renamed "Sledgehammer_FOL_Clauses" to "Metis_Clauses", so that Metis doesn't depend on Sledgehammer
--- a/src/HOL/IsaMakefile Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/IsaMakefile Fri Jun 25 17:08:39 2010 +0200
@@ -315,10 +315,10 @@
Tools/semiring_normalizer.ML \
Tools/Sledgehammer/clausifier.ML \
Tools/Sledgehammer/meson_tactic.ML \
+ Tools/Sledgehammer/metis_clauses.ML \
Tools/Sledgehammer/metis_tactics.ML \
Tools/Sledgehammer/sledgehammer_fact_filter.ML \
Tools/Sledgehammer/sledgehammer_fact_minimizer.ML \
- Tools/Sledgehammer/sledgehammer_fol_clause.ML \
Tools/Sledgehammer/sledgehammer_isar.ML \
Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML \
Tools/Sledgehammer/sledgehammer_tptp_format.ML \
--- a/src/HOL/Mirabelle/Tools/mirabelle_sledgehammer.ML Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Mirabelle/Tools/mirabelle_sledgehammer.ML Fri Jun 25 17:08:39 2010 +0200
@@ -325,7 +325,7 @@
NONE => (message, SH_OK (time_isa, time_atp, relevant_thm_names))
| SOME _ => (message, SH_FAIL (time_isa, time_atp))
end
- handle Sledgehammer_FOL_Clause.TRIVIAL () => ("trivial", SH_OK (0, 0, []))
+ handle Metis_Clauses.TRIVIAL () => ("trivial", SH_OK (0, 0, []))
| ERROR msg => ("error: " ^ msg, SH_ERROR)
| TimeLimit.TimeOut => ("timeout", SH_ERROR)
@@ -382,7 +382,7 @@
fun run_minimize args named_thms id ({pre=st, log, ...}: Mirabelle.run_args) =
let
- open Sledgehammer_Fact_Minimizer
+ open Metis_Clauses
open Sledgehammer_Isar
val thy = Proof.theory_of st
val n0 = length (these (!named_thms))
--- a/src/HOL/Sledgehammer.thy Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Sledgehammer.thy Fri Jun 25 17:08:39 2010 +0200
@@ -13,8 +13,9 @@
"~~/src/Tools/Metis/metis.ML"
("Tools/Sledgehammer/clausifier.ML")
("Tools/Sledgehammer/meson_tactic.ML")
+ ("Tools/Sledgehammer/metis_clauses.ML")
+ ("Tools/Sledgehammer/metis_tactics.ML")
("Tools/Sledgehammer/sledgehammer_util.ML")
- ("Tools/Sledgehammer/sledgehammer_fol_clause.ML")
("Tools/Sledgehammer/sledgehammer_fact_filter.ML")
("Tools/Sledgehammer/sledgehammer_tptp_format.ML")
("Tools/ATP_Manager/atp_manager.ML")
@@ -22,7 +23,6 @@
("Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML")
("Tools/Sledgehammer/sledgehammer_fact_minimizer.ML")
("Tools/Sledgehammer/sledgehammer_isar.ML")
- ("Tools/Sledgehammer/metis_tactics.ML")
begin
definition skolem_id :: "'a \<Rightarrow> 'a" where
@@ -86,11 +86,14 @@
use "Tools/Sledgehammer/clausifier.ML"
setup Clausifier.setup
+
use "Tools/Sledgehammer/meson_tactic.ML"
setup Meson_Tactic.setup
+use "Tools/Sledgehammer/metis_clauses.ML"
+use "Tools/Sledgehammer/metis_tactics.ML"
+
use "Tools/Sledgehammer/sledgehammer_util.ML"
-use "Tools/Sledgehammer/sledgehammer_fol_clause.ML"
use "Tools/Sledgehammer/sledgehammer_fact_filter.ML"
use "Tools/Sledgehammer/sledgehammer_tptp_format.ML"
use "Tools/ATP_Manager/atp_manager.ML"
@@ -99,7 +102,6 @@
use "Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML"
use "Tools/Sledgehammer/sledgehammer_fact_minimizer.ML"
use "Tools/Sledgehammer/sledgehammer_isar.ML"
-use "Tools/Sledgehammer/metis_tactics.ML"
setup Metis_Tactics.setup
end
--- a/src/HOL/Tools/ATP_Manager/atp_manager.ML Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Tools/ATP_Manager/atp_manager.ML Fri Jun 25 17:08:39 2010 +0200
@@ -9,7 +9,7 @@
signature ATP_MANAGER =
sig
type cnf_thm = Clausifier.cnf_thm
- type name_pool = Sledgehammer_FOL_Clause.name_pool
+ type name_pool = Metis_Clauses.name_pool
type relevance_override = Sledgehammer_Fact_Filter.relevance_override
type minimize_command = Sledgehammer_Proof_Reconstruct.minimize_command
type params =
@@ -65,9 +65,8 @@
structure ATP_Manager : ATP_MANAGER =
struct
-open Sledgehammer_Util
+open Metis_Clauses
open Sledgehammer_Fact_Filter
-open Sledgehammer_FOL_Clause
open Sledgehammer_Proof_Reconstruct
(** problems, results, provers, etc. **)
--- a/src/HOL/Tools/ATP_Manager/atp_systems.ML Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Tools/ATP_Manager/atp_systems.ML Fri Jun 25 17:08:39 2010 +0200
@@ -23,11 +23,11 @@
struct
open Clausifier
+open Metis_Clauses
open Sledgehammer_Util
-open Sledgehammer_FOL_Clause
open Sledgehammer_Fact_Filter
+open Sledgehammer_TPTP_Format
open Sledgehammer_Proof_Reconstruct
-open Sledgehammer_TPTP_Format
open ATP_Manager
(** generic ATP **)
--- a/src/HOL/Tools/Sledgehammer/meson_tactic.ML Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/meson_tactic.ML Fri Jun 25 17:08:39 2010 +0200
@@ -14,11 +14,9 @@
structure Meson_Tactic : MESON_TACTIC =
struct
-open Clausifier
-
(*Expand all new definitions of abstraction or Skolem functions in a proof state.*)
fun is_absko (Const (@{const_name "=="}, _) $ Free (a, _) $ _) =
- String.isPrefix skolem_prefix a
+ String.isPrefix Clausifier.skolem_prefix a
| is_absko _ = false;
fun is_okdef xs (Const (@{const_name "=="}, _) $ t $ _) = (*Definition of Free, not in certain terms*)
@@ -43,7 +41,10 @@
let
val thy = ProofContext.theory_of ctxt
val ctxt0 = Classical.put_claset HOL_cs ctxt
- in (Meson.meson_tac ctxt0 (maps (cnf_axiom thy) ths) i THEN expand_defs_tac st0) st0 end;
+ in
+ (Meson.meson_tac ctxt0 (maps (Clausifier.cnf_axiom thy) ths) i
+ THEN expand_defs_tac st0) st0
+ end
val setup =
Method.setup @{binding meson} (Attrib.thms >> (fn ths => fn ctxt =>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Sledgehammer/metis_clauses.ML Fri Jun 25 17:08:39 2010 +0200
@@ -0,0 +1,685 @@
+(* Title: HOL/Tools/Sledgehammer/metis_clauses.ML
+ Author: Jia Meng, Cambridge University Computer Laboratory
+ Author: Jasmin Blanchette, TU Muenchen
+
+Storing/printing FOL clauses and arity clauses. Typed equality is
+treated differently.
