author | wenzelm |
Thu, 20 May 2010 16:25:22 +0200 | |
changeset 37011 | f692d6178e4e |
parent 37010 | 8096a4c755eb (diff) |
parent 36995 | 9421452afc29 (current diff) |
child 37012 | 106c56e916f8 |
child 37030 | e29a115ba58c |
--- a/src/HOL/NSA/Examples/NSPrimes.thy Thu May 20 16:22:50 2010 +0200 +++ b/src/HOL/NSA/Examples/NSPrimes.thy Thu May 20 16:25:22 2010 +0200 @@ -13,9 +13,7 @@ text{*These can be used to derive an alternative proof of the infinitude of primes by considering a property of nonstandard sets.*} -definition - hdvd :: "[hypnat, hypnat] => bool" (infixl "hdvd" 50) where - [transfer_unfold]: "(M::hypnat) hdvd N = ( *p2* (op dvd)) M N" +declare dvd_def [transfer_refold] definition starprime :: "hypnat set" where @@ -49,14 +47,14 @@ (* Goldblatt: Exercise 5.11(2) - p. 57 *) -lemma hdvd_by_all: "\<forall>M. \<exists>N. 0 < N & (\<forall>m. 0 < m & (m::hypnat) <= M --> m hdvd N)" +lemma hdvd_by_all: "\<forall>M. \<exists>N. 0 < N & (\<forall>m. 0 < m & (m::hypnat) <= M --> m dvd N)" by (transfer, rule dvd_by_all) lemmas hdvd_by_all2 = hdvd_by_all [THEN spec, standard] (* Goldblatt: Exercise 5.11(2) - p. 57 *) lemma hypnat_dvd_all_hypnat_of_nat: - "\<exists>(N::hypnat). 0 < N & (\<forall>n \<in> -{0::nat}. hypnat_of_nat(n) hdvd N)" + "\<exists>(N::hypnat). 0 < N & (\<forall>n \<in> -{0::nat}. hypnat_of_nat(n) dvd N)" apply (cut_tac hdvd_by_all) apply (drule_tac x = whn in spec, auto) apply (rule exI, auto) @@ -70,7 +68,7 @@ (* Goldblatt: Exercise 5.11(3a) - p 57 *) lemma starprime: - "starprime = {p. 1 < p & (\<forall>m. m hdvd p --> m = 1 | m = p)}" + "starprime = {p. 1 < p & (\<forall>m. m dvd p --> m = 1 | m = p)}" by (transfer, auto simp add: prime_def) lemma prime_two: "prime 2" @@ -88,13 +86,11 @@ apply (rule_tac x = n in exI, auto) apply (drule conjI [THEN not_prime_ex_mk], auto) apply (drule_tac x = m in spec, auto) -apply (rule_tac x = ka in exI) -apply (auto intro: dvd_mult2) done (* Goldblatt Exercise 5.11(3b) - p 57 *) lemma hyperprime_factor_exists [rule_format]: - "!!n. 1 < n ==> (\<exists>k \<in> starprime. k hdvd n)" + "!!n. 1 < n ==> (\<exists>k \<in> starprime. k dvd n)" by (transfer, simp add: prime_factor_exists) (* Goldblatt Exercise 3.10(1) - p. 29 *) @@ -257,14 +253,14 @@ subsection{*Existence of Infinitely Many Primes: a Nonstandard Proof*} -lemma lemma_not_dvd_hypnat_one: "~ (\<forall>n \<in> - {0}. hypnat_of_nat n hdvd 1)" +lemma lemma_not_dvd_hypnat_one: "~ (\<forall>n \<in> - {0}. hypnat_of_nat n dvd 1)" apply auto apply (rule_tac x = 2 in bexI) apply (transfer, auto) done declare lemma_not_dvd_hypnat_one [simp] -lemma lemma_not_dvd_hypnat_one2: "\<exists>n \<in> - {0}. ~ hypnat_of_nat n hdvd 1" +lemma lemma_not_dvd_hypnat_one2: "\<exists>n \<in> - {0}. ~ hypnat_of_nat n dvd 1" apply (cut_tac lemma_not_dvd_hypnat_one) apply (auto simp del: lemma_not_dvd_hypnat_one) done @@ -314,13 +310,13 @@ by (cut_tac hypnat_of_nat_one_not_prime, simp) declare hypnat_one_not_prime [simp] -lemma hdvd_diff: "!!k m n. [| k hdvd m; k hdvd n |] ==> k hdvd (m - n)" -by (transfer, rule dvd_diff) +lemma hdvd_diff: "!!k m n :: hypnat. [| k dvd m; k dvd n |] ==> k dvd (m - n)" +by (transfer, rule dvd_diff_nat) lemma dvd_one_eq_one: "x dvd (1::nat) ==> x = 1" by (unfold dvd_def, auto) -lemma hdvd_one_eq_one: "!!x. x hdvd 1 ==> x = 1" +lemma hdvd_one_eq_one: "!!x. x dvd (1::hypnat) ==> x = 1" by (transfer, rule dvd_one_eq_one) theorem not_finite_prime: "~ finite {p. prime p}"
