
-  assumes AB: "A {.=} B"
-    and aA: "a \<in> A" and bB: "b \<in> B"
-    and r: "\<And>a' b'. \<lbrakk>a' \<in> A; b .= a'; b' \<in> B; a .= b'\<rbrakk> \<Longrightarrow> P"
+  assumes "A {.=} B" "a \<in> A" "b \<in> B"
+    and "\<And>a' b'. \<lbrakk> a' \<in> A; b' \<in> B \<rbrakk> \<Longrightarrow> b .= a' \<Longrightarrow>  a .= b' \<Longrightarrow> P"
   shows "P"
-proof -
-  from AB aA
-      have "\<exists>b'\<in>B. a .= b'" by (rule set_eqD1)
-  from this obtain b'
-      where b': "b' \<in> B" "a .= b'" by auto
-
-  from AB bB
-      have "\<exists>a'\<in>A. b .= a'" by (rule set_eqD2)
-  from this obtain a'
-      where a': "a' \<in> A" "b .= a'" by auto
-
-  from a' b'
-      show "P" by (rule r)
-qed
+  using assms by (meson set_eqE2)
 
 lemma (in equivalence) eq_elem_cong_r [trans]:
-  assumes a: "a .\<in> A"
-    and cong: "A {.=} A'"
-    and carr: "a \<in> carrier S"
-    and Carr: "A \<subseteq> carrier S" "A' \<subseteq> carrier S"
-  shows "a .\<in> A'"
-using a cong
-proof (elim elemE set_eqE)
-  fix b
-  assume bA: "b \<in> A"
-     and inA': "\<forall>b\<in>A. b .\<in> A'"
-  note [simp] = carr Carr Carr[THEN subsetD] bA
-  assume "a .= b"
-  also from bA inA'
-       have "b .\<in> A'" by fast
-  finally
-       show "a .\<in> A'" by simp
-qed
+  assumes "A \<subseteq> carrier S" "A' \<subseteq> carrier S" "A {.=} A'"
+  shows "\<lbrakk> a \<in> carrier S \<rbrakk> \<Longrightarrow> a .\<in> A \<Longrightarrow> a .\<in> A'"
+  using assms by (meson elemE elem_cong_l set_eqE subset_eq)
 
 lemma (in equivalence) set_eq_sym [sym]:
-  assumes "A {.=} B"
-  shows "B {.=} A"
-using assms
-unfolding set_eq_def elem_def
-by fast
+  assumes "A \<subseteq> carrier S" "B \<subseteq> carrier S"
+  shows "A {.=} B \<Longrightarrow> B {.=} A"
+  using assms unfolding set_eq_def elem_def by auto
 
 lemma (in equivalence) equal_set_eq_trans [trans]:
-  assumes AB: "A = B" and BC: "B {.=} C"
-  shows "A {.=} C"
-  using AB BC by simp
+  "\<lbrakk> A = B; B {.=} C \<rbrakk> \<Longrightarrow> A {.=} C"
+  by simp
 
 lemma (in equivalence) set_eq_equal_trans [trans]:
-  assumes AB: "A {.=} B" and BC: "B = C"
-  shows "A {.=} C"
-  using AB BC by simp
+  "\<lbrakk> A {.=} B; B = C \<rbrakk> \<Longrightarrow> A {.=} C"
+  by simp
 
-lemma (in equivalence) set_eq_trans [trans]:
-  assumes AB: "A {.=} B" and BC: "B {.=} C"
-    and carr: "A \<subseteq> carrier S"  "B \<subseteq> carrier S"  "C \<subseteq> carrier S"
+lemma (in equivalence) set_eq_trans_aux:
+  assumes "A \<subseteq> carrier S" "B \<subseteq> carrier S" "C \<subseteq> carrier S"
+    and "A {.=} B" "B {.=} C"
+  shows "\<And>a. a \<in> A \<Longrightarrow> a .\<in> C"
+  using assms by (simp add: eq_elem_cong_r subset_iff) 
+
+corollary (in equivalence) set_eq_trans [trans]:
+  assumes "A \<subseteq> carrier S" "B \<subseteq> carrier S" "C \<subseteq> carrier S"
+    and "A {.=} B" " B {.=} C"
   shows "A {.=} C"
 proof (intro set_eqI)
-  fix a
-  assume aA: "a \<in> A"
-  with carr have "a \<in> carrier S" by fast
-  note [simp] = carr this
-
-  from aA
-       have "a .\<in> A" by (simp add: elem_exact)
-  also note AB
-  also note BC
-  finally
-       show "a .\<in> C" by simp
+  show "\<And>a. a \<in> A \<Longrightarrow> a .\<in> C" using set_eq_trans_aux assms by blast 
 next
-  fix c
-  assume cC: "c \<in> C"
-  with carr have "c \<in> carrier S" by fast
-  note [simp] = carr this
-
-  from cC
-       have "c .\<in> C" by (simp add: elem_exact)
-  also note BC[symmetric]
-  also note AB[symmetric]
-  finally
-       show "c .\<in> A" by simp
+  show "\<And>b. b \<in> C \<Longrightarrow> b .\<in> A" using set_eq_trans_aux set_eq_sym assms by blast
 qed
 
-lemma (in equivalence) set_eq_insert_aux:
-  assumes x: "x .= x'"
-      and carr: "x \<in> carrier S" "x' \<in> carrier S" "A \<subseteq> carrier S"
-    shows "\<forall>a \<in> (insert x A). a .\<in> (insert x' A)"
-proof
-  fix a
-  show "a \<in> insert x A \<Longrightarrow> a .\<in> insert x' A"
-  proof cases
-    assume "a \<in> A"
-    thus "a .\<in> insert x' A"
-      using carr(3) by blast
-  next
-    assume "a \<in> insert x A" "a \<notin> A"
-    hence "a = x"
-      by blast
-    thus "a .\<in> insert x' A"
-      by (meson x elemI insertI1)
-  qed
-qed
-
-lemma (in equivalence) set_eq_insert:
-  assumes x: "x .= x'"
-      and carr: "x \<in> carrier S" "x' \<in> carrier S" "A \<subseteq> carrier S"
-    shows "insert x A {.=} insert x' A"
-proof-
-  have "(\<forall>a \<in> (insert x  A). a .\<in> (insert x' A)) \<and>
-        (\<forall>a \<in> (insert x' A). a .\<in> (insert x  A))"
-    using set_eq_insert_aux carr x sym by blast
-  thus "insert x A {.=} insert x' A"
-    using set_eq_def by blast
-qed  
-
-lemma (in equivalence) set_eq_pairI:
-  assumes xx': "x .= x'"
-    and carr: "x \<in> carrier S" "x' \<in> carrier S" "y \<in> carrier S"
-  shows "{x, y} {.=} {x', y}"
-  using assms set_eq_insert by simp
-
 lemma (in equivalence) is_closedI:
   assumes closed: "\<And>x y. \<lbrakk>x .= y; x \<in> A; y \<in> carrier S\<rbrakk> \<Longrightarrow> y \<in> A"
     and S: "A \<subseteq> carrier S"
@@ -307,29 +224,28 @@
   by (blast dest: closed sym)
 
 lemma (in equivalence) closure_of_eq:
-  "\<lbrakk>x .= x'; A \<subseteq> carrier S; x \<in> closure_of A; x' \<in> carrier S\<rbrakk> \<Longrightarrow> x' \<in> closure_of A"
-  unfolding eq_closure_of_def elem_def
-  by (blast intro: trans sym)
+  assumes "A \<subseteq> carrier S" "x \<in> closure_of A"
+  shows "\<lbrakk> x' \<in> carrier S; x .= x' \<rbrakk> \<Longrightarrow> x' \<in> closure_of A"
+  using assms elem_cong_l sym unfolding eq_closure_of_def by blast 
 
 lemma (in equivalence) is_closed_eq [dest]:
-  "\<lbrakk>x .= x'; x \<in> A; is_closed A; x \<in> carrier S; x' \<in> carrier S\<rbrakk> \<Longrightarrow> x' \<in> A"
-  unfolding eq_is_closed_def
-  using closure_of_eq [where A = A]
-  by simp
+  assumes "is_closed A" "x \<in> A"
+  shows "\<lbrakk> x .= x'; x' \<in> carrier S \<rbrakk> \<Longrightarrow> x' \<in> A"
+  using assms closure_of_eq [where A = A] unfolding eq_is_closed_def by simp
 
-lemma (in equivalence) is_closed_eq_rev [dest]:
-  "\<lbrakk>x .= x'; x' \<in> A; is_closed A; x \<in> carrier S; x' \<in> carrier S\<rbrakk> \<Longrightarrow> x \<in> A"
-  by (meson subsetD eq_is_closed_def is_closed_eq sym)
+corollary (in equivalence) is_closed_eq_rev [dest]:
+  assumes "is_closed A" "x' \<in> A"
+  shows "\<lbrakk> x .= x'; x \<in> carrier S \<rbrakk> \<Longrightarrow> x \<in> A"
+  using sym is_closed_eq assms by (meson contra_subsetD eq_is_closed_def)
 
 lemma closure_of_closed [simp, intro]:
   fixes S (structure)
   shows "closure_of A \<subseteq> carrier S"
-unfolding eq_closure_of_def
-by fast
+  unfolding eq_closure_of_def by auto
 
 lemma closure_of_memI:
   fixes S (structure)
-  assumes "a .\<in> A" and "a \<in> carrier S"
+  assumes "a .\<in> A" "a \<in> carrier S"
   shows "a \<in> closure_of A"
   by (simp add: assms eq_closure_of_def)
 
@@ -351,67 +267,193 @@
   assumes "a \<in> closure_of A"
     and "\<And>a'. \<lbrakk>a \<in> carrier S; a' \<in> A; a .= a'\<rbrakk> \<Longrightarrow> P"
   shows "P"
-  by (meson closure_of_memE elemE assms)
+  using assms by (meson closure_of_memE elemE)
+
+
+(* Lemmas by Paulo Emílio de Vilhena *)
+
+lemma (in partition) equivalence_from_partition:
+  "equivalence \<lparr> carrier = A, eq = (\<lambda>x y. y \<in> (THE b. b \<in> B \<and> x \<in> b))\<rparr>"
+    unfolding partition_def equivalence_def
+proof (auto)
+  let ?f = "\<lambda>x. THE b. b \<in> B \<and> x \<in> b"
+  show "\<And>x. x \<in> A \<Longrightarrow> x \<in> ?f x"
+    using unique_class by (metis (mono_tags, lifting) theI')
+  show "\<And>x y. \<lbrakk> x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> y \<in> ?f x \<Longrightarrow> x \<in> ?f y"
+    using unique_class by (metis (mono_tags, lifting) the_equality)
+  show "\<And>x y z. \<lbrakk> x \<in> A; y \<in> A; z \<in> A \<rbrakk> \<Longrightarrow> y \<in> ?f x \<Longrightarrow> z \<in> ?f y \<Longrightarrow> z \<in> ?f x"
+    using unique_class by (metis (mono_tags, lifting) the_equality)
+qed
+
+lemma (in partition) partition_coverture: "\<Union>B = A"
+  by (meson Sup_le_iff UnionI unique_class incl subsetI subset_antisym)
+
+lemma (in partition) disjoint_union:
+  assumes "b1 \<in> B" "b2 \<in> B"
+    and "b1 \<inter> b2 \<noteq> {}"
+  shows "b1 = b2"
+proof (rule ccontr)
+  assume "b1 \<noteq> b2"
+  obtain a where "a \<in> A" "a \<in> b1" "a \<in> b2"
+    using assms(2-3) incl by blast
+  thus False using unique_class \<open>b1 \<noteq> b2\<close> assms(1) assms(2) by blast
+qed
+
+lemma partitionI:
+  fixes A :: "'a set" and B :: "('a set) set"
+  assumes "\<Union>B = A"
+    and "\<And>b1 b2. \<lbrakk> b1 \<in> B; b2 \<in> B \<rbrakk> \<Longrightarrow> b1 \<inter> b2 \<noteq> {} \<Longrightarrow> b1 = b2"
+  shows "partition A B"
+proof
+  show "\<And>a. a \<in> A \<Longrightarrow> \<exists>!b. b \<in> B \<and> a \<in> b"
+  proof (rule ccontr)
+    fix a assume "a \<in> A" "\<nexists>!b. b \<in> B \<and> a \<in> b"
+    then obtain b1 b2 where "b1 \<in> B" "a \<in> b1"
+                        and "b2 \<in> B" "a \<in> b2" "b1 \<noteq> b2" using assms(1) by blast
+    thus False using assms(2) by blast
+  qed
+next
+  show "\<And>b. b \<in> B \<Longrightarrow> b \<subseteq> A" using assms(1) by blast
+qed
+
+lemma (in partition) remove_elem:
+  assumes "b \<in> B"
+  shows "partition (A - b) (B - {b})"
+proof
+  show "\<And>a. a \<in> A - b \<Longrightarrow> \<exists>!b'. b' \<in> B - {b} \<and> a \<in> b'"
+    using unique_class by fastforce
+next
+  show "\<And>b'. b' \<in> B - {b} \<Longrightarrow> b' \<subseteq> A - b"
+    using assms unique_class incl partition_axioms partition_coverture by fastforce
+qed
+
+lemma disjoint_sum:
+  "\<lbrakk> finite B; finite A; partition A B\<rbrakk> \<Longrightarrow> (\<Sum>b\<in>B. \<Sum>a\<in>b. f a) = (\<Sum>a\<in>A. f a)"
+proof (induct arbitrary: A set: finite)
+  case empty thus ?case using partition.unique_class by fastforce
+next
+  case (insert b B')
+  have "(\<Sum>b\<in>(insert b B'). \<Sum>a\<in>b. f a) = (\<Sum>a\<in>b. f a) + (\<Sum>b\<in>B'. \<Sum>a\<in>b. f a)"
+    by (simp add: insert.hyps(1) insert.hyps(2))
+  also have "... = (\<Sum>a\<in>b. f a) + (\<Sum>a\<in>(A - b). f a)"
+    using partition.remove_elem[of A "insert b B'" b] insert.hyps insert.prems
+    by (metis Diff_insert_absorb finite_Diff insert_iff)
+  finally show "(\<Sum>b\<in>(insert b B'). \<Sum>a\<in>b. f a) = (\<Sum>a\<in>A. f a)"
+    using partition.remove_elem[of A "insert b B'" b] insert.prems
+    by (metis add.commute insert_iff partition.incl sum.subset_diff)
+qed
+
+lemma (in partition) disjoint_sum:
+  assumes "finite A"
+  shows "(\<Sum>b\<in>B. \<Sum>a\<in>b. f a) = (\<Sum>a\<in>A. f a)"
+proof -
+  have "finite B"
+    by (simp add: assms finite_UnionD partition_coverture)
+  thus ?thesis using disjoint_sum assms partition_axioms by blast
+qed
+
+lemma (in equivalence) set_eq_insert_aux:
+  assumes "A \<subseteq> carrier S"
+    and "x \<in> carrier S" "x' \<in> carrier S" "x .= x'"
+    and "y \<in> insert x A"
+  shows "y .\<in> insert x' A"
+  by (metis assms(1) assms(4) assms(5) contra_subsetD elemI elem_exact insert_iff)
+
+corollary (in equivalence) set_eq_insert:
+  assumes "A \<subseteq> carrier S"
+    and "x \<in> carrier S" "x' \<in> carrier S" "x .= x'"
+  shows "insert x A {.=} insert x' A"
+  by (meson set_eqI assms set_eq_insert_aux sym equivalence_axioms)
+
+lemma (in equivalence) set_eq_pairI:
+  assumes xx': "x .= x'"
+    and carr: "x \<in> carrier S" "x' \<in> carrier S" "y \<in> carrier S"
+  shows "{x, y} {.=} {x', y}"
+  using assms set_eq_insert by simp
 
 lemma (in equivalence) closure_inclusion:
   assumes "A \<subseteq> B"
   shows "closure_of A \<subseteq> closure_of B"
-  unfolding eq_closure_of_def
-proof
-  fix x
-  assume "x \<in> {y \<in> carrier S. y .\<in> A}"
-  hence "x \<in> carrier S \<and> x .\<in> A"
-    by blast
-  hence "x \<in> carrier S \<and> x .\<in> B"
-    using assms elem_subsetD by blast
-  thus "x \<in> {y \<in> carrier S. y .\<in> B}"
-    by simp
-qed
+  unfolding eq_closure_of_def using assms elem_subsetD by auto
 
 lemma (in equivalence) classes_small:
   assumes "is_closed B"
     and "A \<subseteq> B"
   shows "closure_of A \<subseteq> B"
-proof-
-  have "closure_of A \<subseteq> closure_of B"
-    using closure_inclusion assms by simp
-  thus "closure_of A \<subseteq> B"
-    using assms(1) eq_is_closed_def by fastforce
-qed
+  by (metis assms closure_inclusion eq_is_closed_def)
 
 lemma (in equivalence) classes_eq:
   assumes "A \<subseteq> carrier S"
   shows "A {.=} closure_of A"
-using assms
-by (blast intro: set_eqI elem_exact closure_of_memI elim: closure_of_memE)
+  using assms by (blast intro: set_eqI elem_exact closure_of_memI elim: closure_of_memE)
 
 lemma (in equivalence) complete_classes:
-  assumes c: "is_closed A"
+  assumes "is_closed A"
   shows "A = closure_of A"
   using assms by (simp add: eq_is_closed_def)
 
-lemma (in equivalence) closure_idemp_weak:
+lemma (in equivalence) closure_idem_weak:
   "closure_of (closure_of A) {.=} closure_of A"
   by (simp add: classes_eq set_eq_sym)
 
-lemma (in equivalence) closure_idemp_strong:
+lemma (in equivalence) closure_idem_strong:
   assumes "A \<subseteq> carrier S"
   shows "closure_of (closure_of A) = closure_of A"
   using assms closure_of_eq complete_classes is_closedI by auto
 
-lemma (in equivalence) complete_classes2:
+lemma (in equivalence) classes_consistent:
   assumes "A \<subseteq> carrier S"
   shows "is_closed (closure_of A)"
-  using closure_idemp_strong by (simp add: assms eq_is_closed_def)
+  using closure_idem_strong by (simp add: assms eq_is_closed_def)
+
+lemma (in equivalence) classes_coverture:
+  "\<Union>classes = carrier S"
+proof
+  show "\<Union>classes \<subseteq> carrier S"
+    unfolding eq_classes_def eq_class_of_def by blast
+next
+  show "carrier S \<subseteq> \<Union>classes" unfolding eq_classes_def eq_class_of_def
+  proof
+    fix x assume "x \<in> carrier S"
+    hence "x \<in> {y \<in> carrier S. x .= y}" using refl by simp
+    thus "x \<in> \<Union>{{y \<in> carrier S. x .= y} |x. x \<in> carrier S}" by blast
+  qed
+qed
 
-lemma equivalence_subset:
-  assumes "equivalence L" "A \<subseteq> carrier L"
-  shows "equivalence (L\<lparr> carrier := A \<rparr>)"
+lemma (in equivalence) disjoint_union:
+  assumes "class1 \<in> classes" "class2 \<in> classes"
+    and "class1 \<inter> class2 \<noteq> {}"
+    shows "class1 = class2"
 proof -
-  interpret L: equivalence L
-    by (simp add: assms)
-  show ?thesis
-    by (unfold_locales, simp_all add: L.sym assms rev_subsetD, meson L.trans assms(2) contra_subsetD)
+  obtain x y where x: "x \<in> carrier S" "class1 = class_of x"
+               and y: "y \<in> carrier S" "class2 = class_of y"
+    using assms(1-2) unfolding eq_classes_def by blast
+  obtain z   where z: "z \<in> carrier S" "z \<in> class1 \<inter> class2"
+    using assms classes_coverture by fastforce
+  hence "x .= z \<and> y .= z" using x y unfolding eq_class_of_def by blast
+  hence "x .= y" using x y z trans sym by meson
+  hence "class_of x = class_of y"
+    unfolding eq_class_of_def using local.sym trans x y by blast
+  thus ?thesis using x y by simp
+qed
+
+lemma (in equivalence) partition_from_equivalence:
+  "partition (carrier S) classes"
+proof (intro partitionI)
+  show "\<Union>classes = carrier S" using classes_coverture by simp
+next
+  show "\<And>class1 class2. \<lbrakk> class1 \<in> classes; class2 \<in> classes \<rbrakk> \<Longrightarrow>
+                          class1 \<inter> class2 \<noteq> {} \<Longrightarrow> class1 = class2"
+    using disjoint_union by simp
+qed
+
+lemma (in equivalence) disjoint_sum:
+  assumes "finite (carrier S)"
+  shows "(\<Sum>c\<in>classes. \<Sum>x\<in>c. f x) = (\<Sum>x\<in>(carrier S). f x)"
+proof -
+  have "finite classes"
+    unfolding eq_classes_def using assms by auto
+  thus ?thesis using disjoint_sum assms partition_from_equivalence by blast
 qed
   
 end
--- a/src/HOL/Algebra/Coset.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/Coset.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -1,7 +1,6 @@
 (*  Title:      HOL/Algebra/Coset.thy
-    Author:     Florian Kammueller
-    Author:     L C Paulson
-    Author:     Stephan Hohe
+    Authors:     Florian Kammueller, L C Paulson, Stephan Hohe
+With additional contributions from Martin Baillon and Paulo Emílio de Vilhena.
 *)
 
 theory Coset
@@ -38,346 +37,321 @@
   normal_rel :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool"  (infixl "\<lhd>" 60) where
   "H \<lhd> G \<equiv> normal H G"
 
+(* ************************************************************************** *)
+(* Next two lemmas contributed by Martin Baillon.                                  *)
+
+lemma l_coset_eq_set_mult:
+  fixes G (structure)
+  shows "x <# H = {x} <#> H"
+  unfolding l_coset_def set_mult_def by simp 
+
+lemma r_coset_eq_set_mult:
+  fixes G (structure)
+  shows "H #> x = H <#> {x}"
+  unfolding r_coset_def set_mult_def by simp
+
+(* ************************************************************************** *)
+
+
+(* ************************************************************************** *)
+(* Next five lemmas contributed by Paulo Emílio de Vilhena.                    *)
+
+lemma (in subgroup) rcosets_not_empty:
+  assumes "R \<in> rcosets H"
+  shows "R \<noteq> {}"
+proof -
+  obtain g where "g \<in> carrier G" "R = H #> g"
+    using assms unfolding RCOSETS_def by blast
+  hence "\<one> \<otimes> g \<in> R"
+    using one_closed unfolding r_coset_def by blast
+  thus ?thesis by blast
+qed
+
+lemma (in group) diff_neutralizes:
+  assumes "subgroup H G" "R \<in> rcosets H"
+  shows "\<And>r1 r2. \<lbrakk> r1 \<in> R; r2 \<in> R \<rbrakk> \<Longrightarrow> r1 \<otimes> (inv r2) \<in> H"
+proof -
+  fix r1 r2 assume r1: "r1 \<in> R" and r2: "r2 \<in> R"
+  obtain g where g: "g \<in> carrier G" "R = H #> g"
+    using assms unfolding RCOSETS_def by blast
+  then obtain h1 h2 where h1: "h1 \<in> H" "r1 = h1 \<otimes> g"
+                      and h2: "h2 \<in> H" "r2 = h2 \<otimes> g"
+    using r1 r2 unfolding r_coset_def by blast
+  hence "r1 \<otimes> (inv r2) = (h1 \<otimes> g) \<otimes> ((inv g) \<otimes> (inv h2))"
+    using inv_mult_group is_group assms(1) g(1) subgroup.mem_carrier by fastforce 
+  also have " ... =  (h1 \<otimes> (g \<otimes> inv g) \<otimes> inv h2)"
+    using h1 h2 assms(1) g(1) inv_closed m_closed monoid.m_assoc
+          monoid_axioms subgroup.mem_carrier by smt
+  finally have "r1 \<otimes> inv r2 = h1 \<otimes> inv h2"
+    using assms(1) g(1) h1(1) subgroup.mem_carrier by fastforce
+  thus "r1 \<otimes> inv r2 \<in> H" by (metis assms(1) h1(1) h2(1) subgroup_def)
+qed
+
+
+subsection \<open>Stable Operations for Subgroups\<close>
+
+lemma (in group) subgroup_set_mult_equality[simp]:
+  assumes "subgroup H G" "I \<subseteq> H" "J \<subseteq> H"
+  shows "I <#>\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> J = I <#> J"
+  unfolding set_mult_def subgroup_mult_equality[OF assms(1)] by auto
+
+lemma (in group) subgroup_rcos_equality[simp]:
+  assumes "subgroup H G" "I \<subseteq> H" "h \<in> H"
+  shows "I #>\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> h = I #> h"
+  using subgroup_set_mult_equality by (simp add: r_coset_eq_set_mult assms)
+
+lemma (in group) subgroup_lcos_equality[simp]:
+  assumes "subgroup H G" "I \<subseteq> H" "h \<in> H"
+  shows "h <#\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> I = h <# I"
+  using subgroup_set_mult_equality by (simp add: l_coset_eq_set_mult assms)
+
+                                 
+
+subsection \<open>Basic Properties of set multiplication\<close>
+
+lemma (in group) setmult_subset_G:
+  assumes "H \<subseteq> carrier G" "K \<subseteq> carrier G"
+  shows "H <#> K \<subseteq> carrier G" using assms
+  by (auto simp add: set_mult_def subsetD)
+
+lemma (in monoid) set_mult_closed:
+  assumes "H \<subseteq> carrier G" "K \<subseteq> carrier G"
+  shows "H <#> K \<subseteq> carrier G"
+  using assms by (auto simp add: set_mult_def subsetD)
+
+(* Next lemma contributed by Martin Baillon.*)
+lemma (in group) set_mult_assoc:
+  assumes "M \<subseteq> carrier G" "H \<subseteq> carrier G" "K \<subseteq> carrier G"
+  shows "(M <#> H) <#> K = M <#> (H <#> K)"
+proof
+  show "(M <#> H) <#> K \<subseteq> M <#> (H <#> K)"
+  proof
+    fix x assume "x \<in> (M <#> H) <#> K"
+    then obtain m h k where x: "m \<in> M" "h \<in> H" "k \<in> K" "x = (m \<otimes> h) \<otimes> k"
+      unfolding set_mult_def by blast
+    hence "x = m \<otimes> (h \<otimes> k)"
+      using assms m_assoc by blast
+    thus "x \<in> M <#> (H <#> K)"
+      unfolding set_mult_def using x by blast
+  qed
+next
+  show "M <#> (H <#> K) \<subseteq> (M <#> H) <#> K"
+  proof
+    fix x assume "x \<in> M <#> (H <#> K)"
+    then obtain m h k where x: "m \<in> M" "h \<in> H" "k \<in> K" "x = m \<otimes> (h \<otimes> k)"
+      unfolding set_mult_def by blast
+    hence "x = (m \<otimes> h) \<otimes> k"
+      using assms m_assoc rev_subsetD by metis
+    thus "x \<in> (M <#> H) <#> K"
+      unfolding set_mult_def using x by blast
+  qed
+qed
+
+
 
 subsection \<open>Basic Properties of Cosets\<close>
 
 lemma (in group) coset_mult_assoc:
-     "[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
-      ==> (M #> g) #> h = M #> (g \<otimes> h)"
-by (force simp add: r_coset_def m_assoc)
+  assumes "M \<subseteq> carrier G" "g \<in> carrier G" "h \<in> carrier G"
+  shows "(M #> g) #> h = M #> (g \<otimes> h)"
+  using assms by (force simp add: r_coset_def m_assoc)
+
+lemma (in group) coset_assoc:
+  assumes "x \<in> carrier G" "y \<in> carrier G" "H \<subseteq> carrier G"
+  shows "x <# (H #> y) = (x <# H) #> y"
+  using set_mult_assoc[of "{x}" H "{y}"]
+  by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult assms)
 
 lemma (in group) coset_mult_one [simp]: "M \<subseteq> carrier G ==> M #> \<one> = M"
 by (force simp add: r_coset_def)
 
 lemma (in group) coset_mult_inv1:
-     "[| M #> (x \<otimes> (inv y)) = M;  x \<in> carrier G ; y \<in> carrier G;
-         M \<subseteq> carrier G |] ==> M #> x = M #> y"
-apply (erule subst [of concl: "%z. M #> x = z #> y"])
-apply (simp add: coset_mult_assoc m_assoc)
-done
+  assumes "M #> (x \<otimes> (inv y)) = M"
+    and "x \<in> carrier G" "y \<in> carrier G" "M \<subseteq> carrier G"
+  shows "M #> x = M #> y" using assms
+  by (metis coset_mult_assoc group.inv_solve_right is_group subgroup_def subgroup_self)
 
 lemma (in group) coset_mult_inv2:
-     "[| M #> x = M #> y;  x \<in> carrier G;  y \<in> carrier G;  M \<subseteq> carrier G |]
-      ==> M #> (x \<otimes> (inv y)) = M "
-apply (simp add: coset_mult_assoc [symmetric])
-apply (simp add: coset_mult_assoc)
-done
+  assumes "M #> x = M #> y"
+    and "x \<in> carrier G"  "y \<in> carrier G" "M \<subseteq> carrier G"
+  shows "M #> (x \<otimes> (inv y)) = M " using assms
+  by (metis group.coset_mult_assoc group.coset_mult_one inv_closed is_group r_inv) 
 
 lemma (in group) coset_join1:
-     "[| H #> x = H;  x \<in> carrier G;  subgroup H G |] ==> x \<in> H"
-apply (erule subst)
-apply (simp add: r_coset_def)
-apply (blast intro: l_one subgroup.one_closed sym)
-done
+  assumes "H #> x = H"
+    and "x \<in> carrier G" "subgroup H G"
+  shows "x \<in> H"
+  using assms r_coset_def l_one subgroup.one_closed sym by fastforce
 
 lemma (in group) solve_equation:
-    "\<lbrakk>subgroup H G; x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> \<exists>h\<in>H. y = h \<otimes> x"
-apply (rule bexI [of _ "y \<otimes> (inv x)"])
-apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc
-                      subgroup.subset [THEN subsetD])
-done
+  assumes "subgroup H G" "x \<in> H" "y \<in> H"
+  shows "\<exists>h \<in> H. y = h \<otimes> x"
+proof -
+  have "y = (y \<otimes> (inv x)) \<otimes> x" using assms
+    by (simp add: m_assoc subgroup.mem_carrier)
+  moreover have "y \<otimes> (inv x) \<in> H" using assms
+    by (simp add: subgroup_def)
+  ultimately show ?thesis by blast
+qed
 
 lemma (in group) repr_independence:
-     "\<lbrakk>y \<in> H #> x;  x \<in> carrier G; subgroup H G\<rbrakk> \<Longrightarrow> H #> x = H #> y"
+  assumes "y \<in> H #> x" "x \<in> carrier G" "subgroup H G"
+  shows "H #> x = H #> y" using assms
 by (auto simp add: r_coset_def m_assoc [symmetric]
                    subgroup.subset [THEN subsetD]
                    subgroup.m_closed solve_equation)
 
 lemma (in group) coset_join2:
-     "\<lbrakk>x \<in> carrier G;  subgroup H G;  x\<in>H\<rbrakk> \<Longrightarrow> H #> x = H"
+  assumes "x \<in> carrier G" "subgroup H G" "x \<in> H"
+  shows "H #> x = H" using assms
   \<comment> \<open>Alternative proof is to put @{term "x=\<one>"} in \<open>repr_independence\<close>.\<close>
 by (force simp add: subgroup.m_closed r_coset_def solve_equation)
 
+lemma (in group) coset_join3:
+  assumes "x \<in> carrier G" "subgroup H G" "x \<in> H"
+  shows "x <# H = H"
+proof
+  have "\<And>h. h \<in> H \<Longrightarrow> x \<otimes> h \<in> H" using assms
+    by (simp add: subgroup.m_closed)
+  thus "x <# H \<subseteq> H" unfolding l_coset_def by blast
+next
+  have "\<And>h. h \<in> H \<Longrightarrow> x \<otimes> ((inv x) \<otimes> h) = h"
+    by (smt assms inv_closed l_one m_assoc r_inv subgroup.mem_carrier)
+  moreover have "\<And>h. h \<in> H \<Longrightarrow> (inv x) \<otimes> h \<in> H"
+    by (simp add: assms subgroup.m_closed subgroup.m_inv_closed)
+  ultimately show "H \<subseteq> x <# H" unfolding l_coset_def by blast
+qed
+
 lemma (in monoid) r_coset_subset_G:
-     "[| H \<subseteq> carrier G; x \<in> carrier G |] ==> H #> x \<subseteq> carrier G"
+  "\<lbrakk> H \<subseteq> carrier G; x \<in> carrier G \<rbrakk> \<Longrightarrow> H #> x \<subseteq> carrier G"
 by (auto simp add: r_coset_def)
 
 lemma (in group) rcosI:
-     "[| h \<in> H; H \<subseteq> carrier G; x \<in> carrier G|] ==> h \<otimes> x \<in> H #> x"
+  "\<lbrakk> h \<in> H; H \<subseteq> carrier G; x \<in> carrier G \<rbrakk> \<Longrightarrow> h \<otimes> x \<in> H #> x"
 by (auto simp add: r_coset_def)
 
 lemma (in group) rcosetsI:
      "\<lbrakk>H \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow> H #> x \<in> rcosets H"
 by (auto simp add: RCOSETS_def)
 
-text\<open>Really needed?\<close>
-lemma (in group) transpose_inv:
-     "[| x \<otimes> y = z;  x \<in> carrier G;  y \<in> carrier G;  z \<in> carrier G |]
-      ==> (inv x) \<otimes> z = y"
-by (force simp add: m_assoc [symmetric])
-
-lemma (in group) rcos_self: "[| x \<in> carrier G; subgroup H G |] ==> x \<in> H #> x"
-apply (simp add: r_coset_def)
-apply (blast intro: sym l_one subgroup.subset [THEN subsetD]
-                    subgroup.one_closed)
-done
+lemma (in group) rcos_self:
+  "\<lbrakk> x \<in> carrier G; subgroup H G \<rbrakk> \<Longrightarrow> x \<in> H #> x"
+  by (metis l_one rcosI subgroup_def)
 
 text (in group) \<open>Opposite of @{thm [source] "repr_independence"}\<close>
 lemma (in group) repr_independenceD:
-  assumes "subgroup H G"
-  assumes ycarr: "y \<in> carrier G"
-      and repr:  "H #> x = H #> y"
+  assumes "subgroup H G" "y \<in> carrier G"
+    and "H #> x = H #> y"
   shows "y \<in> H #> x"
-proof -
-  interpret subgroup H G by fact
-  show ?thesis  apply (subst repr)
-  apply (intro rcos_self)
-   apply (rule ycarr)
-   apply (rule is_subgroup)
-  done
-qed
+  using assms by (simp add: rcos_self)
 
 text \<open>Elements of a right coset are in the carrier\<close>
 lemma (in subgroup) elemrcos_carrier:
-  assumes "group G"
-  assumes acarr: "a \<in> carrier G"
-    and a': "a' \<in> H #> a"
+  assumes "group G" "a \<in> carrier G"
+    and "a' \<in> H #> a"
   shows "a' \<in> carrier G"
-proof -
-  interpret group G by fact
-  from subset and acarr
-  have "H #> a \<subseteq> carrier G" by (rule r_coset_subset_G)
-  from this and a'
-  show "a' \<in> carrier G"
-    by fast
-qed
+  by (meson assms group.is_monoid monoid.r_coset_subset_G subset subsetCE)
 
 lemma (in subgroup) rcos_const:
-  assumes "group G"
-  assumes hH: "h \<in> H"
+  assumes "group G" "h \<in> H"
   shows "H #> h = H"
-proof -
-  interpret group G by fact
-  show ?thesis apply (unfold r_coset_def)
-    apply rule
-    apply rule
-    apply clarsimp
-    apply (intro subgroup.m_closed)
-    apply (rule is_subgroup)
-    apply assumption
-    apply (rule hH)
-    apply rule
-    apply simp
-  proof -
-    fix h'
-    assume h'H: "h' \<in> H"
-    note carr = hH[THEN mem_carrier] h'H[THEN mem_carrier]
-    from carr
-    have a: "h' = (h' \<otimes> inv h) \<otimes> h" by (simp add: m_assoc)
-    from h'H hH
-    have "h' \<otimes> inv h \<in> H" by simp
-    from this and a
-    show "\<exists>x\<in>H. h' = x \<otimes> h" by fast
-  qed
-qed
+  using group.coset_join2[OF assms(1), of h H]
+  by (simp add: assms(2) subgroup_axioms)
 
-text \<open>Step one for lemma \<open>rcos_module\<close>\<close>
 lemma (in subgroup) rcos_module_imp:
-  assumes "group G"
-  assumes xcarr: "x \<in> carrier G"
-      and x'cos: "x' \<in> H #> x"
+  assumes "group G" "x \<in> carrier G"
+    and "x' \<in> H #> x"
   shows "(x' \<otimes> inv x) \<in> H"
 proof -
-  interpret group G by fact
-  from xcarr x'cos
-      have x'carr: "x' \<in> carrier G"
-      by (rule elemrcos_carrier[OF is_group])
-  from xcarr
-      have ixcarr: "inv x \<in> carrier G"
-      by simp
-  from x'cos
-      have "\<exists>h\<in>H. x' = h \<otimes> x"
-      unfolding r_coset_def
-      by fast
-  from this
-      obtain h
-        where hH: "h \<in> H"
-        and x': "x' = h \<otimes> x"
-      by auto
-  from hH and subset
-      have hcarr: "h \<in> carrier G" by fast
-  note carr = xcarr x'carr hcarr
-  from x' and carr
-      have "x' \<otimes> (inv x) = (h \<otimes> x) \<otimes> (inv x)" by fast
-  also from carr
-      have "\<dots> = h \<otimes> (x \<otimes> inv x)" by (simp add: m_assoc)
-  also from carr
-      have "\<dots> = h \<otimes> \<one>" by simp
-  also from carr
-      have "\<dots> = h" by simp
-  finally
-      have "x' \<otimes> (inv x) = h" by simp
-  from hH this
-      show "x' \<otimes> (inv x) \<in> H" by simp
+  obtain h where h: "h \<in> H" "x' = h \<otimes> x"
+    using assms(3) unfolding r_coset_def by blast
+  hence "x' \<otimes> inv x = h"
+    by (metis assms elemrcos_carrier group.inv_solve_right mem_carrier)
+  thus ?thesis using h by blast
 qed
 