+*)
+
+signature METIS_CLAUSES =
+sig
+ type cnf_thm = Clausifier.cnf_thm
+ type name = string * string
+ type name_pool = string Symtab.table * string Symtab.table
+ datatype kind = Axiom | Conjecture
+ datatype type_literal =
+ TyLitVar of string * name |
+ TyLitFree of string * name
+ datatype arLit =
+ TConsLit of class * string * string list
+ | TVarLit of class * string
+ datatype arity_clause = ArityClause of
+ {axiom_name: string, conclLit: arLit, premLits: arLit list}
+ datatype classrel_clause = ClassrelClause of
+ {axiom_name: string, subclass: class, superclass: class}
+ datatype combtyp =
+ TyVar of name |
+ TyFree of name |
+ TyConstr of name * combtyp list
+ datatype combterm =
+ CombConst of name * combtyp * combtyp list (* Const and Free *) |
+ CombVar of name * combtyp |
+ CombApp of combterm * combterm
+ datatype literal = Literal of bool * combterm
+ datatype hol_clause =
+ HOLClause of {clause_id: int, axiom_name: string, th: thm, kind: kind,
+ literals: literal list, ctypes_sorts: typ list}
+ exception TRIVIAL of unit
+
+ val type_wrapper_name : string
+ val schematic_var_prefix: string
+ val fixed_var_prefix: string
+ val tvar_prefix: string
+ val tfree_prefix: string
+ val const_prefix: string
+ val tconst_prefix: string
+ val class_prefix: string
+ val union_all: ''a list list -> ''a list
+ val invert_const: string -> string
+ val ascii_of: string -> string
+ val undo_ascii_of: string -> string
+ val strip_prefix: string -> string -> string option
+ val make_schematic_var : string * int -> string
+ val make_fixed_var : string -> string
+ val make_schematic_type_var : string * int -> string
+ val make_fixed_type_var : string -> string
+ val make_fixed_const : string -> string
+ val make_fixed_type_const : string -> string
+ val make_type_class : string -> string
+ val empty_name_pool : bool -> name_pool option
+ val pool_map : ('a -> 'b -> 'c * 'b) -> 'a list -> 'b -> 'c list * 'b
+ val nice_name : name -> name_pool option -> string * name_pool option
+ val type_literals_for_types : typ list -> type_literal list
+ val make_classrel_clauses: theory -> class list -> class list -> classrel_clause list
+ val make_arity_clauses: theory -> string list -> class list -> class list * arity_clause list
+ val type_of_combterm : combterm -> combtyp
+ val strip_combterm_comb : combterm -> combterm * combterm list
+ val literals_of_term : theory -> term -> literal list * typ list
+ val conceal_skolem_somes :
+ int -> (string * term) list -> term -> (string * term) list * term
+ val is_quasi_fol_theorem : theory -> thm -> bool
+ val make_clause_table : (thm * 'a) list -> (thm * 'a) Termtab.table
+ val tfree_classes_of_terms : term list -> string list
+ val tvar_classes_of_terms : term list -> string list
+ val type_consts_of_terms : theory -> term list -> string list
+ val prepare_clauses :
+ bool -> thm list -> cnf_thm list -> cnf_thm list -> theory
+ -> string vector
+ * (hol_clause list * hol_clause list * hol_clause list * hol_clause list
+ * classrel_clause list * arity_clause list)
+end
+
+structure Metis_Clauses : METIS_CLAUSES =
+struct
+
+open Clausifier
+
+val type_wrapper_name = "ti"
+
+val schematic_var_prefix = "V_";
+val fixed_var_prefix = "v_";
+
+val tvar_prefix = "T_";
+val tfree_prefix = "t_";
+
+val classrel_clause_prefix = "clsrel_";
+
+val const_prefix = "c_";
+val tconst_prefix = "tc_";
+val class_prefix = "class_";
+
+fun union_all xss = fold (union (op =)) xss []
+
+(* Readable names for the more common symbolic functions. Do not mess with the
+ last nine entries of the table unless you know what you are doing. *)
+val const_trans_table =
+ Symtab.make [(@{const_name "op ="}, "equal"),
+ (@{const_name "op &"}, "and"),
+ (@{const_name "op |"}, "or"),
+ (@{const_name "op -->"}, "implies"),
+ (@{const_name "op :"}, "in"),
+ (@{const_name fequal}, "fequal"),
+ (@{const_name COMBI}, "COMBI"),
+ (@{const_name COMBK}, "COMBK"),
+ (@{const_name COMBB}, "COMBB"),
+ (@{const_name COMBC}, "COMBC"),
+ (@{const_name COMBS}, "COMBS"),
+ (@{const_name True}, "True"),
+ (@{const_name False}, "False"),
+ (@{const_name If}, "If"),
+ (@{type_name "*"}, "prod"),
+ (@{type_name "+"}, "sum")]
+
+(* Invert the table of translations between Isabelle and ATPs. *)
+val const_trans_table_inv =
+ Symtab.update ("fequal", @{const_name "op ="})
+ (Symtab.make (map swap (Symtab.dest const_trans_table)))
+
+val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
+
+(*Escaping of special characters.
+ Alphanumeric characters are left unchanged.
+ The character _ goes to __
+ Characters in the range ASCII space to / go to _A to _P, respectively.
+ Other printing characters go to _nnn where nnn is the decimal ASCII code.*)
+val A_minus_space = Char.ord #"A" - Char.ord #" ";
+
+fun stringN_of_int 0 _ = ""
+ | stringN_of_int k n = stringN_of_int (k-1) (n div 10) ^ Int.toString (n mod 10);
+
+fun ascii_of_c c =
+ if Char.isAlphaNum c then String.str c
+ else if c = #"_" then "__"
+ else if #" " <= c andalso c <= #"/"
+ then "_" ^ String.str (Char.chr (Char.ord c + A_minus_space))
+ else if Char.isPrint c
+ then ("_" ^ stringN_of_int 3 (Char.ord c)) (*fixed width, in case more digits follow*)
+ else ""
+
+val ascii_of = String.translate ascii_of_c;
+
+(** Remove ASCII armouring from names in proof files **)
+
+(*We don't raise error exceptions because this code can run inside the watcher.
+ Also, the errors are "impossible" (hah!)*)
+fun undo_ascii_aux rcs [] = String.implode(rev rcs)
+ | undo_ascii_aux rcs [#"_"] = undo_ascii_aux (#"_"::rcs) [] (*ERROR*)
+ (*Three types of _ escapes: __, _A to _P, _nnn*)
+ | undo_ascii_aux rcs (#"_" :: #"_" :: cs) = undo_ascii_aux (#"_"::rcs) cs
+ | undo_ascii_aux rcs (#"_" :: c :: cs) =
+ if #"A" <= c andalso c<= #"P" (*translation of #" " to #"/"*)
+ then undo_ascii_aux (Char.chr(Char.ord c - A_minus_space) :: rcs) cs
+ else
+ let val digits = List.take (c::cs, 3) handle Subscript => []
+ in
+ case Int.fromString (String.implode digits) of
+ NONE => undo_ascii_aux (c:: #"_"::rcs) cs (*ERROR*)
+ | SOME n => undo_ascii_aux (Char.chr n :: rcs) (List.drop (cs, 2))
+ end
+ | undo_ascii_aux rcs (c::cs) = undo_ascii_aux (c::rcs) cs;
+
+val undo_ascii_of = undo_ascii_aux [] o String.explode;
+
+(* If string s has the prefix s1, return the result of deleting it,
+ un-ASCII'd. *)
+fun strip_prefix s1 s =
+ if String.isPrefix s1 s then
+ SOME (undo_ascii_of (String.extract (s, size s1, NONE)))
+ else
+ NONE
+
+(*Remove the initial ' character from a type variable, if it is present*)
+fun trim_type_var s =
+ if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
+ else error ("trim_type: Malformed type variable encountered: " ^ s);
+
+fun ascii_of_indexname (v,0) = ascii_of v
+ | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ Int.toString i;
+
+fun make_schematic_var v = schematic_var_prefix ^ (ascii_of_indexname v);
+fun make_fixed_var x = fixed_var_prefix ^ (ascii_of x);
+
+fun make_schematic_type_var (x,i) =
+ tvar_prefix ^ (ascii_of_indexname (trim_type_var x,i));
+fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x));
+
+fun lookup_const c =
+ case Symtab.lookup const_trans_table c of
+ SOME c' => c'
+ | NONE => ascii_of c
+
+(* "op =" MUST BE "equal" because it's built into ATPs. *)
+fun make_fixed_const @{const_name "op ="} = "equal"
+ | make_fixed_const c = const_prefix ^ lookup_const c
+
+fun make_fixed_type_const c = tconst_prefix ^ lookup_const c
+
+fun make_type_class clas = class_prefix ^ ascii_of clas;
+
+
+(**** name pool ****)
+
+type name = string * string
+type name_pool = string Symtab.table * string Symtab.table
+
+fun empty_name_pool readable_names =
+ if readable_names then SOME (`I Symtab.empty) else NONE
+