--- a/src/HOL/Predicate_Compile_Examples/Specialisation_Examples.thy Thu May 20 16:22:50 2010 +0200 +++ b/src/HOL/Predicate_Compile_Examples/Specialisation_Examples.thy Thu May 20 16:25:22 2010 +0200 @@ -13,7 +13,7 @@ "greater_than_index xs = (\<forall>i x. nth_el' xs i = Some x --> x > i)" code_pred (expected_modes: i => bool) [inductify, skip_proof, specialise] greater_than_index . -ML {* Predicate_Compile_Core.intros_of @{theory} @{const_name specialised_nth_el'P} *} +ML {* Predicate_Compile_Core.intros_of @{context} @{const_name specialised_nth_el'P} *} thm greater_than_index.equation @@ -42,7 +42,7 @@ thm max_of_my_SucP.equation -ML {* Predicate_Compile_Core.intros_of @{theory} @{const_name specialised_max_natP} *} +ML {* Predicate_Compile_Core.intros_of @{context} @{const_name specialised_max_natP} *} values "{x. max_of_my_SucP x 6}"
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile.ML Thu May 20 16:22:50 2010 +0200 +++ b/src/HOL/Tools/Predicate_Compile/predicate_compile.ML Thu May 20 16:25:22 2010 +0200 @@ -74,7 +74,8 @@ end fun preprocess_strong_conn_constnames options gr ts thy = - if forall (fn (Const (c, _)) => Predicate_Compile_Core.is_registered thy c) ts then + if forall (fn (Const (c, _)) => + Predicate_Compile_Core.is_registered (ProofContext.init_global thy) c) ts then thy else let
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_core.ML Thu May 20 16:22:50 2010 +0200 +++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_core.ML Thu May 20 16:25:22 2010 +0200 @@ -18,27 +18,29 @@ -> ((string option * bool) * (compilation * int list)) -> int -> string -> Toplevel.state -> unit val register_predicate : (string * thm list * thm) -> theory -> theory val register_intros : string * thm list -> theory -> theory - val is_registered : theory -> string -> bool - val function_name_of : compilation -> theory -> string -> mode -> string + val is_registered : Proof.context -> string -> bool + val function_name_of : compilation -> Proof.context -> string -> mode -> string val predfun_intro_of: Proof.context -> string -> mode -> thm val predfun_elim_of: Proof.context -> string -> mode -> thm - val all_preds_of : theory -> string list - val modes_of: compilation -> theory -> string -> mode list - val all_modes_of : compilation -> theory -> (string * mode list) list - val all_random_modes_of : theory -> (string * mode list) list - val intros_of : theory -> string -> thm list + val all_preds_of : Proof.context -> string list + val modes_of: compilation -> Proof.context -> string -> mode list + val all_modes_of : compilation -> Proof.context -> (string * mode list) list + val all_random_modes_of : Proof.context -> (string * mode list) list + val intros_of : Proof.context -> string -> thm list val add_intro : thm -> theory -> theory val set_elim : thm -> theory -> theory val register_alternative_function : string -> mode -> string -> theory -> theory - val alternative_compilation_of : theory -> string -> mode -> + val alternative_compilation_of_global : theory -> string -> mode -> + (compilation_funs -> typ -> term) option + val alternative_compilation_of : Proof.context -> string -> mode -> (compilation_funs -> typ -> term) option val functional_compilation : string -> mode -> compilation_funs -> typ -> term val force_modes_and_functions : string -> (mode * (string * bool)) list -> theory -> theory val force_modes_and_compilations : string -> (mode * ((compilation_funs -> typ -> term) * bool)) list -> theory -> theory val preprocess_intro : theory -> thm -> thm - val print_stored_rules : theory -> unit - val print_all_modes : compilation -> theory -> unit + val print_stored_rules : Proof.context -> unit + val print_all_modes : compilation -> Proof.context -> unit val mk_casesrule : Proof.context -> term -> thm list -> term val eval_ref : (unit -> term Predicate.pred) option Unsynchronized.ref val random_eval_ref : (unit -> int * int -> term Predicate.pred * (int * int)) @@ -228,77 +230,81 @@ (* queries *) -fun lookup_pred_data thy name = - Option.map rep_pred_data (try (Graph.get_node (PredData.get thy)) name) +fun lookup_pred_data ctxt name = + Option.map rep_pred_data (try (Graph.get_node (PredData.get (ProofContext.theory_of ctxt))) name) -fun the_pred_data thy name = case lookup_pred_data thy name +fun the_pred_data ctxt name = case lookup_pred_data ctxt name of NONE => error ("No such predicate " ^ quote name) | SOME data => data; val is_registered = is_some oo lookup_pred_data -val all_preds_of = Graph.keys o PredData.get +val all_preds_of = Graph.keys o PredData.get o ProofContext.theory_of -fun intros_of thy = map (Thm.transfer thy) o #intros o the_pred_data thy +val intros_of = #intros oo the_pred_data -fun the_elim_of thy name = case #elim (the_pred_data thy name) +fun the_elim_of ctxt name = case #elim (the_pred_data ctxt name) of NONE => error ("No elimination rule for predicate " ^ quote name) - | SOME thm => Thm.transfer thy thm + | SOME thm => thm -val has_elim = is_some o #elim oo the_pred_data; +val has_elim = is_some o #elim oo the_pred_data -fun function_names_of compilation thy name = - case AList.lookup (op =) (#function_names (the_pred_data thy name)) compilation of +fun function_names_of compilation ctxt name = + case AList.lookup (op =) (#function_names (the_pred_data ctxt name)) compilation of NONE => error ("No " ^ string_of_compilation compilation ^ "functions defined for predicate " ^ quote name) | SOME fun_names => fun_names -fun function_name_of compilation thy name mode = +fun function_name_of compilation ctxt name mode = case AList.lookup eq_mode - (function_names_of compilation thy name) mode of + (function_names_of compilation ctxt name) mode of NONE => error ("No " ^ string_of_compilation compilation ^ " function defined for mode " ^ string_of_mode mode ^ " of predicate " ^ quote name) | SOME function_name => function_name -fun modes_of compilation thy name = map fst (function_names_of compilation thy name) +fun modes_of compilation ctxt name = map fst (function_names_of compilation ctxt name) -fun all_modes_of compilation thy = - map_filter (fn name => Option.map (pair name) (try (modes_of compilation thy) name)) - (all_preds_of thy) +fun all_modes_of compilation