-text \<open>Step two for lemma \<open>rcos_module\<close>\<close>
 lemma (in subgroup) rcos_module_rev:
-  assumes "group G"
-  assumes carr: "x \<in> carrier G" "x' \<in> carrier G"
-      and xixH: "(x' \<otimes> inv x) \<in> H"
+  assumes "group G" "x \<in> carrier G" "x' \<in> carrier G"
+    and "(x' \<otimes> inv x) \<in> H"
   shows "x' \<in> H #> x"
 proof -
-  interpret group G by fact
-  from xixH
-      have "\<exists>h\<in>H. x' \<otimes> (inv x) = h" by fast
-  from this
-      obtain h
-        where hH: "h \<in> H"
-        and hsym: "x' \<otimes> (inv x) = h"
-      by fast
-  from hH subset have hcarr: "h \<in> carrier G" by simp
-  note carr = carr hcarr
-  from hsym[symmetric] have "h \<otimes> x = x' \<otimes> (inv x) \<otimes> x" by fast
-  also from carr
-      have "\<dots> = x' \<otimes> ((inv x) \<otimes> x)" by (simp add: m_assoc)
-  also from carr
-      have "\<dots> = x' \<otimes> \<one>" by simp
-  also from carr
-      have "\<dots> = x'" by simp
-  finally
-      have "h \<otimes> x = x'" by simp
-  from this[symmetric] and hH
-      show "x' \<in> H #> x"
-      unfolding r_coset_def
-      by fast
+  obtain h where h: "h \<in> H" "x' \<otimes> inv x = h"
+    using assms(4) unfolding r_coset_def by blast
+  hence "x' = h \<otimes> x"
+    by (metis assms group.inv_solve_right mem_carrier)
+  thus ?thesis using h unfolding r_coset_def by blast
 qed
 
 text \<open>Module property of right cosets\<close>
 lemma (in subgroup) rcos_module:
-  assumes "group G"
-  assumes carr: "x \<in> carrier G" "x' \<in> carrier G"
+  assumes "group G" "x \<in> carrier G" "x' \<in> carrier G"
   shows "(x' \<in> H #> x) = (x' \<otimes> inv x \<in> H)"
-proof -
-  interpret group G by fact
-  show ?thesis proof  assume "x' \<in> H #> x"
-    from this and carr
-    show "x' \<otimes> inv x \<in> H"
-      by (intro rcos_module_imp[OF is_group])
-  next
-    assume "x' \<otimes> inv x \<in> H"
-    from this and carr
-    show "x' \<in> H #> x"
-      by (intro rcos_module_rev[OF is_group])
-  qed
-qed
+  using rcos_module_rev rcos_module_imp assms by blast
 
 text \<open>Right cosets are subsets of the carrier.\<close> 
 lemma (in subgroup) rcosets_carrier:
-  assumes "group G"
-  assumes XH: "X \<in> rcosets H"
+  assumes "group G" "X \<in> rcosets H"
   shows "X \<subseteq> carrier G"
-proof -
-  interpret group G by fact
-  from XH have "\<exists>x\<in> carrier G. X = H #> x"
-      unfolding RCOSETS_def
-      by fast
-  from this
-      obtain x
-        where xcarr: "x\<in> carrier G"
-        and X: "X = H #> x"
-      by fast
-  from subset and xcarr
-      show "X \<subseteq> carrier G"
-      unfolding X
-      by (rule r_coset_subset_G)
-qed
+  using assms elemrcos_carrier singletonD
+  subset_eq unfolding RCOSETS_def by force 
+
 
 text \<open>Multiplication of general subsets\<close>
-lemma (in monoid) set_mult_closed:
-  assumes Acarr: "A \<subseteq> carrier G"
-      and Bcarr: "B \<subseteq> carrier G"
-  shows "A <#> B \<subseteq> carrier G"
-apply rule apply (simp add: set_mult_def, clarsimp)
-proof -
-  fix a b
-  assume "a \<in> A"
-  from this and Acarr
-      have acarr: "a \<in> carrier G" by fast
-
-  assume "b \<in> B"
-  from this and Bcarr
-      have bcarr: "b \<in> carrier G" by fast
-
-  from acarr bcarr
-      show "a \<otimes> b \<in> carrier G" by (rule m_closed)
-qed
 
 lemma (in comm_group) mult_subgroups:
-  assumes subH: "subgroup H G"
-      and subK: "subgroup K G"
+  assumes "subgroup H G" and "subgroup K G"
   shows "subgroup (H <#> K) G"
-apply (rule subgroup.intro)
-   apply (intro set_mult_closed subgroup.subset[OF subH] subgroup.subset[OF subK])
-  apply (simp add: set_mult_def) apply clarsimp defer 1
-  apply (simp add: set_mult_def) defer 1
-  apply (simp add: set_mult_def, clarsimp) defer 1
-proof -
-  fix ha hb ka kb
-  assume haH: "ha \<in> H" and hbH: "hb \<in> H" and kaK: "ka \<in> K" and kbK: "kb \<in> K"
-  note carr = haH[THEN subgroup.mem_carrier[OF subH]] hbH[THEN subgroup.mem_carrier[OF subH]]
-              kaK[THEN subgroup.mem_carrier[OF subK]] kbK[THEN subgroup.mem_carrier[OF subK]]
-  from carr
-      have "(ha \<otimes> ka) \<otimes> (hb \<otimes> kb) = ha \<otimes> (ka \<otimes> hb) \<otimes> kb" by (simp add: m_assoc)
-  also from carr
-      have "\<dots> = ha \<otimes> (hb \<otimes> ka) \<otimes> kb" by (simp add: m_comm)
-  also from carr
-      have "\<dots> = (ha \<otimes> hb) \<otimes> (ka \<otimes> kb)" by (simp add: m_assoc)
-  finally
-      have eq: "(ha \<otimes> ka) \<otimes> (hb \<otimes> kb) = (ha \<otimes> hb) \<otimes> (ka \<otimes> kb)" .
-
-  from haH hbH have hH: "ha \<otimes> hb \<in> H" by (simp add: subgroup.m_closed[OF subH])
-  from kaK kbK have kK: "ka \<otimes> kb \<in> K" by (simp add: subgroup.m_closed[OF subK])
-  
-  from hH and kK and eq
-      show "\<exists>h'\<in>H. \<exists>k'\<in>K. (ha \<otimes> ka) \<otimes> (hb \<otimes> kb) = h' \<otimes> k'" by fast
+proof (rule subgroup.intro)
+  show "H <#> K \<subseteq> carrier G"
+    by (simp add: setmult_subset_G assms subgroup_imp_subset)
+next
+  have "\<one> \<otimes> \<one> \<in> H <#> K"
+    unfolding set_mult_def using assms subgroup.one_closed by blast
+  thus "\<one> \<in> H <#> K" by simp
 next
-  have "\<one> = \<one> \<otimes> \<one>" by simp
-  from subgroup.one_closed[OF subH] subgroup.one_closed[OF subK] this
-      show "\<exists>h\<in>H. \<exists>k\<in>K. \<one> = h \<otimes> k" by fast
+  show "\<And>x. x \<in> H <#> K \<Longrightarrow> inv x \<in> H <#> K"
+  proof -
+    fix x assume "x \<in> H <#> K"
+    then obtain h k where hk: "h \<in> H" "k \<in> K" "x = h \<otimes> k"
+      unfolding set_mult_def by blast
+    hence "inv x = (inv k) \<otimes> (inv h)"
+      by (meson inv_mult_group assms subgroup.mem_carrier)
+    hence "inv x = (inv h) \<otimes> (inv k)"
+      by (metis hk inv_mult assms subgroup.mem_carrier)
+    thus "inv x \<in> H <#> K"
+      unfolding set_mult_def using hk assms
+      by (metis (no_types, lifting) UN_iff singletonI subgroup_def)
+  qed
 next
-  fix h k
-  assume hH: "h \<in> H"
-     and kK: "k \<in> K"
-
-  from hH[THEN subgroup.mem_carrier[OF subH]] kK[THEN subgroup.mem_carrier[OF subK]]
-      have "inv (h \<otimes> k) = inv h \<otimes> inv k" by (simp add: inv_mult_group m_comm)
-
-  from subgroup.m_inv_closed[OF subH hH] and subgroup.m_inv_closed[OF subK kK] and this
-      show "\<exists>ha\<in>H. \<exists>ka\<in>K. inv (h \<otimes> k) = ha \<otimes> ka" by fast
+  show "\<And>x y. x \<in> H <#> K \<Longrightarrow> y \<in> H <#> K \<Longrightarrow> x \<otimes> y \<in> H <#> K"
+  proof -
+    fix x y assume "x \<in> H <#> K" "y \<in> H <#> K"
+    then obtain h1 k1 h2 k2 where h1k1: "h1 \<in> H" "k1 \<in> K" "x = h1 \<otimes> k1"
+                              and h2k2: "h2 \<in> H" "k2 \<in> K" "y = h2 \<otimes> k2"
+      unfolding set_mult_def by blast
+    hence "x \<otimes> y = (h1 \<otimes> k1) \<otimes> (h2 \<otimes> k2)" by simp
+    also have " ... = h1 \<otimes> (k1 \<otimes> h2) \<otimes> k2"
+      by (smt h1k1 h2k2 m_assoc m_closed assms subgroup.mem_carrier)
+    also have " ... = h1 \<otimes> (h2 \<otimes> k1) \<otimes> k2"
+      by (metis (no_types, hide_lams) assms m_comm h1k1(2) h2k2(1) subgroup.mem_carrier)
+    finally have "x \<otimes> y  = (h1 \<otimes> h2) \<otimes> (k1 \<otimes> k2)"
+      by (smt assms h1k1 h2k2 m_assoc monoid.m_closed monoid_axioms subgroup.mem_carrier)
+    thus "x \<otimes> y \<in> H <#> K" unfolding set_mult_def
+      using subgroup.m_closed[OF assms(1) h1k1(1) h2k2(1)]
+            subgroup.m_closed[OF assms(2) h1k1(2) h2k2(2)] by blast
+  qed
 qed
 
 lemma (in subgroup) lcos_module_rev:
-  assumes "group G"
-  assumes carr: "x \<in> carrier G" "x' \<in> carrier G"
-      and xixH: "(inv x \<otimes> x') \<in> H"
+  assumes "group G" "x \<in> carrier G" "x' \<in> carrier G"
+    and "(inv x \<otimes> x') \<in> H"
   shows "x' \<in> x <# H"
 proof -
-  interpret group G by fact
-  from xixH
-      have "\<exists>h\<in>H. (inv x) \<otimes> x' = h" by fast
-  from this
-      obtain h
-        where hH: "h \<in> H"
-        and hsym: "(inv x) \<otimes> x' = h"
-      by fast
-
-  from hH subset have hcarr: "h \<in> carrier G" by simp
-  note carr = carr hcarr
-  from hsym[symmetric] have "x \<otimes> h = x \<otimes> ((inv x) \<otimes> x')" by fast
-  also from carr
-      have "\<dots> = (x \<otimes> (inv x)) \<otimes> x'" by (simp add: m_assoc[symmetric])
-  also from carr
-      have "\<dots> = \<one> \<otimes> x'" by simp
-  also from carr
-      have "\<dots> = x'" by simp
-  finally
-      have "x \<otimes> h = x'" by simp
-
-  from this[symmetric] and hH
-      show "x' \<in> x <# H"
-      unfolding l_coset_def
-      by fast
+  obtain h where h: "h \<in> H" "inv x \<otimes> x' = h"
+    using assms(4) unfolding l_coset_def by blast
+  hence "x' = x \<otimes> h"
+    by (metis assms group.inv_solve_left mem_carrier)
+  thus ?thesis using h unfolding l_coset_def by blast
 qed
 
 
@@ -391,21 +365,21 @@
   by (simp add: normal_def normal_axioms_def is_group)
 
 lemma (in normal) inv_op_closed1:
-     "\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> (inv x) \<otimes> h \<otimes> x \<in> H"
-apply (insert coset_eq) 
-apply (auto simp add: l_coset_def r_coset_def)
-apply (drule bspec, assumption)
-apply (drule equalityD1 [THEN subsetD], blast, clarify)
-apply (simp add: m_assoc)
-apply (simp add: m_assoc [symmetric])
-done
+  assumes "x \<in> carrier G" and "h \<in> H"
+  shows "(inv x) \<otimes> h \<otimes> x \<in> H"
+proof -
+  have "h \<otimes> x \<in> x <# H"
+    using assms coset_eq assms(1) unfolding r_coset_def by blast 
+  then obtain h' where "h' \<in> H" "h \<otimes> x = x \<otimes> h'"
+    unfolding l_coset_def by blast
+  thus ?thesis by (metis assms inv_closed l_inv l_one m_assoc mem_carrier) 
+qed
 
 lemma (in normal) inv_op_closed2:
-     "\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> (inv x) \<in> H"
-apply (subgoal_tac "inv (inv x) \<otimes> h \<otimes> (inv x) \<in> H") 
-apply (simp add: ) 
-apply (blast intro: inv_op_closed1) 
-done
+  assumes "x \<in> carrier G" and "h \<in> H"
+  shows "x \<otimes> h \<otimes> (inv x) \<in> H"
+  using assms inv_op_closed1 by (metis inv_closed inv_inv) 
+
 
 text\<open>Alternative characterization of normal subgroups\<close>
 lemma (in group) normal_inv_iff:
@@ -455,74 +429,81 @@
   qed
 qed
 
+corollary (in group) normal_invI:
+  assumes "subgroup N G" and "\<And>x h. \<lbrakk> x \<in> carrier G; h \<in> N \<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> inv x \<in> N"
+  shows "N \<lhd> G"
+  using assms normal_inv_iff by blast
 
-subsection\<open>More Properties of Cosets\<close>
+corollary (in group) normal_invE:
+  assumes "N \<lhd> G" 
+  shows "subgroup N G" and "\<And>x h. \<lbrakk> x \<in> carrier G; h \<in> N \<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> inv x \<in> N"
+  using assms normal_inv_iff apply blast
+  by (simp add: assms normal.inv_op_closed2) 
+
+
+lemma (in group) one_is_normal :
+   "{\<one>} \<lhd> G" 
+proof(intro normal_invI )
+  show "subgroup {\<one>} G"
+    by (simp add: subgroup_def)
+  show "\<And>x h. x \<in> carrier G \<Longrightarrow> h \<in> {\<one>} \<Longrightarrow> x \<otimes> h \<otimes> inv x \<in> {\<one>}" by simp
+qed
+
+
+subsection\<open>More Properties of Left Cosets\<close>
+
+lemma (in group) l_repr_independence:
+  assumes "y \<in> x <# H" "x \<in> carrier G" "subgroup H G"
+  shows "x <# H = y <# H"
+proof -
+  obtain h' where h': "h' \<in> H" "y = x \<otimes> h'"
+    using assms(1) unfolding l_coset_def by blast
+  hence "\<And> h. h \<in> H \<Longrightarrow> x \<otimes> h = y \<otimes> ((inv h') \<otimes> h)"
+    by (smt assms(2-3) inv_closed inv_solve_right m_assoc m_closed subgroup.mem_carrier)
+  hence "\<And> xh. xh \<in> x <# H \<Longrightarrow> xh \<in> y <# H"
+    unfolding l_coset_def by (metis (no_types, lifting) UN_iff assms(3) h'(1) subgroup_def) 
+  moreover have "\<And> h. h \<in> H \<Longrightarrow> y \<otimes> h = x \<otimes> (h' \<otimes> h)"
+    using h' by (meson assms(2) assms(3) m_assoc subgroup.mem_carrier)
+  hence "\<And> yh. yh \<in> y <# H \<Longrightarrow> yh \<in> x <# H"
+    unfolding l_coset_def using subgroup.m_closed[OF assms(3) h'(1)] by blast
+  ultimately show ?thesis by blast
+qed
 
 lemma (in group) lcos_m_assoc:
-     "[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
-      ==> g <# (h <# M) = (g \<otimes> h) <# M"
+  "\<lbrakk> M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G \<rbrakk> \<Longrightarrow> g <# (h <# M) = (g \<otimes> h) <# M"
 by (force simp add: l_coset_def m_assoc)
 
-lemma (in group) lcos_mult_one: "M \<subseteq> carrier G ==> \<one> <# M = M"
+lemma (in group) lcos_mult_one: "M \<subseteq> carrier G \<Longrightarrow> \<one> <# M = M"
 by (force simp add: l_coset_def)
 
 lemma (in group) l_coset_subset_G:
-     "[| H \<subseteq> carrier G; x \<in> carrier G |] ==> x <# H \<subseteq> carrier G"
+  "\<lbrakk> H \<subseteq> carrier G; x \<in> carrier G \<rbrakk> \<Longrightarrow> x <# H \<subseteq> carrier G"
 by (auto simp add: l_coset_def subsetD)
 
-lemma (in group) l_coset_swap:
-     "\<lbrakk>y \<in> x <# H;  x \<in> carrier G;  subgroup H G\<rbrakk> \<Longrightarrow> x \<in> y <# H"
-proof (simp add: l_coset_def)
-  assume "\<exists>h\<in>H. y = x \<otimes> h"
-    and x: "x \<in> carrier G"
-    and sb: "subgroup H G"
-  then obtain h' where h': "h' \<in> H \<and> x \<otimes> h' = y" by blast
-  show "\<exists>h\<in>H. x = y \<otimes> h"
-  proof
-    show "x = y \<otimes> inv h'" using h' x sb
-      by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
-    show "inv h' \<in> H" using h' sb
-      by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
-  qed
-qed
-
 lemma (in group) l_coset_carrier:
-     "[| y \<in> x <# H;  x \<in> carrier G;  subgroup H G |] ==> y \<in> carrier G"
-by (auto simp add: l_coset_def m_assoc
-                   subgroup.subset [THEN subsetD] subgroup.m_closed)
+  "\<lbrakk> y \<in> x <# H; x \<in> carrier G; subgroup H G \<rbrakk> \<Longrightarrow> y \<in> carrier G"
+  by (auto simp add: l_coset_def m_assoc  subgroup.subset [THEN subsetD] subgroup.m_closed)
 
-lemma (in group) l_repr_imp_subset:
-  assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G"
-  shows "y <# H \<subseteq> x <# H"
-proof -
-  from y
-  obtain h' where "h' \<in> H" "x \<otimes> h' = y" by (auto simp add: l_coset_def)
-  thus ?thesis using x sb
-    by (auto simp add: l_coset_def m_assoc
-                       subgroup.subset [THEN subsetD] subgroup.m_closed)
-qed
+lemma (in group) l_coset_swap:
+  assumes "y \<in> x <# H" "x \<in> carrier G" "subgroup H G" 
+  shows "x \<in> y <# H"
+  using assms(2) l_repr_independence[OF assms] subgroup.one_closed[OF assms(3)]
+  unfolding l_coset_def by fastforce
 
-lemma (in group) l_repr_independence:
-  assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G"
-  shows "x <# H = y <# H"
+lemma (in group) subgroup_mult_id:
+  assumes "subgroup H G"
+  shows "H <#> H = H"
 proof
-  show "x <# H \<subseteq> y <# H"
-    by (rule l_repr_imp_subset,
-        (blast intro: l_coset_swap l_coset_carrier y x sb)+)
-  show "y <# H \<subseteq> x <# H" by (rule l_repr_imp_subset [OF y x sb])
+  show "H <#> H \<subseteq> H"
+    unfolding set_mult_def using subgroup.m_closed[OF assms] by (simp add: UN_subset_iff)
+  show "H \<subseteq> H <#> H"
+  proof
+    fix x assume x: "x \<in> H" thus "x \<in> H <#> H" unfolding set_mult_def
+      using subgroup.m_closed[OF assms subgroup.one_closed[OF assms] x] subgroup.one_closed[OF assms]
+      by (smt UN_iff assms coset_join3 l_coset_def subgroup.mem_carrier)
+  qed
 qed
 
-lemma (in group) setmult_subset_G:
-     "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G\<rbrakk> \<Longrightarrow> H <#> K \<subseteq> carrier G"
-by (auto simp add: set_mult_def subsetD)
-
-lemma (in group) subgroup_mult_id: "subgroup H G \<Longrightarrow> H <#> H = H"
-apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def)
-apply (rule_tac x = x in bexI)
-apply (rule bexI [of _ "\<one>"])
-apply (auto simp add: subgroup.one_closed subgroup.subset [THEN subsetD])
-done
-
 
 subsubsection \<open>Set of Inverses of an \<open>r_coset\<close>.\<close>
 
@@ -552,20 +533,21 @@
 subsubsection \<open>Theorems for \<open><#>\<close> with \<open>#>\<close> or \<open><#\<close>.\<close>
 
 lemma (in group) setmult_rcos_assoc:
-     "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk>
-      \<Longrightarrow> H <#> (K #> x) = (H <#> K) #> x"
-by (force simp add: r_coset_def set_mult_def m_assoc)
+  "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow>
+    H <#> (K #> x) = (H <#> K) #> x"
+  using set_mult_assoc[of H K "{x}"] by (simp add: r_coset_eq_set_mult)
 
 lemma (in group) rcos_assoc_lcos:
-     "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk>
-      \<Longrightarrow> (H #> x) <#> K = H <#> (x <# K)"
-by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)
+  "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow>
+   (H #> x) <#> K = H <#> (x <# K)"
+  using set_mult_assoc[of H "{x}" K]
+  by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult)
 
 lemma (in normal) rcos_mult_step1:
-     "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
-      \<Longrightarrow> (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
-by (simp add: setmult_rcos_assoc subset
-              r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)
+  "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow>
+   (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
+  by (simp add: setmult_rcos_assoc r_coset_subset_G
+                subset l_coset_subset_G rcos_assoc_lcos)
 
 lemma (in normal) rcos_mult_step2:
      "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
@@ -645,7 +627,7 @@
 lemma (in subgroup) l_coset_eq_rcong:
   assumes "group G"
   assumes a: "a \<in> carrier G"
-  shows "a <# H = rcong H `` {a}"
+  shows "a <# H = (rcong H) `` {a}"
 proof -
   interpret group G by fact
   show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a ) 
@@ -661,9 +643,7 @@
 proof -
   interpret subgroup H G by fact
   from p show ?thesis apply (rule_tac UN_I [of "hb \<otimes> ((inv ha) \<otimes> h)"])
-    apply (simp add: )
-    apply (simp add: m_assoc transpose_inv)
-    done
+    apply blast by (simp add: inv_solve_left m_assoc)
 qed
 
 lemma (in group) rcos_disjoint:
@@ -793,28 +773,47 @@
     "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> a) H"
 by (force simp add: inj_on_def subsetD)
 
+(* ************************************************************************** *)
+
 lemma (in group) card_cosets_equal:
-     "\<lbrakk>c \<in> rcosets H;  H \<subseteq> carrier G; finite(carrier G)\<rbrakk>
-      \<Longrightarrow> card c = card H"
-apply (auto simp add: RCOSETS_def)
-apply (rule card_bij_eq)
-     apply (rule inj_on_f, assumption+)
-    apply (force simp add: m_assoc subsetD r_coset_def)
-   apply (rule inj_on_g, assumption+)
-  apply (force simp add: m_assoc subsetD r_coset_def)
- txt\<open>The sets @{term "H #> a"} and @{term "H"} are finite.\<close>
- apply (simp add: r_coset_subset_G [THEN finite_subset])
-apply (blast intro: finite_subset)
-done
+  assumes "R \<in> rcosets H" "H \<subseteq> carrier G"
+  shows "\<exists>f. bij_betw f H R"
+proof -
+  obtain g where g: "g \<in> carrier G" "R = H #> g"
+    using assms(1) unfolding RCOSETS_def by blast
+
+  let ?f = "\<lambda>h. h \<otimes> g"
+  have "\<And>r. r \<in> R \<Longrightarrow> \<exists>h \<in> H. ?f h = r"
+  proof -
+    fix r assume "r \<in> R"
+    then obtain h where "h \<in> H" "r = h \<otimes> g"
+      using g unfolding r_coset_def by blast
+    thus "\<exists>h \<in> H. ?f h = r" by blast
+  qed
+  hence "R \<subseteq> ?f ` H" by blast
+  moreover have "?f ` H \<subseteq> R"
+    using g unfolding r_coset_def by blast
+  ultimately show ?thesis using inj_on_g unfolding bij_betw_def
+    using assms(2) g(1) by auto 
+qed
+
+corollary (in group) card_rcosets_equal:
+  assumes "R \<in> rcosets H" "H \<subseteq> carrier G"
+  shows "card H = card R"
+  using card_cosets_equal assms bij_betw_same_card by blast
+
+corollary (in group) rcosets_finite:
+  assumes "R \<in> rcosets H" "H \<subseteq> carrier G" "finite H"
+  shows "finite R"
+  using card_cosets_equal assms bij_betw_finite is_group by blast
+
+(* ************************************************************************** *)
 
 lemma (in group) rcosets_subset_PowG:
      "subgroup H G  \<Longrightarrow> rcosets H \<subseteq> Pow(carrier G)"
-apply (simp add: RCOSETS_def)
-apply (blast dest: r_coset_subset_G subgroup.subset)
-done
+  using rcosets_part_G by auto
 
-
-theorem (in group) lagrange:
+proposition (in group) lagrange_finite:
      "\<lbrakk>finite(carrier G); subgroup H G\<rbrakk>
       \<Longrightarrow> card(rcosets H) * card(H) = order(G)"
 apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
@@ -822,10 +821,42 @@
 apply (rule card_partition)
    apply (simp add: rcosets_subset_PowG [THEN finite_subset])
   apply (simp add: rcosets_part_G)
- apply (simp add: card_cosets_equal subgroup.subset)
+  apply (simp add: card_rcosets_equal subgroup_imp_subset)
 apply (simp add: rcos_disjoint)
 done
 
+theorem (in group) lagrange:
+  assumes "subgroup H G"
+  shows "card (rcosets H) * card H = order G"
+proof (cases "finite (carrier G)")
+  case True thus ?thesis using lagrange_finite assms by simp
+next
+  case False note inf_G = this
+  thus ?thesis
+  proof (cases "finite H")
+    case False thus ?thesis using inf_G  by (simp add: order_def)  
+  next
+    case True note finite_H = this
+    have "infinite (rcosets H)"
+    proof (rule ccontr)
+      assume "\<not> infinite (rcosets H)"
+      hence finite_rcos: "finite (rcosets H)" by simp
+      hence "card (\<Union>(rcosets H)) = (\<Sum>R\<in>(rcosets H). card R)"
+        using card_Union_disjoint[of "rcosets H"] finite_H rcos_disjoint[OF assms(1)]
+              rcosets_finite[where ?H = H] by (simp add: assms subgroup_imp_subset)
+      hence "order G = (\<Sum>R\<in>(rcosets H). card R)"
+        by (simp add: assms order_def rcosets_part_G)
+      hence "order G = (\<Sum>R\<in>(rcosets H). card H)"
+        using card_rcosets_equal by (simp add: assms subgroup_imp_subset)
+      hence "order G = (card H) * (card (rcosets H))" by simp
+      hence "order G \<noteq> 0" using finite_rcos finite_H assms ex_in_conv
+                                rcosets_part_G subgroup.one_closed by fastforce
+      thus False using inf_G order_gt_0_iff_finite by blast 
+    qed
+    thus ?thesis using inf_G by (simp add: order_def)
+  qed
+qed
+
 
 subsection \<open>Quotient Groups: Factorization of a Group\<close>
 
@@ -845,7 +876,7 @@
 lemma (in normal) rcosets_assoc:
      "\<lbrakk>M1 \<in> rcosets H; M2 \<in> rcosets H; M3 \<in> rcosets H\<rbrakk>
       \<Longrightarrow> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"
-by (auto simp add: RCOSETS_def rcos_sum m_assoc)
+  by (simp add: group.set_mult_assoc is_group rcosets_carrier)
 
 lemma (in subgroup) subgroup_in_rcosets:
   assumes "group G"
@@ -1016,10 +1047,253 @@
 
 text\<open>If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
  quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.\<close>
-theorem (in group_hom) FactGroup_iso:
+theorem (in group_hom) FactGroup_iso_set:
   "h ` carrier G = carrier H
-   \<Longrightarrow> (\<lambda>X. the_elem (h`X)) \<in> (G Mod (kernel G H h)) \<cong> H"
+   \<Longrightarrow> (\<lambda>X. the_elem (h`X)) \<in> iso (G Mod (kernel G H h)) H"
 by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def 
               FactGroup_onto) 
 
+corollary (in group_hom) FactGroup_iso :
+  "h ` carrier G = carrier H
+   \<Longrightarrow> (G Mod (kernel G H h))\<cong> H"
+  using FactGroup_iso_set unfolding is_iso_def by auto
+
+
+(* Next two lemmas contributed by Paulo Emílio de Vilhena. *)
+
+lemma (in group_hom) trivial_hom_iff:
+  "(h ` (carrier G) = { \<one>\<^bsub>H\<^esub> }) = (kernel G H h = carrier G)"
+  unfolding kernel_def using one_closed by force
+
+lemma (in group_hom) trivial_ker_imp_inj:
+  assumes "kernel G H h = { \<one> }"
+  shows "inj_on h (carrier G)"
+proof (rule inj_onI)
+  fix g1 g2 assume A: "g1 \<in> carrier G" "g2 \<in> carrier G" "h g1 = h g2"
+  hence "h (g1 \<otimes> (inv g2)) = \<one>\<^bsub>H\<^esub>" by simp
+  hence "g1 \<otimes> (inv g2) = \<one>"
+    using A assms unfolding kernel_def by blast
+  thus "g1 = g2"
+    using A G.inv_equality G.inv_inv by blast
+qed
+
+
+(* Next subsection contributed by Martin Baillon. *)
+
+subsection \<open>Theorems about Factor Groups and Direct product\<close>
+
+lemma (in group) DirProd_normal :
+  assumes "group K"
+    and "H \<lhd> G"
+    and "N \<lhd> K"
+  shows "H \<times> N \<lhd> G \<times>\<times> K"
+proof (intro group.normal_invI[OF DirProd_group[OF group_axioms assms(1)]])
+  show sub : "subgroup (H \<times> N) (G \<times>\<times> K)"
+    using DirProd_subgroups[OF group_axioms normal_imp_subgroup[OF assms(2)]assms(1)
+         normal_imp_subgroup[OF assms(3)]].
+  show "\<And>x h. x \<in> carrier (G\<times>\<times>K) \<Longrightarrow> h \<in> H\<times>N \<Longrightarrow> x \<otimes>\<^bsub>G\<times>\<times>K\<^esub> h \<otimes>\<^bsub>G\<times>\<times>K\<^esub> inv\<^bsub>G\<times>\<times>K\<^esub> x \<in> H\<times>N"
+  proof-
+    fix x h assume xGK : "x \<in> carrier (G \<times>\<times> K)" and hHN : " h \<in> H \<times> N"
+    hence hGK : "h \<in> carrier (G \<times>\<times> K)" using subgroup_imp_subset[OF sub] by auto
+    from xGK obtain x1 x2 where x1x2 :"x1 \<in> carrier G" "x2 \<in> carrier K" "x = (x1,x2)"
+      unfolding DirProd_def by fastforce
+    from hHN obtain h1 h2 where h1h2 : "h1 \<in> H" "h2 \<in> N" "h = (h1,h2)"
+      unfolding DirProd_def by fastforce
+    hence h1h2GK : "h1 \<in> carrier G" "h2 \<in> carrier K"
+      using normal_imp_subgroup subgroup_imp_subset assms apply blast+.
+    have "inv\<^bsub>G \<times>\<times> K\<^esub> x = (inv\<^bsub>G\<^esub> x1,inv\<^bsub>K\<^esub> x2)"
+      using inv_DirProd[OF group_axioms assms(1) x1x2(1)x1x2(2)] x1x2 by auto
+    hence "x \<otimes>\<^bsub>G \<times>\<times> K\<^esub> h \<otimes>\<^bsub>G \<times>\<times> K\<^esub> inv\<^bsub>G \<times>\<times> K\<^esub> x = (x1 \<otimes> h1 \<otimes> inv x1,x2 \<otimes>\<^bsub>K\<^esub> h2 \<otimes>\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2)"
+      using h1h2 x1x2 h1h2GK by auto
+    moreover have "x1 \<otimes> h1 \<otimes> inv x1 \<in> H" "x2 \<otimes>\<^bsub>K\<^esub> h2 \<otimes>\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2 \<in> N"
+      using normal_invE group.normal_invE[OF assms(1)] assms x1x2 h1h2 apply auto.
+    hence "(x1 \<otimes> h1 \<otimes> inv x1, x2 \<otimes>\<^bsub>K\<^esub> h2 \<otimes>\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2)\<in> H \<times> N" by auto
+    ultimately show " x \<otimes>\<^bsub>G \<times>\<times> K\<^esub> h \<otimes>\<^bsub>G \<times>\<times> K\<^esub> inv\<^bsub>G \<times>\<times> K\<^esub> x \<in> H \<times> N" by auto
+  qed
+qed
+
+lemma (in group) FactGroup_DirProd_multiplication_iso_set :
+  assumes "group K"
+    and "H \<lhd> G"
+    and "N \<lhd> K"
+  shows "(\<lambda> (X, Y). X \<times> Y) \<in> iso  ((G Mod H) \<times>\<times> (K Mod N)) (G \<times>\<times> K Mod H \<times> N)"
+
+proof-
+  have R :"(\<lambda>(X, Y). X \<times> Y) \<in> carrier (G Mod H) \<times> carrier (K Mod N) \<rightarrow> carrier (G \<times>\<times> K Mod H \<times> N)"
+    unfolding r_coset_def Sigma_def DirProd_def FactGroup_def RCOSETS_def apply simp by blast
+  moreover have "(\<forall>x\<in>carrier (G Mod H). \<forall>y\<in>carrier (K Mod N). \<forall>xa\<in>carrier (G Mod H).
+                \<forall>ya\<in>carrier (K Mod N). (x <#> xa) \<times> (y <#>\<^bsub>K\<^esub> ya) =  x \<times> y <#>\<^bsub>G \<times>\<times> K\<^esub> xa \<times> ya)"
+    unfolding set_mult_def apply auto apply blast+.
+  moreover have "(\<forall>x\<in>carrier (G Mod H). \<forall>y\<in>carrier (K Mod N). \<forall>xa\<in>carrier (G Mod H).
+                 \<forall>ya\<in>carrier (K Mod N).  x \<times> y = xa \<times> ya \<longrightarrow> x = xa \<and> y = ya)"
+    unfolding  FactGroup_def using times_eq_iff subgroup.rcosets_not_empty
+    by (metis assms(2) assms(3) normal_def partial_object.select_convs(1))
+  moreover have "(\<lambda>(X, Y). X \<times> Y) ` (carrier (G Mod H) \<times> carrier (K Mod N)) = 
+                                     carrier (G \<times>\<times> K Mod H \<times> N)"
+    unfolding image_def  apply auto using R apply force
+    unfolding DirProd_def FactGroup_def RCOSETS_def r_coset_def apply auto apply force.
+  ultimately show ?thesis
+    unfolding iso_def hom_def bij_betw_def inj_on_def by simp
+qed
+
+corollary (in group) FactGroup_DirProd_multiplication_iso_1 :
+  assumes "group K"
+    and "H \<lhd> G"
+    and "N \<lhd> K"
+  shows "  ((G Mod H) \<times>\<times> (K Mod N)) \<cong> (G \<times>\<times> K Mod H \<times> N)"
+  unfolding is_iso_def using FactGroup_DirProd_multiplication_iso_set assms by auto
+
+corollary (in group) FactGroup_DirProd_multiplication_iso_2 :
+  assumes "group K"
+    and "H \<lhd> G"
+    and "N \<lhd> K"
+  shows "(G \<times>\<times> K Mod H \<times> N) \<cong> ((G Mod H) \<times>\<times> (K Mod N))"
+  using FactGroup_DirProd_multiplication_iso_1 group.iso_sym assms
+        DirProd_group[OF normal.factorgroup_is_group normal.factorgroup_is_group]
+  by blast
+
+subsubsection "More Lemmas about set multiplication"
+
+(*A group multiplied by a subgroup stays the same*)
+lemma (in group) set_mult_carrier_idem:
+  assumes "subgroup H G"
+  shows "(carrier G) <#> H = carrier G"
+proof
+  show "(carrier G)<#>H \<subseteq> carrier G" 
+    unfolding set_mult_def using subgroup_imp_subset assms by blast
+next
+  have " (carrier G) #>  \<one> = carrier G" unfolding set_mult_def r_coset_def group_axioms by simp
+  moreover have "(carrier G) #>  \<one> \<subseteq> (carrier G) <#> H" unfolding set_mult_def r_coset_def
+    using assms subgroup.one_closed[OF assms] by blast
+  ultimately show "carrier G \<subseteq> (carrier G) <#> H" by simp
+qed
+
+(*Same lemma as above, but everything is included in a subgroup*)
+lemma (in group) set_mult_subgroup_idem:
+  assumes "subgroup H G"
+    and "subgroup N (G\<lparr>carrier:=H\<rparr>)"
+  shows "H<#>N = H"
+  using group.set_mult_carrier_idem[OF subgroup_imp_group] subgroup_imp_subset assms
+  by (metis monoid.cases_scheme order_refl partial_object.simps(1)
+      partial_object.update_convs(1) subgroup_set_mult_equality)
+
+(*A normal subgroup is commutative with set_mult*)
+lemma (in group) commut_normal:
+  assumes "subgroup H G"
+    and "N\<lhd>G"
+  shows "H<#>N = N<#>H" 
+proof-
+  have aux1: "{H <#> N} = {\<Union>h\<in>H. h <# N }" unfolding set_mult_def l_coset_def by auto
+  also have "... = {\<Union>h\<in>H. N #> h }" using assms normal.coset_eq subgroup.mem_carrier by fastforce
+  moreover have aux2: "{N <#> H} = {\<Union>h\<in>H. N #> h }"unfolding set_mult_def r_coset_def by auto
+  ultimately show "H<#>N = N<#>H" by simp
+qed
+
+(*Same lemma as above, but everything is included in a subgroup*)
+lemma (in group) commut_normal_subgroup:
+  assumes "subgroup H G"
+    and "N\<lhd>(G\<lparr>carrier:=H\<rparr>)"
+    and "subgroup K (G\<lparr>carrier:=H\<rparr>)"
+  shows "K<#>N = N<#>K"
+proof-
+  have "N \<subseteq> carrier (G\<lparr>carrier := H\<rparr>)" using assms normal_imp_subgroup subgroup_imp_subset by blast
+  hence NH : "N \<subseteq> H" by simp
+  have "K \<subseteq> carrier(G\<lparr>carrier := H\<rparr>)" using subgroup_imp_subset assms by blast
+  hence KH : "K \<subseteq> H" by simp
+  have Egal : "K <#>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> N = N <#>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> K"
+  using group.commut_normal[where ?G = "G\<lparr>carrier :=H\<rparr>", of K N,OF subgroup_imp_group[OF assms(1)]
+               assms(3) assms(2)] by auto
+  also have "... = N <#> K" using subgroup_set_mult_equality[of H N K, OF assms(1) NH KH] by auto
+  moreover have "K <#>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> N = K <#> N"
+    using subgroup_set_mult_equality[of H K N, OF assms(1) KH NH] by auto
+  ultimately show "K<#>N = N<#>K" by auto
+qed
+
+
+
+subsubsection "Lemmas about intersection and normal subgroups"
+
+lemma (in group) normal_inter:
+  assumes "subgroup H G"
+    and "subgroup K G"
+    and "H1\<lhd>G\<lparr>carrier := H\<rparr>"
+  shows " (H1\<inter>K)\<lhd>(G\<lparr>carrier:= (H\<inter>K)\<rparr>)" 
+proof-
+  define HK and H1K and GH and GHK
+    where "HK = H\<inter>K" and "H1K=H1\<inter>K" and "GH =G\<lparr>carrier := H\<rparr>" and "GHK = (G\<lparr>carrier:= (H\<inter>K)\<rparr>)"
+  show "H1K\<lhd>GHK"
+  proof (intro group.normal_invI[of GHK H1K])
+    show "Group.group GHK"
+      using GHK_def subgroups_Inter_pair subgroup_imp_group assms by blast
+
+  next
+    have  H1K_incl:"subgroup H1K (G\<lparr>carrier:= (H\<inter>K)\<rparr>)"
+    proof(intro subgroup_incl)
+      show "subgroup H1K G"
+        using assms normal_imp_subgroup subgroups_Inter_pair incl_subgroup H1K_def by blast
+    next
+      show "subgroup (H\<inter>K) G" using HK_def subgroups_Inter_pair assms by auto
+    next
+      have "H1 \<subseteq> (carrier (G\<lparr>carrier:=H\<rparr>))" 
+        using  assms(3) normal_imp_subgroup subgroup_imp_subset by blast
+      also have "... \<subseteq> H" by simp
+      thus "H1K \<subseteq>H\<inter>K" 
+        using H1K_def calculation by auto
+    qed
+    thus "subgroup H1K GHK" using GHK_def by simp
+  next
+    show "\<And> x h. x\<in>carrier GHK \<Longrightarrow> h\<in>H1K \<Longrightarrow> x \<otimes>\<^bsub>GHK\<^esub> h \<otimes>\<^bsub>GHK\<^esub> inv\<^bsub>GHK\<^esub> x\<in> H1K"
+    proof-
+      have invHK: "\<lbrakk>y\<in>HK\<rbrakk> \<Longrightarrow> inv\<^bsub>GHK\<^esub> y = inv\<^bsub>GH\<^esub> y"
+        using subgroup_inv_equality assms HK_def GH_def GHK_def subgroups_Inter_pair by simp
+      have multHK : "\<lbrakk>x\<in>HK;y\<in>HK\<rbrakk> \<Longrightarrow>  x \<otimes>\<^bsub>(G\<lparr>carrier:=HK\<rparr>)\<^esub> y =  x \<otimes> y"
+        using HK_def by simp
+      fix x assume p: "x\<in>carrier GHK"
+      fix h assume p2 : "h:H1K"
+      have "carrier(GHK)\<subseteq>HK"
+        using GHK_def HK_def by simp
+      hence xHK:"x\<in>HK" using p by auto
+      hence invx:"inv\<^bsub>GHK\<^esub> x = inv\<^bsub>GH\<^esub> x"
+        using invHK assms GHK_def HK_def GH_def subgroup_inv_equality subgroups_Inter_pair by simp
+      have "H1\<subseteq>carrier(GH)"
+        using assms GH_def normal_imp_subgroup subgroup_imp_subset by blast
+      hence hHK:"h\<in>HK" 
+        using p2 H1K_def HK_def GH_def by auto
+      hence xhx_egal : "x \<otimes>\<^bsub>GHK\<^esub> h \<otimes>\<^bsub>GHK\<^esub> inv\<^bsub>GHK\<^esub>x =  x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x"
+        using invx invHK multHK GHK_def GH_def by auto
+      have xH:"x\<in>carrier(GH)" 
+        using xHK HK_def GH_def by auto 
+      have hH:"h\<in>carrier(GH)"
+        using hHK HK_def GH_def by auto 
+      have  "(\<forall>x\<in>carrier (GH). \<forall>h\<in>H1.  x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> H1)"
+        using assms normal_invE GH_def normal.inv_op_closed2 by fastforce
+      hence INCL_1 : "x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> H1"
+        using  xH H1K_def p2 by blast
+      have " x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> HK"
+        using assms HK_def subgroups_Inter_pair hHK xHK
+        by (metis GH_def inf.cobounded1 subgroup_def subgroup_incl)
+      hence " x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> K" using HK_def by simp
+      hence " x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> H1K" using INCL_1 H1K_def by auto
+      thus  "x \<otimes>\<^bsub>GHK\<^esub> h \<otimes>\<^bsub>GHK\<^esub> inv\<^bsub>GHK\<^esub> x \<in> H1K" using xhx_egal by simp
+    qed
+  qed
+qed
+
+
+lemma (in group) normal_inter_subgroup:
+  assumes "subgroup H G"
+    and "N \<lhd> G"
+  shows "(N\<inter>H) \<lhd> (G\<lparr>carrier := H\<rparr>)"
+proof -
+  define K where "K = carrier G"
+  have "G\<lparr>carrier := K\<rparr> =  G" using K_def by auto
+  moreover have "subgroup K G" using K_def subgroup_self by blast
+  moreover have "normal N (G \<lparr>carrier :=K\<rparr>)" using assms K_def by simp
+  ultimately have "N \<inter> H \<lhd> G\<lparr>carrier := K \<inter> H\<rparr>"
+    using normal_inter[of K H N] assms(1) by blast
+  moreover have "K \<inter> H = H" using K_def assms subgroup_imp_subset by blast
+  ultimately show "normal (N\<inter>H) (G\<lparr>carrier := H\<rparr>)" by auto
+qed
+
+
 end
--- a/src/HOL/Algebra/FiniteProduct.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/FiniteProduct.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -524,4 +524,49 @@
 
