reversed import dependency between Relation and Finite_Set; and move theorems around
--- a/NEWS Mon Mar 20 11:13:01 2023 +0100
+++ b/NEWS Mon Mar 20 15:01:12 2023 +0100
@@ -63,7 +63,13 @@
Except in "[...]" maps where ":=" would create a clash with
list update syntax "xs[i := x]".
+* Theory "HOL.Finite_Set"
+ - Imported Relation instead of Product_Type, Sum_Type, and Fields.
+ Minor INCOMPATIBILITY.
+
* Theory "HOL.Relation":
+ - Imported Product_Type, Sum_Type, and Fields instead of Finite_Set.
+ Minor INCOMPATIBILITY.
- Added predicates irrefl_on and irreflp_on and redefined irrefl and
irreflp to be abbreviations. Lemmas irrefl_def and irreflp_def are
explicitly provided for backward compatibility but their usage is
--- a/src/HOL/Finite_Set.thy Mon Mar 20 11:13:01 2023 +0100
+++ b/src/HOL/Finite_Set.thy Mon Mar 20 15:01:12 2023 +0100
@@ -9,7 +9,7 @@
section \<open>Finite sets\<close>
theory Finite_Set
- imports Product_Type Sum_Type Fields
+ imports Product_Type Sum_Type Fields Relation
begin
subsection \<open>Predicate for finite sets\<close>
@@ -581,6 +581,23 @@
with assms show ?thesis by auto
qed
+lemma finite_converse [iff]: "finite (r\<inverse>) \<longleftrightarrow> finite r"
+ unfolding converse_def conversep_iff
+ using [[simproc add: finite_Collect]]
+ by (auto elim: finite_imageD simp: inj_on_def)
+
+lemma finite_Domain: "finite r \<Longrightarrow> finite (Domain r)"
+ by (induct set: finite) auto
+
+lemma finite_Range: "finite r \<Longrightarrow> finite (Range r)"
+ by (induct set: finite) auto
+
+lemma finite_Field: "finite r \<Longrightarrow> finite (Field r)"
+ by (simp add: Field_def finite_Domain finite_Range)
+
+lemma finite_Image[simp]: "finite R \<Longrightarrow> finite (R `` A)"
+ by(rule finite_subset[OF _ finite_Range]) auto
+
subsection \<open>Further induction rules on finite sets\<close>
@@ -1465,6 +1482,91 @@
end
+subsubsection \<open>Expressing relation operations via \<^const>\<open>fold\<close>\<close>
+
+lemma Id_on_fold:
+ assumes "finite A"
+ shows "Id_on A = Finite_Set.fold (\<lambda>x. Set.insert (Pair x x)) {} A"
+proof -
+ interpret comp_fun_commute "\<lambda>x. Set.insert (Pair x x)"
+ by standard auto
+ from assms show ?thesis
+ unfolding Id_on_def by (induct A) simp_all
+qed
+
+lemma comp_fun_commute_Image_fold:
+ "comp_fun_commute (\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A)"
+proof -
+ interpret comp_fun_idem Set.insert
+ by (fact comp_fun_idem_insert)
+ show ?thesis
+ by standard (auto simp: fun_eq_iff comp_fun_commute split: prod.split)
+qed
+
+lemma Image_fold:
+ assumes "finite R"
+ shows "R `` S = Finite_Set.fold (\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A) {} R"
+proof -
+ interpret comp_fun_commute "(\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A)"
+ by (rule comp_fun_commute_Image_fold)
+ have *: "\<And>x F. Set.insert x F `` S = (if fst x \<in> S then Set.insert (snd x) (F `` S) else (F `` S))"
+ by (force intro: rev_ImageI)
+ show ?thesis
+ using assms by (induct R) (auto simp: * )
+qed
+
+lemma insert_relcomp_union_fold:
+ assumes "finite S"
+ shows "{x} O S \<union> X = Finite_Set.fold (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A') X S"
+proof -
+ interpret comp_fun_commute "\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A'"
+ proof -
+ interpret comp_fun_idem Set.insert
+ by (fact comp_fun_idem_insert)
+ show "comp_fun_commute (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A')"
+ by standard (auto simp add: fun_eq_iff split: prod.split)
+ qed
+ have *: "{x} O S = {(x', z). x' = fst x \<and> (snd x, z) \<in> S}"
+ by (auto simp: relcomp_unfold intro!: exI)
+ show ?thesis
+ unfolding * using \<open>finite S\<close> by (induct S) (auto split: prod.split)
+qed
+
+lemma insert_relcomp_fold:
+ assumes "finite S"
+ shows "Set.insert x R O S =
+ Finite_Set.fold (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A') (R O S) S"
+proof -
+ have "Set.insert x R O S = ({x} O S) \<union> (R O S)"
+ by auto
+ then show ?thesis
+ by (auto simp: insert_relcomp_union_fold [OF assms])
+qed
+
+lemma comp_fun_commute_relcomp_fold:
+ assumes "finite S"
+ shows "comp_fun_commute (\<lambda>(x,y) A.