ctxt = + map_filter (fn name => Option.map (pair name) (try (modes_of compilation ctxt) name)) + (all_preds_of ctxt) val all_random_modes_of = all_modes_of Random -fun defined_functions compilation thy name = - AList.defined (op =) (#function_names (the_pred_data thy name)) compilation +fun defined_functions compilation ctxt name = case lookup_pred_data ctxt name of + NONE => false + | SOME data => AList.defined (op =) (#function_names data) compilation -fun lookup_predfun_data thy name mode = +fun needs_random ctxt s m = + member (op =) (#needs_random (the_pred_data ctxt s)) m + +fun lookup_predfun_data ctxt name mode = Option.map rep_predfun_data - (AList.lookup (op =) (#predfun_data (the_pred_data thy name)) mode) + (AList.lookup (op =) (#predfun_data (the_pred_data ctxt name)) mode) -fun the_predfun_data thy name mode = - case lookup_predfun_data thy name mode of +fun the_predfun_data ctxt name mode = + case lookup_predfun_data ctxt name mode of NONE => error ("No function defined for mode " ^ string_of_mode mode ^ " of predicate " ^ name) | SOME data => data; -val predfun_definition_of = #definition ooo the_predfun_data o ProofContext.theory_of +val predfun_definition_of = #definition ooo the_predfun_data -val predfun_intro_of = #intro ooo the_predfun_data o ProofContext.theory_of +val predfun_intro_of = #intro ooo the_predfun_data -val predfun_elim_of = #elim ooo the_predfun_data o ProofContext.theory_of +val predfun_elim_of = #elim ooo the_predfun_data -val predfun_neg_intro_of = #neg_intro ooo the_predfun_data o ProofContext.theory_of +val predfun_neg_intro_of = #neg_intro ooo the_predfun_data (* diagnostic display functions *) -fun print_modes options thy modes = +fun print_modes options modes = if show_modes options then tracing ("Inferred modes:\n" ^ cat_lines (map (fn (s, ms) => s ^ ": " ^ commas (map (fn (p, m) => string_of_mode m ^ (if p then "pos" else "neg")) ms)) modes)) else () -fun print_pred_mode_table string_of_entry thy pred_mode_table = +fun print_pred_mode_table string_of_entry pred_mode_table = let fun print_mode pred ((pol, mode), entry) = "mode : " ^ string_of_mode mode ^ string_of_entry pred mode entry @@ -307,35 +313,35 @@ val _ = tracing (cat_lines (map print_pred pred_mode_table)) in () end; -fun string_of_prem thy (Prem t) = - (Syntax.string_of_term_global thy t) ^ "(premise)" - | string_of_prem thy (Negprem t) = - (Syntax.string_of_term_global thy (HOLogic.mk_not t)) ^ "(negative premise)" - | string_of_prem thy (Sidecond t) = - (Syntax.string_of_term_global thy t) ^ "(sidecondition)" - | string_of_prem thy _ = raise Fail "string_of_prem: unexpected input" +fun string_of_prem ctxt (Prem t) = + (Syntax.string_of_term ctxt t) ^ "(premise)" + | string_of_prem ctxt (Negprem t) = + (Syntax.string_of_term ctxt (HOLogic.mk_not t)) ^ "(negative premise)" + | string_of_prem ctxt (Sidecond t) = + (Syntax.string_of_term ctxt t) ^ "(sidecondition)" + | string_of_prem ctxt _ = raise Fail "string_of_prem: unexpected input" -fun string_of_clause thy pred (ts, prems) = +fun string_of_clause ctxt pred (ts, prems) = (space_implode " --> " - (map (string_of_prem thy) prems)) ^ " --> " ^ pred ^ " " - ^ (space_implode " " (map (Syntax.string_of_term_global