+fun pool_fold f xs z = pair z #> fold_rev (fn x => uncurry (f x)) xs
+fun pool_map f xs =
+ pool_fold (fn x => fn ys => fn pool => f x pool |>> (fn y => y :: ys)) xs []
+
+fun add_nice_name full_name nice_prefix j the_pool =
+ let
+ val nice_name = nice_prefix ^ (if j = 0 then "" else "_" ^ Int.toString j)
+ in
+ case Symtab.lookup (snd the_pool) nice_name of
+ SOME full_name' =>
+ if full_name = full_name' then (nice_name, the_pool)
+ else add_nice_name full_name nice_prefix (j + 1) the_pool
+ | NONE =>
+ (nice_name, (Symtab.update_new (full_name, nice_name) (fst the_pool),
+ Symtab.update_new (nice_name, full_name) (snd the_pool)))
+ end
+
+fun translate_first_char f s =
+ String.str (f (String.sub (s, 0))) ^ String.extract (s, 1, NONE)
+
+fun readable_name full_name s =
+ let
+ val s = s |> Long_Name.base_name |> Name.desymbolize false
+ val s' = s |> explode |> rev |> dropwhile (curry (op =) "'")
+ val s' =
+ (s' |> rev
+ |> implode
+ |> String.translate
+ (fn c => if Char.isAlphaNum c orelse c = #"_" then String.str c
+ else ""))
+ ^ replicate_string (String.size s - length s') "_"
+ val s' =
+ if s' = "" orelse not (Char.isAlpha (String.sub (s', 0))) then "X" ^ s'
+ else s'
+ (* Avoid "equal", since it's built into ATPs; and "op" is very ambiguous
+ ("op &", "op |", etc.). *)
+ val s' = if s' = "equal" orelse s' = "op" then full_name else s'
+ in
+ case (Char.isLower (String.sub (full_name, 0)),
+ Char.isLower (String.sub (s', 0))) of
+ (true, false) => translate_first_char Char.toLower s'
+ | (false, true) => translate_first_char Char.toUpper s'
+ | _ => s'
+ end
+
+fun nice_name (full_name, _) NONE = (full_name, NONE)
+ | nice_name (full_name, desired_name) (SOME the_pool) =
+ case Symtab.lookup (fst the_pool) full_name of
+ SOME nice_name => (nice_name, SOME the_pool)
+ | NONE => add_nice_name full_name (readable_name full_name desired_name) 0
+ the_pool
+ |> apsnd SOME
+
+(**** Definitions and functions for FOL clauses for TPTP format output ****)
+
+datatype kind = Axiom | Conjecture
+
+(**** Isabelle FOL clauses ****)
+
+(* The first component is the type class; the second is a TVar or TFree. *)
+datatype type_literal =
+ TyLitVar of string * name |
+ TyLitFree of string * name
+
+exception CLAUSE of string * term;
+
+(*Make literals for sorted type variables*)
+fun sorts_on_typs_aux (_, []) = []
+ | sorts_on_typs_aux ((x,i), s::ss) =
+ let val sorts = sorts_on_typs_aux ((x,i), ss)
+ in
+ if s = "HOL.type" then sorts
+ else if i = ~1 then TyLitFree (make_type_class s, `make_fixed_type_var x) :: sorts
+ else TyLitVar (make_type_class s, (make_schematic_type_var (x,i), x)) :: sorts
+ end;
+
+fun sorts_on_typs (TFree (a,s)) = sorts_on_typs_aux ((a,~1),s)
+ | sorts_on_typs (TVar (v,s)) = sorts_on_typs_aux (v,s);
+
+(*Given a list of sorted type variables, return a list of type literals.*)
+fun type_literals_for_types Ts =
+ fold (union (op =)) (map sorts_on_typs Ts) []
+
+(** make axiom and conjecture clauses. **)
+
+(**** Isabelle arities ****)
+
+datatype arLit = TConsLit of class * string * string list
+ | TVarLit of class * string;
+
+datatype arity_clause =
+ ArityClause of {axiom_name: string, conclLit: arLit, premLits: arLit list}
+
+
+fun gen_TVars 0 = []
+ | gen_TVars n = ("T_" ^ Int.toString n) :: gen_TVars (n-1);
+
+fun pack_sort(_,[]) = []
+ | pack_sort(tvar, "HOL.type"::srt) = pack_sort(tvar, srt) (*IGNORE sort "type"*)
+ | pack_sort(tvar, cls::srt) = (cls, tvar) :: pack_sort(tvar, srt);
+
+(*Arity of type constructor tcon :: (arg1,...,argN)res*)
+fun make_axiom_arity_clause (tcons, axiom_name, (cls,args)) =
+ let val tvars = gen_TVars (length args)
+ val tvars_srts = ListPair.zip (tvars,args)
+ in
+ ArityClause {axiom_name = axiom_name,
+ conclLit = TConsLit (cls, make_fixed_type_const tcons, tvars),
+ premLits = map TVarLit (union_all(map pack_sort tvars_srts))}
+ end;
+
+
+(**** Isabelle class relations ****)
+
+datatype classrel_clause =
+ ClassrelClause of {axiom_name: string, subclass: class, superclass: class}
+
+(*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
+fun class_pairs _ [] _ = []
+ | class_pairs thy subs supers =
+ let
+ val class_less = Sorts.class_less (Sign.classes_of thy)
+ fun add_super sub super = class_less (sub, super) ? cons (sub, super)
+ fun add_supers sub = fold (add_super sub) supers
+ in fold add_supers subs [] end
+
+fun make_classrel_clause (sub,super) =
+ ClassrelClause {axiom_name = classrel_clause_prefix ^ ascii_of sub ^ "_" ^
+ ascii_of super,
+ subclass = make_type_class sub,
+ superclass = make_type_class super};
+
+fun make_classrel_clauses thy subs supers =
+ map make_classrel_clause (class_pairs thy subs supers);
+
+
+(** Isabelle arities **)
+
+fun arity_clause _ _ (_, []) = []
+ | arity_clause seen n (tcons, ("HOL.type",_)::ars) = (*ignore*)
+ arity_clause seen n (tcons,ars)
+ | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
+ if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
+ make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ Int.toString n, ar) ::
+ arity_clause seen (n+1) (tcons,ars)
+ else
+ make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
+ arity_clause (class::seen) n (tcons,ars)
+
+fun multi_arity_clause [] = []
+ | multi_arity_clause ((tcons, ars) :: tc_arlists) =
+ arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
+
+(*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
+ provided its arguments have the corresponding sorts.*)
+fun type_class_pairs thy tycons classes =
+ let val alg = Sign.classes_of thy
+ fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
+ fun add_class tycon class =
+ cons (class, domain_sorts tycon class)
+ handle Sorts.CLASS_ERROR _ => I
+ fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
+ in map try_classes tycons end;
+
+(*Proving one (tycon, class) membership may require proving others, so iterate.*)
+fun iter_type_class_pairs _ _ [] = ([], [])
+ | iter_type_class_pairs thy tycons classes =
+ let val cpairs = type_class_pairs thy tycons classes
+ val newclasses = union_all (union_all (union_all (map (map #2 o #2) cpairs)))
+ |> subtract (op =) classes |> subtract (op =) HOLogic.typeS
+ val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
+ in (union (op =) classes' classes, union (op =) cpairs' cpairs) end;
+
+fun make_arity_clauses thy tycons classes =
+ let val (classes', cpairs) = iter_type_class_pairs thy tycons classes
+ in (classes', multi_arity_clause cpairs) end;
+
+datatype combtyp =
+ TyVar of name |
+ TyFree of name |
+ TyConstr of name * combtyp list
+
+datatype combterm =
+ CombConst of name * combtyp * combtyp list (* Const and Free *) |
+ CombVar of name * combtyp |
+ CombApp of combterm * combterm
+
+datatype literal = Literal of bool * combterm
+
+datatype hol_clause =
+ HOLClause of {clause_id: int, axiom_name: string, th: thm, kind: kind,
+ literals: literal list, ctypes_sorts: typ list}
+
+(*********************************************************************)
+(* convert a clause with type Term.term to a clause with type clause *)
+(*********************************************************************)
+
+(*Result of a function type; no need to check that the argument type matches.*)
+fun result_type (TyConstr (_, [_, tp2])) = tp2
+ | result_type _ = raise Fail "non-function type"
+
+fun type_of_combterm (CombConst (_, tp, _)) = tp
+ | type_of_combterm (CombVar (_, tp)) = tp
+ | type_of_combterm (CombApp (t1, _)) = result_type (type_of_combterm t1)
+
+(*gets the head of a combinator application, along with the list of arguments*)
+fun strip_combterm_comb u =
+ let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
+ | stripc x = x
+ in stripc(u,[]) end
+
+fun isFalse (Literal (pol, CombConst ((c, _), _, _))) =