 end
 
+(* Jeremy Avigad. This should be generalized to arbitrary groups, not just commutative
+   ones, using Lagrange's theorem. *)
+
+lemma (in comm_group) power_order_eq_one:
+  assumes fin [simp]: "finite (carrier G)"
+    and a [simp]: "a \<in> carrier G"
+  shows "a [^] card(carrier G) = one G"
+proof -
+  have "(\<Otimes>x\<in>carrier G. x) = (\<Otimes>x\<in>carrier G. a \<otimes> x)"
+    by (subst (2) finprod_reindex [symmetric],
+      auto simp add: Pi_def inj_on_const_mult surj_const_mult)
+  also have "\<dots> = (\<Otimes>x\<in>carrier G. a) \<otimes> (\<Otimes>x\<in>carrier G. x)"
+    by (auto simp add: finprod_multf Pi_def)
+  also have "(\<Otimes>x\<in>carrier G. a) = a [^] card(carrier G)"
+    by (auto simp add: finprod_const)
+  finally show ?thesis
+(* uses the preceeding lemma *)
+    by auto
+qed
+
+
+lemma (in comm_monoid) finprod_UN_disjoint:
+  "finite I \<Longrightarrow> (\<forall>i\<in>I. finite (A i)) \<longrightarrow> (\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}) \<longrightarrow>
+    (\<forall>i\<in>I. \<forall>x \<in> A i. g x \<in> carrier G) \<longrightarrow>
+    finprod G g (UNION I A) = finprod G (\<lambda>i. finprod G g (A i)) I"
+  apply (induct set: finite)
+   apply force
+  apply clarsimp
+  apply (subst finprod_Un_disjoint)
+       apply blast
+      apply (erule finite_UN_I)
+      apply blast
+     apply (fastforce)
+    apply (auto intro!: funcsetI finprod_closed)
+  done
+
+lemma (in comm_monoid) finprod_Union_disjoint:
+  "finite C \<Longrightarrow>
+    \<forall>A\<in>C. finite A \<and> (\<forall>x\<in>A. f x \<in> carrier G) \<Longrightarrow>
+    \<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A \<inter> B = {} \<Longrightarrow>
+    finprod G f (\<Union>C) = finprod G (finprod G f) C"
+  apply (frule finprod_UN_disjoint [of C id f])
+  apply auto
+  done
+
 end
--- a/src/HOL/Algebra/Group.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/Group.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -2,6 +2,7 @@
     Author:     Clemens Ballarin, started 4 February 2003
 
 Based on work by Florian Kammueller, L C Paulson and Markus Wenzel.
+With additional contributions from Martin Baillon and Paulo Emílio de Vilhena.
 *)
 
 theory Group
@@ -52,7 +53,7 @@
   assumes m_closed [intro, simp]:
          "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> carrier G"
       and m_assoc:
-         "\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk> 
+         "\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk>
           \<Longrightarrow> (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
       and one_closed [intro, simp]: "\<one> \<in> carrier G"
       and l_one [simp]: "x \<in> carrier G \<Longrightarrow> \<one> \<otimes> x = x"
@@ -75,6 +76,12 @@
   "x \<in> Units G ==> x \<in> carrier G"
   by (unfold Units_def) fast
 
+lemma (in monoid) one_unique:
+  assumes "u \<in> carrier G"
+    and "\<And>x. x \<in> carrier G \<Longrightarrow> u \<otimes> x = x"
+  shows "u = \<one>"
+  using assms(2)[OF one_closed] r_one[OF assms(1)] by simp
+
 lemma (in monoid) inv_unique:
   assumes eq: "y \<otimes> x = \<one>"  "x \<otimes> y' = \<one>"
     and G: "x \<in> carrier G"  "y \<in> carrier G"  "y' \<in> carrier G"
@@ -86,7 +93,7 @@
   finally show ?thesis .
 qed
 
-lemma (in monoid) Units_m_closed [intro, simp]:
+lemma (in monoid) Units_m_closed [simp, intro]:
   assumes x: "x \<in> Units G" and y: "y \<in> Units G"
   shows "x \<otimes> y \<in> Units G"
 proof -
@@ -98,13 +105,7 @@
   moreover from x y xinv yinv have "x \<otimes> (y \<otimes> y') \<otimes> x' = \<one>" by simp
   moreover note x y
   ultimately show ?thesis unfolding Units_def
-    \<comment> \<open>Must avoid premature use of \<open>hyp_subst_tac\<close>.\<close>
-    apply (rule_tac CollectI)
-    apply (rule)
-    apply (fast)
-    apply (rule bexI [where x = "y' \<otimes> x'"])
-    apply (auto simp: m_assoc)
-    done
+    by simp (metis m_assoc m_closed)
 qed
 
 lemma (in monoid) Units_one_closed [intro, simp]:
@@ -140,6 +141,10 @@
    apply (fast intro: inv_unique, fast)
   done
 
+lemma (in monoid) inv_one [simp]:
+  "inv \<one> = \<one>"
+  by (metis Units_one_closed Units_r_inv l_one monoid.Units_inv_closed monoid_axioms)
+
 lemma (in monoid) Units_inv_Units [intro, simp]:
   "x \<in> Units G ==> inv x \<in> Units G"
 proof -
@@ -215,10 +220,23 @@
   "x \<in> carrier G ==> x [^] (n::nat) \<otimes> x [^] m = x [^] (n + m)"
   by (induct m) (simp_all add: m_assoc [THEN sym])
 
+lemma (in monoid) nat_pow_comm:
+  "x \<in> carrier G \<Longrightarrow> (x [^] (n::nat)) \<otimes> (x [^] (m :: nat)) = (x [^] m) \<otimes> (x [^] n)"
+  using nat_pow_mult[of x n m] nat_pow_mult[of x m n] by (simp add: add.commute)
+
+lemma (in monoid) nat_pow_Suc2:
+  "x \<in> carrier G \<Longrightarrow> x [^] (Suc n) = x \<otimes> (x [^] n)"
+  using nat_pow_mult[of x 1 n] Suc_eq_plus1[of n]
+  by (metis One_nat_def Suc_eq_plus1_left l_one nat.rec(1) nat_pow_Suc nat_pow_def)
+
 lemma (in monoid) nat_pow_pow:
   "x \<in> carrier G ==> (x [^] n) [^] m = x [^] (n * m::nat)"
   by (induct m) (simp, simp add: nat_pow_mult add.commute)
 
+lemma (in monoid) nat_pow_consistent:
+  "x [^] (n :: nat) = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> n"
+  unfolding nat_pow_def by simp
+
 
 (* Jacobson defines submonoid here. *)
 (* Jacobson defines the order of a monoid here. *)
@@ -338,14 +356,6 @@
    (y \<otimes> x = z \<otimes> x) = (y = z)"
   by (metis inv_closed m_assoc r_inv r_one)
 
-lemma (in group) inv_one [simp]:
-  "inv \<one> = \<one>"
-proof -
-  have "inv \<one> = \<one> \<otimes> (inv \<one>)" by (simp del: r_inv Units_r_inv)
-  moreover have "... = \<one>" by simp
-  finally show ?thesis .
-qed
-
 lemma (in group) inv_inv [simp]:
   "x \<in> carrier G ==> inv (inv x) = x"
   using Units_inv_inv by simp
@@ -416,6 +426,57 @@
     by (auto simp add: int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib [symmetric] nat_pow_mult )
 qed
 
+lemma (in group) nat_pow_inv:
+  "x \<in> carrier G \<Longrightarrow> (inv x) [^] (i :: nat) = inv (x [^] i)"
+proof (induction i)
+  case 0 thus ?case by simp
+next
+  case (Suc i)
+  have "(inv x) [^] Suc i = ((inv x) [^] i) \<otimes> inv x"
+    by simp
+  also have " ... = (inv (x [^] i)) \<otimes> inv x"
+    by (simp add: Suc.IH Suc.prems)
+  also have " ... = inv (x \<otimes> (x [^] i))"
+    using inv_mult_group[OF Suc.prems nat_pow_closed[OF Suc.prems, of i]] by simp
+  also have " ... = inv (x [^] (Suc i))"
+    using Suc.prems nat_pow_Suc2 by auto
+  finally show ?case .
+qed
+
+lemma (in group) int_pow_inv:
+  "x \<in> carrier G \<Longrightarrow> (inv x) [^] (i :: int) = inv (x [^] i)"
+  by (simp add: nat_pow_inv int_pow_def2)
+
+lemma (in group) int_pow_pow:
+  assumes "x \<in> carrier G"
+  shows "(x [^] (n :: int)) [^] (m :: int) = x [^] (n * m :: int)"
+proof (cases)
+  assume n_ge: "n \<ge> 0" thus ?thesis
+  proof (cases)
+    assume m_ge: "m \<ge> 0" thus ?thesis
+      using n_ge nat_pow_pow[OF assms, of "nat n" "nat m"] int_pow_def2
+      by (simp add: mult_less_0_iff nat_mult_distrib)
+  next
+    assume m_lt: "\<not> m \<ge> 0" thus ?thesis
+      using n_ge int_pow_def2 nat_pow_pow[OF assms, of "nat n" "nat (- m)"]
+      by (smt assms group.int_pow_neg is_group mult_minus_right nat_mult_distrib split_mult_neg_le)
+  qed
+next
+  assume n_lt: "\<not> n \<ge> 0" thus ?thesis
+  proof (cases)
+    assume m_ge: "m \<ge> 0" thus ?thesis
+      using n_lt nat_pow_pow[OF assms, of "nat (- n)" "nat m"]
+            nat_pow_inv[of "x [^] nat (- n)" "nat m"] int_pow_def2
+      by (smt assms group.int_pow_closed group.int_pow_neg is_group mult_minus_right
+          mult_nonpos_nonpos nat_mult_distrib_neg)
+  next
+    assume m_lt: "\<not> m \<ge> 0" thus ?thesis
+      using n_lt nat_pow_pow[OF assms, of "nat (- n)" "nat (- m)"]
+            nat_pow_inv[of "x [^] nat (- n)" "nat (- m)"] int_pow_def2
+      by (smt assms inv_inv mult_nonpos_nonpos nat_mult_distrib_neg nat_pow_closed)
+  qed
+qed
+
 lemma (in group) int_pow_diff:
   "x \<in> carrier G \<Longrightarrow> x [^] (n - m :: int) = x [^] n \<otimes> inv (x [^] m)"
 by(simp only: diff_conv_add_uminus int_pow_mult int_pow_neg)
@@ -426,6 +487,70 @@
 lemma (in group) inj_on_cmult: "c \<in> carrier G \<Longrightarrow> inj_on (\<lambda>x. c \<otimes> x) (carrier G)"
 by(simp add: inj_on_def)
 
+(*Following subsection contributed by Martin Baillon*)
+subsection \<open>Submonoids\<close>
+
+locale submonoid =
+  fixes H and G (structure)
+  assumes subset: "H \<subseteq> carrier G"
+    and m_closed [intro, simp]: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H"
+    and one_closed [simp]: "\<one> \<in> H"
+
+lemma (in submonoid) is_submonoid:
+  "submonoid H G" by (rule submonoid_axioms)
+
+lemma (in submonoid) mem_carrier [simp]:
+  "x \<in> H \<Longrightarrow> x \<in> carrier G"
+  using subset by blast
+
+lemma submonoid_imp_subset:
+  "submonoid H G \<Longrightarrow> H \<subseteq> carrier G"
+  by (rule submonoid.subset)
+
+lemma (in submonoid) submonoid_is_monoid [intro]:
+  assumes "monoid G"
+  shows "monoid (G\<lparr>carrier := H\<rparr>)"
+proof -
+  interpret monoid G by fact
+  show ?thesis
+    by (simp add: monoid_def m_assoc)
+qed
+
+lemma (in monoid) submonoidE:
+  assumes "submonoid H G"
+  shows "H \<subseteq> carrier G"
+    and "H \<noteq> {}"
+    and "\<And>a b. \<lbrakk>a \<in> H; b \<in> H\<rbrakk> \<Longrightarrow> a \<otimes> b \<in> H"
+  using assms submonoid_imp_subset apply blast
+  using assms submonoid_def apply auto[1]
+  by (simp add: assms submonoid.m_closed)+
+
+lemma submonoid_nonempty:
+  "~ submonoid {} G"
+  by (blast dest: submonoid.one_closed)
+
+lemma (in submonoid) finite_monoid_imp_card_positive:
+  "finite (carrier G) ==> 0 < card H"
+proof (rule classical)
+  assume "finite (carrier G)" and a: "~ 0 < card H"
+  then have "finite H" by (blast intro: finite_subset [OF subset])
+  with is_submonoid a have "submonoid {} G" by simp
+  with submonoid_nonempty show ?thesis by contradiction
+qed
+
+
+lemma (in monoid) monoid_incl_imp_submonoid :
+  assumes "H \<subseteq> carrier G"
+and "monoid (G\<lparr>carrier := H\<rparr>)"
+shows "submonoid H G"
+proof (intro submonoid.intro[OF assms(1)])
+  have ab_eq : "\<And> a b. a \<in> H \<Longrightarrow> b \<in> H \<Longrightarrow> a \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> b = a \<otimes> b" using assms by simp
+  have "\<And>a b. a \<in> H \<Longrightarrow> b \<in> H \<Longrightarrow> a \<otimes> b \<in> carrier (G\<lparr>carrier := H\<rparr>) "
+    using assms ab_eq unfolding group_def using monoid.m_closed by fastforce
+  thus "\<And>a b. a \<in> H \<Longrightarrow> b \<in> H \<Longrightarrow> a \<otimes> b \<in> H" by simp
+  show "\<one> \<in> H " using monoid.one_closed[OF assms(2)] assms by simp
+qed
+
 subsection \<open>Subgroups\<close>
 
 locale subgroup =
@@ -444,6 +569,7 @@
   "x \<in> H \<Longrightarrow> x \<in> carrier G"
   using subset by blast
 
+(*DELETE*)
 lemma subgroup_imp_subset:
   "subgroup H G \<Longrightarrow> H \<subseteq> carrier G"
   by (rule subgroup.subset)
@@ -460,6 +586,40 @@
     done
 qed
 
+lemma (in group) subgroup_inv_equality:
+  assumes "subgroup H G" "x \<in> H"
+  shows "m_inv (G \<lparr>carrier := H\<rparr>) x = inv x"
+  unfolding m_inv_def apply auto
+  using subgroup.m_inv_closed[OF assms] inv_equality
+  by (metis (no_types, hide_lams) assms subgroup.mem_carrier)
+
+lemma (in group) int_pow_consistent: (* by Paulo *)
+  assumes "subgroup H G" "x \<in> H"
+  shows "x [^] (n :: int) = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> n"
+proof (cases)
+  assume ge: "n \<ge> 0"
+  hence "x [^] n = x [^] (nat n)"
+    using int_pow_def2 by auto
+  also have " ... = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> (nat n)"
+    using nat_pow_consistent by simp
+  also have " ... = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> n"
+    using group.int_pow_def2[OF subgroup.subgroup_is_group[OF assms(1) is_group]] ge by auto
+  finally show ?thesis .
+next
+  assume "\<not> n \<ge> 0" hence lt: "n < 0" by simp
+  hence "x [^] n = inv (x [^] (nat (- n)))"
+    using int_pow_def2 by auto
+  also have " ... = (inv x) [^] (nat (- n))"
+    by (metis assms nat_pow_inv subgroup.mem_carrier)
+  also have " ... = (inv\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> x) [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> (nat (- n))"
+    using subgroup_inv_equality[OF assms] nat_pow_consistent by auto
+  also have " ... = inv\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> (x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> (nat (- n)))"
+    using group.nat_pow_inv[OF subgroup.subgroup_is_group[OF assms(1) is_group]] assms(2) by auto
+  also have " ... = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> n"
+    using group.int_pow_def2[OF subgroup.subgroup_is_group[OF assms(1) is_group]] lt by auto
+  finally show ?thesis .
+qed
+
 text \<open>
   Since @{term H} is nonempty, it contains some element @{term x}.  Since
   it is closed under inverse, it contains \<open>inv x\<close>.  Since
@@ -482,6 +642,17 @@
   show "\<one> \<in> H" by (rule one_in_subset) (auto simp only: assms)
 qed
 
+
+lemma (in group) subgroupE:
+  assumes "subgroup H G"
+  shows "H \<subseteq> carrier G"
+    and "H \<noteq> {}"
+    and "\<And>a. a \<in> H \<Longrightarrow> inv a \<in> H"
+    and "\<And>a b. \<lbrakk>a \<in> H; b \<in> H\<rbrakk> \<Longrightarrow> a \<otimes> b \<in> H"
+  using assms subgroup.subset apply blast
+  using assms subgroup_def apply auto[1]
+  by (simp add: assms subgroup.m_closed subgroup.m_inv_closed)+
+
 declare monoid.one_closed [iff] group.inv_closed [simp]
   monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
 
@@ -498,10 +669,38 @@
   with subgroup_nonempty show ?thesis by contradiction
 qed
 
-(*
-lemma (in monoid) Units_subgroup:
-  "subgroup (Units G) G"
-*)
+(*Following 3 lemmas contributed by Martin Baillon*)
+
+lemma (in subgroup) subgroup_is_submonoid :
+  "submonoid H G"
+  by (simp add: submonoid.intro subset)
+
+lemma (in group) submonoid_subgroupI :
+  assumes "submonoid H G"
+    and "\<And>a. a \<in> H \<Longrightarrow> inv a \<in> H"
+  shows "subgroup H G"
+  by (metis assms subgroup_def submonoid_def)
+
+lemma (in group) group_incl_imp_subgroup:
+  assumes "H \<subseteq> carrier G"
+    and "group (G\<lparr>carrier := H\<rparr>)"
+  shows "subgroup H G"
+proof (intro submonoid_subgroupI[OF monoid_incl_imp_submonoid[OF assms(1)]])
+  show "monoid (G\<lparr>carrier := H\<rparr>)" using group_def assms by blast
+  have ab_eq : "\<And> a b. a \<in> H \<Longrightarrow> b \<in> H \<Longrightarrow> a \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> b = a \<otimes> b" using assms by simp
+  fix a  assume aH : "a \<in> H"
+  have " inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a \<in> carrier G"
+    using assms aH group.inv_closed[OF assms(2)] by auto
+  moreover have "\<one>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> = \<one>" using assms monoid.one_closed ab_eq one_def by simp
+  hence "a \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a= \<one>"
+    using assms ab_eq aH  group.r_inv[OF assms(2)] by simp
+  hence "a \<otimes> inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a= \<one>"
+    using aH assms group.inv_closed[OF assms(2)] ab_eq by simp
+  ultimately have "inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a = inv a"
+    by (smt aH assms(1) contra_subsetD group.inv_inv is_group local.inv_equality)
+  moreover have "inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a \<in> H" using aH group.inv_closed[OF assms(2)] by auto
+  ultimately show "inv a \<in> H" by auto
+qed
 
 
 subsection \<open>Direct Products\<close>
@@ -520,7 +719,7 @@
   interpret G: monoid G by fact
   interpret H: monoid H by fact
   from assms
-  show ?thesis by (unfold monoid_def DirProd_def, auto) 
+  show ?thesis by (unfold monoid_def DirProd_def, auto)
 qed
 
 
@@ -548,6 +747,10 @@
      "(g, h) \<otimes>\<^bsub>(G \<times>\<times> H)\<^esub> (g', h') = (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')"
   by (simp add: DirProd_def)
 
+lemma DirProd_assoc :
+"(G \<times>\<times> H \<times>\<times> I) = (G \<times>\<times> (H \<times>\<times> I))"
+  by auto
+
 lemma inv_DirProd [simp]:
   assumes "group G" and "group H"
   assumes g: "g \<in> carrier G"
@@ -561,6 +764,22 @@
   show ?thesis by (simp add: Prod.inv_equality g h)
 qed
 
+lemma DirProd_subgroups :
+  assumes "group G"
+    and "subgroup H G"
+    and "group K"
+    and "subgroup I K"
+  shows "subgroup (H \<times> I) (G \<times>\<times> K)"
+proof (intro group.group_incl_imp_subgroup[OF DirProd_group[OF assms(1)assms(3)]])
+  have "H \<subseteq> carrier G" "I \<subseteq> carrier K" using subgroup.subset assms apply blast+.
+  thus "(H \<times> I) \<subseteq> carrier (G \<times>\<times> K)" unfolding DirProd_def by auto
+  have "Group.group ((G\<lparr>carrier := H\<rparr>) \<times>\<times> (K\<lparr>carrier := I\<rparr>))"
+    using DirProd_group[OF subgroup.subgroup_is_group[OF assms(2)assms(1)]
+        subgroup.subgroup_is_group[OF assms(4)assms(3)]].
+  moreover have "((G\<lparr>carrier := H\<rparr>) \<times>\<times> (K\<lparr>carrier := I\<rparr>)) = ((G \<times>\<times> K)\<lparr>carrier := H \<times> I\<rparr>)"
+    unfolding DirProd_def using assms apply simp.
+  ultimately show "Group.group ((G \<times>\<times> K)\<lparr>carrier := H \<times> I\<rparr>)" by simp
+qed
 
 subsection \<open>Homomorphisms and Isomorphisms\<close>
 
@@ -575,31 +794,203 @@
 by (fastforce simp add: hom_def compose_def)
 
 definition
-  iso :: "_ => _ => ('a => 'b) set" (infixr "\<cong>" 60)
-  where "G \<cong> H = {h. h \<in> hom G H \<and> bij_betw h (carrier G) (carrier H)}"
+  iso :: "_ => _ => ('a => 'b) set"
+  where "iso G H = {h. h \<in> hom G H \<and> bij_betw h (carrier G) (carrier H)}"
 
-lemma iso_refl: "(\<lambda>x. x) \<in> G \<cong> G"
-by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
+definition
+  is_iso :: "_ \<Rightarrow> _ \<Rightarrow> bool" (infixr "\<cong>" 60)
+  where "G \<cong> H = (iso G H  \<noteq> {})"
 
-lemma (in group) iso_sym:
-     "h \<in> G \<cong> H \<Longrightarrow> inv_into (carrier G) h \<in> H \<cong> G"
-apply (simp add: iso_def bij_betw_inv_into) 
-apply (subgoal_tac "inv_into (carrier G) h \<in> carrier H \<rightarrow> carrier G") 
- prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_inv_into]) 
+lemma iso_set_refl: "(\<lambda>x. x) \<in> iso G G"
+  by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
+
+corollary iso_refl : "G \<cong> G"
+  using iso_set_refl unfolding is_iso_def by auto
+
+lemma (in group) iso_set_sym:
+     "h \<in> iso G H \<Longrightarrow> inv_into (carrier G) h \<in> (iso H G)"
+apply (simp add: iso_def bij_betw_inv_into)
+apply (subgoal_tac "inv_into (carrier G) h \<in> carrier H \<rightarrow> carrier G")
+ prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_inv_into])
 apply (simp add: hom_def bij_betw_def inv_into_f_eq f_inv_into_f Pi_def)
 done
 
-lemma (in group) iso_trans: 
-     "[|h \<in> G \<cong> H; i \<in> H \<cong> I|] ==> (compose (carrier G) i h) \<in> G \<cong> I"
+corollary (in group) iso_sym :
+"G \<cong> H \<Longrightarrow> H \<cong> G"
+  using iso_set_sym unfolding is_iso_def by auto
+
+lemma (in group) iso_set_trans:
+     "[|h \<in> iso G H; i \<in> iso H I|] ==> (compose (carrier G) i h) \<in> iso G I"
 by (auto simp add: iso_def hom_compose bij_betw_compose)
 
-lemma DirProd_commute_iso:
-  shows "(\<lambda>(x,y). (y,x)) \<in> (G \<times>\<times> H) \<cong> (H \<times>\<times> G)"
+corollary (in group) iso_trans :
+"\<lbrakk>G \<cong> H ; H \<cong> I\<rbrakk> \<Longrightarrow> G \<cong> I"
+  using iso_set_trans unfolding is_iso_def by blast
+
+(* Next four lemmas contributed by Paulo. *)
+
+lemma (in monoid) hom_imp_img_monoid:
+  assumes "h \<in> hom G H"
+  shows "monoid (H \<lparr> carrier := h ` (carrier G), one := h \<one>\<^bsub>G\<^esub> \<rparr>)" (is "monoid ?h_img")
+proof (rule monoidI)
+  show "\<one>\<^bsub>?h_img\<^esub> \<in> carrier ?h_img"
+    by auto
+next
+  fix x y z assume "x \<in> carrier ?h_img" "y \<in> carrier ?h_img" "z \<in> carrier ?h_img"
+  then obtain g1 g2 g3
+    where g1: "g1 \<in> carrier G" "x = h g1"
+      and g2: "g2 \<in> carrier G" "y = h g2"
+      and g3: "g3 \<in> carrier G" "z = h g3"
+    using image_iff[where ?f = h and ?A = "carrier G"] by auto
+  have aux_lemma:
+    "\<And>a b. \<lbrakk> a \<in> carrier G; b \<in> carrier G \<rbrakk> \<Longrightarrow> h a \<otimes>\<^bsub>(?h_img)\<^esub> h b = h (a \<otimes> b)"
+    using assms unfolding hom_def by auto
+
+  show "x \<otimes>\<^bsub>(?h_img)\<^esub> \<one>\<^bsub>(?h_img)\<^esub> = x"
+    using aux_lemma[OF g1(1) one_closed] g1(2) r_one[OF g1(1)] by simp
+
+  show "\<one>\<^bsub>(?h_img)\<^esub> \<otimes>\<^bsub>(?h_img)\<^esub> x = x"
+    using aux_lemma[OF one_closed g1(1)] g1(2) l_one[OF g1(1)] by simp
+
+  have "x \<otimes>\<^bsub>(?h_img)\<^esub> y = h (g1 \<otimes> g2)"
+    using aux_lemma g1 g2 by auto
+  thus "x \<otimes>\<^bsub>(?h_img)\<^esub> y \<in> carrier ?h_img"
+    using g1(1) g2(1) by simp
+
+  have "(x \<otimes>\<^bsub>(?h_img)\<^esub> y) \<otimes>\<^bsub>(?h_img)\<^esub> z = h ((g1 \<otimes> g2) \<otimes> g3)"
+    using aux_lemma g1 g2 g3 by auto
+  also have " ... = h (g1 \<otimes> (g2 \<otimes> g3))"
+    using m_assoc[OF g1(1) g2(1) g3(1)] by simp
+  also have " ... = x \<otimes>\<^bsub>(?h_img)\<^esub> (y \<otimes>\<^bsub>(?h_img)\<^esub> z)"
+    using aux_lemma g1 g2 g3 by auto
+  finally show "(x \<otimes>\<^bsub>(?h_img)\<^esub> y) \<otimes>\<^bsub>(?h_img)\<^esub> z = x \<otimes>\<^bsub>(?h_img)\<^esub> (y \<otimes>\<^bsub>(?h_img)\<^esub> z)" .
+qed
+
+lemma (in group) hom_imp_img_group:
+  assumes "h \<in> hom G H"
+  shows "group (H \<lparr> carrier := h ` (carrier G), one := h \<one>\<^bsub>G\<^esub> \<rparr>)" (is "group ?h_img")
+proof -
+  interpret monoid ?h_img
+    using hom_imp_img_monoid[OF assms] .
+
+  show ?thesis
+  proof (unfold_locales)
+    show "carrier ?h_img \<subseteq> Units ?h_img"
+    proof (auto simp add: Units_def)
+      have aux_lemma:
+        "\<And>g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow> h g1 \<otimes>\<^bsub>H\<^esub> h g2 = h (g1 \<otimes> g2)"
+        using assms unfolding hom_def by auto
+
+      fix g1 assume g1: "g1 \<in> carrier G"
+      thus "\<exists>g2 \<in> carrier G. (h g2) \<otimes>\<^bsub>H\<^esub> (h g1) = h \<one> \<and> (h g1) \<otimes>\<^bsub>H\<^esub> (h g2) = h \<one>"
+        using aux_lemma[OF g1 inv_closed[OF g1]]
+              aux_lemma[OF inv_closed[OF g1] g1]
+              inv_closed by auto
+    qed
+  qed
+qed
+
+lemma (in group) iso_imp_group:
+  assumes "G \<cong> H" and "monoid H"
+  shows "group H"
+proof -
+  obtain \<phi> where phi: "\<phi> \<in> iso G H" "inv_into (carrier G) \<phi> \<in> iso H G"
+    using iso_set_sym assms unfolding is_iso_def by blast
+  define \<psi> where psi_def: "\<psi> = inv_into (carrier G) \<phi>"
+
+  from phi
+  have surj: "\<phi> ` (carrier G) = (carrier H)" "\<psi> ` (carrier H) = (carrier G)"
+   and inj: "inj_on \<phi> (carrier G)" "inj_on \<psi> (carrier H)"
+   and phi_hom: "\<And>g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow> \<phi> (g1 \<otimes> g2) = (\<phi> g1) \<otimes>\<^bsub>H\<^esub> (\<phi> g2)"
+   and psi_hom: "\<And>h1 h2. \<lbrakk> h1 \<in> carrier H; h2 \<in> carrier H \<rbrakk> \<Longrightarrow> \<psi> (h1 \<otimes>\<^bsub>H\<^esub> h2) = (\<psi> h1) \<otimes> (\<psi> h2)"
+   using psi_def unfolding iso_def bij_betw_def hom_def by auto
+
+  have phi_one: "\<phi> \<one> = \<one>\<^bsub>H\<^esub>"
+  proof -
+    have "(\<phi> \<one>) \<otimes>\<^bsub>H\<^esub> \<one>\<^bsub>H\<^esub> = (\<phi> \<one>) \<otimes>\<^bsub>H\<^esub> (\<phi> \<one>)"
+      by (metis assms(2) image_eqI monoid.r_one one_closed phi_hom r_one surj(1))
+    thus ?thesis
+      by (metis (no_types, hide_lams) Units_eq Units_one_closed assms(2) f_inv_into_f imageI
+          monoid.l_one monoid.one_closed phi_hom psi_def r_one surj)
+  qed
+
+  have "carrier H \<subseteq> Units H"
+  proof
+    fix h assume h: "h \<in> carrier H"
+    let ?inv_h = "\<phi> (inv (\<psi> h))"
+    have "h \<otimes>\<^bsub>H\<^esub> ?inv_h = \<phi> (\<psi> h) \<otimes>\<^bsub>H\<^esub> ?inv_h"
+      by (simp add: f_inv_into_f h psi_def surj(1))
+    also have " ... = \<phi> ((\<psi> h) \<otimes> inv (\<psi> h))"
+      by (metis h imageI inv_closed phi_hom surj(2))
+    also have " ... = \<phi> \<one>"
+      by (simp add: h inv_into_into psi_def surj(1))
+    finally have 1: "h \<otimes>\<^bsub>H\<^esub> ?inv_h = \<one>\<^bsub>H\<^esub>"
+      using phi_one by simp
+
+    have "?inv_h \<otimes>\<^bsub>H\<^esub> h = ?inv_h \<otimes>\<^bsub>H\<^esub> \<phi> (\<psi> h)"
+      by (simp add: f_inv_into_f h psi_def surj(1))
+    also have " ... = \<phi> (inv (\<psi> h) \<otimes> (\<psi> h))"
+      by (metis h imageI inv_closed phi_hom surj(2))
+    also have " ... = \<phi> \<one>"
+      by (simp add: h inv_into_into psi_def surj(1))
+    finally have 2: "?inv_h \<otimes>\<^bsub>H\<^esub> h = \<one>\<^bsub>H\<^esub>"
+      using phi_one by simp
+
+    thus "h \<in> Units H" unfolding Units_def using 1 2 h surj by fastforce
+  qed
+  thus ?thesis unfolding group_def group_axioms_def using assms(2) by simp
+qed
+
+corollary (in group) iso_imp_img_group:
+  assumes "h \<in> iso G H"
+  shows "group (H \<lparr> one := h \<one> \<rparr>)"
+proof -
+  let ?h_img = "H \<lparr> carrier := h ` (carrier G), one := h \<one> \<rparr>"
+  have "h \<in> iso G ?h_img"
+    using assms unfolding iso_def hom_def bij_betw_def by auto
+  hence "G \<cong> ?h_img"
+    unfolding is_iso_def by auto
+  hence "group ?h_img"
+    using iso_imp_group[of ?h_img] hom_imp_img_monoid[of h H] assms unfolding iso_def by simp
+  moreover have "carrier H = carrier ?h_img"
+    using assms unfolding iso_def bij_betw_def by simp
+  hence "H \<lparr> one := h \<one> \<rparr> = ?h_img"
+    by simp
+  ultimately show ?thesis by simp
+qed
+
+lemma DirProd_commute_iso_set:
+  shows "(\<lambda>(x,y). (y,x)) \<in> iso (G \<times>\<times> H) (H \<times>\<times> G)"
+  by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
+
+corollary DirProd_commute_iso :
+"(G \<times>\<times> H) \<cong> (H \<times>\<times> G)"
+  using DirProd_commute_iso_set unfolding is_iso_def by blast
+
+lemma DirProd_assoc_iso_set:
+  shows "(\<lambda>(x,y,z). (x,(y,z))) \<in> iso (G \<times>\<times> H \<times>\<times> I) (G \<times>\<times> (H \<times>\<times> I))"
 by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
 