+ Finite_Set.fold (\<lambda>(w,z) A'. if y = w then Set.insert (x,z) A' else A') A S)"
+proof -
+ have *: "\<And>a b A.
+ Finite_Set.fold (\<lambda>(w, z) A'. if b = w then Set.insert (a, z) A' else A') A S = {(a,b)} O S \<union> A"
+ by (auto simp: insert_relcomp_union_fold[OF assms] cong: if_cong)
+ show ?thesis
+ by standard (auto simp: * )
+qed
+
+lemma relcomp_fold:
+ assumes "finite R" "finite S"
+ shows "R O S = Finite_Set.fold
+ (\<lambda>(x,y) A. Finite_Set.fold (\<lambda>(w,z) A'. if y = w then Set.insert (x,z) A' else A') A S) {} R"
+proof -
+ interpret commute_relcomp_fold: comp_fun_commute
+ "(\<lambda>(x, y) A. Finite_Set.fold (\<lambda>(w, z) A'. if y = w then insert (x, z) A' else A') A S)"
+ by (fact comp_fun_commute_relcomp_fold[OF \<open>finite S\<close>])
+ from assms show ?thesis
+ by (induct R) (auto simp: comp_fun_commute_relcomp_fold insert_relcomp_fold cong: if_cong)
+qed
+
subsection \<open>Locales as mini-packages for fold operations\<close>
@@ -2260,6 +2362,20 @@
by (auto 4 3 simp: subset_image_iff inj_vimage_image_eq
intro: card_image[symmetric, OF subset_inj_on])
+lemma card_inverse[simp]: "card (R\<inverse>) = card R"
+proof -
+ have *: "\<And>R. prod.swap ` R = R\<inverse>" by auto
+ {
+ assume "\<not>finite R"
+ hence ?thesis
+ by auto
+ } moreover {
+ assume "finite R"
+ with card_image_le[of R prod.swap] card_image_le[of "R\<inverse>" prod.swap]
+ have ?thesis by (auto simp: * )
+ } ultimately show ?thesis by blast
+qed
+
subsubsection \<open>Pigeonhole Principles\<close>
lemma pigeonhole: "card A > card (f ` A) \<Longrightarrow> \<not> inj_on f A "
--- a/src/HOL/Relation.thy Mon Mar 20 11:13:01 2023 +0100
+++ b/src/HOL/Relation.thy Mon Mar 20 15:01:12 2023 +0100
@@ -7,7 +7,7 @@
section \<open>Relations -- as sets of pairs, and binary predicates\<close>
theory Relation
- imports Finite_Set
+ imports Product_Type Sum_Type Fields
begin
text \<open>A preliminary: classical rules for reasoning on predicates\<close>
@@ -1198,24 +1198,6 @@
lemma totalp_on_converse [simp]: "totalp_on A R\<inverse>\<inverse> = totalp_on A R"
by (rule total_on_converse[to_pred])
-lemma finite_converse [iff]: "finite (r\<inverse>) = finite r"
-unfolding converse_def conversep_iff using [[simproc add: finite_Collect]]
-by (auto elim: finite_imageD simp: inj_on_def)
-
-lemma card_inverse[simp]: "card (R\<inverse>) = card R"
-proof -
- have *: "\<And>R. prod.swap ` R = R\<inverse>" by auto
- {
- assume "\<not>finite R"
- hence ?thesis
- by auto
- } moreover {
- assume "finite R"
- with card_image_le[of R prod.swap] card_image_le[of "R\<inverse>" prod.swap]
- have ?thesis by (auto simp: *)
- } ultimately show ?thesis by blast
-qed
-
lemma conversep_noteq [simp]: "(\<noteq>)\<inverse>\<inverse> = (\<noteq>)"
by (auto simp add: fun_eq_iff)
@@ -1361,15 +1343,6 @@
lemma Range_Collect_case_prod [simp]: "Range {(x, y). P x y} = {y. \<exists>x. P x y}"
by auto
-lemma finite_Domain: "finite r \<Longrightarrow> finite (Domain r)"
- by (induct set: finite) auto
-
-lemma finite_Range: "finite r \<Longrightarrow> finite (Range r)"
- by (induct set: finite) auto
-
-lemma finite_Field: "finite r \<Longrightarrow> finite (Field r)"
- by (simp add: Field_def finite_Domain finite_Range)
-
lemma Domain_mono: "r \<subseteq> s \<Longrightarrow> Domain r \<subseteq> Domain s"
by blast
@@ -1480,9 +1453,6 @@
lemma relcomp_Image: "(X O Y) `` Z = Y `` (X `` Z)"
by auto
-lemma finite_Image[simp]: assumes "finite R" shows "finite (R `` A)"
-by(rule finite_subset[OF _ finite_Range[OF assms]]) auto
-
subsubsection \<open>Inverse image\<close>
@@ -1528,90 +1498,4 @@
lemmas Powp_mono [mono] = Pow_mono [to_pred]