+ (pol andalso c = "c_False") orelse (not pol andalso c = "c_True")
+ | isFalse _ = false;
+
+fun isTrue (Literal (pol, CombConst ((c, _), _, _))) =
+ (pol andalso c = "c_True") orelse
+ (not pol andalso c = "c_False")
+ | isTrue _ = false;
+
+fun isTaut (HOLClause {literals,...}) = exists isTrue literals;
+
+fun type_of (Type (a, Ts)) =
+ let val (folTypes,ts) = types_of Ts in
+ (TyConstr (`make_fixed_type_const a, folTypes), ts)
+ end
+ | type_of (tp as TFree (a, _)) = (TyFree (`make_fixed_type_var a), [tp])
+ | type_of (tp as TVar (x, _)) =
+ (TyVar (make_schematic_type_var x, string_of_indexname x), [tp])
+and types_of Ts =
+ let val (folTyps, ts) = ListPair.unzip (map type_of Ts) in
+ (folTyps, union_all ts)
+ end
+
+(* same as above, but no gathering of sort information *)
+fun simp_type_of (Type (a, Ts)) =
+ TyConstr (`make_fixed_type_const a, map simp_type_of Ts)
+ | simp_type_of (TFree (a, _)) = TyFree (`make_fixed_type_var a)
+ | simp_type_of (TVar (x, _)) =
+ TyVar (make_schematic_type_var x, string_of_indexname x)
+
+(* convert a Term.term (with combinators) into a combterm, also accummulate sort info *)
+fun combterm_of thy (Const (c, T)) =
+ let
+ val (tp, ts) = type_of T
+ val tvar_list =
+ (if String.isPrefix skolem_theory_name c then
+ [] |> Term.add_tvarsT T |> map TVar
+ else
+ (c, T) |> Sign.const_typargs thy)
+ |> map simp_type_of
+ val c' = CombConst (`make_fixed_const c, tp, tvar_list)
+ in (c',ts) end
+ | combterm_of _ (Free(v, T)) =
+ let val (tp,ts) = type_of T
+ val v' = CombConst (`make_fixed_var v, tp, [])
+ in (v',ts) end
+ | combterm_of _ (Var(v, T)) =
+ let val (tp,ts) = type_of T
+ val v' = CombVar ((make_schematic_var v, string_of_indexname v), tp)
+ in (v',ts) end
+ | combterm_of thy (P $ Q) =
+ let val (P', tsP) = combterm_of thy P
+ val (Q', tsQ) = combterm_of thy Q
+ in (CombApp (P', Q'), union (op =) tsP tsQ) end
+ | combterm_of _ (t as Abs _) = raise Fail "HOL clause: Abs"
+
+fun predicate_of thy ((@{const Not} $ P), pos) = predicate_of thy (P, not pos)
+ | predicate_of thy (t, pos) = (combterm_of thy (Envir.eta_contract t), pos)
+
+fun literals_of_term1 args thy (@{const Trueprop} $ P) =
+ literals_of_term1 args thy P
+ | literals_of_term1 args thy (@{const "op |"} $ P $ Q) =
+ literals_of_term1 (literals_of_term1 args thy P) thy Q
+ | literals_of_term1 (lits, ts) thy P =
+ let val ((pred, ts'), pol) = predicate_of thy (P, true) in
+ (Literal (pol, pred) :: lits, union (op =) ts ts')
+ end
+val literals_of_term = literals_of_term1 ([], [])
+
+fun skolem_name i j num_T_args =
+ skolem_prefix ^ (space_implode "_" (map Int.toString [i, j, num_T_args])) ^
+ skolem_infix ^ "g"
+
+fun conceal_skolem_somes i skolem_somes t =
+ if exists_Const (curry (op =) @{const_name skolem_id} o fst) t then
+ let
+ fun aux skolem_somes
+ (t as (Const (@{const_name skolem_id}, Type (_, [_, T])) $ _)) =
+ let
+ val (skolem_somes, s) =
+ if i = ~1 then
+ (skolem_somes, @{const_name undefined})
+ else case AList.find (op aconv) skolem_somes t of
+ s :: _ => (skolem_somes, s)
+ | [] =>
+ let
+ val s = skolem_theory_name ^ "." ^
+ skolem_name i (length skolem_somes)
+ (length (Term.add_tvarsT T []))
+ in ((s, t) :: skolem_somes, s) end
+ in (skolem_somes, Const (s, T)) end
+ | aux skolem_somes (t1 $ t2) =
+ let
+ val (skolem_somes, t1) = aux skolem_somes t1
+ val (skolem_somes, t2) = aux skolem_somes t2
+ in (skolem_somes, t1 $ t2) end
+ | aux skolem_somes (Abs (s, T, t')) =
+ let val (skolem_somes, t') = aux skolem_somes t' in
+ (skolem_somes, Abs (s, T, t'))
+ end
+ | aux skolem_somes t = (skolem_somes, t)
+ in aux skolem_somes t end
+ else
+ (skolem_somes, t)
+
+fun is_quasi_fol_theorem thy =
+ Meson.is_fol_term thy o snd o conceal_skolem_somes ~1 [] o prop_of
+
+(* Trivial problem, which resolution cannot handle (empty clause) *)
+exception TRIVIAL of unit
+
+(* making axiom and conjecture clauses *)
+fun make_clause thy (clause_id, axiom_name, kind, th) skolem_somes =
+ let
+ val (skolem_somes, t) =
+ th |> prop_of |> conceal_skolem_somes clause_id skolem_somes
+ val (lits, ctypes_sorts) = literals_of_term thy t
+ in
+ if forall isFalse lits then
+ raise TRIVIAL ()
+ else
+ (skolem_somes,
+ HOLClause {clause_id = clause_id, axiom_name = axiom_name, th = th,
+ kind = kind, literals = lits, ctypes_sorts = ctypes_sorts})
+ end
+
+fun add_axiom_clause thy (th, ((name, id), _ : thm)) (skolem_somes, clss) =
+ let
+ val (skolem_somes, cls) = make_clause thy (id, name, Axiom, th) skolem_somes
+ in (skolem_somes, clss |> not (isTaut cls) ? cons (name, cls)) end
+
+fun make_axiom_clauses thy clauses =
+ ([], []) |> fold_rev (add_axiom_clause thy) clauses |> snd
+
+fun make_conjecture_clauses thy =
+ let
+ fun aux _ _ [] = []
+ | aux n skolem_somes (th :: ths) =
+ let
+ val (skolem_somes, cls) =
+ make_clause thy (n, "conjecture", Conjecture, th) skolem_somes
+ in cls :: aux (n + 1) skolem_somes ths end
+ in aux 0 [] end
+
+(** Helper clauses **)
+
+fun count_combterm (CombConst ((c, _), _, _)) =
+ Symtab.map_entry c (Integer.add 1)
+ | count_combterm (CombVar _) = I
+ | count_combterm (CombApp (t1, t2)) = count_combterm t1 #> count_combterm t2
+fun count_literal (Literal (_, t)) = count_combterm t
+fun count_clause (HOLClause {literals, ...}) = fold count_literal literals
+
+fun raw_cnf_rules_pairs ps = map (fn (name, thm) => (thm, ((name, 0), thm))) ps
+fun cnf_helper_thms thy raw =
+ map (`Thm.get_name_hint)
+ #> (if raw then raw_cnf_rules_pairs else cnf_rules_pairs thy)
+
+val optional_helpers =
+ [(["c_COMBI", "c_COMBK"], (false, @{thms COMBI_def COMBK_def})),
+ (["c_COMBB", "c_COMBC"], (false, @{thms COMBB_def COMBC_def})),
+ (["c_COMBS"], (false, @{thms COMBS_def}))]
+val optional_typed_helpers =
+ [(["c_True", "c_False"], (true, @{thms True_or_False})),
+ (["c_If"], (true, @{thms if_True if_False True_or_False}))]
+val mandatory_helpers = @{thms fequal_imp_equal equal_imp_fequal}
+
+val init_counters =
+ Symtab.make (maps (maps (map (rpair 0) o fst))
+ [optional_helpers, optional_typed_helpers])
+
+fun get_helper_clauses thy is_FO full_types conjectures axcls =
+ let
+ val axclauses = map snd (make_axiom_clauses thy axcls)
+ val ct = fold (fold count_clause) [conjectures, axclauses] init_counters
+ fun is_needed c = the (Symtab.lookup ct c) > 0
+ val cnfs =
+ (optional_helpers
+ |> full_types ? append optional_typed_helpers
+ |> maps (fn (ss, (raw, ths)) =>
+ if exists is_needed ss then cnf_helper_thms thy raw ths
+ else []))
+ @ (if is_FO then [] else cnf_helper_thms thy false mandatory_helpers)
+ in map snd (make_axiom_clauses thy cnfs) end
+
+fun make_clause_table xs =
+ fold (Termtab.update o `(prop_of o fst)) xs Termtab.empty
+
+
+(***************************************************************)
+(* Type Classes Present in the Axiom or Conjecture Clauses *)
+(***************************************************************)
+
+fun set_insert (x, s) = Symtab.update (x, ()) s
+
+fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
+
+(*Remove this trivial type class*)
+fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset;
+
+fun tfree_classes_of_terms ts =
+ let val sorts_list = map (map #2 o OldTerm.term_tfrees) ts
+ in Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list)) end;
+
+fun tvar_classes_of_terms ts =
+ let val sorts_list = map (map #2 o OldTerm.term_tvars) ts
+ in Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list)) end;
+
+(*fold type constructors*)
+fun fold_type_consts f (Type (a, Ts)) x = fold (fold_type_consts f) Ts (f (a,x))
+ | fold_type_consts _ _ x = x;
+
+(*Type constructors used to instantiate overloaded constants are the only ones needed.*)
+fun add_type_consts_in_term thy =
+ let
+ val const_typargs = Sign.const_typargs thy