-lemma DirProd_assoc_iso:
-  shows "(\<lambda>(x,y,z). (x,(y,z))) \<in> (G \<times>\<times> H \<times>\<times> I) \<cong> (G \<times>\<times> (H \<times>\<times> I))"
-by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
+lemma (in group) DirProd_iso_set_trans:
+  assumes "g \<in> iso G G2"
+    and "h \<in> iso H I"
+  shows "(\<lambda>(x,y). (g x, h y)) \<in> iso (G \<times>\<times> H) (G2 \<times>\<times> I)"
+proof-
+  have "(\<lambda>(x,y). (g x, h y)) \<in> hom (G \<times>\<times> H) (G2 \<times>\<times> I)"
+    using assms unfolding iso_def hom_def by auto
+  moreover have " inj_on (\<lambda>(x,y). (g x, h y)) (carrier (G \<times>\<times> H))"
+    using assms unfolding iso_def DirProd_def bij_betw_def inj_on_def by auto
+  moreover have "(\<lambda>(x, y). (g x, h y)) ` carrier (G \<times>\<times> H) = carrier (G2 \<times>\<times> I)"
+    using assms unfolding iso_def bij_betw_def image_def DirProd_def by fastforce
+  ultimately show "(\<lambda>(x,y). (g x, h y)) \<in> iso (G \<times>\<times> H) (G2 \<times>\<times> I)"
+    unfolding iso_def bij_betw_def by auto
+qed
+
+corollary (in group) DirProd_iso_trans :
+  assumes "G \<cong> G2"
+    and "H \<cong> I"
+  shows "G \<times>\<times> H \<cong> G2 \<times>\<times> I"
+  using DirProd_iso_set_trans assms unfolding is_iso_def by blast
 
 
 text\<open>Basis for homomorphism proofs: we assume two groups @{term G} and
@@ -655,6 +1046,56 @@
   "x \<in> carrier G \<Longrightarrow> (([^]) x) \<in> hom \<lparr> carrier = UNIV, mult = (+), one = 0::int \<rparr> G "
   unfolding hom_def by (simp add: int_pow_mult)
 
+(* Next six lemmas contributed by Paulo. *)
+
+lemma (in group_hom) img_is_subgroup: "subgroup (h ` (carrier G)) H"
+  apply (rule subgroupI)
+  apply (auto simp add: image_subsetI)
+  apply (metis (no_types, hide_lams) G.inv_closed hom_inv image_iff)
+  apply (smt G.monoid_axioms hom_mult image_iff monoid.m_closed)
+  done
+
+lemma (in group_hom) subgroup_img_is_subgroup:
+  assumes "subgroup I G"
+  shows "subgroup (h ` I) H"
+proof -
+  have "h \<in> hom (G \<lparr> carrier := I \<rparr>) H"
+    using G.subgroupE[OF assms] subgroup.mem_carrier[OF assms] homh
+    unfolding hom_def by auto
+  hence "group_hom (G \<lparr> carrier := I \<rparr>) H h"
+    using subgroup.subgroup_is_group[OF assms G.is_group] is_group
+    unfolding group_hom_def group_hom_axioms_def by simp
+  thus ?thesis
+    using group_hom.img_is_subgroup[of "G \<lparr> carrier := I \<rparr>" H h] by simp
+qed
+
+lemma (in group_hom) induced_group_hom:
+  assumes "subgroup I G"
+  shows "group_hom (G \<lparr> carrier := I \<rparr>) (H \<lparr> carrier := h ` I \<rparr>) h"
+proof -
+  have "h \<in> hom (G \<lparr> carrier := I \<rparr>) (H \<lparr> carrier := h ` I \<rparr>)"
+    using homh subgroup.mem_carrier[OF assms] unfolding hom_def by auto
+  thus ?thesis
+    unfolding group_hom_def group_hom_axioms_def
+    using subgroup.subgroup_is_group[OF assms G.is_group]
+          subgroup.subgroup_is_group[OF subgroup_img_is_subgroup[OF assms] is_group] by simp
+qed
+
+lemma (in group) canonical_inj_is_hom:
+  assumes "subgroup H G"
+  shows "group_hom (G \<lparr> carrier := H \<rparr>) G id"
+  unfolding group_hom_def group_hom_axioms_def hom_def
+  using subgroup.subgroup_is_group[OF assms is_group]
+        is_group subgroup.subset[OF assms] by auto
+
+lemma (in group_hom) nat_pow_hom:
+  "x \<in> carrier G \<Longrightarrow> h (x [^] (n :: nat)) = (h x) [^]\<^bsub>H\<^esub> n"
+  by (induction n) auto
+
+lemma (in group_hom) int_pow_hom:
+  "x \<in> carrier G \<Longrightarrow> h (x [^] (n :: int)) = (h x) [^]\<^bsub>H\<^esub> n"
+  using int_pow_def2 nat_pow_hom by (simp add: G.int_pow_def2)
+
 
 subsection \<open>Commutative Structures\<close>
 
@@ -693,7 +1134,7 @@
       "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x"
   shows "comm_monoid G"
   using l_one
-    by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro 
+    by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro
              intro: assms simp: m_closed one_closed m_comm)
 
 lemma (in monoid) monoid_comm_monoidI:
@@ -716,6 +1157,18 @@
   (x \<otimes> y) [^] (n::nat) = x [^] n \<otimes> y [^] n"
   by (induct n) (simp, simp add: m_ac)
 
+lemma (in comm_monoid) submonoid_is_comm_monoid :
+  assumes "submonoid H G"
+  shows "comm_monoid (G\<lparr>carrier := H\<rparr>)"
+proof (intro monoid.monoid_comm_monoidI)
+  show "monoid (G\<lparr>carrier := H\<rparr>)"
+    using submonoid.submonoid_is_monoid assms comm_monoid_axioms comm_monoid_def by blast
+  show "\<And>x y. x \<in> carrier (G\<lparr>carrier := H\<rparr>) \<Longrightarrow> y \<in> carrier (G\<lparr>carrier := H\<rparr>)
+        \<Longrightarrow> x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y = y \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> x" apply simp
+    using  assms comm_monoid_axioms_def submonoid.mem_carrier
+    by (metis m_comm)
+qed
+
 locale comm_group = comm_monoid + group
 
 lemma (in group) group_comm_groupI:
@@ -739,10 +1192,109 @@
   shows "comm_group G"
   by (fast intro: group.group_comm_groupI groupI assms)
 
+lemma comm_groupE:
+  fixes G (structure)
+  assumes "comm_group G"
+  shows "\<And>x y. \<lbrakk> x \<in> carrier G; y \<in> carrier G \<rbrakk> \<Longrightarrow> x \<otimes> y \<in> carrier G"
+    and "\<one> \<in> carrier G"
+    and "\<And>x y z. \<lbrakk> x \<in> carrier G; y \<in> carrier G; z \<in> carrier G \<rbrakk> \<Longrightarrow> (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
+    and "\<And>x y. \<lbrakk> x \<in> carrier G; y \<in> carrier G \<rbrakk> \<Longrightarrow> x \<otimes> y = y \<otimes> x"
+    and "\<And>x. x \<in> carrier G \<Longrightarrow> \<one> \<otimes> x = x"
+    and "\<And>x. x \<in> carrier G \<Longrightarrow> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
+  apply (simp_all add: group.axioms assms comm_group.axioms comm_monoid.m_comm comm_monoid.m_ac(1))
+  by (simp_all add: Group.group.axioms(1) assms comm_group.axioms(2) monoid.m_closed group.r_inv_ex)
+
 lemma (in comm_group) inv_mult:
   "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv x \<otimes> inv y"
   by (simp add: m_ac inv_mult_group)
 
+(* Next three lemmas contributed by Paulo. *)
+
+lemma (in comm_monoid) hom_imp_img_comm_monoid:
+  assumes "h \<in> hom G H"
+  shows "comm_monoid (H \<lparr> carrier := h ` (carrier G), one := h \<one>\<^bsub>G\<^esub> \<rparr>)" (is "comm_monoid ?h_img")
+proof (rule monoid.monoid_comm_monoidI)
+  show "monoid ?h_img"
+    using hom_imp_img_monoid[OF assms] .
+next
+  fix x y assume "x \<in> carrier ?h_img" "y \<in> carrier ?h_img"
+  then obtain g1 g2
+    where g1: "g1 \<in> carrier G" "x = h g1"
+      and g2: "g2 \<in> carrier G" "y = h g2"
+    by auto
+  have "x \<otimes>\<^bsub>(?h_img)\<^esub> y = h (g1 \<otimes> g2)"
+    using g1 g2 assms unfolding hom_def by auto
+  also have " ... = h (g2 \<otimes> g1)"
+    using m_comm[OF g1(1) g2(1)] by simp
+  also have " ... = y \<otimes>\<^bsub>(?h_img)\<^esub> x"
+    using g1 g2 assms unfolding hom_def by auto
+  finally show "x \<otimes>\<^bsub>(?h_img)\<^esub> y = y \<otimes>\<^bsub>(?h_img)\<^esub> x" .
+qed
+
+lemma (in comm_group) iso_imp_img_comm_group:
+  assumes "h \<in> iso G H"
+  shows "comm_group (H \<lparr> one := h \<one>\<^bsub>G\<^esub> \<rparr>)"
+proof -
+  let ?h_img = "H \<lparr> carrier := h ` (carrier G), one := h \<one> \<rparr>"
+  have "comm_monoid ?h_img"
+    using hom_imp_img_comm_monoid[of h H] assms unfolding iso_def by simp
+  moreover have "carrier H = carrier ?h_img"
+    using assms unfolding iso_def bij_betw_def by simp
+  hence "H \<lparr> one := h \<one> \<rparr> = ?h_img"
+    by simp
+  ultimately have "comm_monoid (H \<lparr> one := h \<one>\<^bsub>G\<^esub> \<rparr>)"
+    by simp
+  thus ?thesis
+    unfolding comm_group_def using iso_imp_img_group[OF assms] by simp
+qed
+
+lemma (in comm_group) iso_imp_comm_group:
+  assumes "G \<cong> H" "monoid H"
+  shows "comm_group H"
+proof -
+  obtain h where h: "h \<in> iso G H"
+    using assms(1) unfolding is_iso_def by auto
+  hence comm_gr: "comm_group (H \<lparr> one := h \<one> \<rparr>)"
+    using iso_imp_img_comm_group[of h H] by simp
+  hence "\<And>x. x \<in> carrier H \<Longrightarrow> h \<one> \<otimes>\<^bsub>H\<^esub> x = x"
+    using monoid.l_one[of "H \<lparr> one := h \<one> \<rparr>"] unfolding comm_group_def comm_monoid_def by simp
+  moreover have "h \<one> \<in> carrier H"
+    using h one_closed unfolding iso_def hom_def by auto
+  ultimately have "h \<one> = \<one>\<^bsub>H\<^esub>"
+    using monoid.one_unique[OF assms(2), of "h \<one>"] by simp
+  hence "H = H \<lparr> one := h \<one> \<rparr>"
+    by simp
+  thus ?thesis
+    using comm_gr by simp
+qed
+
+(*A subgroup of a subgroup is a subgroup of the group*)
+lemma (in group) incl_subgroup:
+  assumes "subgroup J G"
+    and "subgroup I (G\<lparr>carrier:=J\<rparr>)"
+  shows "subgroup I G" unfolding subgroup_def
+proof
+  have H1: "I \<subseteq> carrier (G\<lparr>carrier:=J\<rparr>)" using assms(2) subgroup_imp_subset by blast
+  also have H2: "...\<subseteq>J" by simp
+  also  have "...\<subseteq>(carrier G)"  by (simp add: assms(1) subgroup_imp_subset)
+  finally have H: "I \<subseteq> carrier G" by simp
+  have "(\<And>x y. \<lbrakk>x \<in> I ; y \<in> I\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> I)" using assms(2) by (auto simp add: subgroup_def)
+  thus  "I \<subseteq> carrier G \<and> (\<forall>x y. x \<in> I \<longrightarrow> y \<in> I \<longrightarrow> x \<otimes> y \<in> I)"  using H by blast
+  have K: "\<one> \<in> I" using assms(2) by (auto simp add: subgroup_def)
+  have "(\<And>x. x \<in> I \<Longrightarrow> inv x \<in> I)" using assms  subgroup.m_inv_closed H
+    by (metis H1 H2  subgroup_inv_equality subsetCE)
+  thus "\<one> \<in> I \<and> (\<forall>x. x \<in> I \<longrightarrow> inv x \<in> I)" using K by blast
+qed
+
+(*A subgroup included in another subgroup is a subgroup of the subgroup*)
+lemma (in group) subgroup_incl:
+  assumes "subgroup I G"
+    and "subgroup J G"
+    and "I\<subseteq>J"
+  shows "subgroup I (G\<lparr>carrier:=J\<rparr>)"using assms subgroup_inv_equality
+  by (auto simp add: subgroup_def)
+
+
 
 subsection \<open>The Lattice of Subgroups of a Group\<close>
 
@@ -762,16 +1314,11 @@
 
 lemma (in group) is_monoid [intro, simp]:
   "monoid G"
-  by (auto intro: monoid.intro m_assoc) 
+  by (auto intro: monoid.intro m_assoc)
 
-lemma (in group) subgroup_inv_equality:
-  "[| subgroup H G; x \<in> H |] ==> m_inv (G \<lparr>carrier := H\<rparr>) x = inv x"
-apply (rule_tac inv_equality [THEN sym])
-  apply (rule group.l_inv [OF subgroup_imp_group, simplified], assumption+)
- apply (rule subsetD [OF subgroup.subset], assumption+)
-apply (rule subsetD [OF subgroup.subset], assumption)
-apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified], assumption+)
-done
+lemma (in group) subgroup_mult_equality:
+  "\<lbrakk> subgroup H G; h1 \<in> H; h2 \<in> H \<rbrakk> \<Longrightarrow>  h1 \<otimes>\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> h2 = h1 \<otimes> h2"
+  unfolding subgroup_def by simp
 
 theorem (in group) subgroups_Inter:
   assumes subgr: "(\<And>H. H \<in> A \<Longrightarrow> subgroup H G)"
@@ -793,6 +1340,11 @@
   show "x \<otimes> y \<in> \<Inter>A" by blast
 qed
 
+lemma (in group) subgroups_Inter_pair :
+  assumes  "subgroup I G"
+    and  "subgroup J G"
+  shows "subgroup (I\<inter>J) G" using subgroups_Inter[ where ?A = "{I,J}"] assms by auto
+
 theorem (in group) subgroups_complete_lattice:
   "complete_lattice \<lparr>carrier = {H. subgroup H G}, eq = (=), le = (\<subseteq>)\<rparr>"
     (is "complete_lattice ?L")
@@ -831,4 +1383,90 @@
   then show "\<exists>I. greatest ?L I (Lower ?L A)" ..
 qed
 