thy) ts)) + (map (string_of_prem ctxt) prems)) ^ " --> " ^ pred ^ " " + ^ (space_implode " " (map (Syntax.string_of_term ctxt) ts)) -fun print_compiled_terms options thy = +fun print_compiled_terms options ctxt = if show_compilation options then - print_pred_mode_table (fn _ => fn _ => Syntax.string_of_term_global thy) thy + print_pred_mode_table (fn _ => fn _ => Syntax.string_of_term ctxt) else K () -fun print_stored_rules thy = +fun print_stored_rules ctxt = let - val preds = (Graph.keys o PredData.get) thy + val preds = Graph.keys (PredData.get (ProofContext.theory_of ctxt)) fun print pred () = let val _ = writeln ("predicate: " ^ pred) val _ = writeln ("introrules: ") - val _ = fold (fn thm => fn u => writeln (Display.string_of_thm_global thy thm)) - (rev (intros_of thy pred)) () + val _ = fold (fn thm => fn u => writeln (Display.string_of_thm ctxt thm)) + (rev (intros_of ctxt pred)) () in - if (has_elim thy pred) then - writeln ("elimrule: " ^ Display.string_of_thm_global thy (the_elim_of thy pred)) + if (has_elim ctxt pred) then + writeln ("elimrule: " ^ Display.string_of_thm ctxt (the_elim_of ctxt pred)) else writeln ("no elimrule defined") end @@ -343,7 +349,7 @@ fold print preds () end; -fun print_all_modes compilation thy = +fun print_all_modes compilation ctxt = let val _ = writeln ("Inferred modes:") fun print (pred, modes) u = @@ -352,7 +358,7 @@ val _ = writeln ("modes: " ^ (commas (map string_of_mode modes))) in u end in - fold print (all_modes_of compilation thy) () + fold print (all_modes_of compilation ctxt) () end (* validity checks *) @@ -575,12 +581,12 @@ (Trueprop_conv (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq}))))) (Thm.transfer thy rule) -fun preprocess_elim thy elimrule = +fun preprocess_elim ctxt elimrule = let fun replace_eqs (Const ("Trueprop", _) $ (Const ("op =", T) $ lhs $ rhs)) = HOLogic.mk_Trueprop (Const (@{const_name Predicate.eq}, T) $ lhs $ rhs) | replace_eqs t = t - val ctxt = ProofContext.init_global thy + val thy = ProofContext.theory_of ctxt val ((_, [elimrule]), ctxt') = Variable.import false [elimrule] ctxt val prems = Thm.prems_of elimrule val nargs = length (snd (strip_comb (HOLogic.dest_Trueprop (hd prems)))) @@ -607,21 +613,21 @@ val no_compilation = ([], ([], [])) -fun fetch_pred_data thy name = - case try (Inductive.the_inductive (ProofContext.init_global thy)) name of +fun fetch_pred_data ctxt name = + case try (Inductive.the_inductive ctxt) name of SOME (info as (_, result)) => let fun is_intro_of intro = let val (const, _) = strip_comb (HOLogic.dest_Trueprop (concl_of intro)) - in (fst (dest_Const const) = name) end; + in (fst (dest_Const const) = name) end; + val thy = ProofContext.theory_of ctxt val intros = (map (expand_tuples thy #> preprocess_intro thy) (filter is_intro_of (#intrs result))) val index = find_index (fn s => s = name) (#names (fst info)) val pre_elim = nth (#elims result) index val pred = nth (#preds result) index val nparams = length (Inductive.params_of (#raw_induct result)) - val ctxt = ProofContext.init_global thy val elim_t = mk_casesrule ctxt pred intros val elim = prove_casesrule ctxt (pred, (pre_elim, nparams)) elim_t @@ -635,16 +641,16 @@ val add = (apsnd o apsnd o apfst) (cons (mode, mk_predfun_data data)) in PredData.map (Graph.map_node name (map_pred_data add)) end -fun is_inductive_predicate thy name = - is_some (try (Inductive.the_inductive (ProofContext.init_global thy)) name) +fun is_inductive_predicate ctxt name = + is_some (try (Inductive.the_inductive ctxt) name) -fun depending_preds_of thy (key, value) = +fun depending_preds_of ctxt (key, value) = let val intros = (#intros o rep_pred_data) value in fold Term.add_const_names (map Thm.prop_of intros) [] |> filter (fn c => (not (c = key)) andalso - (is_inductive_predicate thy c orelse is_registered thy c)) + (is_inductive_predicate ctxt c orelse is_registered ctxt c)) end; fun add_intro thm thy = @@ -667,7 +673,7 @@ fun register_predicate (constname, pre_intros, pre_elim) thy = let val intros = map (preprocess_intro thy) pre_intros - val elim = preprocess_elim thy pre_elim + val elim = preprocess_elim (ProofContext.init_global thy) pre_elim in if not (member (op =) (Graph.keys (PredData.get thy)) constname) then PredData.map @@ -725,9 +731,13 @@ (mode * (compilation_funs -> typ -> term)) list -> bool)); ); -fun alternative_compilation_of thy pred_name mode = +fun alternative_compilation_of_global thy pred_name mode = AList.lookup eq_mode (Symtab.lookup_list (Alt_Compilations_Data.get thy) pred_name) mode +fun alternative_compilation_of ctxt pred_name mode = + AList.lookup eq_mode + (Symtab.lookup_list (Alt_Compilations_Data.get (ProofContext.theory_of ctxt)) pred_name) mode + fun force_modes_and_compilations pred_name compilations = let (* thm refl is a dummy thm *) @@ -1157,10 +1167,10 @@ in (v, (s::names, HOLogic.mk_eq (v, t)::eqs)) end; *) -fun is_possible_output thy vs t = +fun is_possible_output ctxt vs t = forall (fn t => is_eqT (fastype_of t) andalso forall (member (op =) vs) (term_vs t)) - (non_invertible_subterms (ProofContext.init_global thy) t) + (non_invertible_subterms ctxt t) andalso (forall (is_eqT o snd) (inter (fn ((f', _), f) => f = f') vs (Term.add_frees t []))) @@ -1176,7 +1186,7 @@ [] end -fun is_constructable thy vs t = forall (member (op =) vs) (term_vs t) +fun is_constructable vs t = forall (member (op =) vs) (term_vs t) fun missing_vars vs t = subtract (op =) vs (term_vs t) @@ -1196,11 +1206,11 @@ SOME ms => SOME (map (fn m => (Context m , [])) ms) | NONE => NONE) -fun derivations_of (thy : theory) modes vs (Const ("Pair", _) $ t1 $ t2) (Pair (m1, m2)) = +fun derivations_of (ctxt : Proof.context) modes vs (Const ("Pair", _) $ t1 $ t2) (Pair (m1, m2)) = map_product (fn (m1, mvars1) => fn (m2, mvars2) => (Mode_Pair (m1, m2), union (op =) mvars1 mvars2)) - (derivations_of thy modes vs t1 m1) (derivations_of thy modes vs t2 m2) - | derivations_of thy modes vs t (m as Fun _) = + (derivations_of ctxt modes vs t1 m1) (derivations_of ctxt modes vs t2 m2) + | derivations_of ctxt modes vs t (m as Fun _) = (*let val (p, args) = strip_comb t in @@ -1216,37 +1226,37 @@ end) ms | NONE => (if is_all_input mode then [(Context mode, [])] else [])) end*) - (case try (all_derivations_of thy modes vs) t of + (case try (all_derivations_of ctxt modes vs) t of SOME derivs => filter (fn (d, mvars) => eq_mode (mode_of d, m) andalso null (output_terms (t, d))) derivs | NONE => (if