+ fun aux (Const x) = fold (fold_type_consts set_insert) (const_typargs x)
+ | aux (Abs (_, _, u)) = aux u
+ | aux (Const (@{const_name skolem_id}, _) $ _) = I
+ | aux (t $ u) = aux t #> aux u
+ | aux _ = I
+ in aux end
+
+fun type_consts_of_terms thy ts =
+ Symtab.keys (fold (add_type_consts_in_term thy) ts Symtab.empty);
+
+(* Remove existing axiom clauses from the conjecture clauses, as this can
+ dramatically boost an ATP's performance (for some reason). *)
+fun subtract_cls ax_clauses =
+ filter_out (Termtab.defined (make_clause_table ax_clauses) o prop_of)
+
+(* prepare for passing to writer,
+ create additional clauses based on the information from extra_cls *)
+fun prepare_clauses full_types goal_cls axcls extra_cls thy =
+ let
+ val is_FO = forall (Meson.is_fol_term thy o prop_of) goal_cls
+ val ccls = subtract_cls extra_cls goal_cls
+ val _ = app (fn th => trace_msg (fn _ => Display.string_of_thm_global thy th)) ccls
+ val ccltms = map prop_of ccls
+ and axtms = map (prop_of o #1) extra_cls
+ val subs = tfree_classes_of_terms ccltms
+ and supers = tvar_classes_of_terms axtms
+ and tycons = type_consts_of_terms thy (ccltms @ axtms)
+ (*TFrees in conjecture clauses; TVars in axiom clauses*)
+ val conjectures = make_conjecture_clauses thy ccls
+ val (_, extra_clauses) = ListPair.unzip (make_axiom_clauses thy extra_cls)
+ val (clnames, axiom_clauses) = ListPair.unzip (make_axiom_clauses thy axcls)
+ val helper_clauses =
+ get_helper_clauses thy is_FO full_types conjectures extra_cls
+ val (supers', arity_clauses) = make_arity_clauses thy tycons supers
+ val classrel_clauses = make_classrel_clauses thy subs supers'
+ in
+ (Vector.fromList clnames,
+ (conjectures, axiom_clauses, extra_clauses, helper_clauses, classrel_clauses, arity_clauses))
+ end
+
+end;
--- a/src/HOL/Tools/Sledgehammer/metis_tactics.ML Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/metis_tactics.ML Fri Jun 25 17:08:39 2010 +0200
@@ -19,8 +19,7 @@
struct
open Clausifier
-open Sledgehammer_Util
-open Sledgehammer_FOL_Clause
+open Metis_Clauses
exception METIS of string * string
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_fact_filter.ML Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_fact_filter.ML Fri Jun 25 17:08:39 2010 +0200
@@ -22,7 +22,7 @@
struct
open Clausifier
-open Sledgehammer_FOL_Clause
+open Metis_Clauses
(* Experimental feature: Filter theorems in natural form or in CNF? *)
val use_natural_form = Unsynchronized.ref false
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_fact_minimizer.ML Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_fact_minimizer.ML Fri Jun 25 17:08:39 2010 +0200
@@ -19,8 +19,8 @@
struct
open Clausifier
+open Metis_Clauses
open Sledgehammer_Util
-open Sledgehammer_FOL_Clause
open Sledgehammer_Proof_Reconstruct
open ATP_Manager
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_fol_clause.ML Fri Jun 25 16:42:06 2010 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,685 +0,0 @@
-(* Title: HOL/Tools/Sledgehammer/sledgehammer_fol_clause.ML
- Author: Jia Meng, Cambridge University Computer Laboratory
- Author: Jasmin Blanchette, TU Muenchen
-
-Storing/printing FOL clauses and arity clauses. Typed equality is
-treated differently.
-*)
-
-signature SLEDGEHAMMER_FOL_CLAUSE =
-sig
- type cnf_thm = Clausifier.cnf_thm
- type name = string * string
- type name_pool = string Symtab.table * string Symtab.table
- datatype kind = Axiom | Conjecture
- datatype type_literal =
- TyLitVar of string * name |
- TyLitFree of string * name
- datatype arLit =
- TConsLit of class * string * string list
- | TVarLit of class * string
- datatype arity_clause = ArityClause of
- {axiom_name: string, conclLit: arLit, premLits: arLit list}
- datatype classrel_clause = ClassrelClause of
- {axiom_name: string, subclass: class, superclass: class}
- datatype combtyp =
- TyVar of name |
- TyFree of name |
- TyConstr of name * combtyp list
- datatype combterm =
- CombConst of name * combtyp * combtyp list (* Const and Free *) |
- CombVar of name * combtyp |
- CombApp of combterm * combterm
- datatype literal = Literal of bool * combterm
- datatype hol_clause =
- HOLClause of {clause_id: int, axiom_name: string, th: thm, kind: kind,
- literals: literal list, ctypes_sorts: typ list}
- exception TRIVIAL of unit
-
- val type_wrapper_name : string
- val schematic_var_prefix: string
- val fixed_var_prefix: string
- val tvar_prefix: string
- val tfree_prefix: string
- val const_prefix: string
- val tconst_prefix: string
- val class_prefix: string
- val union_all: ''a list list -> ''a list
- val invert_const: string -> string
- val ascii_of: string -> string
- val undo_ascii_of: string -> string
- val strip_prefix: string -> string -> string option
- val make_schematic_var : string * int -> string
- val make_fixed_var : string -> string
- val make_schematic_type_var : string * int -> string
- val make_fixed_type_var : string -> string
- val make_fixed_const : string -> string
- val make_fixed_type_const : string -> string
- val make_type_class : string -> string
- val empty_name_pool : bool -> name_pool option
- val pool_map : ('a -> 'b -> 'c * 'b) -> 'a list -> 'b -> 'c list * 'b
- val nice_name : name -> name_pool option -> string * name_pool option
- val type_literals_for_types : typ list -> type_literal list
- val make_classrel_clauses: theory -> class list -> class list -> classrel_clause list
- val make_arity_clauses: theory -> string list -> class list -> class list * arity_clause list
- val type_of_combterm : combterm -> combtyp
- val strip_combterm_comb : combterm -> combterm * combterm list
- val literals_of_term : theory -> term -> literal list * typ list
- val conceal_skolem_somes :
- int -> (string * term) list -> term -> (string * term) list * term
- val is_quasi_fol_theorem : theory -> thm -> bool
- val make_clause_table : (thm * 'a) list -> (thm * 'a) Termtab.table
- val tfree_classes_of_terms : term list -> string list
- val tvar_classes_of_terms : term list -> string list
- val type_consts_of_terms : theory -> term list -> string list
- val prepare_clauses :
- bool -> thm list -> cnf_thm list -> cnf_thm list -> theory
- -> string vector
- * (hol_clause list * hol_clause list * hol_clause list * hol_clause list
- * classrel_clause list * arity_clause list)
-end
-
-structure Sledgehammer_FOL_Clause : SLEDGEHAMMER_FOL_CLAUSE =
-struct
-
-open Clausifier
-
-val type_wrapper_name = "ti"
-
-val schematic_var_prefix = "V_";
-val fixed_var_prefix = "v_";
-
-val tvar_prefix = "T_";
-val tfree_prefix = "t_";
-
-val classrel_clause_prefix = "clsrel_";
-
-val const_prefix = "c_";
-val tconst_prefix = "tc_";
-val class_prefix = "class_";
-
-fun union_all xss = fold (union (op =)) xss []
-
-(* Readable names for the more common symbolic functions. Do not mess with the
- last nine entries of the table unless you know what you are doing. *)
-val const_trans_table =
- Symtab.make [(@{const_name "op ="}, "equal"),
- (@{const_name "op &"}, "and"),
- (@{const_name "op |"}, "or"),
- (@{const_name "op -->"}, "implies"),
- (@{const_name "op :"}, "in"),
- (@{const_name fequal}, "fequal"),
- (@{const_name COMBI}, "COMBI"),
- (@{const_name COMBK}, "COMBK"),
- (@{const_name COMBB}, "COMBB"),
- (@{const_name COMBC}, "COMBC"),
- (@{const_name COMBS}, "COMBS"),
- (@{const_name True}, "True"),
- (@{const_name False}, "False"),
- (@{const_name If}, "If"),
- (@{type_name "*"}, "prod"),
- (@{type_name "+"}, "sum")]
-
-(* Invert the table of translations between Isabelle and ATPs. *)
-val const_trans_table_inv =
- Symtab.update ("fequal", @{const_name "op ="})
- (Symtab.make (map swap (Symtab.dest const_trans_table)))
-
-val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
-
-(*Escaping of special characters.