+subsection\<open>Jeremy Avigad's @{text"More_Group"} material\<close>
+
+text \<open>
+  Show that the units in any monoid give rise to a group.
+
+  The file Residues.thy provides some infrastructure to use
+  facts about the unit group within the ring locale.
+\<close>
+
+definition units_of :: "('a, 'b) monoid_scheme \<Rightarrow> 'a monoid"
+  where "units_of G =
+    \<lparr>carrier = Units G, Group.monoid.mult = Group.monoid.mult G, one  = one G\<rparr>"
+
+lemma (in monoid) units_group: "group (units_of G)"
+  apply (unfold units_of_def)
+  apply (rule groupI)
+      apply auto
+   apply (subst m_assoc)
+      apply auto
+  apply (rule_tac x = "inv x" in bexI)
+   apply auto
+  done
+
+lemma (in comm_monoid) units_comm_group: "comm_group (units_of G)"
+  apply (rule group.group_comm_groupI)
+   apply (rule units_group)
+  apply (insert comm_monoid_axioms)
+  apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)
+  apply auto
+  done
+
+lemma units_of_carrier: "carrier (units_of G) = Units G"
+  by (auto simp: units_of_def)
+
+lemma units_of_mult: "mult (units_of G) = mult G"
+  by (auto simp: units_of_def)
+
+lemma units_of_one: "one (units_of G) = one G"
+  by (auto simp: units_of_def)
+
+lemma (in monoid) units_of_inv: "x \<in> Units G \<Longrightarrow> m_inv (units_of G) x = m_inv G x"
+  apply (rule sym)
+  apply (subst m_inv_def)
+  apply (rule the1_equality)
+   apply (rule ex_ex1I)
+    apply (subst (asm) Units_def)
+    apply auto
+     apply (erule inv_unique)
+        apply auto
+    apply (rule Units_closed)
+    apply (simp_all only: units_of_carrier [symmetric])
+    apply (insert units_group)
+    apply auto
+   apply (subst units_of_mult [symmetric])
+   apply (subst units_of_one [symmetric])
+   apply (erule group.r_inv, assumption)
+  apply (subst units_of_mult [symmetric])
+  apply (subst units_of_one [symmetric])
+  apply (erule group.l_inv, assumption)
+  done
+
+lemma (in group) inj_on_const_mult: "a \<in> carrier G \<Longrightarrow> inj_on (\<lambda>x. a \<otimes> x) (carrier G)"
+  unfolding inj_on_def by auto
+
+lemma (in group) surj_const_mult: "a \<in> carrier G \<Longrightarrow> (\<lambda>x. a \<otimes> x) ` carrier G = carrier G"
+  apply (auto simp add: image_def)
+  apply (rule_tac x = "(m_inv G a) \<otimes> x" in bexI)
+  apply auto
+(* auto should get this. I suppose we need "comm_monoid_simprules"
+   for ac_simps rewriting. *)
+  apply (subst m_assoc [symmetric])
+  apply auto
+  done
+
+lemma (in group) l_cancel_one [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x \<otimes> a = x \<longleftrightarrow> a = one G"
+  by (metis Units_eq Units_l_cancel monoid.r_one monoid_axioms one_closed)
+
+lemma (in group) r_cancel_one [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> a \<otimes> x = x \<longleftrightarrow> a = one G"
+  by (metis monoid.l_one monoid_axioms one_closed right_cancel)
+
+lemma (in group) l_cancel_one' [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x = x \<otimes> a \<longleftrightarrow> a = one G"
+  using l_cancel_one by fastforce
+
+lemma (in group) r_cancel_one' [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x = a \<otimes> x \<longleftrightarrow> a = one G"
+  using r_cancel_one by fastforce
+
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/Group_Action.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -0,0 +1,925 @@
+(* Title:      Group_Action.thy                                               *)
+(* Author:     Paulo Emílio de Vilhena                                        *)
+
+theory Group_Action
+imports Bij Coset Congruence
+
+begin
+
+section \<open>Group Actions\<close>
+
+locale group_action =
+  fixes G (structure) and E and \<phi>
+  assumes group_hom: "group_hom G (BijGroup E) \<phi>"
+
+definition
+  orbit :: "[_, 'a \<Rightarrow> 'b \<Rightarrow> 'b, 'b] \<Rightarrow> 'b set"
+  where "orbit G \<phi> x = {(\<phi> g) x | g. g \<in> carrier G}"
+
+definition
+  orbits :: "[_, 'b set, 'a \<Rightarrow> 'b \<Rightarrow> 'b] \<Rightarrow> ('b set) set"
+  where "orbits G E \<phi> = {orbit G \<phi> x | x. x \<in> E}"
+
+definition
+  stabilizer :: "[_, 'a \<Rightarrow> 'b \<Rightarrow> 'b, 'b] \<Rightarrow> 'a set"
+  where "stabilizer G \<phi> x = {g \<in> carrier G. (\<phi> g) x = x}"
+
+definition
+  invariants :: "['b set, 'a \<Rightarrow> 'b \<Rightarrow> 'b, 'a] \<Rightarrow> 'b set"
+  where "invariants E \<phi> g = {x \<in> E. (\<phi> g) x = x}"
+
+definition
+  normalizer :: "[_, 'a set] \<Rightarrow> 'a set"
+  where "normalizer G H =
+         stabilizer G (\<lambda>g. \<lambda>H \<in> {H. H \<subseteq> carrier G}. g <#\<^bsub>G\<^esub> H #>\<^bsub>G\<^esub> (inv\<^bsub>G\<^esub> g)) H"
+
+locale faithful_action = group_action +
+  assumes faithful: "inj_on \<phi> (carrier G)"
+
+locale transitive_action = group_action +
+  assumes unique_orbit: "\<lbrakk> x \<in> E; y \<in> E \<rbrakk> \<Longrightarrow> \<exists>g \<in> carrier G. (\<phi> g) x = y"
+
+
+
+subsection \<open>Prelimineries\<close>
+
+text \<open>Some simple lemmas to make group action's properties more explicit\<close>
+
+lemma (in group_action) id_eq_one: "(\<lambda>x \<in> E. x) = \<phi> \<one>"
+  by (metis BijGroup_def group_hom group_hom.hom_one select_convs(2))
+
+lemma (in group_action) bij_prop0:
+  "\<And> g. g \<in> carrier G \<Longrightarrow> (\<phi> g) \<in> Bij E"
+  by (metis BijGroup_def group_hom group_hom.hom_closed partial_object.select_convs(1))
+
+lemma (in group_action) surj_prop:
+  "\<And> g. g \<in> carrier G \<Longrightarrow> (\<phi> g) ` E = E"
+  using bij_prop0 by (simp add: Bij_def bij_betw_def)
+
+lemma (in group_action) inj_prop:
+  "\<And> g. g \<in> carrier G \<Longrightarrow> inj_on (\<phi> g) E"
+  using bij_prop0 by (simp add: Bij_def bij_betw_def)
+
+lemma (in group_action) bij_prop1:
+  "\<And> g y. \<lbrakk> g \<in> carrier G; y \<in> E \<rbrakk> \<Longrightarrow>  \<exists>!x \<in> E. (\<phi> g) x = y"
+proof -
+  fix g y assume "g \<in> carrier G" "y \<in> E"
+  hence "\<exists>x \<in> E. (\<phi> g) x = y"
+    using surj_prop by force
+  moreover have "\<And> x1 x2. \<lbrakk> x1 \<in> E; x2 \<in> E \<rbrakk> \<Longrightarrow> (\<phi> g) x1 = (\<phi> g) x2 \<Longrightarrow> x1 = x2"
+    using inj_prop by (meson \<open>g \<in> carrier G\<close> inj_on_eq_iff)
+  ultimately show "\<exists>!x \<in> E. (\<phi> g) x = y"
+    by blast
+qed
+
+lemma (in group_action) composition_rule:
+  assumes "x \<in> E" "g1 \<in> carrier G" "g2 \<in> carrier G"
+  shows "\<phi> (g1 \<otimes> g2) x = (\<phi> g1) (\<phi> g2 x)"
+proof -
+  have "\<phi> (g1 \<otimes> g2) x = ((\<phi> g1) \<otimes>\<^bsub>BijGroup E\<^esub> (\<phi> g2)) x"
+    using assms(2) assms(3) group_hom group_hom.hom_mult by fastforce
+  also have " ... = (compose E (\<phi> g1) (\<phi> g2)) x"
+    unfolding BijGroup_def by (simp add: assms bij_prop0)
+  finally show "\<phi> (g1 \<otimes> g2) x = (\<phi> g1) (\<phi> g2 x)"
+    by (simp add: assms(1) compose_eq)
+qed
+
+lemma (in group_action) element_image:
+  assumes "g \<in> carrier G" and "x \<in> E" and "(\<phi> g) x = y"
+  shows "y \<in> E"
+  using surj_prop assms by blast
+
+
+
+subsection \<open>Orbits\<close>
+
+text\<open>We prove here that orbits form an equivalence relation\<close>
+
+lemma (in group_action) orbit_sym_aux:
+  assumes "g \<in> carrier G"
+    and "x \<in> E"
+    and "(\<phi> g) x = y"
+  shows "(\<phi> (inv g)) y = x"
+proof -
+  interpret group G
+    using group_hom group_hom.axioms(1) by auto
+  have "y \<in> E"
+    using element_image assms by simp
+  have "inv g \<in> carrier G"
+    by (simp add: assms(1))
+
+  have "(\<phi> (inv g)) y = (\<phi> (inv g)) ((\<phi> g) x)"
+    using assms(3) by simp
+  also have " ... = compose E (\<phi> (inv g)) (\<phi> g) x"
+    by (simp add: assms(2) compose_eq)
+  also have " ... = ((\<phi> (inv g)) \<otimes>\<^bsub>BijGroup E\<^esub> (\<phi> g)) x"
+    by (simp add: BijGroup_def assms(1) bij_prop0)
+  also have " ... = (\<phi> ((inv g) \<otimes> g)) x"
+    by (metis \<open>inv g \<in> carrier G\<close> assms(1) group_hom group_hom.hom_mult)
+  finally show "(\<phi> (inv g)) y = x"
+    by (metis assms(1) assms(2) id_eq_one l_inv restrict_apply)
+qed
+
+lemma (in group_action) orbit_refl:
+  "x \<in> E \<Longrightarrow> x \<in> orbit G \<phi> x"
+proof -
+  assume "x \<in> E" hence "(\<phi> \<one>) x = x"
+    using id_eq_one by (metis restrict_apply')
+  thus "x \<in> orbit G \<phi> x" unfolding orbit_def
+    using group.is_monoid group_hom group_hom.axioms(1) by force 
+qed
+
+lemma (in group_action) orbit_sym:
+  assumes "x \<in> E" and "y \<in> E" and "y \<in> orbit G \<phi> x"
+  shows "x \<in> orbit G \<phi> y"
+proof -
+  have "\<exists> g \<in> carrier G. (\<phi> g) x = y"
+    by (smt assms(3) mem_Collect_eq orbit_def)
+  then obtain g where g: "g \<in> carrier G \<and> (\<phi> g) x = y" by blast
+  hence "(\<phi> (inv g)) y = x"
+    using orbit_sym_aux by (simp add: assms(1))
+  thus ?thesis
+    using g group_hom group_hom.axioms(1) orbit_def by fastforce 
+qed
+
+lemma (in group_action) orbit_trans:
+  assumes "x \<in> E" "y \<in> E" "z \<in> E"
+    and "y \<in> orbit G \<phi> x" "z \<in> orbit G \<phi> y" 
+  shows "z \<in> orbit G \<phi> x"
+proof -
+  interpret group G
+    using group_hom group_hom.axioms(1) by auto
+
+  have "\<exists> g1 \<in> carrier G. (\<phi> g1) x = y"
+    by (smt assms mem_Collect_eq orbit_def)
+  then obtain g1 where g1: "g1 \<in> carrier G \<and> (\<phi> g1) x = y" by blast
+
+  have "\<exists> g2 \<in> carrier G. (\<phi> g2) y = z"
+    by (smt assms mem_Collect_eq orbit_def)
+  then obtain g2 where g2: "g2 \<in> carrier G \<and> (\<phi> g2) y = z" by blast
+  
+  have "(\<phi> (g2 \<otimes> g1)) x = ((\<phi> g2) \<otimes>\<^bsub>BijGroup E\<^esub> (\<phi> g1)) x"
+    using g1 g2 group_hom group_hom.hom_mult by fastforce
+  also have " ... = (\<phi> g2) ((\<phi> g1) x)"
+    using composition_rule assms(1) calculation g1 g2 by auto
+  finally have "(\<phi> (g2 \<otimes> g1)) x = z"
+    by (simp add: g1 g2)
+  thus ?thesis
+    using g1 g2 orbit_def by force 
+qed
+
+lemma (in group_action) orbits_as_classes:
+  "classes\<^bsub>\<lparr> carrier = E, eq = \<lambda>x. \<lambda>y. y \<in> orbit G \<phi> x \<rparr>\<^esub> = orbits G E \<phi>"
+  unfolding eq_classes_def eq_class_of_def orbits_def apply simp
+proof -
+  have "\<And>x. x \<in> E \<Longrightarrow> {y \<in> E. y \<in> orbit G \<phi> x} = orbit G \<phi> x"
+    by (smt Collect_cong element_image mem_Collect_eq orbit_def)
+  thus "{{y \<in> E. y \<in> orbit G \<phi> x} |x. x \<in> E} = {orbit G \<phi> x |x. x \<in> E}" by blast
+qed
+
+theorem (in group_action) orbit_partition:
+  "partition E (orbits G E \<phi>)"
+proof -
+  have "equivalence \<lparr> carrier = E, eq = \<lambda>x. \<lambda>y. y \<in> orbit G \<phi> x \<rparr>"
+  unfolding equivalence_def apply simp
+  using orbit_refl orbit_sym orbit_trans by blast
+  thus ?thesis using equivalence.partition_from_equivalence orbits_as_classes by fastforce
+qed
+
+corollary (in group_action) orbits_coverture:
+  "\<Union> (orbits G E \<phi>) = E"
+  using partition.partition_coverture[OF orbit_partition] by simp
+
+corollary (in group_action) disjoint_union:
+  assumes "orb1 \<in> (orbits G E \<phi>)" "orb2 \<in> (orbits G E \<phi>)"
+  shows "(orb1 = orb2) \<or> (orb1 \<inter> orb2) = {}"
+  using partition.disjoint_union[OF orbit_partition] assms by auto
+
+corollary (in group_action) disjoint_sum:
+  assumes "finite E"
+  shows "(\<Sum>orb\<in>(orbits G E \<phi>). \<Sum>x\<in>orb. f x) = (\<Sum>x\<in>E. f x)"
+  using partition.disjoint_sum[OF orbit_partition] assms by auto
+
+
+subsubsection \<open>Transitive Actions\<close>
+
+text \<open>Transitive actions have only one orbit\<close>
+
+lemma (in transitive_action) all_equivalent:
+  "\<lbrakk> x \<in> E; y \<in> E \<rbrakk> \<Longrightarrow> x .=\<^bsub>\<lparr>carrier = E, eq = \<lambda>x y. y \<in> orbit G \<phi> x\<rparr>\<^esub> y"
+proof -
+  assume "x \<in> E" "y \<in> E"
+  hence "\<exists> g \<in> carrier G. (\<phi> g) x = y"
+    using unique_orbit  by blast
+  hence "y \<in> orbit G \<phi> x"
+    using orbit_def by fastforce
+  thus "x .=\<^bsub>\<lparr>carrier = E, eq = \<lambda>x y. y \<in> orbit G \<phi> x\<rparr>\<^esub> y" by simp
+qed
+
+proposition (in transitive_action) one_orbit:
+  assumes "E \<noteq> {}"
+  shows "card (orbits G E \<phi>) = 1"
+proof -
+  have "orbits G E \<phi> \<noteq> {}"
+    using assms orbits_coverture by auto
+  moreover have "\<And> orb1 orb2. \<lbrakk> orb1 \<in> (orbits G E \<phi>); orb2 \<in> (orbits G E \<phi>) \<rbrakk> \<Longrightarrow> orb1 = orb2"
+  proof -
+    fix orb1 orb2 assume orb1: "orb1 \<in> (orbits G E \<phi>)"
+                     and orb2: "orb2 \<in> (orbits G E \<phi>)"
+    then obtain x y where x: "orb1 = orbit G \<phi> x" and x_E: "x \<in> E" 
+                      and y: "orb2 = orbit G \<phi> y" and y_E: "y \<in> E"
+      unfolding orbits_def by blast
+    hence "x \<in> orbit G \<phi> y" using all_equivalent by auto
+    hence "orb1 \<inter> orb2 \<noteq> {}" using x y x_E orbit_refl by auto
+    thus "orb1 = orb2" using disjoint_union[of orb1 orb2] orb1 orb2 by auto
+  qed
+  ultimately show "card (orbits G E \<phi>) = 1"
+    by (meson is_singletonI' is_singleton_altdef)
+qed
+
+
+
+subsection \<open>Stabilizers\<close>
+
+text \<open>We show that stabilizers are subgroups from the acting group\<close>
+
+lemma (in group_action) stabilizer_subset:
+  "stabilizer G \<phi> x \<subseteq> carrier G"
+  by (metis (no_types, lifting) mem_Collect_eq stabilizer_def subsetI)
+
+lemma (in group_action) stabilizer_m_closed:
+  assumes "x \<in> E" "g1 \<in> (stabilizer G \<phi> x)" "g2 \<in> (stabilizer G \<phi> x)"
+  shows "(g1 \<otimes> g2) \<in> (stabilizer G \<phi> x)"
+proof -
+  interpret group G
+    using group_hom group_hom.axioms(1) by auto
+  
+  have "\<phi> g1 x = x"
+    using assms stabilizer_def by fastforce
+  moreover have "\<phi> g2 x = x"
+    using assms stabilizer_def by fastforce
+  moreover have g1: "g1 \<in> carrier G"
+    by (meson assms contra_subsetD stabilizer_subset)
+  moreover have g2: "g2 \<in> carrier G"
+    by (meson assms contra_subsetD stabilizer_subset)
+  ultimately have "\<phi> (g1 \<otimes> g2) x = x"
+    using composition_rule assms by simp
+
+  thus ?thesis
+    by (simp add: g1 g2 stabilizer_def) 
+qed
+
+lemma (in group_action) stabilizer_one_closed:
+  assumes "x \<in> E"
+  shows "\<one> \<in> (stabilizer G \<phi> x)"
+proof -
+  have "\<phi> \<one> x = x"
+    by (metis assms id_eq_one restrict_apply')
+  thus ?thesis
+    using group_def group_hom group_hom.axioms(1) stabilizer_def by fastforce
+qed
+
+lemma (in group_action) stabilizer_m_inv_closed:
+  assumes "x \<in> E" "g \<in> (stabilizer G \<phi> x)"
+  shows "(inv g) \<in> (stabilizer G \<phi> x)"
+proof -
+  interpret group G
+    using group_hom group_hom.axioms(1) by auto
+
+  have "\<phi> g x = x"
+    using assms(2) stabilizer_def by fastforce
+  moreover have g: "g \<in> carrier G"
+    using assms(2) stabilizer_subset by blast
+  moreover have inv_g: "inv g \<in> carrier G"
+    by (simp add: g)
+  ultimately have "\<phi> (inv g) x = x"
+    using assms(1) orbit_sym_aux by blast
+
+  thus ?thesis by (simp add: inv_g stabilizer_def) 
+qed
+
+theorem (in group_action) stabilizer_subgroup:
+  assumes "x \<in> E"
+  shows "subgroup (stabilizer G \<phi> x) G"
+  unfolding subgroup_def
+  using stabilizer_subset stabilizer_m_closed stabilizer_one_closed
+        stabilizer_m_inv_closed assms by simp
+
+
+
+subsection \<open>The Orbit-Stabilizer Theorem\<close>
+
+text \<open>In this subsection, we prove the Orbit-Stabilizer theorem.
+      Our approach is to show the existence of a bijection between
+      "rcosets (stabilizer G phi x)" and "orbit G phi x". Then we use
+      Lagrange's theorem to find the cardinal of the first set.\<close>
+
+subsubsection \<open>Rcosets - Supporting Lemmas\<close>
+
+corollary (in group_action) stab_rcosets_not_empty:
+  assumes "x \<in> E" "R \<in> rcosets (stabilizer G \<phi> x)"
+  shows "R \<noteq> {}"
+  using subgroup.rcosets_not_empty[OF stabilizer_subgroup[OF assms(1)] assms(2)] by simp
+
+corollary (in group_action) diff_stabilizes:
+  assumes "x \<in> E" "R \<in> rcosets (stabilizer G \<phi> x)"
+  shows "\<And>g1 g2. \<lbrakk> g1 \<in> R; g2 \<in> R \<rbrakk> \<Longrightarrow> g1 \<otimes> (inv g2) \<in> stabilizer G \<phi> x"
+  using group.diff_neutralizes[of G "stabilizer G \<phi> x" R] stabilizer_subgroup[OF assms(1)]
+        assms(2) group_hom group_hom.axioms(1) by blast
+
+
+subsubsection \<open>Bijection Between Rcosets and an Orbit - Definition and Supporting Lemmas\<close>
+
+(* This definition could be easier if lcosets were available, and it's indeed a considerable
+   modification at Coset theory, since we could derive it easily from the definition of rcosets
+   following the same idea we use here: f: rcosets \<rightarrow> lcosets, s.t. f R = (\<lambda>g. inv g) ` R
+   is a bijection. *)
+
+definition
+  orb_stab_fun :: "[_, ('a \<Rightarrow> 'b \<Rightarrow> 'b), 'a set, 'b] \<Rightarrow> 'b"
+  where "orb_stab_fun G \<phi> R x = (\<phi> (inv\<^bsub>G\<^esub> (SOME h. h \<in> R))) x"
+
+lemma (in group_action) orbit_stab_fun_is_well_defined0:
+  assumes "x \<in> E" "R \<in> rcosets (stabilizer G \<phi> x)"
+  shows "\<And>g1 g2. \<lbrakk> g1 \<in> R; g2 \<in> R \<rbrakk> \<Longrightarrow> (\<phi> (inv g1)) x = (\<phi> (inv g2)) x"
+proof -
+  fix g1 g2 assume g1: "g1 \<in> R" and g2: "g2 \<in> R"
+  have R_carr: "R \<subseteq> carrier G"
+    using subgroup.rcosets_carrier[OF stabilizer_subgroup[OF assms(1)]]
+          assms(2) group_hom group_hom.axioms(1) by auto
+  from R_carr have g1_carr: "g1 \<in> carrier G" using g1 by blast
+  from R_carr have g2_carr: "g2 \<in> carrier G" using g2 by blast
+
+  have "g1 \<otimes> (inv g2) \<in> stabilizer G \<phi> x"
+    using diff_stabilizes[of x R g1 g2] assms g1 g2 by blast
+  hence "\<phi> (g1 \<otimes> (inv g2)) x = x"
+    by (simp add: stabilizer_def)
+  hence "(\<phi> (inv g1)) x = (\<phi> (inv g1)) (\<phi> (g1 \<otimes> (inv g2)) x)" by simp
+  also have " ... = \<phi> ((inv g1) \<otimes> (g1 \<otimes> (inv g2))) x"
+    using group_def assms(1) composition_rule g1_carr g2_carr
+          group_hom group_hom.axioms(1) monoid.m_closed by fastforce
+  also have " ... = \<phi> (((inv g1) \<otimes> g1) \<otimes> (inv g2)) x"
+    using group_def g1_carr g2_carr group_hom group_hom.axioms(1) monoid.m_assoc by fastforce
+  finally show "(\<phi> (inv g1)) x = (\<phi> (inv g2)) x"
+    using group_def g1_carr g2_carr group.l_inv group_hom group_hom.axioms(1) by fastforce
+qed
+
+lemma (in group_action) orbit_stab_fun_is_well_defined1:
+  assumes "x \<in> E" "R \<in> rcosets (stabilizer G \<phi> x)"
+  shows "\<And>g. g \<in> R \<Longrightarrow> (\<phi> (inv (SOME h. h \<in> R))) x = (\<phi> (inv g)) x"
+  by (meson assms orbit_stab_fun_is_well_defined0 someI_ex)
+
+lemma (in group_action) orbit_stab_fun_is_inj:
+  assumes "x \<in> E"
+    and "R1 \<in> rcosets (stabilizer G \<phi> x)"
+    and "R2 \<in> rcosets (stabilizer G \<phi> x)"
+    and "\<phi> (inv (SOME h. h \<in> R1)) x = \<phi> (inv (SOME h. h \<in> R2)) x"
+  shows "R1 = R2"
+proof -
+  have "(\<exists>g1. g1 \<in> R1) \<and> (\<exists>g2. g2 \<in> R2)"
+    using assms(1-3) stab_rcosets_not_empty by auto
+  then obtain g1 g2 where g1: "g1 \<in> R1" and g2: "g2 \<in> R2" by blast
+  hence g12_carr: "g1 \<in> carrier G \<and> g2 \<in> carrier G"
+    using subgroup.rcosets_carrier assms(1-3) group_hom
+          group_hom.axioms(1) stabilizer_subgroup by blast
+
+  then obtain r1 r2 where r1: "r1 \<in> carrier G" "R1 = (stabilizer G \<phi> x) #> r1"
+                      and r2: "r2 \<in> carrier G" "R2 = (stabilizer G \<phi> x) #> r2"
+    using assms(1-3) unfolding RCOSETS_def by blast
+  then obtain s1 s2 where s1: "s1 \<in> (stabilizer G \<phi> x)" "g1 = s1 \<otimes> r1"
+                      and s2: "s2 \<in> (stabilizer G \<phi> x)" "g2 = s2 \<otimes> r2"
+    using g1 g2 unfolding r_coset_def by blast
+
+  have "\<phi> (inv g1) x = \<phi> (inv (SOME h. h \<in> R1)) x"
+    using orbit_stab_fun_is_well_defined1[OF assms(1) assms(2) g1] by simp
+  also have " ... = \<phi> (inv (SOME h. h \<in> R2)) x"
+    using assms(4) by simp
+  finally have "\<phi> (inv g1) x = \<phi> (inv g2) x"
+    using orbit_stab_fun_is_well_defined1[OF assms(1) assms(3) g2] by simp
+
+  hence "\<phi> g2 (\<phi> (inv g1) x) = \<phi> g2 (\<phi> (inv g2) x)" by simp
+  also have " ... = \<phi> (g2 \<otimes> (inv g2)) x"
+    using assms(1) composition_rule g12_carr group_hom group_hom.axioms(1) by fastforce
+  finally have "\<phi> g2 (\<phi> (inv g1) x) = x"
+    using g12_carr assms(1) group.r_inv group_hom group_hom.axioms(1)
+          id_eq_one restrict_apply by metis
+  hence "\<phi> (g2 \<otimes> (inv g1)) x = x"
+    using assms(1) composition_rule g12_carr group_hom group_hom.axioms(1) by fastforce
+  hence "g2 \<otimes> (inv g1) \<in> (stabilizer G \<phi> x)"
+    using g12_carr group.subgroup_self group_hom group_hom.axioms(1)
+          mem_Collect_eq stabilizer_def subgroup_def by (metis (mono_tags, lifting))
+  then obtain s where s: "s \<in> (stabilizer G \<phi> x)" "s = g2 \<otimes> (inv g1)" by blast
+
+  let ?h = "s \<otimes> g1"
+  have "?h = s \<otimes> (s1 \<otimes> r1)" by (simp add: s1)
+  hence "?h = (s \<otimes> s1) \<otimes> r1"
+    using stabilizer_subgroup[OF assms(1)] group_def group_hom
+          group_hom.axioms(1) monoid.m_assoc r1 s s1 subgroup.mem_carrier by fastforce
+  hence inR1: "?h \<in> (stabilizer G \<phi> x) #> r1" unfolding r_coset_def
+    using stabilizer_subgroup[OF assms(1)] assms(1) s s1 stabilizer_m_closed by auto
+
+  have "?h = g2" using s stabilizer_subgroup[OF assms(1)] g12_carr group.inv_solve_right
+                       group_hom group_hom.axioms(1) subgroup.mem_carrier by metis
+  hence inR2: "?h \<in> (stabilizer G \<phi> x) #> r2"
+    using g2 r2 by blast
+
+  have "R1 \<inter> R2 \<noteq> {}" using inR1 inR2 r1 r2 by blast
+  thus ?thesis using stabilizer_subgroup group.rcos_disjoint[of G "stabilizer G \<phi> x" R1 R2]
+                     assms group_hom group_hom.axioms(1) by blast
+qed
+
+lemma (in group_action) orbit_stab_fun_is_surj:
+  assumes "x \<in> E" "y \<in> orbit G \<phi> x"
+  shows "\<exists>R \<in> rcosets (stabilizer G \<phi> x). \<phi> (inv (SOME h. h \<in> R)) x = y"
+proof -
+  have "\<exists>g \<in> carrier G. (\<phi> g) x = y"
+    using assms(2) unfolding orbit_def by blast
+  then obtain g where g: "g \<in> carrier G \<and> (\<phi> g) x = y" by blast
+  
+  let ?R = "(stabilizer G \<phi> x) #> (inv g)"
+  have R: "?R \<in> rcosets (stabilizer G \<phi> x)"
+    unfolding RCOSETS_def using g group_hom group_hom.axioms(1) by fastforce
+  moreover have "\<one> \<otimes> (inv g) \<in> ?R"
+    unfolding r_coset_def using assms(1) stabilizer_one_closed by auto
+  ultimately have "\<phi> (inv (SOME h. h \<in> ?R)) x = \<phi> (inv (\<one> \<otimes> (inv g))) x"
+    using orbit_stab_fun_is_well_defined1[OF assms(1)] by simp
+  also have " ... = (\<phi> g) x"
+    using group_def g group_hom group_hom.axioms(1) monoid.l_one by fastforce
+  finally have "\<phi> (inv (SOME h. h \<in> ?R)) x = y"
+    using g by simp
+  thus ?thesis using R by blast 
+qed
+
+proposition (in group_action) orbit_stab_fun_is_bij:
+  assumes "x \<in> E"
+  shows "bij_betw (\<lambda>R. (\<phi> (inv (SOME h. h \<in> R))) x) (rcosets (stabilizer G \<phi> x)) (orbit G \<phi> x)"
+  unfolding bij_betw_def
+proof
+  show "inj_on (\<lambda>R. \<phi> (inv (SOME h. h \<in> R)) x) (rcosets stabilizer G \<phi> x)"
+    using orbit_stab_fun_is_inj[OF assms(1)] by (simp add: inj_on_def)
+next
+  have "\<And>R. R \<in> (rcosets stabilizer G \<phi> x) \<Longrightarrow> \<phi> (inv (SOME h. h \<in> R)) x \<in> orbit G \<phi> x "
+  proof -
+    fix R assume R: "R \<in> (rcosets stabilizer G \<phi> x)"
+    then obtain g where g: "g \<in> R"
+      using assms stab_rcosets_not_empty by auto
+    hence "\<phi> (inv (SOME h. h \<in> R)) x = \<phi> (inv g) x"
+      using R  assms orbit_stab_fun_is_well_defined1 by blast
+    thus "\<phi> (inv (SOME h. h \<in> R)) x \<in> orbit G \<phi> x" unfolding orbit_def
+      using subgroup.rcosets_carrier group_hom group_hom.axioms(1)
+            g R assms stabilizer_subgroup by fastforce
+  qed
+  moreover have "orbit G \<phi> x \<subseteq> (\<lambda>R. \<phi> (inv (SOME h. h \<in> R)) x) ` (rcosets stabilizer G \<phi> x)"
+    using assms orbit_stab_fun_is_surj by fastforce
+  ultimately show "(\<lambda>R. \<phi> (inv (SOME h. h \<in> R)) x) ` (rcosets stabilizer G \<phi> x) = orbit G \<phi> x "
+    using assms set_eq_subset by blast
+qed
+
+
+subsubsection \<open>The Theorem\<close>
+
+theorem (in group_action) orbit_stabilizer_theorem:
+  assumes "x \<in> E"
+  shows "card (orbit G \<phi> x) * card (stabilizer G \<phi> x) = order G"
+proof -
+  have "card (rcosets stabilizer G \<phi> x) = card (orbit G \<phi> x)"
+    using orbit_stab_fun_is_bij[OF assms(1)] bij_betw_same_card by blast
+  moreover have "card (rcosets stabilizer G \<phi> x) * card (stabilizer G \<phi> x) = order G"
+    using stabilizer_subgroup assms group.lagrange group_hom group_hom.axioms(1) by blast
+  ultimately show ?thesis by auto
+qed
+
+
+
+subsection \<open>The Burnside's Lemma\<close>
+
+subsubsection \<open>Sums and Cardinals\<close>
+
+lemma card_as_sums:
+  assumes "A = {x \<in> B. P x}" "finite B"
+  shows "card A = (\<Sum>x\<in>B. (if P x then 1 else 0))"
+proof -
+  have "A \<subseteq> B" using assms(1) by blast
+  have "card A = (\<Sum>x\<in>A. 1)" by simp
+  also have " ... = (\<Sum>x\<in>A. (if P x then 1 else 0))"
+    by (simp add: assms(1))
+  also have " ... = (\<Sum>x\<in>A. (if P x then 1 else 0)) + (\<Sum>x\<in>(B - A). (if P x then 1 else 0))"
+    using assms(1) by auto
+  finally show "card A = (\<Sum>x\<in>B. (if P x then 1 else 0))"
+    using \<open>A \<subseteq> B\<close> add.commute assms(2) sum.subset_diff by metis
+qed
+
+lemma sum_invertion:
+  "\<lbrakk> finite A; finite B \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>A. \<Sum>y\<in>B. f x y) = (\<Sum>y\<in>B. \<Sum>x\<in>A. f x y)"
+proof (induct set: finite)
+  case empty thus ?case by simp
+next
+  case (insert x A')
+  have "(\<Sum>x\<in>insert x A'. \<Sum>y\<in>B. f x y) = (\<Sum>y\<in>B. f x y) + (\<Sum>x\<in>A'. \<Sum>y\<in>B. f x y)"
+    by (simp add: insert.hyps)
+  also have " ... = (\<Sum>y\<in>B. f x y) + (\<Sum>y\<in>B. \<Sum>x\<in>A'. f x y)"
+    using insert.hyps by (simp add: insert.prems)
+  also have " ... = (\<Sum>y\<in>B. (f x y) + (\<Sum>x\<in>A'. f x y))"
+    by (simp add: sum.distrib)
+  finally have "(\<Sum>x\<in>insert x A'. \<Sum>y\<in>B. f x y) = (\<Sum>y\<in>B. \<Sum>x\<in>insert x A'. f x y)"
+    using sum.swap by blast
+  thus ?case by simp
+qed
+
+lemma (in group_action) card_stablizer_sum:
+  assumes "finite (carrier G)" "orb \<in> (orbits G E \<phi>)"
+  shows "(\<Sum>x \<in> orb. card (stabilizer G \<phi> x)) = order G"
+proof -
+  obtain x where x:"x \<in> E" and orb:"orb = orbit G \<phi> x"
+    using assms(2) unfolding orbits_def by blast
+  have "\<And>y. y \<in> orb \<Longrightarrow> card (stabilizer G \<phi> x) = card (stabilizer G \<phi> y)"
+  proof -
+    fix y assume "y \<in> orb"
+    hence y: "y \<in> E \<and> y \<in> orbit G \<phi> x"
+      using x orb assms(2) orbits_coverture by auto 
+    hence same_orbit: "(orbit G \<phi> x) = (orbit G \<phi> y)"
+      using disjoint_union[of "orbit G \<phi> x" "orbit G \<phi> y"] orbit_refl x
+      unfolding orbits_def by auto
+    have "card (orbit G \<phi> x) * card (stabilizer G \<phi> x) =
+          card (orbit G \<phi> y) * card (stabilizer G \<phi> y)"
+      using y assms(1) x orbit_stabilizer_theorem by simp
+    hence "card (orbit G \<phi> x) * card (stabilizer G \<phi> x) =
+           card (orbit G \<phi> x) * card (stabilizer G \<phi> y)" using same_orbit by simp
+    moreover have "orbit G \<phi> x \<noteq> {} \<and> finite (orbit G \<phi> x)"
+      using y orbit_def[of G \<phi> x] assms(1) by auto
+    hence "card (orbit G \<phi> x) > 0"
+      by (simp add: card_gt_0_iff)
+    ultimately show "card (stabilizer G \<phi> x) = card (stabilizer G \<phi> y)" by auto
+  qed
+  hence "(\<Sum>x \<in> orb. card (stabilizer G \<phi> x)) = (\<Sum>y \<in> orb. card (stabilizer G \<phi> x))" by auto
+  also have " ... = card (stabilizer G \<phi> x) * (\<Sum>y \<in> orb. 1)" by simp
+  also have " ... = card (stabilizer G \<phi> x) * card (orbit G \<phi> x)"
+    using orb by auto
+  finally show "(\<Sum>x \<in> orb. card (stabilizer G \<phi> x)) = order G"
+    by (metis mult.commute orbit_stabilizer_theorem x)
+qed
+
+
+subsubsection \<open>The Lemma\<close>
+
+theorem (in group_action) burnside:
+  assumes "finite (carrier G)" "finite E"
+  shows "card (orbits G E \<phi>) * order G = (\<Sum>g \<in> carrier G. card(invariants E \<phi> g))"
+proof -
+  have "(\<Sum>g \<in> carrier G. card(invariants E \<phi> g)) =
+        (\<Sum>g \<in> carrier G. \<Sum>x \<in> E. (if (\<phi> g) x = x then 1 else 0))"
+    by (simp add: assms(2) card_as_sums invariants_def)
+  also have " ... = (\<Sum>x \<in> E. \<Sum>g \<in> carrier G. (if (\<phi> g) x = x then 1 else 0))"
+    using sum_invertion[where ?f = "\<lambda> g x. (if (\<phi> g) x = x then 1 else 0)"] assms by auto
+  also have " ... = (\<Sum>x \<in> E. card (stabilizer G \<phi> x))"
+    by (simp add: assms(1) card_as_sums stabilizer_def)
+  also have " ... = (\<Sum>orbit \<in> (orbits G E \<phi>). \<Sum>x \<in> orbit. card (stabilizer G \<phi> x))"
+    using disjoint_sum orbits_coverture assms(2) by metis
+  also have " ... = (\<Sum>orbit \<in> (orbits G E \<phi>). order G)"
+    by (simp add: assms(1) card_stablizer_sum)
+  finally have "(\<Sum>g \<in> carrier G. card(invariants E \<phi> g)) = card (orbits G E \<phi>) * order G" by simp
+  thus ?thesis by simp
+qed
+
+
+
+subsection \<open>Action by Conjugation\<close>
+
+
+subsubsection \<open>Action Over Itself\<close>
+
+text \<open>A Group Acts by Conjugation Over Itself\<close>
+
+lemma (in group) conjugation_is_inj:
+  assumes "g \<in> carrier G" "h1 \<in> carrier G" "h2 \<in> carrier G"
+    and "g \<otimes> h1 \<otimes> (inv g) = g \<otimes> h2 \<otimes> (inv g)"
+    shows "h1 = h2"
+  using assms by auto
+
+lemma (in group) conjugation_is_surj:
+  assumes "g \<in> carrier G" "h \<in> carrier G"
+  shows "g \<otimes> ((inv g) \<otimes> h \<otimes> g) \<otimes> (inv g) = h"
+  using assms m_assoc inv_closed inv_inv m_closed monoid_axioms r_inv r_one
+  by metis
+
+lemma (in group) conjugation_is_bij:
+  assumes "g \<in> carrier G"
+  shows "bij_betw (\<lambda>h \<in> carrier G. g \<otimes> h \<otimes> (inv g)) (carrier G) (carrier G)"
+         (is "bij_betw ?\<phi> (carrier G) (carrier G)")
+  unfolding bij_betw_def
+proof
+  show "inj_on ?\<phi> (carrier G)"
+    using conjugation_is_inj by (simp add: assms inj_on_def) 
+next
+  have S: "\<And> h. h \<in> carrier G \<Longrightarrow> (inv g) \<otimes> h \<otimes> g \<in> carrier G"
+    using assms by blast
+  have "\<And> h. h \<in> carrier G \<Longrightarrow> ?\<phi> ((inv g) \<otimes> h \<otimes> g) = h"
+    using assms by (simp add: conjugation_is_surj)
+  hence "carrier G \<subseteq> ?\<phi> ` carrier G"
+    using S image_iff by fastforce
+  moreover have "\<And> h. h \<in> carrier G \<Longrightarrow> ?\<phi> h \<in> carrier G"
+    using assms by simp
+  hence "?\<phi> ` carrier G \<subseteq> carrier G" by blast
+  ultimately show "?\<phi> ` carrier G = carrier G" by blast
+qed
+
+lemma(in group) conjugation_is_hom:
+  "(\<lambda>g. \<lambda>h \<in> carrier G. g \<otimes> h \<otimes> inv g) \<in> hom G (BijGroup (carrier G))"
+  unfolding hom_def
+proof -
+  let ?\<psi> = "\<lambda>g. \<lambda>h. g \<otimes> h \<otimes> inv g"
+  let ?\<phi> = "\<lambda>g. restrict (?\<psi> g) (carrier G)"
+
+  (* First, we prove that ?\<phi>: G \<rightarrow> Bij(G) is well defined *)
+  have Step0: "\<And> g. g \<in> carrier G \<Longrightarrow> (?\<phi> g) \<in> Bij (carrier G)"
+    using Bij_def conjugation_is_bij by fastforce
+  hence Step1: "?\<phi>: carrier G \<rightarrow> carrier (BijGroup (carrier G))"
+    unfolding BijGroup_def by simp
+
+  (* Second, we prove that ?\<phi> is a homomorphism *)
+  have "\<And> g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow>
+                  (\<And> h. h \<in> carrier G \<Longrightarrow> ?\<psi> (g1 \<otimes> g2) h = (?\<phi> g1) ((?\<phi> g2) h))"
+  proof -
+    fix g1 g2 h assume g1: "g1 \<in> carrier G" and g2: "g2 \<in> carrier G" and h: "h \<in> carrier G"
+    have "inv (g1 \<otimes> g2) = (inv g2) \<otimes> (inv g1)"
+      using g1 g2 by (simp add: inv_mult_group)
+    thus "?\<psi> (g1 \<otimes> g2) h  = (?\<phi> g1) ((?\<phi> g2) h)"
+      by (simp add: g1 g2 h m_assoc)
+  qed
+  hence "\<And> g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow>
+         (\<lambda> h \<in> carrier G. ?\<psi> (g1 \<otimes> g2) h) = (\<lambda> h \<in> carrier G. (?\<phi> g1) ((?\<phi> g2) h))" by auto
+  hence Step2: "\<And> g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow>
+                ?\<phi> (g1 \<otimes> g2) = (?\<phi> g1) \<otimes>\<^bsub>BijGroup (carrier G)\<^esub> (?\<phi> g2)"
+    unfolding BijGroup_def by (simp add: Step0 compose_def)
+
+  (* Finally, we combine both results to prove the lemma *)
+  thus "?\<phi> \<in> {h: carrier G \<rightarrow> carrier (BijGroup (carrier G)).
+              (\<forall>x \<in> carrier G. \<forall>y \<in> carrier G. h (x \<otimes> y) = h x \<otimes>\<^bsub>BijGroup (carrier G)\<^esub> h y)}"
+    using Step1 Step2 by auto
+qed
+
+theorem (in group) action_by_conjugation:
+  "group_action G (carrier G) (\<lambda>g. (\<lambda>h \<in> carrier G. g \<otimes> h \<otimes> (inv g)))"
+  unfolding group_action_def group_hom_def using conjugation_is_hom
+  by (simp add: group_BijGroup group_hom_axioms.intro is_group)
+
+
+subsubsection \<open>Action Over The Set of Subgroups\<close>
+
+text \<open>A Group Acts by Conjugation Over The Set of Subgroups\<close>
+
+lemma (in group) subgroup_conjugation_is_inj_aux:
+  assumes "g \<in> carrier G" "H1 \<subseteq> carrier G" "H2 \<subseteq> carrier G"
+    and "g <# H1 #> (inv g) = g <# H2 #> (inv g)"
+    shows "H1 \<subseteq> H2"
+proof
+  fix h1 assume h1: "h1 \<in> H1"
+  hence "g \<otimes> h1 \<otimes> (inv g) \<in> g <# H1 #> (inv g)"
+    unfolding l_coset_def r_coset_def using assms by blast
+  hence "g \<otimes> h1 \<otimes> (inv g) \<in> g <# H2 #> (inv g)"
+    using assms by auto
+  hence "\<exists>h2 \<in> H2. g \<otimes> h1 \<otimes> (inv g) = g \<otimes> h2 \<otimes> (inv g)"
+      unfolding l_coset_def r_coset_def by blast
+  then obtain h2 where "h2 \<in> H2 \<and> g \<otimes> h1 \<otimes> (inv g) = g \<otimes> h2 \<otimes> (inv g)" by blast
+  thus "h1 \<in> H2"
+    using assms conjugation_is_inj h1 by blast
+qed
+
+lemma (in group) subgroup_conjugation_is_inj:
+  assumes "g \<in> carrier G" "H1 \<subseteq> carrier G" "H2 \<subseteq> carrier G"
+    and "g <# H1 #> (inv g) = g <# H2 #> (inv g)"
+    shows "H1 = H2"
+  using subgroup_conjugation_is_inj_aux assms set_eq_subset by metis
+
+lemma (in group) subgroup_conjugation_is_surj0:
+  assumes "g \<in> carrier G" "H \<subseteq> carrier G"
+  shows "g <# ((inv g) <# H #> g) #> (inv g) = H"
+  using coset_assoc assms coset_mult_assoc l_coset_subset_G lcos_m_assoc
+  by (simp add: lcos_mult_one)
+
+lemma (in group) subgroup_conjugation_is_surj1:
+  assumes "g \<in> carrier G" "subgroup H G"
+  shows "subgroup ((inv g) <# H #> g) G"
+proof
+  show "\<one> \<in> inv g <# H #> g"
+  proof -
+    have "\<one> \<in> H" by (simp add: assms(2) subgroup.one_closed)
+    hence "inv g \<otimes> \<one> \<otimes> g \<in> inv g <# H #> g"
+      unfolding l_coset_def r_coset_def by blast
+    thus "\<one> \<in> inv g <# H #> g" using assms by simp
+  qed
+next
+  show "inv g <# H #> g \<subseteq> carrier G"
+  proof
+    fix x assume "x \<in> inv g <# H #> g"
+    hence "\<exists>h \<in> H. x = (inv g) \<otimes> h \<otimes> g"
+      unfolding r_coset_def l_coset_def by blast
+    hence "\<exists>h \<in> (carrier G). x = (inv g) \<otimes> h \<otimes> g"
+      by (meson assms subgroup.mem_carrier)
+    thus "x \<in> carrier G" using assms by blast
+  qed
+next
+  show " \<And> x y. \<lbrakk> x \<in> inv g <# H #> g; y \<in> inv g <# H #> g \<rbrakk> \<Longrightarrow> x \<otimes> y \<in> inv g <# H #> g"
+  proof -
+    fix x y assume "x \<in> inv g <# H #> g"  "y \<in> inv g <# H #> g"
+    hence "\<exists> h1 \<in> H. \<exists> h2 \<in> H. x = (inv g) \<otimes> h1 \<otimes> g \<and> y = (inv g) \<otimes> h2 \<otimes> g"
+      unfolding l_coset_def r_coset_def by blast
+    hence "\<exists> h1 \<in> H. \<exists> h2 \<in> H. x \<otimes> y = ((inv g) \<otimes> h1 \<otimes> g) \<otimes> ((inv g) \<otimes> h2 \<otimes> g)" by blast
+    hence "\<exists> h1 \<in> H. \<exists> h2 \<in> H. x \<otimes> y = ((inv g) \<otimes> (h1 \<otimes> h2) \<otimes> g)"
+      using assms is_group inv_closed l_one m_assoc m_closed
+            monoid_axioms r_inv subgroup.mem_carrier by smt
+    hence "\<exists> h \<in> H. x \<otimes> y = (inv g) \<otimes> h \<otimes> g"
+      by (meson assms(2) subgroup_def)
+    thus "x \<otimes> y \<in> inv g <# H #> g"
+      unfolding l_coset_def r_coset_def by blast
+  qed
+next
+  show "\<And>x. x \<in> inv g <# H #> g \<Longrightarrow> inv x \<in> inv g <# H #> g"
+  proof -
+    fix x assume "x \<in> inv g <# H #> g"
+    hence "\<exists>h \<in> H. x = (inv g) \<otimes> h \<otimes> g"
+      unfolding r_coset_def l_coset_def by blast
+    then obtain h where h: "h \<in> H \<and> x = (inv g) \<otimes> h \<otimes> g" by blast
+    hence "x \<otimes> (inv g) \<otimes> (inv h) \<otimes> g = \<one>"
+      using assms inv_closed m_assoc m_closed monoid_axioms
+            r_inv r_one subgroup.mem_carrier by smt
+    hence "inv x = (inv g) \<otimes> (inv h) \<otimes> g"
+      using assms h inv_closed inv_inv inv_mult_group m_assoc
+            m_closed monoid_axioms subgroup.mem_carrier by smt
+    moreover have "inv h \<in> H"
+      by (simp add: assms h subgroup.m_inv_closed)
+    ultimately show "inv x \<in> inv g <# H #> g" unfolding r_coset_def l_coset_def by blast
+  qed
+qed
+
+lemma (in group) subgroup_conjugation_is_surj2:
+  assumes "g \<in> carrier G" "subgroup H G"
+  shows "subgroup (g <# H #> (inv g)) G"
+  using subgroup_conjugation_is_surj1 by (metis assms inv_closed inv_inv)
+
+lemma (in group) subgroup_conjugation_is_bij:
+  assumes "g \<in> carrier G"
+  shows "bij_betw (\<lambda>H \<in> {H. subgroup H G}. g <# H #> (inv g)) {H. subgroup H G} {H. subgroup H G}"
+         (is "bij_betw ?\<phi> {H. subgroup H G} {H. subgroup H G}")
+  unfolding bij_betw_def
+proof
+  show "inj_on ?\<phi> {H. subgroup H G}"
+    using subgroup_conjugation_is_inj assms inj_on_def subgroup.subset
+    by (metis (mono_tags, lifting) inj_on_restrict_eq mem_Collect_eq)
+next
+  have "\<And>H. H \<in> {H. subgroup H G} \<Longrightarrow> ?\<phi> ((inv g) <# H #> g) = H"
+    by (simp add: assms subgroup.subset subgroup_conjugation_is_surj0
+                  subgroup_conjugation_is_surj1 is_group)
+  hence "\<And>H. H \<in> {H. subgroup H G} \<Longrightarrow> \<exists>H' \<in> {H. subgroup H G}. ?\<phi> H' = H"
+    using assms subgroup_conjugation_is_surj1 by fastforce
+  thus "?\<phi> ` {H. subgroup H G} = {H. subgroup H G}"
+    using subgroup_conjugation_is_surj2 assms by auto
+qed
+
+lemma (in group) subgroup_conjugation_is_hom:
+  "(\<lambda>g. \<lambda>H \<in> {H. subgroup H G}. g <# H #> (inv g)) \<in> hom G (BijGroup {H. subgroup H G})"
+  unfolding hom_def
+proof -
+  (* We follow the exact same structure of conjugation_is_hom's proof *)
+  let ?\<psi> = "\<lambda>g. \<lambda>H. g <# H #> (inv g)"
+  let ?\<phi> = "\<lambda>g. restrict (?\<psi> g) {H. subgroup H G}"
+
+  have Step0: "\<And> g. g \<in> carrier G \<Longrightarrow> (?\<phi> g) \<in> Bij {H. subgroup H G}"
+    using Bij_def subgroup_conjugation_is_bij by fastforce
+  hence Step1: "?\<phi>: carrier G \<rightarrow> carrier (BijGroup {H. subgroup H G})"
+    unfolding BijGroup_def by simp
+
+  have "\<And> g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow>
+                  (\<And> H. H \<in> {H. subgroup H G} \<Longrightarrow> ?\<psi> (g1 \<otimes> g2) H = (?\<phi> g1) ((?\<phi> g2) H))"
+  proof -
+    fix g1 g2 H assume g1: "g1 \<in> carrier G" and g2: "g2 \<in> carrier G" and H': "H \<in> {H. subgroup H G}"
+    hence H: "subgroup H G" by simp
+    have "(?\<phi> g1) ((?\<phi> g2) H) = g1 <# (g2 <# H #> (inv g2)) #> (inv g1)"
+      by (simp add: H g2 subgroup_conjugation_is_surj2)
+    also have " ... = g1 <# (g2 <# H) #> ((inv g2) \<otimes> (inv g1))"
+      by (simp add: H coset_mult_assoc g1 g2 group.coset_assoc
+                    is_group l_coset_subset_G subgroup.subset)
+    also have " ... = g1 <# (g2 <# H) #> inv (g1 \<otimes> g2)"
+      using g1 g2 by (simp add: inv_mult_group)
+    finally have "(?\<phi> g1) ((?\<phi> g2) H) = ?\<psi> (g1 \<otimes> g2) H"
+      by (simp add: H g1 g2 lcos_m_assoc subgroup.subset)
+    thus "?\<psi> (g1 \<otimes> g2) H = (?\<phi> g1) ((?\<phi> g2) H)" by auto
+  qed
+  hence "\<And> g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow>
+         (\<lambda>H \<in> {H. subgroup H G}. ?\<psi> (g1 \<otimes> g2) H) = (\<lambda>H \<in> {H. subgroup H G}. (?\<phi> g1) ((?\<phi> g2) H))"
+    by (meson restrict_ext)
+  hence Step2: "\<And> g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow>
+                ?\<phi> (g1 \<otimes> g2) = (?\<phi> g1) \<otimes>\<^bsub>BijGroup {H. subgroup H G}\<^esub> (?\<phi> g2)"
+    unfolding BijGroup_def by (simp add: Step0 compose_def)
+
+  show "?\<phi> \<in> {h: carrier G \<rightarrow> carrier (BijGroup {H. subgroup H G}).
+              \<forall>x\<in>carrier G. \<forall>y\<in>carrier G. h (x \<otimes> y) = h x \<otimes>\<^bsub>BijGroup {H. subgroup H G}\<^esub> h y}"
+    using Step1 Step2 by auto
+qed
+
+theorem (in group) action_by_conjugation_on_subgroups_set:
+  "group_action G {H. subgroup H G} (\<lambda>g. \<lambda>H \<in> {H. subgroup H G}. g <# H #> (inv g))"
+  unfolding group_action_def group_hom_def using subgroup_conjugation_is_hom
+  by (simp add: group_BijGroup group_hom_axioms.intro is_group)
+
+
+subsubsection \<open>Action Over The Power Set\<close>
+
+text \<open>A Group Acts by Conjugation Over The Power Set\<close>
+
+lemma (in group) subset_conjugation_is_bij:
+  assumes "g \<in> carrier G"
+  shows "bij_betw (\<lambda>H \<in> {H. H \<subseteq> carrier G}. g <# H #> (inv g)) {H. H \<subseteq> carrier G} {H. H \<subseteq> carrier G}"
+         (is "bij_betw ?\<phi> {H. H \<subseteq> carrier G} {H. H \<subseteq> carrier G}")
+  unfolding bij_betw_def
+proof
+  show "inj_on ?\<phi> {H. H \<subseteq> carrier G}"
+    using subgroup_conjugation_is_inj assms inj_on_def
+    by (metis (mono_tags, lifting) inj_on_restrict_eq mem_Collect_eq)
+next
+  have "\<And>H. H \<in> {H. H \<subseteq> carrier G} \<Longrightarrow> ?\<phi> ((inv g) <# H #> g) = H"
+    by (simp add: assms l_coset_subset_G r_coset_subset_G subgroup_conjugation_is_surj0)
+  hence "\<And>H. H \<in> {H. H \<subseteq> carrier G} \<Longrightarrow> \<exists>H' \<in> {H. H \<subseteq> carrier G}. ?\<phi> H' = H"
+    by (metis assms l_coset_subset_G mem_Collect_eq r_coset_subset_G subgroup_def subgroup_self)
+  hence "{H. H \<subseteq> carrier G} \<subseteq> ?\<phi> ` {H. H \<subseteq> carrier G}" by blast
+  moreover have "?\<phi> ` {H. H \<subseteq> carrier G} \<subseteq> {H. H \<subseteq> carrier G}"
+    by (smt assms image_subsetI inv_closed l_coset_subset_G
+            mem_Collect_eq r_coset_subset_G restrict_apply')
+  ultimately show "?\<phi> ` {H. H \<subseteq> carrier G} = {H. H \<subseteq> carrier G}" by simp
+qed
+
+lemma (in group) subset_conjugation_is_hom:
+  "(\<lambda>g. \<lambda>H \<in> {H. H \<subseteq> carrier G}. g <# H #> (inv g)) \<in> hom G (BijGroup {H. H \<subseteq> carrier G})"
+  unfolding hom_def
+proof -
+  (* We follow the exact same structure of conjugation_is_hom's proof *)
+  let ?\<psi> = "\<lambda>g. \<lambda>H. g <# H #> (inv g)"
+  let ?\<phi> = "\<lambda>g. restrict (?\<psi> g) {H. H \<subseteq> carrier G}"
+
+  have Step0: "\<And> g. g \<in> carrier G \<Longrightarrow> (?\<phi> g) \<in> Bij {H. H \<subseteq> carrier G}"
+    using Bij_def subset_conjugation_is_bij by fastforce
+  hence Step1: "?\<phi>: carrier G \<rightarrow> carrier (BijGroup {H. H \<subseteq> carrier G})"
+    unfolding BijGroup_def by simp
+
+  have "\<And> g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow>
+                  (\<And> H. H \<in> {H. H \<subseteq> carrier G} \<Longrightarrow> ?\<psi> (g1 \<otimes> g2) H = (?\<phi> g1) ((?\<phi> g2) H))"
+  proof -
+    fix g1 g2 H assume g1: "g1 \<in> carrier G" and g2: "g2 \<in> carrier G" and H: "H \<in> {H. H \<subseteq> carrier G}"
+    hence "(?\<phi> g1) ((?\<phi> g2) H) = g1 <# (g2 <# H #> (inv g2)) #> (inv g1)"
+      using l_coset_subset_G r_coset_subset_G by auto
+    also have " ... = g1 <# (g2 <# H) #> ((inv g2) \<otimes> (inv g1))"
+      using H coset_assoc coset_mult_assoc g1 g2 l_coset_subset_G by auto
+    also have " ... = g1 <# (g2 <# H) #> inv (g1 \<otimes> g2)"
+      using g1 g2 by (simp add: inv_mult_group)
+    finally have "(?\<phi> g1) ((?\<phi> g2) H) = ?\<psi> (g1 \<otimes> g2) H"
+      using H g1 g2 lcos_m_assoc by force
+    thus "?\<psi> (g1 \<otimes> g2) H = (?\<phi> g1) ((?\<phi> g2) H)" by auto
+  qed
+  hence "\<And> g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow>
+         (\<lambda>H \<in> {H. H \<subseteq> carrier G}. ?\<psi> (g1 \<otimes> g2) H) = (\<lambda>H \<in> {H. H \<subseteq> carrier G}. (?\<phi> g1) ((?\<phi> g2) H))"
+    by (meson restrict_ext)
+  hence Step2: "\<And> g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow>
+                ?\<phi> (g1 \<otimes> g2) = (?\<phi> g1) \<otimes>\<^bsub>BijGroup {H. H \<subseteq> carrier G}\<^esub> (?\<phi> g2)"
+    unfolding BijGroup_def by (simp add: Step0 compose_def)
+
+  show "?\<phi> \<in> {h: carrier G \<rightarrow> carrier (BijGroup {H. H \<subseteq> carrier G}).
+              \<forall>x\<in>carrier G. \<forall>y\<in>carrier G. h (x \<otimes> y) = h x \<otimes>\<^bsub>BijGroup {H. H \<subseteq> carrier G}\<^esub> h y}"
+    using Step1 Step2 by auto
+qed
+
+theorem (in group) action_by_conjugation_on_power_set:
+  "group_action G {H. H \<subseteq> carrier G} (\<lambda>g. \<lambda>H \<in> {H. H \<subseteq> carrier G}. g <# H #> (inv g))"
+  unfolding group_action_def group_hom_def using subset_conjugation_is_hom
+  by (simp add: group_BijGroup group_hom_axioms.intro is_group)
+
+corollary (in group) normalizer_imp_subgroup:
+  assumes "H \<subseteq> carrier G"
+  shows "subgroup (normalizer G H) G"
+  unfolding normalizer_def
+  using group_action.stabilizer_subgroup[OF action_by_conjugation_on_power_set] assms by auto
+
+
+subsection \<open>Subgroup of an Acting Group\<close>
+
+text \<open>A Subgroup of an Acting Group Induces an Action\<close>
+
+lemma (in group_action) induced_homomorphism:
+  assumes "subgroup H G"
+  shows "\<phi> \<in> hom (G \<lparr>carrier := H\<rparr>) (BijGroup E)"
+  unfolding hom_def apply simp
+proof -
+  have S0: "H \<subseteq> carrier G" by (meson assms subgroup_def)
+  hence "\<phi>: H \<rightarrow> carrier (BijGroup E)"
+    by (simp add: BijGroup_def bij_prop0 subset_eq)
+  thus "\<phi>: H \<rightarrow> carrier (BijGroup E) \<and> (\<forall>x \<in> H. \<forall>y \<in> H. \<phi> (x \<otimes> y) = \<phi> x \<otimes>\<^bsub>BijGroup E\<^esub> \<phi> y)"
+    by (simp add: S0  group_hom group_hom.hom_mult set_rev_mp)
+qed
+
+theorem (in group_action) induced_action:
+  assumes "subgroup H G"
+  shows "group_action (G \<lparr>carrier := H\<rparr>) E \<phi>"
+  unfolding group_action_def group_hom_def
+  using induced_homomorphism assms group.subgroup_imp_group group_BijGroup
+        group_hom group_hom.axioms(1) group_hom_axioms_def by blast
+
+end
\ No newline at end of file
--- a/src/HOL/Algebra/Ideal.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/Ideal.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -14,7 +14,7 @@
 
 locale ideal = additive_subgroup I R + ring R for I and R (structure) +
   assumes I_l_closed: "\<lbrakk>a \<in> I; x \<in> carrier R\<rbrakk> \<Longrightarrow> x \<otimes> a \<in> I"
-    and I_r_closed: "\<lbrakk>a \<in> I; x \<in> carrier R\<rbrakk> \<Longrightarrow> a \<otimes> x \<in> I"
+      and I_r_closed: "\<lbrakk>a \<in> I; x \<in> carrier R\<rbrakk> \<Longrightarrow> a \<otimes> x \<in> I"
 
 sublocale ideal \<subseteq> abelian_subgroup I R
   apply (intro abelian_subgroupI3 abelian_group.intro)
@@ -29,7 +29,7 @@
 lemma idealI:
   fixes R (structure)
   assumes "ring R"
-  assumes a_subgroup: "subgroup I \<lparr>carrier = carrier R, mult = add R, one = zero R\<rparr>"
+  assumes a_subgroup: "subgroup I (add_monoid R)"
     and I_l_closed: "\<And>a x. \<lbrakk>a \<in> I; x \<in> carrier R\<rbrakk> \<Longrightarrow> x \<otimes> a \<in> I"
     and I_r_closed: "\<And>a x. \<lbrakk>a \<in> I; x \<in> carrier R\<rbrakk> \<Longrightarrow> a \<otimes> x \<in> I"
   shows "ideal I R"
@@ -74,7 +74,7 @@
 
 locale maximalideal = ideal +
   assumes I_notcarr: "carrier R \<noteq> I"
-    and I_maximal: "\<lbrakk>ideal J R; I \<subseteq> J; J \<subseteq> carrier R\<rbrakk> \<Longrightarrow> J = I \<or> J = carrier R"
+    and I_maximal: "\<lbrakk>ideal J R; I \<subseteq> J; J \<subseteq> carrier R\<rbrakk> \<Longrightarrow> (J = I) \<or> (J = carrier R)"
 
 lemma (in maximalideal) is_maximalideal: "maximalideal I R"
   by (rule maximalideal_axioms)
@@ -83,7 +83,7 @@
   fixes R
   assumes "ideal I R"
     and I_notcarr: "carrier R \<noteq> I"
-    and I_maximal: "\<And>J. \<lbrakk>ideal J R; I \<subseteq> J; J \<subseteq> carrier R\<rbrakk> \<Longrightarrow> J = I \<or> J = carrier R"
+    and I_maximal: "\<And>J. \<lbrakk>ideal J R; I \<subseteq> J; J \<subseteq> carrier R\<rbrakk> \<Longrightarrow> (J = I) \<or> (J = carrier R)"
   shows "maximalideal I R"
 proof -
   interpret ideal I R by fact
@@ -143,26 +143,17 @@
 subsection \<open>Special Ideals\<close>
 
 lemma (in ring) zeroideal: "ideal {\<zero>} R"
-  apply (intro idealI subgroup.intro)
-        apply (rule is_ring)
-       apply simp+
-    apply (fold a_inv_def, simp)
-   apply simp+
-  done
+  by (intro idealI subgroup.intro) (simp_all add: is_ring)
 
 lemma (in ring) oneideal: "ideal (carrier R) R"
   by (rule idealI) (auto intro: is_ring add.subgroupI)
 
 lemma (in "domain") zeroprimeideal: "primeideal {\<zero>} R"
-  apply (intro primeidealI)
-     apply (rule zeroideal)
-    apply (rule domain.axioms, rule domain_axioms)
-   defer 1
-   apply (simp add: integral)
-proof (rule ccontr, simp)
-  assume "carrier R = {\<zero>}"
-  then have "\<one> = \<zero>" by (rule one_zeroI)
-  with one_not_zero show False by simp
+proof -
+  have "carrier R \<noteq> {\<zero>}"
+    by (simp add: carrier_one_not_zero)
+  then show ?thesis
+    by (metis (no_types, lifting) domain_axioms domain_def integral primeidealI singleton_iff zeroideal)
 qed
 