-
-subsubsection \<open>Expressing relation operations via \<^const>\<open>Finite_Set.fold\<close>\<close>
-
-lemma Id_on_fold:
- assumes "finite A"
- shows "Id_on A = Finite_Set.fold (\<lambda>x. Set.insert (Pair x x)) {} A"
-proof -
- interpret comp_fun_commute "\<lambda>x. Set.insert (Pair x x)"
- by standard auto
- from assms show ?thesis
- unfolding Id_on_def by (induct A) simp_all
-qed
-
-lemma comp_fun_commute_Image_fold:
- "comp_fun_commute (\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A)"
-proof -
- interpret comp_fun_idem Set.insert
- by (fact comp_fun_idem_insert)
- show ?thesis
- by standard (auto simp: fun_eq_iff comp_fun_commute split: prod.split)
-qed
-
-lemma Image_fold:
- assumes "finite R"
- shows "R `` S = Finite_Set.fold (\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A) {} R"
-proof -
- interpret comp_fun_commute "(\<lambda>(x,y) A. if x \<in> S then Set.insert y A else A)"
- by (rule comp_fun_commute_Image_fold)
- have *: "\<And>x F. Set.insert x F `` S = (if fst x \<in> S then Set.insert (snd x) (F `` S) else (F `` S))"
- by (force intro: rev_ImageI)
- show ?thesis
- using assms by (induct R) (auto simp: *)
-qed
-
-lemma insert_relcomp_union_fold:
- assumes "finite S"
- shows "{x} O S \<union> X = Finite_Set.fold (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A') X S"
-proof -
- interpret comp_fun_commute "\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A'"
- proof -
- interpret comp_fun_idem Set.insert
- by (fact comp_fun_idem_insert)
- show "comp_fun_commute (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A')"
- by standard (auto simp add: fun_eq_iff split: prod.split)
- qed
- have *: "{x} O S = {(x', z). x' = fst x \<and> (snd x, z) \<in> S}"
- by (auto simp: relcomp_unfold intro!: exI)
- show ?thesis
- unfolding * using \<open>finite S\<close> by (induct S) (auto split: prod.split)
-qed
-
-lemma insert_relcomp_fold:
- assumes "finite S"
- shows "Set.insert x R O S =
- Finite_Set.fold (\<lambda>(w,z) A'. if snd x = w then Set.insert (fst x,z) A' else A') (R O S) S"
-proof -
- have "Set.insert x R O S = ({x} O S) \<union> (R O S)"
- by auto
- then show ?thesis
- by (auto simp: insert_relcomp_union_fold [OF assms])
-qed
-
-lemma comp_fun_commute_relcomp_fold:
- assumes "finite S"
- shows "comp_fun_commute (\<lambda>(x,y) A.
- Finite_Set.fold (\<lambda>(w,z) A'. if y = w then Set.insert (x,z) A' else A') A S)"
-proof -
- have *: "\<And>a b A.
- Finite_Set.fold (\<lambda>(w, z) A'. if b = w then Set.insert (a, z) A' else A') A S = {(a,b)} O S \<union> A"
- by (auto simp: insert_relcomp_union_fold[OF assms] cong: if_cong)
- show ?thesis
- by standard (auto simp: *)
-qed
-
-lemma relcomp_fold:
- assumes "finite R" "finite S"
- shows "R O S = Finite_Set.fold
- (\<lambda>(x,y) A. Finite_Set.fold (\<lambda>(w,z) A'. if y = w then Set.insert (x,z) A' else A') A S) {} R"
-proof -
- interpret commute_relcomp_fold: comp_fun_commute
- "(\<lambda>(x, y) A. Finite_Set.fold (\<lambda>(w, z) A'. if y = w then insert (x, z) A' else A') A S)"
- by (fact comp_fun_commute_relcomp_fold[OF \<open>finite S\<close>])
- from assms show ?thesis
- by (induct R) (auto simp: comp_fun_commute_relcomp_fold insert_relcomp_fold cong: if_cong)
-qed
-
end
--- a/src/HOL/Transitive_Closure.thy Mon Mar 20 11:13:01 2023 +0100
+++ b/src/HOL/Transitive_Closure.thy Mon Mar 20 15:01:12 2023 +0100
@@ -6,7 +6,7 @@
section \<open>Reflexive and Transitive closure of a relation\<close>
theory Transitive_Closure
- imports Relation
+ imports Finite_Set
abbrevs "^*" = "\<^sup>*" "\<^sup>*\<^sup>*"
and "^+" = "\<^sup>+" "\<^sup>+\<^sup>+"
and "^=" = "\<^sup>=" "\<^sup>=\<^sup>="