- Alphanumeric characters are left unchanged.
- The character _ goes to __
- Characters in the range ASCII space to / go to _A to _P, respectively.
- Other printing characters go to _nnn where nnn is the decimal ASCII code.*)
-val A_minus_space = Char.ord #"A" - Char.ord #" ";
-
-fun stringN_of_int 0 _ = ""
- | stringN_of_int k n = stringN_of_int (k-1) (n div 10) ^ Int.toString (n mod 10);
-
-fun ascii_of_c c =
- if Char.isAlphaNum c then String.str c
- else if c = #"_" then "__"
- else if #" " <= c andalso c <= #"/"
- then "_" ^ String.str (Char.chr (Char.ord c + A_minus_space))
- else if Char.isPrint c
- then ("_" ^ stringN_of_int 3 (Char.ord c)) (*fixed width, in case more digits follow*)
- else ""
-
-val ascii_of = String.translate ascii_of_c;
-
-(** Remove ASCII armouring from names in proof files **)
-
-(*We don't raise error exceptions because this code can run inside the watcher.
- Also, the errors are "impossible" (hah!)*)
-fun undo_ascii_aux rcs [] = String.implode(rev rcs)
- | undo_ascii_aux rcs [#"_"] = undo_ascii_aux (#"_"::rcs) [] (*ERROR*)
- (*Three types of _ escapes: __, _A to _P, _nnn*)
- | undo_ascii_aux rcs (#"_" :: #"_" :: cs) = undo_ascii_aux (#"_"::rcs) cs
- | undo_ascii_aux rcs (#"_" :: c :: cs) =
- if #"A" <= c andalso c<= #"P" (*translation of #" " to #"/"*)
- then undo_ascii_aux (Char.chr(Char.ord c - A_minus_space) :: rcs) cs
- else
- let val digits = List.take (c::cs, 3) handle Subscript => []
- in
- case Int.fromString (String.implode digits) of
- NONE => undo_ascii_aux (c:: #"_"::rcs) cs (*ERROR*)
- | SOME n => undo_ascii_aux (Char.chr n :: rcs) (List.drop (cs, 2))
- end
- | undo_ascii_aux rcs (c::cs) = undo_ascii_aux (c::rcs) cs;
-
-val undo_ascii_of = undo_ascii_aux [] o String.explode;
-
-(* If string s has the prefix s1, return the result of deleting it,
- un-ASCII'd. *)
-fun strip_prefix s1 s =
- if String.isPrefix s1 s then
- SOME (undo_ascii_of (String.extract (s, size s1, NONE)))
- else
- NONE
-
-(*Remove the initial ' character from a type variable, if it is present*)
-fun trim_type_var s =
- if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
- else error ("trim_type: Malformed type variable encountered: " ^ s);
-
-fun ascii_of_indexname (v,0) = ascii_of v
- | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ Int.toString i;
-
-fun make_schematic_var v = schematic_var_prefix ^ (ascii_of_indexname v);
-fun make_fixed_var x = fixed_var_prefix ^ (ascii_of x);
-
-fun make_schematic_type_var (x,i) =
- tvar_prefix ^ (ascii_of_indexname (trim_type_var x,i));
-fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x));
-
-fun lookup_const c =
- case Symtab.lookup const_trans_table c of
- SOME c' => c'
- | NONE => ascii_of c
-
-(* "op =" MUST BE "equal" because it's built into ATPs. *)
-fun make_fixed_const @{const_name "op ="} = "equal"
- | make_fixed_const c = const_prefix ^ lookup_const c
-
-fun make_fixed_type_const c = tconst_prefix ^ lookup_const c
-
-fun make_type_class clas = class_prefix ^ ascii_of clas;
-
-
-(**** name pool ****)
-
-type name = string * string
-type name_pool = string Symtab.table * string Symtab.table
-
-fun empty_name_pool readable_names =
- if readable_names then SOME (`I Symtab.empty) else NONE
-
-fun pool_fold f xs z = pair z #> fold_rev (fn x => uncurry (f x)) xs
-fun pool_map f xs =
- pool_fold (fn x => fn ys => fn pool => f x pool |>> (fn y => y :: ys)) xs []
-
-fun add_nice_name full_name nice_prefix j the_pool =
- let
- val nice_name = nice_prefix ^ (if j = 0 then "" else "_" ^ Int.toString j)
- in
- case Symtab.lookup (snd the_pool) nice_name of
- SOME full_name' =>
- if full_name = full_name' then (nice_name, the_pool)
- else add_nice_name full_name nice_prefix (j + 1) the_pool
- | NONE =>
- (nice_name, (Symtab.update_new (full_name, nice_name) (fst the_pool),
- Symtab.update_new (nice_name, full_name) (snd the_pool)))
- end
-
-fun translate_first_char f s =
- String.str (f (String.sub (s, 0))) ^ String.extract (s, 1, NONE)
-
-fun readable_name full_name s =
- let
- val s = s |> Long_Name.base_name |> Name.desymbolize false
- val s' = s |> explode |> rev |> dropwhile (curry (op =) "'")
- val s' =
- (s' |> rev
- |> implode
- |> String.translate
- (fn c => if Char.isAlphaNum c orelse c = #"_" then String.str c
- else ""))
- ^ replicate_string (String.size s - length s') "_"
- val s' =
- if s' = "" orelse not (Char.isAlpha (String.sub (s', 0))) then "X" ^ s'
- else s'
- (* Avoid "equal", since it's built into ATPs; and "op" is very ambiguous
- ("op &", "op |", etc.). *)
- val s' = if s' = "equal" orelse s' = "op" then full_name else s'
- in
- case (Char.isLower (String.sub (full_name, 0)),
- Char.isLower (String.sub (s', 0))) of
- (true, false) => translate_first_char Char.toLower s'
- | (false, true) => translate_first_char Char.toUpper s'
- | _ => s'
- end
-
-fun nice_name (full_name, _) NONE = (full_name, NONE)
- | nice_name (full_name, desired_name) (SOME the_pool) =
- case Symtab.lookup (fst the_pool) full_name of
- SOME nice_name => (nice_name, SOME the_pool)
- | NONE => add_nice_name full_name (readable_name full_name desired_name) 0
- the_pool
- |> apsnd SOME
-
-(**** Definitions and functions for FOL clauses for TPTP format output ****)
-
-datatype kind = Axiom | Conjecture
-
-(**** Isabelle FOL clauses ****)
-
-(* The first component is the type class; the second is a TVar or TFree. *)
-datatype type_literal =
- TyLitVar of string * name |
- TyLitFree of string * name
-
-exception CLAUSE of string * term;
-
-(*Make literals for sorted type variables*)
-fun sorts_on_typs_aux (_, []) = []
- | sorts_on_typs_aux ((x,i), s::ss) =
- let val sorts = sorts_on_typs_aux ((x,i), ss)
- in
- if s = "HOL.type" then sorts
- else if i = ~1 then TyLitFree (make_type_class s, `make_fixed_type_var x) :: sorts
- else TyLitVar (make_type_class s, (make_schematic_type_var (x,i), x)) :: sorts
- end;
-
-fun sorts_on_typs (TFree (a,s)) = sorts_on_typs_aux ((a,~1),s)
- | sorts_on_typs (TVar (v,s)) = sorts_on_typs_aux (v,s);
-
-(*Given a list of sorted type variables, return a list of type literals.*)
-fun type_literals_for_types Ts =
- fold (union (op =)) (map sorts_on_typs Ts) []
-
-(** make axiom and conjecture clauses. **)
-
-(**** Isabelle arities ****)
-
-datatype arLit = TConsLit of class * string * string list
- | TVarLit of class * string;
-
-datatype arity_clause =
- ArityClause of {axiom_name: string, conclLit: arLit, premLits: arLit list}
-
-
-fun gen_TVars 0 = []
- | gen_TVars n = ("T_" ^ Int.toString n) :: gen_TVars (n-1);
-
-fun pack_sort(_,[]) = []
- | pack_sort(tvar, "HOL.type"::srt) = pack_sort(tvar, srt) (*IGNORE sort "type"*)
- | pack_sort(tvar, cls::srt) = (cls, tvar) :: pack_sort(tvar, srt);
-
-(*Arity of type constructor tcon :: (arg1,...,argN)res*)
-fun make_axiom_arity_clause (tcons, axiom_name, (cls,args)) =
- let val tvars = gen_TVars (length args)
- val tvars_srts = ListPair.zip (tvars,args)
- in
- ArityClause {axiom_name = axiom_name,
- conclLit = TConsLit (cls, make_fixed_type_const tcons, tvars),
- premLits = map TVarLit (union_all(map pack_sort tvars_srts))}
- end;
-
-
-(**** Isabelle class relations ****)
-
-datatype classrel_clause =
- ClassrelClause of {axiom_name: string, subclass: class, superclass: class}
-
-(*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
-fun class_pairs _ [] _ = []
- | class_pairs thy subs supers =
- let