 
@@ -651,6 +642,46 @@
 qed
 
 
+(* Next lemma contributed by Paulo Emílio de Vilhena. *)
+
+text \<open>This next lemma would be trivial if placed in a theory that imports QuotRing,
+      but it makes more sense to have it here (easier to find and coherent with the
+      previous developments).\<close>
+
+lemma (in cring) cgenideal_prod:
+  assumes "a \<in> carrier R" "b \<in> carrier R"
+  shows "(PIdl a) <#> (PIdl b) = PIdl (a \<otimes> b)"
+proof -
+  have "(carrier R #> a) <#> (carrier R #> b) = carrier R #> (a \<otimes> b)"
+  proof
+    show "(carrier R #> a) <#> (carrier R #> b) \<subseteq> carrier R #> a \<otimes> b"
+    proof
+      fix x assume "x \<in> (carrier R #> a) <#> (carrier R #> b)"
+      then obtain r1 r2 where r1: "r1 \<in> carrier R" and r2: "r2 \<in> carrier R"
+                          and "x = (r1 \<otimes> a) \<otimes> (r2 \<otimes> b)"
+        unfolding set_mult_def r_coset_def by blast
+      hence "x = (r1 \<otimes> r2) \<otimes> (a \<otimes> b)"
+        by (simp add: assms local.ring_axioms m_lcomm ring.ring_simprules(11))
+      thus "x \<in> carrier R #> a \<otimes> b"
+        unfolding r_coset_def using r1 r2 assms by blast 
+    qed
+  next
+    show "carrier R #> a \<otimes> b \<subseteq> (carrier R #> a) <#> (carrier R #> b)"
+    proof
+      fix x assume "x \<in> carrier R #> a \<otimes> b"
+      then obtain r where r: "r \<in> carrier R" "x = r \<otimes> (a \<otimes> b)"
+        unfolding r_coset_def by blast
+      hence "x = (r \<otimes> a) \<otimes> (\<one> \<otimes> b)"
+        using assms by (simp add: m_assoc)
+      thus "x \<in> (carrier R #> a) <#> (carrier R #> b)"
+        unfolding set_mult_def r_coset_def using assms r by blast
+    qed
+  qed
+  thus ?thesis
+    using cgenideal_eq_rcos[of a] cgenideal_eq_rcos[of b] cgenideal_eq_rcos[of "a \<otimes> b"] by simp
+qed
+
+
 subsection \<open>Prime Ideals\<close>
 
 lemma (in ideal) primeidealCD:
@@ -708,10 +739,7 @@
 qed
 
 corollary (in cring) domain_eq_zeroprimeideal: "domain R = primeideal {\<zero>} R"
-  apply rule
-   apply (erule domain.zeroprimeideal)
-  apply (erule zeroprimeideal_domainI)
-  done
+  using domain.zeroprimeideal zeroprimeideal_domainI by blast
 
 
 subsection \<open>Maximal Ideals\<close>
@@ -921,7 +949,7 @@
   qed
 qed (simp add: zeroideal oneideal)
 
-\<comment> \<open>Jacobson Theorem 2.2\<close>
+\<comment>\<open>"Jacobson Theorem 2.2"\<close>
 lemma (in cring) trivialideals_eq_field:
   assumes carrnzero: "carrier R \<noteq> {\<zero>}"
   shows "({I. ideal I R} = {{\<zero>}, carrier R}) = field R"
@@ -963,9 +991,6 @@
 qed
 
 lemma (in cring) zeromaximalideal_eq_field: "maximalideal {\<zero>} R = field R"
-  apply rule
-   apply (erule zeromaximalideal_fieldI)
-  apply (erule field.zeromaximalideal)
-  done
+  using field.zeromaximalideal zeromaximalideal_fieldI by blast
 
 end
--- a/src/HOL/Algebra/More_Finite_Product.thy	Thu Jun 14 10:51:12 2018 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,102 +0,0 @@
-(*  Title:      HOL/Algebra/More_Finite_Product.thy
-    Author:     Jeremy Avigad
-*)
-
-section \<open>More on finite products\<close>
-
-theory More_Finite_Product
-  imports More_Group
-begin
-
-lemma (in comm_monoid) finprod_UN_disjoint:
-  "finite I \<Longrightarrow> (\<forall>i\<in>I. finite (A i)) \<longrightarrow> (\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}) \<longrightarrow>
-    (\<forall>i\<in>I. \<forall>x \<in> A i. g x \<in> carrier G) \<longrightarrow>
-    finprod G g (UNION I A) = finprod G (\<lambda>i. finprod G g (A i)) I"
-  apply (induct set: finite)
-   apply force
-  apply clarsimp
-  apply (subst finprod_Un_disjoint)
-       apply blast
-      apply (erule finite_UN_I)
-      apply blast
-     apply (fastforce)
-    apply (auto intro!: funcsetI finprod_closed)
-  done
-
-lemma (in comm_monoid) finprod_Union_disjoint:
-  "finite C \<Longrightarrow>
-    \<forall>A\<in>C. finite A \<and> (\<forall>x\<in>A. f x \<in> carrier G) \<Longrightarrow>
-    \<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A \<inter> B = {} \<Longrightarrow>
-    finprod G f (\<Union>C) = finprod G (finprod G f) C"
-  apply (frule finprod_UN_disjoint [of C id f])
-  apply auto
-  done
-
-lemma (in comm_monoid) finprod_one: "finite A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x = \<one>) \<Longrightarrow> finprod G f A = \<one>"
-  by (induct set: finite) auto
-
-
-(* need better simplification rules for rings *)
-(* the next one holds more generally for abelian groups *)
-
-lemma (in cring) sum_zero_eq_neg: "x \<in> carrier R \<Longrightarrow> y \<in> carrier R \<Longrightarrow> x \<oplus> y = \<zero> \<Longrightarrow> x = \<ominus> y"
-  by (metis minus_equality)
-
-lemma (in domain) square_eq_one:
-  fixes x
-  assumes [simp]: "x \<in> carrier R"
-    and "x \<otimes> x = \<one>"
-  shows "x = \<one> \<or> x = \<ominus>\<one>"
-proof -
-  have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = x \<otimes> x \<oplus> \<ominus> \<one>"
-    by (simp add: ring_simprules)
-  also from \<open>x \<otimes> x = \<one>\<close> have "\<dots> = \<zero>"
-    by (simp add: ring_simprules)
-  finally have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = \<zero>" .
-  then have "(x \<oplus> \<one>) = \<zero> \<or> (x \<oplus> \<ominus> \<one>) = \<zero>"
-    by (intro integral) auto
-  then show ?thesis
-    apply auto
-     apply (erule notE)
-     apply (rule sum_zero_eq_neg)
-       apply auto
-    apply (subgoal_tac "x = \<ominus> (\<ominus> \<one>)")
-     apply (simp add: ring_simprules)
-    apply (rule sum_zero_eq_neg)
-      apply auto
-    done
-qed
-
-lemma (in domain) inv_eq_self: "x \<in> Units R \<Longrightarrow> x = inv x \<Longrightarrow> x = \<one> \<or> x = \<ominus>\<one>"
-  by (metis Units_closed Units_l_inv square_eq_one)
-
-
-text \<open>
-  The following translates theorems about groups to the facts about
-  the units of a ring. (The list should be expanded as more things are
-  needed.)
-\<close>
-
-lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R) \<Longrightarrow> finite (Units R)"
-  by (rule finite_subset) auto
-
-lemma (in monoid) units_of_pow:
-  fixes n :: nat
-  shows "x \<in> Units G \<Longrightarrow> x [^]\<^bsub>units_of G\<^esub> n = x [^]\<^bsub>G\<^esub> n"
-  apply (induct n)
-  apply (auto simp add: units_group group.is_monoid
-    monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult)
-  done
-
-lemma (in cring) units_power_order_eq_one:
-  "finite (Units R) \<Longrightarrow> a \<in> Units R \<Longrightarrow> a [^] card(Units R) = \<one>"
-  apply (subst units_of_carrier [symmetric])
-  apply (subst units_of_one [symmetric])
-  apply (subst units_of_pow [symmetric])
-   apply assumption
-  apply (rule comm_group.power_order_eq_one)
-    apply (rule units_comm_group)
-   apply (unfold units_of_def, auto)
-  done
-
-end
--- a/src/HOL/Algebra/More_Group.thy	Thu Jun 14 10:51:12 2018 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,115 +0,0 @@
-(*  Title:      HOL/Algebra/More_Group.thy
-    Author:     Jeremy Avigad
-*)
-
-section \<open>More on groups\<close>
-
-theory More_Group
-  imports Ring
-begin
-
-text \<open>
-  Show that the units in any monoid give rise to a group.
-
-  The file Residues.thy provides some infrastructure to use
-  facts about the unit group within the ring locale.
-\<close>
-
-definition units_of :: "('a, 'b) monoid_scheme \<Rightarrow> 'a monoid"
-  where "units_of G =
-    \<lparr>carrier = Units G, Group.monoid.mult = Group.monoid.mult G, one  = one G\<rparr>"
-
-lemma (in monoid) units_group: "group (units_of G)"
-  apply (unfold units_of_def)
-  apply (rule groupI)
-      apply auto
-   apply (subst m_assoc)
-      apply auto
-  apply (rule_tac x = "inv x" in bexI)
-   apply auto
-  done
-
-lemma (in comm_monoid) units_comm_group: "comm_group (units_of G)"
-  apply (rule group.group_comm_groupI)
-   apply (rule units_group)
-  apply (insert comm_monoid_axioms)
-  apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)
-  apply auto
-  done
-
-lemma units_of_carrier: "carrier (units_of G) = Units G"
-  by (auto simp: units_of_def)
-
-lemma units_of_mult: "mult (units_of G) = mult G"
-  by (auto simp: units_of_def)
-
-lemma units_of_one: "one (units_of G) = one G"
-  by (auto simp: units_of_def)
-
-lemma (in monoid) units_of_inv: "x \<in> Units G \<Longrightarrow> m_inv (units_of G) x = m_inv G x"
-  apply (rule sym)
-  apply (subst m_inv_def)
-  apply (rule the1_equality)
-   apply (rule ex_ex1I)
-    apply (subst (asm) Units_def)
-    apply auto
-     apply (erule inv_unique)
-        apply auto
-    apply (rule Units_closed)
-    apply (simp_all only: units_of_carrier [symmetric])
-    apply (insert units_group)
-    apply auto
-   apply (subst units_of_mult [symmetric])
-   apply (subst units_of_one [symmetric])
-   apply (erule group.r_inv, assumption)
-  apply (subst units_of_mult [symmetric])
-  apply (subst units_of_one [symmetric])
-  apply (erule group.l_inv, assumption)
-  done
-
-lemma (in group) inj_on_const_mult: "a \<in> carrier G \<Longrightarrow> inj_on (\<lambda>x. a \<otimes> x) (carrier G)"
-  unfolding inj_on_def by auto
-
-lemma (in group) surj_const_mult: "a \<in> carrier G \<Longrightarrow> (\<lambda>x. a \<otimes> x) ` carrier G = carrier G"
-  apply (auto simp add: image_def)
-  apply (rule_tac x = "(m_inv G a) \<otimes> x" in bexI)
-  apply auto
-(* auto should get this. I suppose we need "comm_monoid_simprules"
-   for ac_simps rewriting. *)
-  apply (subst m_assoc [symmetric])
-  apply auto
-  done
-
-lemma (in group) l_cancel_one [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x \<otimes> a = x \<longleftrightarrow> a = one G"
-  by (metis Units_eq Units_l_cancel monoid.r_one monoid_axioms one_closed)
-
-lemma (in group) r_cancel_one [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> a \<otimes> x = x \<longleftrightarrow> a = one G"
-  by (metis monoid.l_one monoid_axioms one_closed right_cancel)
-
-lemma (in group) l_cancel_one' [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x = x \<otimes> a \<longleftrightarrow> a = one G"
-  using l_cancel_one by fastforce
-
-lemma (in group) r_cancel_one' [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x = a \<otimes> x \<longleftrightarrow> a = one G"
-  using r_cancel_one by fastforce
-
-(* This should be generalized to arbitrary groups, not just commutative
-   ones, using Lagrange's theorem. *)
-
-lemma (in comm_group) power_order_eq_one:
-  assumes fin [simp]: "finite (carrier G)"
-    and a [simp]: "a \<in> carrier G"
-  shows "a [^] card(carrier G) = one G"
-proof -
-  have "(\<Otimes>x\<in>carrier G. x) = (\<Otimes>x\<in>carrier G. a \<otimes> x)"
-    by (subst (2) finprod_reindex [symmetric],
-      auto simp add: Pi_def inj_on_const_mult surj_const_mult)
-  also have "\<dots> = (\<Otimes>x\<in>carrier G. a) \<otimes> (\<Otimes>x\<in>carrier G. x)"
-    by (auto simp add: finprod_multf Pi_def)
-  also have "(\<Otimes>x\<in>carrier G. a) = a [^] card(carrier G)"
-    by (auto simp add: finprod_const)
-  finally show ?thesis
-(* uses the preceeding lemma *)
-    by auto
-qed
-
-end
--- a/src/HOL/Algebra/More_Ring.thy	Thu Jun 14 10:51:12 2018 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,74 +0,0 @@
-(*  Title:      HOL/Algebra/More_Ring.thy
-    Author:     Jeremy Avigad
-*)
-
-section \<open>More on rings etc.\<close>
-
-theory More_Ring
-  imports Ring
-begin
-
-lemma (in cring) field_intro2: "\<zero>\<^bsub>R\<^esub> \<noteq> \<one>\<^bsub>R\<^esub> \<Longrightarrow> \<forall>x \<in> carrier R - {\<zero>\<^bsub>R\<^esub>}. x \<in> Units R \<Longrightarrow> field R"
-  apply (unfold_locales)
-    apply (use cring_axioms in auto)
-   apply (rule trans)
-    apply (subgoal_tac "a = (a \<otimes> b) \<otimes> inv b")
-     apply assumption
-    apply (subst m_assoc)
-       apply auto
-  apply (unfold Units_def)
-  apply auto
-  done
-
-lemma (in monoid) inv_char:
-  "x \<in> carrier G \<Longrightarrow> y \<in> carrier G \<Longrightarrow> x \<otimes> y = \<one> \<Longrightarrow> y \<otimes> x = \<one> \<Longrightarrow> inv x = y"
-  apply (subgoal_tac "x \<in> Units G")
-   apply (subgoal_tac "y = inv x \<otimes> \<one>")
-    apply simp
-   apply (erule subst)
-   apply (subst m_assoc [symmetric])
-      apply auto
-  apply (unfold Units_def)
-  apply auto
-  done
-
-lemma (in comm_monoid) comm_inv_char: "x \<in> carrier G \<Longrightarrow> y \<in> carrier G \<Longrightarrow> x \<otimes> y = \<one> \<Longrightarrow> inv x = y"
-  apply (rule inv_char)
-     apply auto
-  apply (subst m_comm, auto)
-  done
-
-lemma (in ring) inv_neg_one [simp]: "inv (\<ominus> \<one>) = \<ominus> \<one>"
-  apply (rule inv_char)
-     apply (auto simp add: l_minus r_minus)
-  done
-
-lemma (in monoid) inv_eq_imp_eq: "x \<in> Units G \<Longrightarrow> y \<in> Units G \<Longrightarrow> inv x = inv y \<Longrightarrow> x = y"
-  apply (subgoal_tac "inv (inv x) = inv (inv y)")
-   apply (subst (asm) Units_inv_inv)+
-    apply auto
-  done
-
-lemma (in ring) Units_minus_one_closed [intro]: "\<ominus> \<one> \<in> Units R"
-  apply (unfold Units_def)
-  apply auto
-  apply (rule_tac x = "\<ominus> \<one>" in bexI)
-   apply auto
-  apply (simp add: l_minus r_minus)
-  done
-
-lemma (in monoid) inv_one [simp]: "inv \<one> = \<one>"
-  apply (rule inv_char)
-     apply auto
-  done
-
-lemma (in ring) inv_eq_neg_one_eq: "x \<in> Units R \<Longrightarrow> inv x = \<ominus> \<one> \<longleftrightarrow> x = \<ominus> \<one>"
-  apply auto
-  apply (subst Units_inv_inv [symmetric])
-   apply auto
-  done
-
-lemma (in monoid) inv_eq_one_eq: "x \<in> Units G \<Longrightarrow> inv x = \<one> \<longleftrightarrow> x = \<one>"
-  by (metis Units_inv_inv inv_one)
-
-end
--- a/src/HOL/Algebra/Multiplicative_Group.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/Multiplicative_Group.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -7,8 +7,6 @@
 imports
   Complex_Main
   Group
-  More_Group
-  More_Finite_Product
   Coset
   UnivPoly
 begin
--- a/src/HOL/Algebra/Ring.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/Ring.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -13,79 +13,100 @@
 
 record 'a ring = "'a monoid" +
   zero :: 'a ("\<zero>\<index>")
-  add :: "['a, 'a] => 'a" (infixl "\<oplus>\<index>" 65)
+  add :: "['a, 'a] \<Rightarrow> 'a" (infixl "\<oplus>\<index>" 65)
+
+abbreviation
+  add_monoid :: "('a, 'm) ring_scheme \<Rightarrow> ('a, 'm) monoid_scheme"
+  where "add_monoid R \<equiv> \<lparr> carrier = carrier R, mult = add R, one = zero R, \<dots> = (undefined :: 'm) \<rparr>"
 
 text \<open>Derived operations.\<close>
 
 definition
-  a_inv :: "[('a, 'm) ring_scheme, 'a ] => 'a" ("\<ominus>\<index> _" [81] 80)
-  where "a_inv R = m_inv \<lparr>carrier = carrier R, mult = add R, one = zero R\<rparr>"
+  a_inv :: "[('a, 'm) ring_scheme, 'a ] \<Rightarrow> 'a" ("\<ominus>\<index> _" [81] 80)
+  where "a_inv R = m_inv (add_monoid R)"
 
 definition
   a_minus :: "[('a, 'm) ring_scheme, 'a, 'a] => 'a" ("(_ \<ominus>\<index> _)" [65,66] 65)
-  where "[| x \<in> carrier R; y \<in> carrier R |] ==> x \<ominus>\<^bsub>R\<^esub> y = x \<oplus>\<^bsub>R\<^esub> (\<ominus>\<^bsub>R\<^esub> y)"
+  where "x \<ominus>\<^bsub>R\<^esub> y = x \<oplus>\<^bsub>R\<^esub> (\<ominus>\<^bsub>R\<^esub> y)"
+
+definition
+  add_pow :: "[_, ('b :: semiring_1), 'a] \<Rightarrow> 'a" ("[_] \<cdot>\<index> _" [81, 81] 80)
+  where "add_pow R k a = pow (add_monoid R) a k"
 
 locale abelian_monoid =
   fixes G (structure)
   assumes a_comm_monoid:
-     "comm_monoid \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+     "comm_monoid (add_monoid G)"
 
 definition
-  finsum :: "[('b, 'm) ring_scheme, 'a => 'b, 'a set] => 'b" where
-  "finsum G = finprod \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  finsum :: "[('b, 'm) ring_scheme, 'a \<Rightarrow> 'b, 'a set] \<Rightarrow> 'b" where
+  "finsum G = finprod (add_monoid G)"
 
 syntax
-  "_finsum" :: "index => idt => 'a set => 'b => 'b"
+  "_finsum" :: "index \<Rightarrow> idt \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"
       ("(3\<Oplus>__\<in>_. _)" [1000, 0, 51, 10] 10)
 translations
-  "\<Oplus>\<^bsub>G\<^esub>i\<in>A. b" \<rightleftharpoons> "CONST finsum G (%i. b) A"
+  "\<Oplus>\<^bsub>G\<^esub>i\<in>A. b" \<rightleftharpoons> "CONST finsum G (\<lambda>i. b) A"
   \<comment> \<open>Beware of argument permutation!\<close>
 
 
 locale abelian_group = abelian_monoid +
   assumes a_comm_group:
-     "comm_group \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+     "comm_group (add_monoid G)"
 
 
 subsection \<open>Basic Properties\<close>
 
 lemma abelian_monoidI:
   fixes R (structure)
-  assumes a_closed:
-      "!!x y. [| x \<in> carrier R; y \<in> carrier R |] ==> x \<oplus> y \<in> carrier R"
-    and zero_closed: "\<zero> \<in> carrier R"
-    and a_assoc:
-      "!!x y z. [| x \<in> carrier R; y \<in> carrier R; z \<in> carrier R |] ==>
-      (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
-    and l_zero: "!!x. x \<in> carrier R ==> \<zero> \<oplus> x = x"
-    and a_comm:
-      "!!x y. [| x \<in> carrier R; y \<in> carrier R |] ==> x \<oplus> y = y \<oplus> x"
+  assumes "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y \<in> carrier R"
+      and "\<zero> \<in> carrier R"
+      and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
+      and "\<And>x. x \<in> carrier R \<Longrightarrow> \<zero> \<oplus> x = x"
+      and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y = y \<oplus> x"
   shows "abelian_monoid R"
   by (auto intro!: abelian_monoid.intro comm_monoidI intro: assms)
 
+lemma abelian_monoidE:
+  fixes R (structure)
+  assumes "abelian_monoid R"
+  shows "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y \<in> carrier R"
+    and "\<zero> \<in> carrier R"
+    and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
+    and "\<And>x. x \<in> carrier R \<Longrightarrow> \<zero> \<oplus> x = x"
+    and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y = y \<oplus> x"
+  using assms unfolding abelian_monoid_def comm_monoid_def comm_monoid_axioms_def monoid_def by auto
+
 lemma abelian_groupI:
   fixes R (structure)
-  assumes a_closed:
-      "!!x y. [| x \<in> carrier R; y \<in> carrier R |] ==> x \<oplus> y \<in> carrier R"
-    and zero_closed: "zero R \<in> carrier R"
-    and a_assoc:
-      "!!x y z. [| x \<in> carrier R; y \<in> carrier R; z \<in> carrier R |] ==>
-      (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
-    and a_comm:
-      "!!x y. [| x \<in> carrier R; y \<in> carrier R |] ==> x \<oplus> y = y \<oplus> x"
-    and l_zero: "!!x. x \<in> carrier R ==> \<zero> \<oplus> x = x"
-    and l_inv_ex: "\<And>x. x \<in> carrier R \<Longrightarrow> \<exists>y \<in> carrier R. y \<oplus> x = \<zero>"
+  assumes "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y \<in> carrier R"
+      and "\<zero> \<in> carrier R"
+      and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
+      and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y = y \<oplus> x"
+      and "\<And>x. x \<in> carrier R \<Longrightarrow> \<zero> \<oplus> x = x"
+      and "\<And>x. x \<in> carrier R \<Longrightarrow> \<exists>y \<in> carrier R. y \<oplus> x = \<zero>"
   shows "abelian_group R"
   by (auto intro!: abelian_group.intro abelian_monoidI
       abelian_group_axioms.intro comm_monoidI comm_groupI
     intro: assms)
 
+lemma abelian_groupE:
+  fixes R (structure)
+  assumes "abelian_group R"
+  shows "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y \<in> carrier R"
+    and "\<zero> \<in> carrier R"
+    and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
+    and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y = y \<oplus> x"
+    and "\<And>x. x \<in> carrier R \<Longrightarrow> \<zero> \<oplus> x = x"
+    and "\<And>x. x \<in> carrier R \<Longrightarrow> \<exists>y \<in> carrier R. y \<oplus> x = \<zero>"
+  using abelian_group.a_comm_group assms comm_groupE by fastforce+
+
 lemma (in abelian_monoid) a_monoid:
-  "monoid \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  "monoid (add_monoid G)"
 by (rule comm_monoid.axioms, rule a_comm_monoid) 
 
 lemma (in abelian_group) a_group:
-  "group \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  "group (add_monoid G)"
   by (simp add: group_def a_monoid)
     (simp add: comm_group.axioms group.axioms a_comm_group)
 
@@ -94,13 +115,15 @@
 text \<open>Transfer facts from multiplicative structures via interpretation.\<close>
 
 sublocale abelian_monoid <
-  add: monoid "\<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
-  rewrites "carrier \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = carrier G"
-    and "mult \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = add G"
-    and "one \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = zero G"
-  by (rule a_monoid) auto
+       add: monoid "(add_monoid G)"
+  rewrites "carrier (add_monoid G) = carrier G"
+       and "mult    (add_monoid G) = add G"
+       and "one     (add_monoid G) = zero G"
+       and "(\<lambda>a k. pow (add_monoid G) a k) = (\<lambda>a k. add_pow G k a)"
+  by (rule a_monoid) (auto simp add: add_pow_def)
 
-context abelian_monoid begin
+context abelian_monoid
+begin
 
 lemmas a_closed = add.m_closed 
 lemmas zero_closed = add.one_closed
@@ -112,12 +135,13 @@
 end
 
 sublocale abelian_monoid <
-  add: comm_monoid "\<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
-  rewrites "carrier \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = carrier G"
-    and "mult \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = add G"
-    and "one \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = zero G"
-    and "finprod \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = finsum G"
-  by (rule a_comm_monoid) (auto simp: finsum_def)
+  add: comm_monoid "(add_monoid G)"
+  rewrites "carrier (add_monoid G) = carrier G"
+       and "mult    (add_monoid G) = add G"
+       and "one     (add_monoid G) = zero G"
+       and "finprod (add_monoid G) = finsum G"
+       and "pow     (add_monoid G) = (\<lambda>a k. add_pow G k a)"
+  by (rule a_comm_monoid) (auto simp: finsum_def add_pow_def)
 
 context abelian_monoid begin
 
@@ -168,12 +192,13 @@
 end
 
 sublocale abelian_group <
-  add: group "\<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
-  rewrites "carrier \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = carrier G"
-    and "mult \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = add G"
-    and "one \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = zero G"
-    and "m_inv \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = a_inv G"
-  by (rule a_group) (auto simp: m_inv_def a_inv_def)
+        add: group "(add_monoid G)"
+  rewrites "carrier (add_monoid G) = carrier G"
+       and "mult    (add_monoid G) = add G"
+       and "one     (add_monoid G) = zero G"
+       and "m_inv   (add_monoid G) = a_inv G"
+       and "pow     (add_monoid G) = (\<lambda>a k. add_pow G k a)"
+  by (rule a_group) (auto simp: m_inv_def a_inv_def add_pow_def)
 
 context abelian_group
 begin
@@ -186,7 +211,6 @@
 
 lemmas l_neg = add.l_inv [simp del]
 lemmas r_neg = add.r_inv [simp del]
-lemmas minus_zero = add.inv_one
 lemmas minus_minus = add.inv_inv
 lemmas a_inv_inj = add.inv_inj
 lemmas minus_equality = add.inv_equality
@@ -194,13 +218,14 @@
 end
 
 sublocale abelian_group <
-  add: comm_group "\<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
-  rewrites "carrier \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = carrier G"
-    and "mult \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = add G"
-    and "one \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = zero G"
-    and "m_inv \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = a_inv G"
-    and "finprod \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> = finsum G"
-  by (rule a_comm_group) (auto simp: m_inv_def a_inv_def finsum_def)
+   add: comm_group "(add_monoid G)"
+  rewrites "carrier (add_monoid G) = carrier G"
+       and "mult    (add_monoid G) = add G"
+       and "one     (add_monoid G) = zero G"
+       and "m_inv   (add_monoid G) = a_inv G"
+       and "finprod (add_monoid G) = finsum G"
+       and "pow     (add_monoid G) = (\<lambda>a k. add_pow G k a)"
+  by (rule a_comm_group) (auto simp: m_inv_def a_inv_def finsum_def add_pow_def)
 
 lemmas (in abelian_group) minus_add = add.inv_mult
  
@@ -208,10 +233,10 @@
 
 lemma comm_group_abelian_groupI:
   fixes G (structure)
-  assumes cg: "comm_group \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  assumes cg: "comm_group (add_monoid G)"
   shows "abelian_group G"
 proof -
-  interpret comm_group "\<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
+  interpret comm_group "(add_monoid G)"
     by (rule cg)
   show "abelian_group G" ..
 qed
@@ -219,26 +244,21 @@
 
 subsection \<open>Rings: Basic Definitions\<close>
 
-locale semiring = abelian_monoid R + monoid R for R (structure) +
-  assumes l_distr: "[| x \<in> carrier R; y \<in> carrier R; z \<in> carrier R |]
-      ==> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
-    and r_distr: "[| x \<in> carrier R; y \<in> carrier R; z \<in> carrier R |]
-      ==> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
-    and l_null[simp]: "x \<in> carrier R ==> \<zero> \<otimes> x = \<zero>"
-    and r_null[simp]: "x \<in> carrier R ==> x \<otimes> \<zero> = \<zero>"
+locale semiring = abelian_monoid (* for add *) R + monoid (* for mult *) R for R (structure) +
+  assumes l_distr: "\<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
+      and r_distr: "\<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
+      and l_null[simp]: "x \<in> carrier R \<Longrightarrow> \<zero> \<otimes> x = \<zero>"
+      and r_null[simp]: "x \<in> carrier R \<Longrightarrow> x \<otimes> \<zero> = \<zero>"
 
-locale ring = abelian_group R + monoid R for R (structure) +
-  assumes "[| x \<in> carrier R; y \<in> carrier R; z \<in> carrier R |]
-      ==> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
-    and "[| x \<in> carrier R; y \<in> carrier R; z \<in> carrier R |]
-      ==> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
+locale ring = abelian_group (* for add *) R + monoid (* for mult *) R for R (structure) +
+  assumes "\<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
+      and "\<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
 
-locale cring = ring + comm_monoid R
+locale cring = ring + comm_monoid (* for mult *) R
 
 locale "domain" = cring +
   assumes one_not_zero [simp]: "\<one> \<noteq> \<zero>"
-    and integral: "[| a \<otimes> b = \<zero>; a \<in> carrier R; b \<in> carrier R |] ==>
-                  a = \<zero> \<or> b = \<zero>"
+      and integral: "\<lbrakk> a \<otimes> b = \<zero>; a \<in> carrier R; b \<in> carrier R \<rbrakk> \<Longrightarrow> a = \<zero> \<or> b = \<zero>"
 
 locale field = "domain" +
   assumes field_Units: "Units R = carrier R - {\<zero>}"
@@ -248,16 +268,23 @@
 
 lemma ringI:
   fixes R (structure)
-  assumes abelian_group: "abelian_group R"
-    and monoid: "monoid R"
-    and l_distr: "!!x y z. [| x \<in> carrier R; y \<in> carrier R; z \<in> carrier R |]
-      ==> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
-    and r_distr: "!!x y z. [| x \<in> carrier R; y \<in> carrier R; z \<in> carrier R |]
-      ==> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
+  assumes "abelian_group R"
+      and "monoid R"
+      and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
+      and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
   shows "ring R"
   by (auto intro: ring.intro
     abelian_group.axioms ring_axioms.intro assms)
 
+lemma ringE:
+  fixes R (structure)
+  assumes "ring R"
+  shows "abelian_group R"
+    and "monoid R"
+    and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
+    and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
+  using assms unfolding ring_def ring_axioms_def by auto
+
 context ring begin
 
 lemma is_abelian_group: "abelian_group R" ..
@@ -269,15 +296,15 @@
   by (rule ring_axioms)
 
 end
-
+thm monoid_record_simps
 lemmas ring_record_simps = monoid_record_simps ring.simps
 
 lemma cringI:
   fixes R (structure)
   assumes abelian_group: "abelian_group R"
     and comm_monoid: "comm_monoid R"
-    and l_distr: "!!x y z. [| x \<in> carrier R; y \<in> carrier R; z \<in> carrier R |]
-      ==> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
+    and l_distr: "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow>
+                            (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
   shows "cring R"
 proof (intro cring.intro ring.intro)
   show "ring_axioms R"
@@ -300,20 +327,37 @@
 qed (auto intro: cring.intro
   abelian_group.axioms comm_monoid.axioms ring_axioms.intro assms)
 
+lemma cringE:
+  fixes R (structure)
+  assumes "cring R"
+  shows "comm_monoid R"
+    and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
+  using assms cring_def apply auto by (simp add: assms cring.axioms(1) ringE(3))
+
 (*
 lemma (in cring) is_comm_monoid:
   "comm_monoid R"
   by (auto intro!: comm_monoidI m_assoc m_comm)
 *)
-
 lemma (in cring) is_cring:
   "cring R" by (rule cring_axioms)
 
+lemma (in ring) minus_zero [simp]: "\<ominus> \<zero> = \<zero>"
+  by (simp add: a_inv_def)
 
 subsubsection \<open>Normaliser for Rings\<close>
 
+lemma (in abelian_group) r_neg1:
+  "\<lbrakk> x \<in> carrier G; y \<in> carrier G \<rbrakk> \<Longrightarrow> (\<ominus> x) \<oplus> (x \<oplus> y) = y"
+proof -
+  assume G: "x \<in> carrier G" "y \<in> carrier G"
+  then have "(\<ominus> x \<oplus> x) \<oplus> y = y" 
+    by (simp only: l_neg l_zero)
+  with G show ?thesis by (simp add: a_ac)
+qed
+
 lemma (in abelian_group) r_neg2:
-  "[| x \<in> carrier G; y \<in> carrier G |] ==> x \<oplus> (\<ominus> x \<oplus> y) = y"
+  "\<lbrakk> x \<in> carrier G; y \<in> carrier G \<rbrakk> \<Longrightarrow> x \<oplus> ((\<ominus> x) \<oplus> y) = y"
 proof -
   assume G: "x \<in> carrier G" "y \<in> carrier G"
   then have "(x \<oplus> \<ominus> x) \<oplus> y = y"
@@ -322,15 +366,6 @@
     by (simp add: a_ac)
 qed
 
-lemma (in abelian_group) r_neg1:
-  "[| x \<in> carrier G; y \<in> carrier G |] ==> \<ominus> x \<oplus> (x \<oplus> y) = y"
-proof -
-  assume G: "x \<in> carrier G" "y \<in> carrier G"
-  then have "(\<ominus> x \<oplus> x) \<oplus> y = y" 
-    by (simp only: l_neg l_zero)
-  with G show ?thesis by (simp add: a_ac)
-qed
-
 context ring begin
 
 text \<open>
@@ -358,7 +393,7 @@
 qed
 
 lemma l_minus:
-  "[| x \<in> carrier R; y \<in> carrier R |] ==> \<ominus> x \<otimes> y = \<ominus> (x \<otimes> y)"
+  "\<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> (\<ominus> x) \<otimes> y = \<ominus> (x \<otimes> y)"
 proof -
   assume R: "x \<in> carrier R" "y \<in> carrier R"
   then have "(\<ominus> x) \<otimes> y \<oplus> x \<otimes> y = (\<ominus> x \<oplus> x) \<otimes> y" by (simp add: l_distr)
@@ -369,7 +404,7 @@
 qed
 
 lemma r_minus:
-  "[| x \<in> carrier R; y \<in> carrier R |] ==> x \<otimes> \<ominus> y = \<ominus> (x \<otimes> y)"
+  "\<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<otimes> (\<ominus> y) = \<ominus> (x \<otimes> y)"
 proof -
   assume R: "x \<in> carrier R" "y \<in> carrier R"
   then have "x \<otimes> (\<ominus> y) \<oplus> x \<otimes> y = x \<otimes> (\<ominus> y \<oplus> y)" by (simp add: r_distr)
@@ -381,13 +416,13 @@
 
 end
 
-lemma (in abelian_group) minus_eq:
-  "[| x \<in> carrier G; y \<in> carrier G |] ==> x \<ominus> y = x \<oplus> \<ominus> y"
-  by (simp only: a_minus_def)
+lemma (in abelian_group) minus_eq: "x \<ominus> y = x \<oplus> (\<ominus> y)"
+  by (rule a_minus_def)
 
 text \<open>Setup algebra method:
   compute distributive normal form in locale contexts\<close>
 