- val class_less = Sorts.class_less (Sign.classes_of thy)
- fun add_super sub super = class_less (sub, super) ? cons (sub, super)
- fun add_supers sub = fold (add_super sub) supers
- in fold add_supers subs [] end
-
-fun make_classrel_clause (sub,super) =
- ClassrelClause {axiom_name = classrel_clause_prefix ^ ascii_of sub ^ "_" ^
- ascii_of super,
- subclass = make_type_class sub,
- superclass = make_type_class super};
-
-fun make_classrel_clauses thy subs supers =
- map make_classrel_clause (class_pairs thy subs supers);
-
-
-(** Isabelle arities **)
-
-fun arity_clause _ _ (_, []) = []
- | arity_clause seen n (tcons, ("HOL.type",_)::ars) = (*ignore*)
- arity_clause seen n (tcons,ars)
- | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
- if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
- make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ Int.toString n, ar) ::
- arity_clause seen (n+1) (tcons,ars)
- else
- make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
- arity_clause (class::seen) n (tcons,ars)
-
-fun multi_arity_clause [] = []
- | multi_arity_clause ((tcons, ars) :: tc_arlists) =
- arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
-
-(*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
- provided its arguments have the corresponding sorts.*)
-fun type_class_pairs thy tycons classes =
- let val alg = Sign.classes_of thy
- fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
- fun add_class tycon class =
- cons (class, domain_sorts tycon class)
- handle Sorts.CLASS_ERROR _ => I
- fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
- in map try_classes tycons end;
-
-(*Proving one (tycon, class) membership may require proving others, so iterate.*)
-fun iter_type_class_pairs _ _ [] = ([], [])
- | iter_type_class_pairs thy tycons classes =
- let val cpairs = type_class_pairs thy tycons classes
- val newclasses = union_all (union_all (union_all (map (map #2 o #2) cpairs)))
- |> subtract (op =) classes |> subtract (op =) HOLogic.typeS
- val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
- in (union (op =) classes' classes, union (op =) cpairs' cpairs) end;
-
-fun make_arity_clauses thy tycons classes =
- let val (classes', cpairs) = iter_type_class_pairs thy tycons classes
- in (classes', multi_arity_clause cpairs) end;
-
-datatype combtyp =
- TyVar of name |
- TyFree of name |
- TyConstr of name * combtyp list
-
-datatype combterm =
- CombConst of name * combtyp * combtyp list (* Const and Free *) |
- CombVar of name * combtyp |
- CombApp of combterm * combterm
-
-datatype literal = Literal of bool * combterm
-
-datatype hol_clause =
- HOLClause of {clause_id: int, axiom_name: string, th: thm, kind: kind,
- literals: literal list, ctypes_sorts: typ list}
-
-(*********************************************************************)
-(* convert a clause with type Term.term to a clause with type clause *)
-(*********************************************************************)
-
-(*Result of a function type; no need to check that the argument type matches.*)
-fun result_type (TyConstr (_, [_, tp2])) = tp2
- | result_type _ = raise Fail "non-function type"
-
-fun type_of_combterm (CombConst (_, tp, _)) = tp
- | type_of_combterm (CombVar (_, tp)) = tp
- | type_of_combterm (CombApp (t1, _)) = result_type (type_of_combterm t1)
-
-(*gets the head of a combinator application, along with the list of arguments*)
-fun strip_combterm_comb u =
- let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
- | stripc x = x
- in stripc(u,[]) end
-
-fun isFalse (Literal (pol, CombConst ((c, _), _, _))) =
- (pol andalso c = "c_False") orelse (not pol andalso c = "c_True")
- | isFalse _ = false;
-
-fun isTrue (Literal (pol, CombConst ((c, _), _, _))) =
- (pol andalso c = "c_True") orelse
- (not pol andalso c = "c_False")
- | isTrue _ = false;
-
-fun isTaut (HOLClause {literals,...}) = exists isTrue literals;
-
-fun type_of (Type (a, Ts)) =
- let val (folTypes,ts) = types_of Ts in
- (TyConstr (`make_fixed_type_const a, folTypes), ts)
- end
- | type_of (tp as TFree (a, _)) = (TyFree (`make_fixed_type_var a), [tp])
- | type_of (tp as TVar (x, _)) =
- (TyVar (make_schematic_type_var x, string_of_indexname x), [tp])
-and types_of Ts =
- let val (folTyps, ts) = ListPair.unzip (map type_of Ts) in
- (folTyps, union_all ts)
- end
-
-(* same as above, but no gathering of sort information *)
-fun simp_type_of (Type (a, Ts)) =
- TyConstr (`make_fixed_type_const a, map simp_type_of Ts)
- | simp_type_of (TFree (a, _)) = TyFree (`make_fixed_type_var a)
- | simp_type_of (TVar (x, _)) =
- TyVar (make_schematic_type_var x, string_of_indexname x)
-
-(* convert a Term.term (with combinators) into a combterm, also accummulate sort info *)
-fun combterm_of thy (Const (c, T)) =
- let
- val (tp, ts) = type_of T
- val tvar_list =
- (if String.isPrefix skolem_theory_name c then
- [] |> Term.add_tvarsT T |> map TVar
- else
- (c, T) |> Sign.const_typargs thy)
- |> map simp_type_of
- val c' = CombConst (`make_fixed_const c, tp, tvar_list)
- in (c',ts) end
- | combterm_of _ (Free(v, T)) =
- let val (tp,ts) = type_of T
- val v' = CombConst (`make_fixed_var v, tp, [])
- in (v',ts) end
- | combterm_of _ (Var(v, T)) =
- let val (tp,ts) = type_of T
- val v' = CombVar ((make_schematic_var v, string_of_indexname v), tp)
- in (v',ts) end
- | combterm_of thy (P $ Q) =
- let val (P', tsP) = combterm_of thy P
- val (Q', tsQ) = combterm_of thy Q
- in (CombApp (P', Q'), union (op =) tsP tsQ) end
- | combterm_of _ (t as Abs _) = raise Fail "HOL clause: Abs"
-
-fun predicate_of thy ((@{const Not} $ P), pos) = predicate_of thy (P, not pos)
- | predicate_of thy (t, pos) = (combterm_of thy (Envir.eta_contract t), pos)
-
-fun literals_of_term1 args thy (@{const Trueprop} $ P) =
- literals_of_term1 args thy P
- | literals_of_term1 args thy (@{const "op |"} $ P $ Q) =
- literals_of_term1 (literals_of_term1 args thy P) thy Q
- | literals_of_term1 (lits, ts) thy P =
- let val ((pred, ts'), pol) = predicate_of thy (P, true) in
- (Literal (pol, pred) :: lits, union (op =) ts ts')
- end
-val literals_of_term = literals_of_term1 ([], [])
-
-fun skolem_name i j num_T_args =
- skolem_prefix ^ (space_implode "_" (map Int.toString [i, j, num_T_args])) ^
- skolem_infix ^ "g"
-
-fun conceal_skolem_somes i skolem_somes t =
- if exists_Const (curry (op =) @{const_name skolem_id} o fst) t then
- let
- fun aux skolem_somes
- (t as (Const (@{const_name skolem_id}, Type (_, [_, T])) $ _)) =
- let
- val (skolem_somes, s) =
- if i = ~1 then
- (skolem_somes, @{const_name undefined})
- else case AList.find (op aconv) skolem_somes t of
- s :: _ => (skolem_somes, s)
- | [] =>
- let
- val s = skolem_theory_name ^ "." ^
- skolem_name i (length skolem_somes)
- (length (Term.add_tvarsT T []))
- in ((s, t) :: skolem_somes, s) end
- in (skolem_somes, Const (s, T)) end
- | aux skolem_somes (t1 $ t2) =
- let
- val (skolem_somes, t1) = aux skolem_somes t1
- val (skolem_somes, t2) = aux skolem_somes t2
- in (skolem_somes, t1 $ t2) end
- | aux skolem_somes (Abs (s, T, t')) =
- let val (skolem_somes, t') = aux skolem_somes t' in
- (skolem_somes, Abs (s, T, t'))
- end
- | aux skolem_somes t = (skolem_somes, t)
- in aux skolem_somes t end
- else
- (skolem_somes, t)
-
-fun is_quasi_fol_theorem thy =
- Meson.is_fol_term thy o snd o conceal_skolem_somes ~1 [] o prop_of
-
-(* Trivial problem, which resolution cannot handle (empty clause) *)
-exception TRIVIAL of unit
-
-(* making axiom and conjecture clauses *)
-fun make_clause thy (clause_id, axiom_name, kind, th) skolem_somes =
- let
- val (skolem_somes, t) =
- th |> prop_of |> conceal_skolem_somes clause_id skolem_somes
- val (lits, ctypes_sorts) = literals_of_term thy t
- in
- if forall isFalse lits then
- raise TRIVIAL ()
- else
- (skolem_somes,
- HOLClause {clause_id = clause_id, axiom_name = axiom_name, th = th,
- kind = kind, literals = lits, ctypes_sorts = ctypes_sorts})
- end
-
-fun add_axiom_clause thy (th, ((name, id), _ : thm)) (skolem_somes, clss) =
- let
- val (skolem_somes, cls) = make_clause thy (id, name, Axiom, th) skolem_somes
- in (skolem_somes, clss |> not (isTaut cls) ? cons (name, cls)) end
-
-fun make_axiom_clauses thy clauses =
- ([], []) |> fold_rev (add_axiom_clause thy) clauses |> snd
-
-fun make_conjecture_clauses thy =
- let
- fun aux _ _ [] = []
- | aux n skolem_somes (th :: ths) =
- let
- val (skolem_somes, cls) =
- make_clause thy (n, "conjecture", Conjecture, th) skolem_somes
- in cls :: aux (n + 1) skolem_somes ths end
- in aux 0 [] end
-
-(** Helper clauses **)
-
-fun count_combterm (CombConst ((c, _), _, _)) =
- Symtab.map_entry c (Integer.add 1)
- | count_combterm (CombVar _) = I
- | count_combterm (CombApp (t1, t2)) = count_combterm t1 #> count_combterm t2
-fun count_literal (Literal (_, t)) = count_combterm t
-fun count_clause (HOLClause {literals, ...}) = fold count_literal literals
-
-fun raw_cnf_rules_pairs ps = map (fn (name, thm) => (thm, ((name, 0), thm))) ps
-fun cnf_helper_thms thy raw =
- map (`Thm.get_name_hint)
- #> (if raw then raw_cnf_rules_pairs else cnf_rules_pairs thy)
-
-val optional_helpers =
- [(["c_COMBI", "c_COMBK"], (false, @{thms COMBI_def COMBK_def})),
- (["c_COMBB", "c_COMBC"], (false, @{thms COMBB_def COMBC_def})),
- (["c_COMBS"], (false, @{thms COMBS_def}))]
-val optional_typed_helpers =
- [(["c_True", "c_False"], (true, @{thms True_or_False})),
- (["c_If"], (true, @{thms if_True if_False True_or_False}))]
-val mandatory_helpers = @{thms fequal_imp_equal equal_imp_fequal}
-
-val init_counters =
- Symtab.make (maps (maps (map (rpair 0) o fst))
- [optional_helpers, optional_typed_helpers])
-
-fun get_helper_clauses thy is_FO full_types conjectures axcls =
- let
- val axclauses = map snd (make_axiom_clauses thy axcls)
- val ct = fold (fold count_clause) [conjectures, axclauses] init_counters
- fun is_needed c = the (Symtab.lookup ct c) > 0
- val cnfs =
- (optional_helpers
- |> full_types ? append optional_typed_helpers
- |> maps (fn (ss, (raw, ths)) =>
- if exists is_needed ss then cnf_helper_thms thy raw ths
- else []))
- @ (if is_FO then [] else cnf_helper_thms thy false mandatory_helpers)
- in map snd (make_axiom_clauses thy cnfs) end
-
-fun make_clause_table xs =
- fold (Termtab.update o `(prop_of o fst)) xs Termtab.empty
-
-
-(***************************************************************)
-(* Type Classes Present in the Axiom or Conjecture Clauses *)
-(***************************************************************)
-
-fun set_insert (x, s) = Symtab.update (x, ()) s
-
-fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
-
-(*Remove this trivial type class*)
-fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset;
-
-fun tfree_classes_of_terms ts =
- let val sorts_list = map (map #2 o OldTerm.term_tfrees) ts
- in Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list)) end;
-
-fun tvar_classes_of_terms ts =
- let val sorts_list = map (map #2 o OldTerm.term_tvars) ts
- in Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list)) end;
-
-(*fold type constructors*)
-fun fold_type_consts f (Type (a, Ts)) x = fold (fold_type_consts f) Ts (f (a,x))
- | fold_type_consts _ _ x = x;
-
-(*Type constructors used to instantiate overloaded constants are the only ones needed.*)
-fun add_type_consts_in_term thy =
- let
- val const_typargs = Sign.const_typargs thy
- fun aux (Const x) = fold (fold_type_consts set_insert) (const_typargs x)
- | aux (Abs (_, _, u)) = aux u
- | aux (Const (@{const_name skolem_id}, _) $ _) = I
- | aux (t $ u) = aux t #> aux u
- | aux _ = I
- in aux end
-
-fun type_consts_of_terms thy ts =
- Symtab.keys (fold (add_type_consts_in_term thy) ts Symtab.empty);
-
-(* Remove existing axiom clauses from the conjecture clauses, as this can
- dramatically boost an ATP's performance (for some reason). *)
-fun subtract_cls ax_clauses =
- filter_out (Termtab.defined (make_clause_table ax_clauses) o prop_of)
-
-(* prepare for passing to writer,
- create additional clauses based on the information from extra_cls *)
-fun prepare_clauses full_types goal_cls axcls extra_cls thy =
- let
- val is_FO = forall (Meson.is_fol_term thy o prop_of) goal_cls
- val ccls = subtract_cls extra_cls goal_cls
- val _ = app (fn th => trace_msg (fn _ => Display.string_of_thm_global thy th)) ccls
- val ccltms = map prop_of ccls
- and axtms = map (prop_of o #1) extra_cls
- val subs = tfree_classes_of_terms ccltms
- and supers = tvar_classes_of_terms axtms
- and tycons = type_consts_of_terms thy (ccltms @ axtms)
- (*TFrees in conjecture clauses; TVars in axiom clauses*)
- val conjectures = make_conjecture_clauses thy ccls
- val (_, extra_clauses) = ListPair.unzip (make_axiom_clauses thy extra_cls)
- val (clnames, axiom_clauses) = ListPair.unzip (make_axiom_clauses thy axcls)
- val helper_clauses =
- get_helper_clauses thy is_FO full_types conjectures extra_cls
- val (supers', arity_clauses) = make_arity_clauses thy tycons supers
- val classrel_clauses = make_classrel_clauses thy subs supers'
- in
- (Vector.fromList clnames,
- (conjectures, axiom_clauses, extra_clauses, helper_clauses, classrel_clauses, arity_clauses))
- end
-
-end;
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML Fri Jun 25 17:08:39 2010 +0200
@@ -8,7 +8,7 @@
signature SLEDGEHAMMER_PROOF_RECONSTRUCT =
sig
type minimize_command = string list -> string
- type name_pool = Sledgehammer_FOL_Clause.name_pool
+ type name_pool = Metis_Clauses.name_pool
val metis_line: bool -> int -> int -> string list -> string
val metis_proof_text:
@@ -28,8 +28,8 @@
struct
open Clausifier
+open Metis_Clauses
open Sledgehammer_Util
-open Sledgehammer_FOL_Clause
type minimize_command = string list -> string
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_tptp_format.ML Fri Jun 25 16:42:06 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_tptp_format.ML Fri Jun 25 17:08:39 2010 +0200
@@ -7,11 +7,11 @@
signature SLEDGEHAMMER_TPTP_FORMAT =
sig
- type name_pool = Sledgehammer_FOL_Clause.name_pool
- type type_literal = Sledgehammer_FOL_Clause.type_literal
- type classrel_clause = Sledgehammer_FOL_Clause.classrel_clause
- type arity_clause = Sledgehammer_FOL_Clause.arity_clause
- type hol_clause = Sledgehammer_FOL_Clause.hol_clause
+ type name_pool = Metis_Clauses.name_pool
+ type type_literal = Metis_Clauses.type_literal
+ type classrel_clause = Metis_Clauses.classrel_clause
+ type arity_clause = Metis_Clauses.arity_clause
+ type hol_clause = Metis_Clauses.hol_clause
val tptp_of_type_literal :
bool -> type_literal -> name_pool option -> string * name_pool option
@@ -25,8 +25,8 @@
structure Sledgehammer_TPTP_Format : SLEDGEHAMMER_TPTP_FORMAT =
struct
+open Metis_Clauses
open Sledgehammer_Util
-open Sledgehammer_FOL_Clause
type const_info = {min_arity: int, max_arity: int, sub_level: bool}