+
 ML_file "ringsimp.ML"
 
 attribute_setup algebra = \<open>
@@ -467,7 +502,7 @@
   fixes R (structure) and S (structure)
   assumes "ring R" "cring S"
   assumes RS: "a \<in> carrier R" "b \<in> carrier R" "c \<in> carrier S" "d \<in> carrier S"
-  shows "a \<oplus> \<ominus> (a \<oplus> \<ominus> b) = b \<and> c \<otimes>\<^bsub>S\<^esub> d = d \<otimes>\<^bsub>S\<^esub> c"
+  shows "a \<oplus> (\<ominus> (a \<oplus> (\<ominus> b))) = b \<and> c \<otimes>\<^bsub>S\<^esub> d = d \<otimes>\<^bsub>S\<^esub> c"
 proof -
   interpret ring R by fact
   interpret cring S by fact
@@ -488,8 +523,8 @@
 subsubsection \<open>Sums over Finite Sets\<close>
 
 lemma (in semiring) finsum_ldistr:
-  "[| finite A; a \<in> carrier R; f \<in> A \<rightarrow> carrier R |] ==>
-   finsum R f A \<otimes> a = finsum R (%i. f i \<otimes> a) A"
+  "\<lbrakk> finite A; a \<in> carrier R; f: A \<rightarrow> carrier R \<rbrakk> \<Longrightarrow>
+    (\<Oplus> i \<in> A. (f i)) \<otimes> a = (\<Oplus> i \<in> A. ((f i) \<otimes> a))"
 proof (induct set: finite)
   case empty then show ?case by simp
 next
@@ -497,25 +532,86 @@
 qed
 
 lemma (in semiring) finsum_rdistr:
-  "[| finite A; a \<in> carrier R; f \<in> A \<rightarrow> carrier R |] ==>
-   a \<otimes> finsum R f A = finsum R (%i. a \<otimes> f i) A"
+  "\<lbrakk> finite A; a \<in> carrier R; f: A \<rightarrow> carrier R \<rbrakk> \<Longrightarrow>
+   a \<otimes> (\<Oplus> i \<in> A. (f i)) = (\<Oplus> i \<in> A. (a \<otimes> (f i)))"
 proof (induct set: finite)
   case empty then show ?case by simp
 next
   case (insert x F) then show ?case by (simp add: Pi_def r_distr)
 qed
 
+(* ************************************************************************** *)
+(* Contributed by Paulo E. de Vilhena.                                        *)
+
+text \<open>A quick detour\<close>
+
+lemma add_pow_int_ge: "(k :: int) \<ge> 0 \<Longrightarrow> [ k ] \<cdot>\<^bsub>R\<^esub> a = [ nat k ] \<cdot>\<^bsub>R\<^esub> a"
+  by (simp add: add_pow_def int_pow_def nat_pow_def)
+
+lemma add_pow_int_lt: "(k :: int) < 0 \<Longrightarrow> [ k ] \<cdot>\<^bsub>R\<^esub> a = \<ominus>\<^bsub>R\<^esub> ([ nat (- k) ] \<cdot>\<^bsub>R\<^esub> a)"
+  by (simp add: int_pow_def nat_pow_def a_inv_def add_pow_def) 
+
+corollary (in semiring) add_pow_ldistr:
+  assumes "a \<in> carrier R" "b \<in> carrier R"
+  shows "([(k :: nat)] \<cdot> a) \<otimes> b = [k] \<cdot> (a \<otimes> b)"
+proof -
+  have "([k] \<cdot> a) \<otimes> b = (\<Oplus> i \<in> {..< k}. a) \<otimes> b"
+    using add.finprod_const[OF assms(1), of "{..<k}"] by simp
+  also have " ... = (\<Oplus> i \<in> {..< k}. (a \<otimes> b))"
+    using finsum_ldistr[of "{..<k}" b "\<lambda>x. a"] assms by simp
+  also have " ... = [k] \<cdot> (a \<otimes> b)"
+    using add.finprod_const[of "a \<otimes> b" "{..<k}"] assms by simp
+  finally show ?thesis .
+qed
+
+corollary (in semiring) add_pow_rdistr:
+  assumes "a \<in> carrier R" "b \<in> carrier R"
+  shows "a \<otimes> ([(k :: nat)] \<cdot> b) = [k] \<cdot> (a \<otimes> b)"
+proof -
+  have "a \<otimes> ([k] \<cdot> b) = a \<otimes> (\<Oplus> i \<in> {..< k}. b)"
+    using add.finprod_const[OF assms(2), of "{..<k}"] by simp
+  also have " ... = (\<Oplus> i \<in> {..< k}. (a \<otimes> b))"
+    using finsum_rdistr[of "{..<k}" a "\<lambda>x. b"] assms by simp
+  also have " ... = [k] \<cdot> (a \<otimes> b)"
+    using add.finprod_const[of "a \<otimes> b" "{..<k}"] assms by simp
+  finally show ?thesis .
+qed 
+
+(* For integers, we need the uniqueness of the additive inverse *)
+lemma (in ring) add_pow_ldistr_int:
+  assumes "a \<in> carrier R" "b \<in> carrier R"
+  shows "([(k :: int)] \<cdot> a) \<otimes> b = [k] \<cdot> (a \<otimes> b)"
+proof (cases "k \<ge> 0")
+  case True thus ?thesis
+    using add_pow_int_ge[of k R] add_pow_ldistr[OF assms] by auto
+next
+  case False thus ?thesis
+    using add_pow_int_lt[of k R a] add_pow_int_lt[of k R "a \<otimes> b"]
+          add_pow_ldistr[OF assms, of "nat (- k)"] assms l_minus by auto 
+qed
+
+lemma (in ring) add_pow_rdistr_int:
+  assumes "a \<in> carrier R" "b \<in> carrier R"
+  shows "a \<otimes> ([(k :: int)] \<cdot> b) = [k] \<cdot> (a \<otimes> b)"
+proof (cases "k \<ge> 0")
+  case True thus ?thesis
+    using add_pow_int_ge[of k R] add_pow_rdistr[OF assms] by auto
+next
+  case False thus ?thesis
+    using add_pow_int_lt[of k R b] add_pow_int_lt[of k R "a \<otimes> b"]
+          add_pow_rdistr[OF assms, of "nat (- k)"] assms r_minus by auto 
+qed
+
 
 subsection \<open>Integral Domains\<close>
 
 context "domain" begin
 
-lemma zero_not_one [simp]:
-  "\<zero> \<noteq> \<one>"
+lemma zero_not_one [simp]: "\<zero> \<noteq> \<one>"
   by (rule not_sym) simp
 
 lemma integral_iff: (* not by default a simp rule! *)
-  "[| a \<in> carrier R; b \<in> carrier R |] ==> (a \<otimes> b = \<zero>) = (a = \<zero> \<or> b = \<zero>)"
+  "\<lbrakk> a \<in> carrier R; b \<in> carrier R \<rbrakk> \<Longrightarrow> (a \<otimes> b = \<zero>) = (a = \<zero> \<or> b = \<zero>)"
 proof
   assume "a \<in> carrier R" "b \<in> carrier R" "a \<otimes> b = \<zero>"
   then show "a = \<zero> \<or> b = \<zero>" by (simp add: integral)
@@ -533,7 +629,7 @@
   with R have "a \<otimes> (b \<ominus> c) = \<zero>" by algebra
   with R have "a = \<zero> \<or> (b \<ominus> c) = \<zero>" by (simp add: integral_iff)
   with prem and R have "b \<ominus> c = \<zero>" by auto 
-  with R have "b = b \<ominus> (b \<ominus> c)" by algebra 
+  with R have "b = b \<ominus> (b \<ominus> c)" by algebra
   also from R have "b \<ominus> (b \<ominus> c) = c" by algebra
   finally show "b = c" .
 next
@@ -556,6 +652,7 @@
 
 text \<open>Field would not need to be derived from domain, the properties
   for domain follow from the assumptions of field\<close>
+
 lemma (in cring) cring_fieldI:
   assumes field_Units: "Units R = carrier R - {\<zero>}"
   shows "field R"
@@ -614,49 +711,62 @@
 
 lemma ring_hom_memI:
   fixes R (structure) and S (structure)
-  assumes hom_closed: "!!x. x \<in> carrier R ==> h x \<in> carrier S"
-    and hom_mult: "!!x y. [| x \<in> carrier R; y \<in> carrier R |] ==>
-      h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
-    and hom_add: "!!x y. [| x \<in> carrier R; y \<in> carrier R |] ==>
-      h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
-    and hom_one: "h \<one> = \<one>\<^bsub>S\<^esub>"
+  assumes "\<And>x. x \<in> carrier R \<Longrightarrow> h x \<in> carrier S"
+      and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
+      and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
+      and "h \<one> = \<one>\<^bsub>S\<^esub>"
   shows "h \<in> ring_hom R S"
   by (auto simp add: ring_hom_def assms Pi_def)
 
+lemma ring_hom_memE:
+  fixes R (structure) and S (structure)
+  assumes "h \<in> ring_hom R S"
+  shows "\<And>x. x \<in> carrier R \<Longrightarrow> h x \<in> carrier S"
+    and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
+    and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
+    and "h \<one> = \<one>\<^bsub>S\<^esub>"
+  using assms unfolding ring_hom_def by auto
+
 lemma ring_hom_closed:
-  "[| h \<in> ring_hom R S; x \<in> carrier R |] ==> h x \<in> carrier S"
+  "\<lbrakk> h \<in> ring_hom R S; x \<in> carrier R \<rbrakk> \<Longrightarrow> h x \<in> carrier S"
   by (auto simp add: ring_hom_def funcset_mem)
 
 lemma ring_hom_mult:
   fixes R (structure) and S (structure)
-  shows
-    "[| h \<in> ring_hom R S; x \<in> carrier R; y \<in> carrier R |] ==>
-    h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
+  shows "\<lbrakk> h \<in> ring_hom R S; x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
     by (simp add: ring_hom_def)
 
 lemma ring_hom_add:
   fixes R (structure) and S (structure)
-  shows
-    "[| h \<in> ring_hom R S; x \<in> carrier R; y \<in> carrier R |] ==>
-    h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
+  shows "\<lbrakk> h \<in> ring_hom R S; x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
     by (simp add: ring_hom_def)
 
 lemma ring_hom_one:
   fixes R (structure) and S (structure)
-  shows "h \<in> ring_hom R S ==> h \<one> = \<one>\<^bsub>S\<^esub>"
+  shows "h \<in> ring_hom R S \<Longrightarrow> h \<one> = \<one>\<^bsub>S\<^esub>"
   by (simp add: ring_hom_def)
 
-locale ring_hom_cring = R?: cring R + S?: cring S
-    for R (structure) and S (structure) +
-  fixes h
+lemma ring_hom_zero:
+  fixes R (structure) and S (structure)
+  assumes "h \<in> ring_hom R S" "ring R" "ring S"
+  shows "h \<zero> = \<zero>\<^bsub>S\<^esub>"
+proof -
+  have "h \<zero> = h \<zero> \<oplus>\<^bsub>S\<^esub> h \<zero>"
+    using ring_hom_add[OF assms(1), of \<zero> \<zero>] assms(2)
+    by (simp add: ring.ring_simprules(2) ring.ring_simprules(15))
+  thus ?thesis
+    by (metis abelian_group.l_neg assms ring.is_abelian_group ring.ring_simprules(18) ring.ring_simprules(2) ring_hom_closed)
+qed
+
+locale ring_hom_cring =
+  R?: cring R + S?: cring S for R (structure) and S (structure) + fixes h
   assumes homh [simp, intro]: "h \<in> ring_hom R S"
   notes hom_closed [simp, intro] = ring_hom_closed [OF homh]
     and hom_mult [simp] = ring_hom_mult [OF homh]
     and hom_add [simp] = ring_hom_add [OF homh]
     and hom_one [simp] = ring_hom_one [OF homh]
 
-lemma (in ring_hom_cring) hom_zero [simp]:
-  "h \<zero> = \<zero>\<^bsub>S\<^esub>"
+lemma (in ring_hom_cring) hom_zero [simp]: "h \<zero> = \<zero>\<^bsub>S\<^esub>"
 proof -
   have "h \<zero> \<oplus>\<^bsub>S\<^esub> h \<zero> = h \<zero> \<oplus>\<^bsub>S\<^esub> \<zero>\<^bsub>S\<^esub>"
     by (simp add: hom_add [symmetric] del: hom_add)
@@ -664,7 +774,7 @@
 qed
 
 lemma (in ring_hom_cring) hom_a_inv [simp]:
-  "x \<in> carrier R ==> h (\<ominus> x) = \<ominus>\<^bsub>S\<^esub> h x"
+  "x \<in> carrier R \<Longrightarrow> h (\<ominus> x) = \<ominus>\<^bsub>S\<^esub> h x"
 proof -
   assume R: "x \<in> carrier R"
   then have "h x \<oplus>\<^bsub>S\<^esub> h (\<ominus> x) = h x \<oplus>\<^bsub>S\<^esub> (\<ominus>\<^bsub>S\<^esub> h x)"
@@ -673,19 +783,131 @@
 qed
 
 lemma (in ring_hom_cring) hom_finsum [simp]:
-  "f \<in> A \<rightarrow> carrier R \<Longrightarrow>
-  h (finsum R f A) = finsum S (h \<circ> f) A"
-  by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
+  assumes "f: A \<rightarrow> carrier R"
+  shows "h (\<Oplus> i \<in> A. f i) = (\<Oplus>\<^bsub>S\<^esub> i \<in> A. (h o f) i)"
+  using assms by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
 
 lemma (in ring_hom_cring) hom_finprod:
-  "f \<in> A \<rightarrow> carrier R \<Longrightarrow>
-  h (finprod R f A) = finprod S (h \<circ> f) A"
-  by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
+  assumes "f: A \<rightarrow> carrier R"
+  shows "h (\<Otimes> i \<in> A. f i) = (\<Otimes>\<^bsub>S\<^esub> i \<in> A. (h o f) i)"
+  using assms by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
 
 declare ring_hom_cring.hom_finprod [simp]
 
-lemma id_ring_hom [simp]:
-  "id \<in> ring_hom R R"
+lemma id_ring_hom [simp]: "id \<in> ring_hom R R"
   by (auto intro!: ring_hom_memI)
 
+(* Next lemma contributed by Paulo Emílio de Vilhena. *)
+
+lemma ring_hom_trans:
+  "\<lbrakk> f \<in> ring_hom R S; g \<in> ring_hom S T \<rbrakk> \<Longrightarrow> g \<circ> f \<in> ring_hom R T"
+  by (rule ring_hom_memI) (auto simp add: ring_hom_closed ring_hom_mult ring_hom_add ring_hom_one)
+
+subsection\<open>Jeremy Avigad's @{text"More_Finite_Product"} material\<close>
+
+(* need better simplification rules for rings *)
+(* the next one holds more generally for abelian groups *)
+
+lemma (in cring) sum_zero_eq_neg: "x \<in> carrier R \<Longrightarrow> y \<in> carrier R \<Longrightarrow> x \<oplus> y = \<zero> \<Longrightarrow> x = \<ominus> y"
+  by (metis minus_equality)
+
+lemma (in domain) square_eq_one:
+  fixes x
+  assumes [simp]: "x \<in> carrier R"
+    and "x \<otimes> x = \<one>"
+  shows "x = \<one> \<or> x = \<ominus>\<one>"
+proof -
+  have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = x \<otimes> x \<oplus> \<ominus> \<one>"
+    by (simp add: ring_simprules)
+  also from \<open>x \<otimes> x = \<one>\<close> have "\<dots> = \<zero>"
+    by (simp add: ring_simprules)
+  finally have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = \<zero>" .
+  then have "(x \<oplus> \<one>) = \<zero> \<or> (x \<oplus> \<ominus> \<one>) = \<zero>"
+    by (intro integral) auto
+  then show ?thesis
+    by (metis add.inv_closed add.inv_solve_right assms(1) l_zero one_closed zero_closed)
+qed
+
+lemma (in domain) inv_eq_self: "x \<in> Units R \<Longrightarrow> x = inv x \<Longrightarrow> x = \<one> \<or> x = \<ominus>\<one>"
+  by (metis Units_closed Units_l_inv square_eq_one)
+
+
+text \<open>
+  The following translates theorems about groups to the facts about
+  the units of a ring. (The list should be expanded as more things are
+  needed.)
+\<close>
+
+lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R) \<Longrightarrow> finite (Units R)"
+  by (rule finite_subset) auto
+
+lemma (in monoid) units_of_pow:
+  fixes n :: nat
+  shows "x \<in> Units G \<Longrightarrow> x [^]\<^bsub>units_of G\<^esub> n = x [^]\<^bsub>G\<^esub> n"
+  apply (induct n)
+  apply (auto simp add: units_group group.is_monoid
+    monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult)
+  done
+
+lemma (in cring) units_power_order_eq_one:
+  "finite (Units R) \<Longrightarrow> a \<in> Units R \<Longrightarrow> a [^] card(Units R) = \<one>"
+  by (metis comm_group.power_order_eq_one units_comm_group units_of_carrier units_of_one units_of_pow)
+
+subsection\<open>Jeremy Avigad's @{text"More_Ring"} material\<close>
+
+lemma (in cring) field_intro2: "\<zero>\<^bsub>R\<^esub> \<noteq> \<one>\<^bsub>R\<^esub> \<Longrightarrow> \<forall>x \<in> carrier R - {\<zero>\<^bsub>R\<^esub>}. x \<in> Units R \<Longrightarrow> field R"
+  apply (unfold_locales)
+    apply (use cring_axioms in auto)
+   apply (rule trans)
+    apply (subgoal_tac "a = (a \<otimes> b) \<otimes> inv b")
+     apply assumption
+    apply (subst m_assoc)
+       apply auto
+  apply (unfold Units_def)
+  apply auto
+  done
+
+lemma (in monoid) inv_char:
+  "x \<in> carrier G \<Longrightarrow> y \<in> carrier G \<Longrightarrow> x \<otimes> y = \<one> \<Longrightarrow> y \<otimes> x = \<one> \<Longrightarrow> inv x = y"
+  apply (subgoal_tac "x \<in> Units G")
+   apply (subgoal_tac "y = inv x \<otimes> \<one>")
+    apply simp
+   apply (erule subst)
+   apply (subst m_assoc [symmetric])
+      apply auto
+  apply (unfold Units_def)
+  apply auto
+  done
+
+lemma (in comm_monoid) comm_inv_char: "x \<in> carrier G \<Longrightarrow> y \<in> carrier G \<Longrightarrow> x \<otimes> y = \<one> \<Longrightarrow> inv x = y"
+  by (simp add: inv_char m_comm)
+
+lemma (in ring) inv_neg_one [simp]: "inv (\<ominus> \<one>) = \<ominus> \<one>"
+  apply (rule inv_char)
+     apply (auto simp add: l_minus r_minus)
+  done
+
+lemma (in monoid) inv_eq_imp_eq: "x \<in> Units G \<Longrightarrow> y \<in> Units G \<Longrightarrow> inv x = inv y \<Longrightarrow> x = y"
+  apply (subgoal_tac "inv (inv x) = inv (inv y)")
+   apply (subst (asm) Units_inv_inv)+
+    apply auto
+  done
+
+lemma (in ring) Units_minus_one_closed [intro]: "\<ominus> \<one> \<in> Units R"
+  apply (unfold Units_def)
+  apply auto
+  apply (rule_tac x = "\<ominus> \<one>" in bexI)
+   apply auto
+  apply (simp add: l_minus r_minus)
+  done
+
+lemma (in ring) inv_eq_neg_one_eq: "x \<in> Units R \<Longrightarrow> inv x = \<ominus> \<one> \<longleftrightarrow> x = \<ominus> \<one>"
+  apply auto
+  apply (subst Units_inv_inv [symmetric])
+   apply auto
+  done
+
+lemma (in monoid) inv_eq_one_eq: "x \<in> Units G \<Longrightarrow> inv x = \<one> \<longleftrightarrow> x = \<one>"
+  by (metis Units_inv_inv inv_one)
+
 end
--- a/src/HOL/Algebra/Sylow.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/Sylow.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -189,7 +189,7 @@
   using rcosetGM1g_subset_G finite_G M1_subset_G cosets_finite rcosetsI by blast
 
 lemma M1_cardeq_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> card (M1 #> g) = card M1"
-  by (simp add: card_cosets_equal rcosetsI)
+  by (metis M1_subset_G card_rcosets_equal rcosetsI)
 
 lemma M1_RelM_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> (M1, M1 #> g) \<in> RelM"
   apply (simp add: RelM_def calM_def card_M1)
@@ -223,7 +223,7 @@
 
 lemma M_funcset_rcosets_H:
   "(\<lambda>x\<in>M. H #> (SOME g. g \<in> carrier G \<and> M1 #> g = x)) \<in> M \<rightarrow> rcosets H"
-  by (metis (lifting) H_is_subgroup M_elem_map_carrier rcosetsI restrictI subgroup_imp_subset)
+  by (metis (lifting) H_is_subgroup M_elem_map_carrier rcosetsI restrictI subgroup.subset)
 
 lemma inj_M_GmodH: "\<exists>f \<in> M \<rightarrow> rcosets H. inj_on f M"
   apply (rule bexI)
--- a/src/HOL/Algebra/UnivPoly.thy	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/Algebra/UnivPoly.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -116,14 +116,15 @@
 proof
   assume R: "p \<in> up R"
   then obtain n where "bound \<zero> n p" by auto
-  then have "bound \<zero> n (\<lambda>i. \<ominus> p i)" by auto
+  then have "bound \<zero> n (\<lambda>i. \<ominus> p i)"
+    by (simp add: bound_def minus_equality)
   then show "\<exists>n. bound \<zero> n (\<lambda>i. \<ominus> p i)" by auto
 qed auto
 
 lemma up_minus_closed:
   "[| p \<in> up R; q \<in> up R |] ==> (\<lambda>i. p i \<ominus> q i) \<in> up R"
-  using mem_upD [of p R] mem_upD [of q R] up_add_closed up_a_inv_closed a_minus_def [of _ R]
-  by auto
+  unfolding a_minus_def
+  using mem_upD [of p R] mem_upD [of q R] up_add_closed up_a_inv_closed  by auto
 
 lemma up_mult_closed:
   "[| p \<in> up R; q \<in> up R |] ==>
@@ -695,7 +696,7 @@
 
 lemma monom_a_inv [simp]:
   "a \<in> carrier R ==> monom P (\<ominus> a) n = \<ominus>\<^bsub>P\<^esub> monom P a n"
-  by (rule up_eqI) simp_all
+  by (rule up_eqI) auto
 
 lemma monom_inj:
   "inj_on (\<lambda>a. monom P a n) (carrier R)"
@@ -1462,9 +1463,9 @@
 subsection\<open>The long division algorithm: some previous facts.\<close>
 
 lemma coeff_minus [simp]:
-  assumes p: "p \<in> carrier P" and q: "q \<in> carrier P" shows "coeff P (p \<ominus>\<^bsub>P\<^esub> q) n = coeff P p n \<ominus> coeff P q n"
-  unfolding a_minus_def [OF p q] unfolding coeff_add [OF p a_inv_closed [OF q]] unfolding coeff_a_inv [OF q]
-  using coeff_closed [OF p, of n] using coeff_closed [OF q, of n] by algebra
+  assumes p: "p \<in> carrier P" and q: "q \<in> carrier P" 
+  shows "coeff P (p \<ominus>\<^bsub>P\<^esub> q) n = coeff P p n \<ominus> coeff P q n"
+  by (simp add: a_minus_def p q)
 
 lemma lcoeff_closed [simp]: assumes p: "p \<in> carrier P" shows "lcoeff p \<in> carrier R"
   using coeff_closed [OF p, of "deg R p"] by simp
@@ -1719,10 +1720,7 @@
     and min_mon0_closed: "\<ominus>\<^bsub>P\<^esub> monom P a 0 \<in> carrier P"
     using a R.a_inv_closed by auto
   have "eval R R id a ?g = eval R R id a (monom P \<one> 1) \<ominus> eval R R id a (monom P a 0)"
-    unfolding P.minus_eq [OF mon1_closed mon0_closed]
-    unfolding hom_add [OF mon1_closed min_mon0_closed]
-    unfolding hom_a_inv [OF mon0_closed]
-    using R.minus_eq [symmetric] mon1_closed mon0_closed by auto
+    by (simp add: a_minus_def mon0_closed)
   also have "\<dots> = a \<ominus> a"
     using eval_monom [OF R.one_closed a, of 1] using eval_monom [OF a a, of 0] using a by simp
   also have "\<dots> = \<zero>"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/Zassenhaus.thy	Thu Jun 14 14:23:48 2018 +0100
@@ -0,0 +1,633 @@
+theory Zassenhaus
+  imports Coset Group_Action
+begin
+
+
+subsubsection \<open>Lemmas about normalizer\<close>
+
+
+lemma (in group) subgroup_in_normalizer: 
+  assumes "subgroup H G"
+  shows "normal H (G\<lparr>carrier:= (normalizer G H)\<rparr>)"
+proof(intro group.normal_invI)
+  show "Group.group (G\<lparr>carrier := normalizer G H\<rparr>)"
+    by (simp add: assms group.normalizer_imp_subgroup is_group subgroup_imp_group subgroup_imp_subset)
+  have K:"H \<subseteq> (normalizer G H)" unfolding normalizer_def
+  proof
+    fix x assume xH: "x \<in> H"
+    from xH have xG : "x \<in> carrier G" using subgroup_imp_subset assms by auto
+    have "x <# H = H"
+      by (metis \<open>x \<in> H\<close> assms group.lcos_mult_one is_group
+         l_repr_independence one_closed subgroup_imp_subset)
+    moreover have "H #> inv x = H" 
+      by (simp add: xH assms is_group subgroup.rcos_const subgroup.m_inv_closed)
+    ultimately have "x <# H #> (inv x) = H" by simp
+    thus " x \<in> stabilizer G (\<lambda>g. \<lambda>H\<in>{H. H \<subseteq> carrier G}. g <# H #> inv g) H"
+      using assms xG subgroup_imp_subset unfolding stabilizer_def by auto
+  qed
+  thus "subgroup H (G\<lparr>carrier:= (normalizer G H)\<rparr>)"
+    using subgroup_incl normalizer_imp_subgroup assms by (simp add: subgroup_imp_subset)
+  show  " \<And>x h. x \<in> carrier (G\<lparr>carrier := normalizer G H\<rparr>) \<Longrightarrow> h \<in> H \<Longrightarrow>
+             x \<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> h
+               \<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> inv\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> x \<in> H"
+    proof-
+    fix x h assume xnorm : "x \<in> carrier (G\<lparr>carrier := normalizer G H\<rparr>)" and hH : "h \<in> H"
+    have xnormalizer:"x \<in> normalizer G H" using xnorm by simp
+    moreover have hnormalizer:"h \<in> normalizer G H" using hH K by auto
+    ultimately have "x \<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> h = x \<otimes> h" by simp
+    moreover have " inv\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> x =  inv x"
+      using xnormalizer
+      by (simp add: assms normalizer_imp_subgroup subgroup_imp_subset subgroup_inv_equality)
+    ultimately  have xhxegal: "x \<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> h
+                \<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> inv\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> x
+                  = x \<otimes>h \<otimes> inv x"
+      using  hnormalizer by simp
+    have  "x \<otimes>h \<otimes> inv x \<in> (x <# H #> inv x)"
+      unfolding l_coset_def r_coset_def using hH  by auto
+    moreover have "x <# H #> inv x = H"
+      using xnormalizer assms subgroup_imp_subset[OF assms]
+      unfolding normalizer_def stabilizer_def by auto
+    ultimately have "x \<otimes>h \<otimes> inv x \<in> H" by simp
+    thus  " x \<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> h
+               \<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> inv\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> x \<in> H"
+      using xhxegal hH xnorm by simp
+  qed
+qed
+
+
+lemma (in group) normal_imp_subgroup_normalizer:
+  assumes "subgroup H G"
+    and "N \<lhd> (G\<lparr>carrier := H\<rparr>)"
+  shows "subgroup H (G\<lparr>carrier := normalizer G N\<rparr>)" 
+proof-
+  have N_carrierG : "N \<subseteq> carrier(G)"
+    using assms normal_imp_subgroup subgroup_imp_subset
+    by (smt monoid.cases_scheme order_trans partial_object.simps(1) partial_object.update_convs(1))
+  {have "H \<subseteq> normalizer G N" unfolding normalizer_def stabilizer_def
+    proof
+      fix x assume xH : "x \<in> H"
+      hence xcarrierG : "x \<in> carrier(G)" using assms subgroup_imp_subset  by auto
+      have "   N #> x = x <# N" using assms xH
+        unfolding r_coset_def l_coset_def normal_def normal_axioms_def subgroup_imp_group by auto
+      hence "x <# N #> inv x =(N #> x) #> inv x"
+        by simp
+      also have "... = N #> \<one>"
+        using  assms r_inv xcarrierG coset_mult_assoc[OF N_carrierG] by simp  
+      finally have "x <# N #> inv x = N" by (simp add: N_carrierG)
+      thus "x \<in> {g \<in> carrier G. (\<lambda>H\<in>{H. H \<subseteq> carrier G}. g <# H #> inv g) N = N}"
+        using xcarrierG by (simp add : N_carrierG)
+    qed}
+  thus "subgroup H (G\<lparr>carrier := normalizer G N\<rparr>)"
+    using subgroup_incl[OF assms(1) normalizer_imp_subgroup]
+      assms normal_imp_subgroup subgroup_imp_subset
+    by (metis  group.incl_subgroup is_group)
+qed
+
+
+subsection \<open>Second Isomorphism Theorem\<close>
+
+lemma (in group) mult_norm_subgroup:
+  assumes "normal N G"
+    and "subgroup H G"
+  shows "subgroup (N<#>H) G" unfolding subgroup_def
+proof-
+  have  A :"N <#> H \<subseteq> carrier G"
+    using assms  setmult_subset_G by (simp add: normal_imp_subgroup subgroup_imp_subset)
+
+  have B :"\<And> x y. \<lbrakk>x \<in> (N <#> H); y \<in> (N <#> H)\<rbrakk> \<Longrightarrow> (x \<otimes> y) \<in> (N<#>H)"
+  proof-
+    fix x y assume B1a: "x \<in> (N <#> H)"  and B1b: "y \<in> (N <#> H)"
+    obtain n1 h1 where B2:"n1 \<in> N \<and> h1 \<in> H \<and> n1\<otimes>h1 = x"
+      using set_mult_def B1a by (metis (no_types, lifting) UN_E singletonD)
+    obtain n2 h2 where B3:"n2 \<in> N \<and> h2 \<in> H \<and> n2\<otimes>h2 = y"
+      using set_mult_def B1b by (metis (no_types, lifting) UN_E singletonD)
+    have "N #> h1 = h1 <# N"
+      using normalI B2 assms normal.coset_eq subgroup_imp_subset by blast
+    hence "h1\<otimes>n2 \<in> N #> h1" 
+      using B2 B3 assms l_coset_def by fastforce
+    from this obtain y2 where y2_def:"y2 \<in> N" and y2_prop:"y2\<otimes>h1 = h1\<otimes>n2" 
+      using singletonD by (metis (no_types, lifting) UN_E r_coset_def) 
+    have " x\<otimes>y =  n1 \<otimes> y2 \<otimes> h1 \<otimes> h2" using y2_def B2 B3
+      by (smt assms y2_prop m_assoc m_closed normal_imp_subgroup subgroup.mem_carrier)
+    moreover have B4 :"n1 \<otimes> y2 \<in>N"
+      using B2 y2_def assms normal_imp_subgroup by (metis subgroup_def)
+    moreover have "h1 \<otimes> h2 \<in>H" using B2 B3 assms by (simp add: subgroup.m_closed)
+    hence "(n1 \<otimes> y2) \<otimes> (h1 \<otimes> h2) \<in>(N<#>H) "
+      using B4  unfolding set_mult_def by auto
+    hence "n1 \<otimes> y2 \<otimes> h1 \<otimes> h2 \<in>(N<#>H)"
+      using m_assoc B2 B3 assms  normal_imp_subgroup by (metis B4 subgroup.mem_carrier)
+    ultimately show  "x \<otimes> y \<in> N <#> H" by auto
+  qed
+  have C :"\<And> x. x\<in>(N<#>H)  \<Longrightarrow> (inv x)\<in>(N<#>H)"
+
+  proof-
+    fix x assume C1 : "x \<in> (N<#>H)"
+    obtain n h where C2:"n \<in> N \<and> h \<in> H \<and> n\<otimes>h = x"
+      using set_mult_def C1 by (metis (no_types, lifting) UN_E singletonD)
+    have C3 :"inv(n\<otimes>h) = inv(h)\<otimes>inv(n)"
+      by (meson C2  assms inv_mult_group normal_imp_subgroup subgroup.mem_carrier)
+    hence "... \<otimes>h \<in> N"
+      using assms C2
+      by (meson normal.inv_op_closed1 normal_def subgroup.m_inv_closed subgroup.mem_carrier)
+    hence  C4:"(inv h \<otimes> inv n \<otimes> h) \<otimes> inv h \<in> (N<#>H)" 
+      using   C2 assms subgroup.m_inv_closed[of H G h] unfolding set_mult_def by auto
+    have "inv h \<otimes> inv n \<otimes> h \<otimes> inv h = inv h \<otimes> inv n"
+      using  subgroup_imp_subset[OF assms(2)] 
+      by (metis A C1 C2 C3 inv_closed inv_solve_right m_closed subsetCE)
+    thus "inv(x)\<in>N<#>H" using C4 C2 C3 by simp
+  qed
+
+  have D : "\<one> \<in> N <#> H"
+  proof-
+    have D1 : "\<one> \<in> N"
+      using assms by (simp add: normal_def subgroup.one_closed)
+     have D2 :"\<one> \<in> H"
+      using assms by (simp add: subgroup.one_closed)
+    thus "\<one> \<in> (N <#> H)"
+      using set_mult_def D1 assms by fastforce
+  qed
+  thus "(N <#> H \<subseteq> carrier G \<and> (\<forall>x y. x \<in> N <#> H \<longrightarrow> y \<in> N <#> H \<longrightarrow> x \<otimes> y \<in> N <#> H)) \<and>
+    \<one> \<in> N <#> H \<and> (\<forall>x. x \<in> N <#> H \<longrightarrow> inv x \<in> N <#> H)" using A B C D assms by blast
+qed
+    
+
+lemma (in group) mult_norm_sub_in_sub:
+  assumes "normal N (G\<lparr>carrier:=K\<rparr>)"
+  assumes "subgroup H (G\<lparr>carrier:=K\<rparr>)"
+  assumes "subgroup K G"
+  shows  "subgroup (N<#>H) (G\<lparr>carrier:=K\<rparr>)"
+proof-
+  have Hyp:"subgroup (N <#>\<^bsub>G\<lparr>carrier := K\<rparr>\<^esub> H) (G\<lparr>carrier := K\<rparr>)"
+    using group.mult_norm_subgroup[where ?G = "G\<lparr>carrier := K\<rparr>"] assms subgroup_imp_group by auto
+  have "H \<subseteq> carrier(G\<lparr>carrier := K\<rparr>)" using assms subgroup_imp_subset by blast
+  also have "... \<subseteq> K" by simp
+  finally have Incl1:"H \<subseteq> K" by simp
+  have "N \<subseteq> carrier(G\<lparr>carrier := K\<rparr>)" using assms normal_imp_subgroup subgroup_imp_subset by blast
+  also have "... \<subseteq> K" by simp
+  finally have Incl2:"N \<subseteq> K" by simp
+  have "(N <#>\<^bsub>G\<lparr>carrier := K\<rparr>\<^esub> H) = (N <#> H)"
+    using subgroup_set_mult_equality[of K] assms Incl1 Incl2 by simp
+  thus "subgroup (N<#>H) (G\<lparr>carrier:=K\<rparr>)" using Hyp by auto
+qed
+
+
+lemma (in group) subgroup_of_normal_set_mult:
+  assumes "normal N G"
+and "subgroup H G"
+shows "subgroup H (G\<lparr>carrier := N <#> H\<rparr>)"
+proof-
+  have "\<one> \<in> N" using normal_imp_subgroup assms(1) subgroup_def by blast
+  hence "\<one> <# H \<subseteq> N <#> H" unfolding set_mult_def l_coset_def by blast
+  hence H_incl : "H \<subseteq> N <#> H"
+    by (metis assms(2) lcos_mult_one subgroup_def)
+  show "subgroup H (G\<lparr>carrier := N <#> H\<rparr>)"
+  using subgroup_incl[OF assms(2) mult_norm_subgroup[OF assms(1) assms(2)] H_incl] .
+qed
+
+
+lemma (in group) normal_in_normal_set_mult:
+  assumes "normal N G"
+and "subgroup H G"
+shows "normal N (G\<lparr>carrier := N <#> H\<rparr>)"
+proof-
+  have "\<one> \<in> H" using  assms(2) subgroup_def by blast
+  hence "N #> \<one>  \<subseteq> N <#> H" unfolding set_mult_def r_coset_def by blast
+  hence N_incl : "N \<subseteq> N <#> H"
+    by (metis assms(1) normal_imp_subgroup coset_mult_one subgroup_def)
+  thus "normal N (G\<lparr>carrier := N <#> H\<rparr>)"
+    using normal_inter_subgroup[OF mult_norm_subgroup[OF assms] assms(1)]
+    by (simp add : inf_absorb1)
+qed
+
+
+proposition (in group) weak_snd_iso_thme:
+  assumes "subgroup  H G" 
+    and "N\<lhd>G"
+  shows "(G\<lparr>carrier := N<#>H\<rparr> Mod N \<cong> G\<lparr>carrier:=H\<rparr> Mod (N\<inter>H))"
+proof-
+  define f where "f =  (#>) N"
+  have GroupNH : "Group.group (G\<lparr>carrier := N<#>H\<rparr>)"
+    using subgroup_imp_group assms mult_norm_subgroup by simp
+  have  HcarrierNH :"H \<subseteq> carrier(G\<lparr>carrier := N<#>H\<rparr>)"
+    using assms subgroup_of_normal_set_mult subgroup_imp_subset by blast
+  hence HNH :"H \<subseteq> N<#>H" by simp
+  have op_hom : "f \<in> hom (G\<lparr>carrier := H\<rparr>) (G\<lparr>carrier := N <#> H\<rparr> Mod N)" unfolding hom_def
+  proof
+    have "\<And>x . x \<in> carrier (G\<lparr>carrier :=H\<rparr>) \<Longrightarrow>
+       (#>\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub>) N x \<in>  carrier (G\<lparr>carrier := N <#> H\<rparr> Mod N)"
+    proof-
+      fix x assume  "x \<in> carrier (G\<lparr>carrier :=H\<rparr>)"
+      hence xH : "x \<in> H" by simp
+      hence "(#>\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub>) N x \<in> rcosets\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub> N"
+        using HcarrierNH RCOSETS_def[where ?G = "G\<lparr>carrier := N <#> H\<rparr>"] by blast
+      thus "(#>\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub>) N x \<in>  carrier (G\<lparr>carrier := N <#> H\<rparr> Mod N)"
+        unfolding FactGroup_def by simp
+    qed
+    hence "(#>\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub>) N \<in> carrier (G\<lparr>carrier :=H\<rparr>) \<rightarrow>
+            carrier (G\<lparr>carrier := N <#> H\<rparr> Mod N)" by auto
+    hence "f \<in> carrier (G\<lparr>carrier :=H\<rparr>) \<rightarrow> carrier (G\<lparr>carrier := N <#> H\<rparr> Mod N)"
+      unfolding r_coset_def f_def  by simp
+    moreover have "\<And>x y. x\<in>carrier (G\<lparr>carrier := H\<rparr>) \<Longrightarrow> y\<in>carrier (G\<lparr>carrier := H\<rparr>) \<Longrightarrow>
+                  f (x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y) =  f(x) \<otimes>\<^bsub>G\<lparr>carrier := N <#> H\<rparr> Mod N\<^esub> f(y)"
+    proof-
+      fix x y assume "x\<in>carrier (G\<lparr>carrier := H\<rparr>)" "y\<in>carrier (G\<lparr>carrier := H\<rparr>)"
+      hence xHyH :"x \<in> H" "y \<in> H" by auto
+      have Nxeq :"N #>\<^bsub>G\<lparr>carrier := N<#>H\<rparr>\<^esub> x = N #>x" unfolding r_coset_def by simp
+      have Nyeq :"N #>\<^bsub>G\<lparr>carrier := N<#>H\<rparr>\<^esub> y = N #>y" unfolding r_coset_def by simp
+
+      have "x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y =x \<otimes>\<^bsub>G\<lparr>carrier := N<#>H\<rparr>\<^esub> y" by simp
+      hence "N #>\<^bsub>G\<lparr>carrier := N<#>H\<rparr>\<^esub> x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y
+             = N #>\<^bsub>G\<lparr>carrier := N<#>H\<rparr>\<^esub> x \<otimes>\<^bsub>G\<lparr>carrier := N<#>H\<rparr>\<^esub> y" by simp
+      also have "... = (N #>\<^bsub>G\<lparr>carrier := N<#>H\<rparr>\<^esub> x) <#>\<^bsub>G\<lparr>carrier := N<#>H\<rparr>\<^esub>
+                       (N #>\<^bsub>G\<lparr>carrier := N<#>H\<rparr>\<^esub> y)"
+        using normal.rcos_sum[OF normal_in_normal_set_mult[OF assms(2) assms(1)], of x y]
+             xHyH assms HcarrierNH by auto
+      finally show "f (x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y) =  f(x) \<otimes>\<^bsub>G\<lparr>carrier := N <#> H\<rparr> Mod N\<^esub> f(y)"
+        unfolding  FactGroup_def r_coset_def f_def  using Nxeq Nyeq  by auto
+    qed
+    hence "(\<forall>x\<in>carrier (G\<lparr>carrier := H\<rparr>). \<forall>y\<in>carrier (G\<lparr>carrier := H\<rparr>).
+           f (x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y) =  f(x) \<otimes>\<^bsub>G\<lparr>carrier := N <#> H\<rparr> Mod N\<^esub> f(y))" by blast
+    ultimately show  " f \<in> carrier (G\<lparr>carrier := H\<rparr>) \<rightarrow> carrier (G\<lparr>carrier := N <#> H\<rparr> Mod N) \<and>
+    (\<forall>x\<in>carrier (G\<lparr>carrier := H\<rparr>). \<forall>y\<in>carrier (G\<lparr>carrier := H\<rparr>).
+     f (x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y) =  f(x) \<otimes>\<^bsub>G\<lparr>carrier := N <#> H\<rparr> Mod N\<^esub> f(y))"
+      by auto
+  qed
+  hence homomorphism : "group_hom (G\<lparr>carrier := H\<rparr>) (G\<lparr>carrier := N <#> H\<rparr> Mod N) f"
+    unfolding group_hom_def group_hom_axioms_def using subgroup_imp_group[OF assms(1)]
+             normal.factorgroup_is_group[OF normal_in_normal_set_mult[OF assms(2) assms(1)]] by auto
+  moreover have im_f :  "(f  ` carrier(G\<lparr>carrier:=H\<rparr>)) = carrier(G\<lparr>carrier := N <#> H\<rparr> Mod N)"
+  proof
+    show  "f ` carrier (G\<lparr>carrier := H\<rparr>) \<subseteq> carrier (G\<lparr>carrier := N <#> H\<rparr> Mod N)"
+      using op_hom unfolding hom_def using funcset_image by blast
+  next
+    show "carrier (G\<lparr>carrier := N <#> H\<rparr> Mod N) \<subseteq> f ` carrier (G\<lparr>carrier := H\<rparr>)"
+    proof
+      fix x assume p : " x \<in> carrier (G\<lparr>carrier := N <#> H\<rparr> Mod N)"
+      hence "x \<in> \<Union>{y. \<exists>x\<in>carrier (G\<lparr>carrier := N <#> H\<rparr>). y = {N #>\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub> x}}"
+        unfolding FactGroup_def RCOSETS_def by auto
+      hence hyp :"\<exists>y. \<exists>h\<in>carrier (G\<lparr>carrier := N <#> H\<rparr>). y = {N #>\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub> h} \<and> x \<in> y"
+        using Union_iff by blast
+      from hyp obtain nh where nhNH:"nh \<in>carrier (G\<lparr>carrier := N <#> H\<rparr>)"
+                          and "x \<in> {N #>\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub> nh}"
+        by blast
+      hence K: "x = (#>\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub>) N nh" by simp
+      have "nh \<in> N <#> H" using nhNH by simp
+      from this obtain n h where nN : "n \<in> N" and hH : " h \<in> H" and nhnh: "n \<otimes> h = nh"
+        unfolding set_mult_def by blast
+      have  "x = (#>\<^bsub>G\<lparr>carrier := N <#> H\<rparr>\<^esub>) N (n \<otimes> h)" using K nhnh by simp
+      hence  "x = (#>) N (n \<otimes> h)" using K nhnh unfolding r_coset_def by auto
+      also have "... = (N #> n) #>h"
+        using coset_mult_assoc hH nN assms subgroup_imp_subset normal_imp_subgroup
+        by (metis subgroup.mem_carrier)
+      finally have "x = (#>) N h"
+        using coset_join2[of n N] nN assms by (simp add: normal_imp_subgroup subgroup.mem_carrier)
+      thus "x \<in> f ` carrier (G\<lparr>carrier := H\<rparr>)" using hH unfolding f_def by simp
+    qed
+  qed
+  moreover have ker_f :"kernel (G\<lparr>carrier := H\<rparr>) (G\<lparr>carrier := N<#>H\<rparr> Mod N) f  = N\<inter>H"
+    unfolding kernel_def f_def
+    proof-
+      have "{x \<in> carrier (G\<lparr>carrier := H\<rparr>). N #> x = \<one>\<^bsub>G\<lparr>carrier := N <#> H\<rparr> Mod N\<^esub>} =
+            {x \<in> carrier (G\<lparr>carrier := H\<rparr>). N #> x = N}" unfolding FactGroup_def by simp
+      also have "... = {x \<in> carrier (G\<lparr>carrier := H\<rparr>). x \<in> N}"
+        using coset_join1
+        by (metis (no_types, lifting) assms group.subgroup_self incl_subgroup is_group
+          normal_imp_subgroup subgroup.mem_carrier subgroup.rcos_const subgroup_imp_group)
+      also have "... =N \<inter> (carrier(G\<lparr>carrier := H\<rparr>))" by auto
+      finally show "{x \<in> carrier (G\<lparr>carrier := H\<rparr>). N#>x = \<one>\<^bsub>G\<lparr>carrier := N <#> H\<rparr> Mod N\<^esub>} = N \<inter> H"
+        by simp
+    qed
+    ultimately have "(G\<lparr>carrier := H\<rparr> Mod N \<inter> H) \<cong> (G\<lparr>carrier := N <#> H\<rparr> Mod N)"
+      using group_hom.FactGroup_iso[OF homomorphism im_f] by auto
+    hence "G\<lparr>carrier := N <#> H\<rparr> Mod N \<cong> G\<lparr>carrier := H\<rparr> Mod N \<inter> H"
+      by (simp add: group.iso_sym assms normal.factorgroup_is_group normal_inter_subgroup)
+    thus "G\<lparr>carrier := N <#> H\<rparr> Mod N \<cong> G\<lparr>carrier := H\<rparr> Mod N \<inter> H" by auto
+qed
+
+
+theorem (in group) snd_iso_thme:
+  assumes "subgroup H G"
+    and "subgroup N G"
+    and "subgroup H (G\<lparr>carrier:= (normalizer G N)\<rparr>)"
+  shows "(G\<lparr>carrier:= N<#>H\<rparr> Mod N)  \<cong> (G\<lparr>carrier:= H\<rparr> Mod (H\<inter>N))"
+proof-
+  have "G\<lparr>carrier := normalizer G N, carrier := H\<rparr>
+       = G\<lparr>carrier := H\<rparr>"  by simp
+  hence "G\<lparr>carrier := normalizer G N, carrier := H\<rparr> Mod N \<inter> H =
+         G\<lparr>carrier := H\<rparr> Mod N \<inter> H" by auto
+  moreover have "G\<lparr>carrier := normalizer G N,
+                    carrier := N <#>\<^bsub>G\<lparr>carrier := normalizer G N\<rparr>\<^esub> H\<rparr> =
+                G\<lparr>carrier := N <#>\<^bsub>G\<lparr>carrier := normalizer G N\<rparr>\<^esub> H\<rparr>" by simp
+  hence "G\<lparr>carrier := normalizer G N,
+          carrier := N <#>\<^bsub>G\<lparr>carrier := normalizer G N\<rparr>\<^esub> H\<rparr> Mod N =
+          G\<lparr>carrier := N <#>\<^bsub>G\<lparr>carrier := normalizer G N\<rparr>\<^esub> H\<rparr> Mod N" by auto
+  hence "G\<lparr>carrier := normalizer G N,
+          carrier := N <#>\<^bsub>G\<lparr>carrier := normalizer G N\<rparr>\<^esub> H\<rparr> Mod N  \<cong>
+         G\<lparr>carrier := normalizer G N, carrier := H\<rparr> Mod N \<inter> H =
+          (G\<lparr>carrier:= N<#>H\<rparr> Mod N)  \<cong>
+         G\<lparr>carrier := normalizer G N, carrier := H\<rparr> Mod N \<inter> H" 
+    using subgroup_set_mult_equality[OF  normalizer_imp_subgroup[OF subgroup_imp_subset[OF assms(2)]], of N H] 
+          subgroup_imp_subset[OF assms(3)]
+          subgroup_imp_subset[OF normal_imp_subgroup[OF subgroup_in_normalizer[OF assms(2)]]]
+    by simp
+  ultimately have "G\<lparr>carrier := normalizer G N,
+                    carrier := N <#>\<^bsub>G\<lparr>carrier := normalizer G N\<rparr>\<^esub> H\<rparr> Mod N  \<cong>
+                  G\<lparr>carrier := normalizer G N, carrier := H\<rparr> Mod N \<inter> H =
+                 (G\<lparr>carrier:= N<#>H\<rparr> Mod N)  \<cong>  G\<lparr>carrier := H\<rparr> Mod N \<inter> H" by auto
+  moreover have "G\<lparr>carrier := normalizer G N,
+                    carrier := N <#>\<^bsub>G\<lparr>carrier := normalizer G N\<rparr>\<^esub> H\<rparr> Mod N  \<cong>
+                  G\<lparr>carrier := normalizer G N, carrier := H\<rparr> Mod N \<inter> H"
+    using group.weak_snd_iso_thme[OF subgroup_imp_group[OF normalizer_imp_subgroup[OF
+          subgroup_imp_subset[OF assms(2)]]] assms(3) subgroup_in_normalizer[OF assms(2)]]
+    by simp
+  moreover have "H\<inter>N = N\<inter>H" using assms  by auto
+  ultimately show "(G\<lparr>carrier:= N<#>H\<rparr> Mod N)  \<cong>  G\<lparr>carrier := H\<rparr> Mod H \<inter> N" by auto
+qed
+ 
+
+corollary (in group) snd_iso_thme_recip :
+  assumes "subgroup H G"
+    and "subgroup N G"
+    and "subgroup H (G\<lparr>carrier:= (normalizer G N)\<rparr>)"
+  shows "(G\<lparr>carrier:= H<#>N\<rparr> Mod N)  \<cong> (G\<lparr>carrier:= H\<rparr> Mod (H\<inter>N))"
+  by (metis assms commut_normal_subgroup group.subgroup_in_normalizer is_group subgroup_imp_subset
+      normalizer_imp_subgroup snd_iso_thme)
+
+
+subsection\<open>The Zassenhaus Lemma\<close>
+
+
+lemma (in group) distinc:
+  assumes "subgroup  H G" 
+    and "H1\<lhd>G\<lparr>carrier := H\<rparr>" 
+    and  "subgroup K G" 
+    and "K1\<lhd>G\<lparr>carrier:=K\<rparr>"
+  shows "subgroup (H\<inter>K) (G\<lparr>carrier:=(normalizer G (H1<#>(H\<inter>K1))) \<rparr>)"
+proof (intro subgroup_incl[OF subgroups_Inter_pair[OF assms(1) assms(3)]])
+  show "subgroup (normalizer G (H1 <#> H \<inter> K1)) G"
+    using normalizer_imp_subgroup assms normal_imp_subgroup subgroup_imp_subset
+    by (metis group.incl_subgroup is_group setmult_subset_G subgroups_Inter_pair)
+next
+  show "H \<inter> K \<subseteq> normalizer G (H1 <#> H \<inter> K1)" unfolding normalizer_def stabilizer_def
+  proof
+    fix x assume xHK : "x \<in> H \<inter> K"
+    hence xG : "{x} \<subseteq> carrier G" "{inv x} \<subseteq> carrier G"
+      using subgroup_imp_subset assms inv_closed xHK by auto
+    have allG : "H \<subseteq> carrier G" "K \<subseteq> carrier G" "H1 \<subseteq> carrier G"  "K1 \<subseteq> carrier G"
+      using assms subgroup_imp_subset normal_imp_subgroup incl_subgroup apply blast+ .
+    have HK1_normal: "H\<inter>K1 \<lhd> (G\<lparr>carrier :=  H \<inter> K\<rparr>)" using normal_inter[OF assms(3)assms(1)assms(4)]
+      by (simp add : inf_commute)
+    have "H \<inter> K \<subseteq> normalizer G (H \<inter> K1)"
+      using subgroup_imp_subset[OF normal_imp_subgroup_normalizer[OF subgroups_Inter_pair[OF
+            assms(1)assms(3)]HK1_normal]] by auto
+    hence "x <# (H \<inter> K1) #> inv x = (H \<inter> K1)"
+      using xHK subgroup_imp_subset[OF subgroups_Inter_pair[OF assms(1) incl_subgroup[OF assms(3)
+                                                            normal_imp_subgroup[OF assms(4)]]]]
+      unfolding normalizer_def stabilizer_def by auto
+    moreover have "H \<subseteq>  normalizer G H1"
+      using subgroup_imp_subset[OF normal_imp_subgroup_normalizer[OF assms(1)assms(2)]] by auto
+    hence "x <# H1 #> inv x = H1"
+      using xHK subgroup_imp_subset[OF  incl_subgroup[OF assms(1) normal_imp_subgroup[OF assms(2)]]]
+      unfolding normalizer_def stabilizer_def by auto
+    ultimately have "H1 <#> H \<inter> K1 = (x <# H1 #> inv x) <#> (x <#  H \<inter> K1 #> inv x)" by auto
+    also have "... = ({x} <#> H1) <#> {inv x} <#> ({x} <#>  H \<inter> K1 <#> {inv x})"
+      by (simp add : r_coset_eq_set_mult l_coset_eq_set_mult)
+    also have "... = ({x} <#> H1 <#> {inv x} <#> {x}) <#>  (H \<inter> K1 <#> {inv x})"
+      by (smt Int_lower1 allG xG set_mult_assoc subset_trans setmult_subset_G)
+    also have "... = ({x} <#> H1 <#> {\<one>}) <#>  (H \<inter> K1 <#> {inv x})"
+      using allG xG coset_mult_assoc by (simp add: r_coset_eq_set_mult setmult_subset_G)
+    also have "... =({x} <#> H1) <#>  (H \<inter> K1 <#> {inv x})"
+      using coset_mult_one r_coset_eq_set_mult[of G H1 \<one>] set_mult_assoc[OF xG(1) allG(3)] allG
+      by auto
+    also have "... = {x} <#> (H1 <#> H \<inter> K1) <#> {inv x}"
+      using allG xG set_mult_assoc setmult_subset_G by (metis inf.coboundedI2)
+    finally have "H1 <#> H \<inter> K1 = x <# (H1 <#> H \<inter> K1) #> inv x" 
+      using xG setmult_subset_G allG by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult)
+    thus "x \<in> {g \<in> carrier G. (\<lambda>H\<in>{H. H \<subseteq> carrier G}. g <# H #> inv g) (H1 <#> H \<inter> K1)
+                                                                       = H1 <#> H \<inter> K1}"
+      using xG allG setmult_subset_G[OF allG(3), where ?K = "H\<inter>K1"] xHK
+      by auto
+  qed
+qed
+
+lemma (in group) preliminary1:
+  assumes "subgroup  H G" 
+    and "H1\<lhd>G\<lparr>carrier := H\<rparr>" 
+    and  "subgroup K G" 
+    and "K1\<lhd>G\<lparr>carrier:=K\<rparr>"
+  shows " (H\<inter>K) \<inter> (H1<#>(H\<inter>K1)) = (H1\<inter>K)<#>(H\<inter>K1)"
+proof
+  have all_inclG : "H \<subseteq> carrier G" "H1 \<subseteq> carrier G" "K \<subseteq> carrier G" "K1 \<subseteq> carrier G"
+    using assms subgroup_imp_subset normal_imp_subgroup incl_subgroup apply blast+.
+  show "H \<inter> K \<inter> (H1 <#> H \<inter> K1) \<subseteq> H1 \<inter> K <#> H \<inter> K1"
+  proof
+    fix x assume x_def : "x \<in> (H \<inter> K) \<inter> (H1 <#> (H \<inter> K1))"
+    from x_def have x_incl : "x \<in> H" "x \<in> K" "x \<in> (H1 <#> (H \<inter> K1))" by auto
+    then obtain h1 hk1 where h1hk1_def : "h1 \<in> H1" "hk1 \<in> H \<inter> K1" "h1 \<otimes> hk1 = x"
+      using assms unfolding set_mult_def by blast
+    hence "hk1 \<in> H \<inter> K" using subgroup_imp_subset[OF normal_imp_subgroup[OF assms(4)]] by auto
+    hence "inv hk1 \<in> H \<inter> K" using subgroup.m_inv_closed[OF subgroups_Inter_pair] assms by auto
+    moreover have "h1 \<otimes> hk1 \<in> H \<inter> K" using x_incl h1hk1_def by auto
+    ultimately have "h1 \<otimes> hk1 \<otimes> inv hk1 \<in> H \<inter> K"
+      using subgroup.m_closed[OF subgroups_Inter_pair] assms by auto
+    hence "h1 \<in> H \<inter> K" using  h1hk1_def assms subgroup_imp_subset incl_subgroup normal_imp_subgroup
+      by (metis Int_iff contra_subsetD inv_solve_right m_closed)
+    hence "h1 \<in> H1 \<inter> H \<inter> K" using h1hk1_def by auto
+    hence "h1 \<in> H1 \<inter> K" using subgroup_imp_subset[OF normal_imp_subgroup[OF assms(2)]] by auto
+    hence "h1 \<otimes> hk1 \<in> (H1\<inter>K)<#>(H\<inter>K1)"
+      using h1hk1_def unfolding set_mult_def by auto
+    thus " x \<in> (H1\<inter>K)<#>(H\<inter>K1)" using h1hk1_def x_def by auto
+  qed
+  show "H1 \<inter> K <#> H \<inter> K1 \<subseteq> H \<inter> K \<inter> (H1 <#> H \<inter> K1)"
+  proof-
+    have "H1 \<inter> K \<subseteq> H \<inter> K" using subgroup_imp_subset[OF normal_imp_subgroup[OF assms(2)]] by auto
+    moreover have "H \<inter> K1 \<subseteq> H \<inter> K"
+      using subgroup_imp_subset[OF normal_imp_subgroup[OF assms(4)]] by auto
+    ultimately have "H1 \<inter> K <#> H \<inter> K1 \<subseteq> H \<inter> K" unfolding set_mult_def
+      using subgroup.m_closed[OF subgroups_Inter_pair [OF assms(1)assms(3)]] by blast
+    moreover have "H1 \<inter> K \<subseteq> H1" by auto
+    hence "H1 \<inter> K <#> H \<inter> K1 \<subseteq> (H1 <#> H \<inter> K1)" unfolding set_mult_def by auto
+    ultimately show "H1 \<inter> K <#> H \<inter> K1 \<subseteq> H \<inter> K \<inter> (H1 <#> H \<inter> K1)" by auto
+  qed
+qed
+
+lemma (in group) preliminary2:
+  assumes "subgroup  H G" 
+    and "H1\<lhd>G\<lparr>carrier := H\<rparr>"
+    and  "subgroup K G" 
+    and "K1\<lhd>G\<lparr>carrier:=K\<rparr>"
+  shows "(H1<#>(H\<inter>K1)) \<lhd> G\<lparr>carrier:=(H1<#>(H\<inter>K))\<rparr>"
+proof-
+  have all_inclG : "H \<subseteq> carrier G" "H1 \<subseteq> carrier G" "K \<subseteq> carrier G" "K1 \<subseteq> carrier G"
+    using assms subgroup_imp_subset normal_imp_subgroup incl_subgroup apply blast+.
+  have subH1:"subgroup (H1 <#> H \<inter> K) (G\<lparr>carrier := H\<rparr>)" 
+    using mult_norm_sub_in_sub[OF assms(2)subgroup_incl[OF subgroups_Inter_pair[OF assms(1)assms(3)]
+          assms(1)]] assms by auto
+  have "Group.group (G\<lparr>carrier:=(H1<#>(H\<inter>K))\<rparr>)"
+    using  subgroup_imp_group[OF incl_subgroup[OF assms(1) subH1]].
+  moreover have subH2 : "subgroup (H1 <#> H \<inter> K1) (G\<lparr>carrier := H\<rparr>)"
+    using mult_norm_sub_in_sub[OF assms(2) subgroup_incl[OF subgroups_Inter_pair[OF
+           assms(1) incl_subgroup[OF assms(3)normal_imp_subgroup[OF assms(4)]]]]] assms by auto
+  hence "(H\<inter>K1) \<subseteq> (H\<inter>K)"
+    using assms subgroup_imp_subset normal_imp_subgroup monoid.cases_scheme
+    by (metis inf.mono  partial_object.simps(1) partial_object.update_convs(1) subset_refl)
+  hence incl:"(H1<#>(H\<inter>K1)) \<subseteq> H1<#>(H\<inter>K)" using assms subgroup_imp_subset normal_imp_subgroup
+    unfolding set_mult_def by blast
+  hence "subgroup (H1 <#> H \<inter> K1) (G\<lparr>carrier := (H1<#>(H\<inter>K))\<rparr>)"
+    using assms subgroup_incl[OF incl_subgroup[OF assms(1)subH2]incl_subgroup[OF assms(1)
+          subH1]] normal_imp_subgroup subgroup_imp_subset unfolding set_mult_def by blast
+  moreover have " (\<And> x. x\<in>carrier (G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>) \<Longrightarrow>
+        H1 <#> H\<inter>K1 #>\<^bsub>G\<lparr>carrier := H1 <#> H\<inter>K\<rparr>\<^esub> x = x <#\<^bsub>G\<lparr>carrier := H1 <#> H\<inter>K\<rparr>\<^esub> (H1 <#> H\<inter>K1))"
+  proof-
+    fix x assume  "x \<in>carrier (G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>)"
+    hence x_def : "x \<in> H1 <#> H \<inter> K" by simp
+    from this obtain h1 hk where h1hk_def :"h1 \<in> H1" "hk \<in> H \<inter> K" "h1 \<otimes> hk = x"
+      unfolding set_mult_def by blast
+    have xH : "x \<in> H" using subgroup_imp_subset[OF subH1] using x_def by auto
+    hence allG : "h1 \<in> carrier G" "hk \<in> carrier G" "x \<in> carrier G"
+      using assms subgroup_imp_subset h1hk_def normal_imp_subgroup incl_subgroup apply blast+.
+    hence "x <#\<^bsub>G\<lparr>carrier := H1 <#> H\<inter>K\<rparr>\<^esub> (H1 <#> H\<inter>K1) =h1 \<otimes> hk <# (H1 <#> H\<inter>K1)"
+      using subgroup_set_mult_equality subgroup_imp_subset xH h1hk_def by (simp add: l_coset_def)
+    also have "... = h1 <# (hk <# (H1 <#> H\<inter>K1))"
+      using lcos_m_assoc[OF subgroup_imp_subset[OF incl_subgroup[OF assms(1) subH1]]allG(1)allG(2)]
+      by (metis allG(1) allG(2) assms(1) incl_subgroup lcos_m_assoc subH2 subgroup_imp_subset)
+    also have "... = h1 <# (hk <# H1 <#> H\<inter>K1)"
+      using set_mult_assoc all_inclG allG by (simp add: l_coset_eq_set_mult inf.coboundedI1)
+    also have "... = h1 <# (hk <# H1 #> \<one> <#> H\<inter>K1 #> \<one>)"
+      using coset_mult_one allG all_inclG l_coset_subset_G
+      by (smt inf_le2 setmult_subset_G subset_trans)
+    also have "... = h1 <# (hk <# H1 #> inv hk #> hk <#> H\<inter>K1 #> inv hk #> hk)"
+      using all_inclG allG coset_mult_assoc l_coset_subset_G
+      by (simp add: inf.coboundedI1 setmult_subset_G)
+    finally  have "x <#\<^bsub>G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>\<^esub> (H1 <#> H \<inter> K1) =
+                    h1 <# ((hk <# H1 #> inv hk) <#> (hk <# H\<inter>K1 #> inv hk) #> hk)"
+      using rcos_assoc_lcos allG all_inclG
+      by (smt inf_le1 inv_closed l_coset_subset_G r_coset_subset_G setmult_rcos_assoc subset_trans)
+    moreover have "H \<subseteq>  normalizer G H1"
+      using assms h1hk_def subgroup_imp_subset[OF normal_imp_subgroup_normalizer] by simp
+    hence "\<And>g. g \<in> H \<Longrightarrow>  g \<in> {g \<in> carrier G. (\<lambda>H\<in>{H. H \<subseteq> carrier G}. g <# H #> inv g) H1 = H1}"
+      using all_inclG assms unfolding normalizer_def stabilizer_def by auto
+    hence "\<And>g. g \<in> H \<Longrightarrow>  g <# H1 #> inv g = H1" using all_inclG by simp
+    hence "(hk <# H1 #> inv hk) = H1" using h1hk_def all_inclG by simp
+    moreover have "H\<inter>K \<subseteq> normalizer G (H\<inter>K1)"
+      using normal_inter[OF assms(3)assms(1)assms(4)] assms subgroups_Inter_pair
+            subgroup_imp_subset[OF normal_imp_subgroup_normalizer] by (simp add: inf_commute)
+    hence "\<And>g. g\<in>H\<inter>K \<Longrightarrow> g\<in>{g\<in>carrier G. (\<lambda>H\<in>{H. H \<subseteq> carrier G}. g <# H #> inv g) (H\<inter>K1) = H\<inter>K1}"
+      using all_inclG assms unfolding normalizer_def stabilizer_def by auto
+    hence "\<And>g. g \<in> H\<inter>K \<Longrightarrow>  g <# (H\<inter>K1) #> inv g = H\<inter>K1"
+      using subgroup_imp_subset[OF subgroups_Inter_pair[OF assms(1) incl_subgroup[OF
+            assms(3)normal_imp_subgroup[OF assms(4)]]]] by auto
+    hence "(hk <# H\<inter>K1 #> inv hk) = H\<inter>K1" using h1hk_def by simp
+    ultimately have "x <#\<^bsub>G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>\<^esub> (H1 <#> H \<inter> K1) = h1 <#(H1 <#> (H \<inter> K1)#> hk)"
+      by auto
+    also have "... = h1 <# H1 <#> ((H \<inter> K1)#> hk)"
+      using set_mult_assoc[where ?M = "{h1}" and ?H = "H1" and ?K = "(H \<inter> K1)#> hk"] allG all_inclG
+      by (simp add: l_coset_eq_set_mult inf.coboundedI2 r_coset_subset_G setmult_rcos_assoc)
+    also have "... = H1 <#> ((H \<inter> K1)#> hk)"
+      using coset_join3 allG incl_subgroup[OF assms(1)normal_imp_subgroup[OF assms(2)]] h1hk_def
+      by auto
+    finally have eq1 : "x <#\<^bsub>G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>\<^esub> (H1 <#> H \<inter> K1) = H1 <#> (H \<inter> K1) #> hk"
+      by (simp add: allG(2) all_inclG inf.coboundedI2 setmult_rcos_assoc)
+    have "H1 <#> H \<inter> K1 #>\<^bsub>G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>\<^esub> x = H1 <#> H \<inter> K1 #> (h1 \<otimes> hk)"
+      using subgroup_set_mult_equality subgroup_imp_subset xH h1hk_def by (simp add: r_coset_def)
+    also have "... = H1 <#> H \<inter> K1 #> h1 #> hk"
+      using coset_mult_assoc by (simp add: allG all_inclG inf.coboundedI2 setmult_subset_G)
+    also have"... =  H \<inter> K1 <#> H1 #> h1 #> hk"
+      using commut_normal_subgroup[OF assms(1)assms(2)subgroup_incl[OF subgroups_Inter_pair[OF
+           assms(1)incl_subgroup[OF assms(3)normal_imp_subgroup[OF assms(4)]]]assms(1)]] by simp
+    also have "... = H \<inter> K1 <#> H1  #> hk"
+      using coset_join2[OF allG(1)incl_subgroup[OF assms(1)normal_imp_subgroup]
+            h1hk_def(1)] all_inclG allG assms by (metis inf.coboundedI2 setmult_rcos_assoc)
+    finally  have "H1 <#> H \<inter> K1 #>\<^bsub>G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>\<^esub> x =H1 <#> H \<inter> K1  #> hk"
+      using commut_normal_subgroup[OF assms(1)assms(2)subgroup_incl[OF subgroups_Inter_pair[OF
+           assms(1)incl_subgroup[OF assms(3)normal_imp_subgroup[OF assms(4)]]]assms(1)]] by simp
+    thus " H1 <#> H \<inter> K1 #>\<^bsub>G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>\<^esub> x = 
+             x <#\<^bsub>G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>\<^esub> (H1 <#> H \<inter> K1)" using eq1 by simp
+  qed
+  ultimately show "H1 <#> H \<inter> K1 \<lhd> G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>"
+    unfolding normal_def normal_axioms_def by auto
+qed
+
+
+proposition (in group)  Zassenhaus_1:
+  assumes "subgroup  H G" 
+    and "H1\<lhd>G\<lparr>carrier := H\<rparr>" 
+    and  "subgroup K G" 
+    and "K1\<lhd>G\<lparr>carrier:=K\<rparr>"
+  shows "(G\<lparr>carrier:= H1 <#> (H\<inter>K)\<rparr> Mod (H1<#>H\<inter>K1)) \<cong> (G\<lparr>carrier:= (H\<inter>K)\<rparr> Mod  ((H1\<inter>K)<#>(H\<inter>K1)))"
+proof-
+  define N  and N1 where "N = (H\<inter>K)" and "N1 =H1<#>(H\<inter>K1)"
+  have normal_N_N1 : "subgroup N (G\<lparr>carrier:=(normalizer G N1)\<rparr>)"
+    by (simp add: N1_def N_def assms distinc normal_imp_subgroup)
+  have Hp:"(G\<lparr>carrier:= N<#>N1\<rparr> Mod N1)  \<cong> (G\<lparr>carrier:= N\<rparr> Mod (N\<inter>N1))"
+  by (metis N1_def N_def assms incl_subgroup inf_le1 mult_norm_sub_in_sub
+        normal_N_N1 normal_imp_subgroup snd_iso_thme_recip subgroup_incl subgroups_Inter_pair)
+  have H_simp: "N<#>N1 = H1<#> (H\<inter>K)"
+  proof-
+    have H1_incl_G : "H1 \<subseteq> carrier G"
+      using assms normal_imp_subgroup incl_subgroup subgroup_imp_subset by blast
+    have K1_incl_G :"K1 \<subseteq> carrier G"
+      using assms normal_imp_subgroup incl_subgroup subgroup_imp_subset by blast
+    have "N<#>N1=  (H\<inter>K)<#> (H1<#>(H\<inter>K1))" by (auto simp add: N_def N1_def)
+    also have "... = ((H\<inter>K)<#>H1) <#>(H\<inter>K1)"
+      using set_mult_assoc[where ?M = "H\<inter>K"] K1_incl_G H1_incl_G assms
+      by (simp add: inf.coboundedI2 subgroup_imp_subset)
+    also have "... = (H1<#>(H\<inter>K))<#>(H\<inter>K1)" 
+      using commut_normal_subgroup assms subgroup_incl subgroups_Inter_pair by auto
+    also have "... =  H1 <#> ((H\<inter>K)<#>(H\<inter>K1))"
+      using set_mult_assoc K1_incl_G H1_incl_G assms
+      by (simp add: inf.coboundedI2 subgroup_imp_subset)
+    also have " ((H\<inter>K)<#>(H\<inter>K1)) = (H\<inter>K)"
+    proof (intro set_mult_subgroup_idem[where ?H = "H\<inter>K" and ?N="H\<inter>K1",
+             OF subgroups_Inter_pair[OF assms(1) assms(3)]])
+      show "subgroup (H \<inter> K1) (G\<lparr>carrier := H \<inter> K\<rparr>)"
+        using subgroup_incl[where ?I = "H\<inter>K1" and ?J = "H\<inter>K",OF subgroups_Inter_pair[OF assms(1)
+              incl_subgroup[OF assms(3) normal_imp_subgroup]] subgroups_Inter_pair] assms
+              normal_imp_subgroup by (metis inf_commute normal_inter)
+    qed
+    hence " H1 <#> ((H\<inter>K)<#>(H\<inter>K1)) =  H1 <#> ((H\<inter>K))" 
+      by simp
+    thus "N <#> N1 = H1 <#> H \<inter> K"
+      by (simp add: calculation)
+  qed
+
+  have "N\<inter>N1 = (H1\<inter>K)<#>(H\<inter>K1)" 
+    using preliminary1 assms N_def N1_def by simp 
+  thus  "(G\<lparr>carrier:= H1 <#> (H\<inter>K)\<rparr> Mod N1)  \<cong> (G\<lparr>carrier:= N\<rparr> Mod  ((H1\<inter>K)<#>(H\<inter>K1)))"
+    using H_simp Hp by auto
+qed
+
+
+theorem (in group) Zassenhaus:
+  assumes "subgroup  H G" 
+    and "H1\<lhd>G\<lparr>carrier := H\<rparr>" 
+    and  "subgroup K G" 
+    and "K1\<lhd>G\<lparr>carrier:=K\<rparr>"
+  shows "(G\<lparr>carrier:= H1 <#> (H\<inter>K)\<rparr> Mod (H1<#>(H\<inter>K1)))  \<cong> 
+         (G\<lparr>carrier:= K1 <#> (H\<inter>K)\<rparr> Mod (K1<#>(K\<inter>H1)))"
+proof-
+  define Gmod1 Gmod2 Gmod3 Gmod4
+    where "Gmod1 = (G\<lparr>carrier:= H1 <#> (H\<inter>K)\<rparr> Mod (H1<#>(H\<inter>K1))) "
+      and "Gmod2 = (G\<lparr>carrier:= K1 <#> (K\<inter>H)\<rparr> Mod (K1<#>(K\<inter>H1)))"
+      and "Gmod3 = (G\<lparr>carrier:= (H\<inter>K)\<rparr> Mod  ((H1\<inter>K)<#>(H\<inter>K1)))"
+      and "Gmod4 = (G\<lparr>carrier:= (K\<inter>H)\<rparr> Mod  ((K1\<inter>H)<#>(K\<inter>H1)))"
+  have Hyp :  "Gmod1  \<cong> Gmod3" "Gmod2  \<cong>  Gmod4"
+    using Zassenhaus_1 assms Gmod1_def Gmod2_def Gmod3_def Gmod4_def by auto
+  have Hp : "Gmod3 = G\<lparr>carrier:= (K\<inter>H)\<rparr> Mod ((K\<inter>H1)<#>(K1\<inter>H))"
+    by (simp add: Gmod3_def inf_commute)
+  have "(K\<inter>H1)<#>(K1\<inter>H) = (K1\<inter>H)<#>(K\<inter>H1)"
+  proof (intro commut_normal_subgroup[OF subgroups_Inter_pair[OF assms(1)assms(3)]])
+    show "K1 \<inter> H \<lhd> G\<lparr>carrier := H \<inter> K\<rparr>"
+      using normal_inter[OF assms(3)assms(1)assms(4)] by (simp add: inf_commute)
+   next
+    show "subgroup (K \<inter> H1) (G\<lparr>carrier := H \<inter> K\<rparr>)" 
+      using subgroup_incl by (simp add: assms inf_commute normal_imp_subgroup normal_inter) 
+  qed
+  hence  "Gmod3  = Gmod4" using Hp Gmod4_def by simp
+  hence "Gmod1 \<cong> Gmod2"
+    using group.iso_sym group.iso_trans Hyp normal.factorgroup_is_group
+    by (metis assms Gmod1_def Gmod2_def preliminary2)
+  thus ?thesis using Gmod1_def Gmod2_def by (simp add: inf_commute)
+qed
+
+end
--- a/src/HOL/ROOT	Thu Jun 14 10:51:12 2018 +0200
+++ b/src/HOL/ROOT	Thu Jun 14 14:23:48 2018 +0100
@@ -294,20 +294,16 @@
   theories
     (* Orders and Lattices *)
     Galois_Connection    (* Knaster-Tarski theorem and Galois connections *)
-
     (* Groups *)
     FiniteProduct        (* Product operator for commutative groups *)
     Sylow                (* Sylow's theorem *)
     Bij                  (* Automorphism Groups *)
-    More_Group
-    More_Finite_Product
     Multiplicative_Group
-
+    Zassenhaus            (* The Zassenhaus lemma *)
     (* Rings *)
     Divisibility         (* Rings *)
     IntRing              (* Ideals and residue classes *)
     UnivPoly             (* Polynomials *)
-    More_Ring
   document_files "root.bib" "root.tex"
 
 session "HOL-Auth" (timing) in Auth = "HOL-Library" +