is_all_input m then [(Context m, [])] else [])) - | derivations_of thy modes vs t m = + | derivations_of ctxt modes vs t m = if eq_mode (m, Input) then [(Term Input, missing_vars vs t)] else if eq_mode (m, Output) then - (if is_possible_output thy vs t then [(Term Output, [])] else []) + (if is_possible_output ctxt vs t then [(Term Output, [])] else []) else [] -and all_derivations_of thy modes vs (Const ("Pair", _) $ t1 $ t2) = +and all_derivations_of ctxt modes vs (Const ("Pair", _) $ t1 $ t2) = let - val derivs1 = all_derivations_of thy modes vs t1 - val derivs2 = all_derivations_of thy modes vs t2 + val derivs1 = all_derivations_of ctxt modes vs t1 + val derivs2 = all_derivations_of ctxt modes vs t2 in map_product (fn (m1, mvars1) => fn (m2, mvars2) => (Mode_Pair (m1, m2), union (op =) mvars1 mvars2)) derivs1 derivs2 end - | all_derivations_of thy modes vs (t1 $ t2) = + | all_derivations_of ctxt modes vs (t1 $ t2) = let - val derivs1 = all_derivations_of thy modes vs t1 + val derivs1 = all_derivations_of ctxt modes vs t1 in maps (fn (d1, mvars1) => case mode_of d1 of Fun (m', _) => map (fn (d2, mvars2) => - (Mode_App (d1, d2), union (op =) mvars1 mvars2)) (derivations_of thy modes vs t2 m') + (Mode_App (d1, d2), union (op =) mvars1 mvars2)) (derivations_of ctxt modes vs t2 m') | _ => raise Fail "Something went wrong") derivs1 end - | all_derivations_of thy modes vs (Const (s, T)) = the (lookup_mode modes (Const (s, T))) - | all_derivations_of thy modes vs (Free (x, T)) = the (lookup_mode modes (Free (x, T))) + | all_derivations_of _ modes vs (Const (s, T)) = the (lookup_mode modes (Const (s, T))) + | all_derivations_of _ modes vs (Free (x, T)) = the (lookup_mode modes (Free (x, T))) | all_derivations_of _ modes vs _ = raise Fail "all_derivations_of" fun rev_option_ord ord (NONE, NONE) = EQUAL @@ -1287,7 +1297,7 @@ EQUAL => lexl_ord ords' (x, x') | ord => ord -fun deriv_ord' thy pol pred modes t1 t2 ((deriv1, mvars1), (deriv2, mvars2)) = +fun deriv_ord' ctxt pol pred modes t1 t2 ((deriv1, mvars1), (deriv2, mvars2)) = let (* prefer functional modes if it is a function *) fun fun_ord ((t1, deriv1, mvars1), (t2, deriv2, mvars2)) = @@ -1295,7 +1305,7 @@ fun is_functional t mode = case try (fst o dest_Const o fst o strip_comb) t of NONE => false - | SOME c => is_some (alternative_compilation_of thy c mode) + | SOME c => is_some (alternative_compilation_of ctxt c mode) in case (is_functional t1 (head_mode_of deriv1), is_functional t2 (head_mode_of deriv2)) of (true, true) => EQUAL @@ -1325,7 +1335,7 @@ ord ((t1, deriv1, mvars1), (t2, deriv2, mvars2)) end -fun deriv_ord thy pol pred modes t = deriv_ord' thy pol pred modes t t +fun deriv_ord ctxt pol pred modes t = deriv_ord' ctxt pol pred modes t t fun premise_ord thy pol pred modes ((prem1, a1), (prem2, a2)) = rev_option_ord (deriv_ord' thy pol pred modes (dest_indprem prem1) (dest_indprem prem2)) (a1, a2) @@ -1334,25 +1344,25 @@ tracing ("modes: " ^ (commas (map (fn (s, ms) => s ^ ": " ^ commas (map (fn (m, r) => string_of_mode m ^ (if r then " random " else " not ")) ms)) modes))) -fun select_mode_prem (mode_analysis_options : mode_analysis_options) (thy : theory) pred +fun select_mode_prem (mode_analysis_options : mode_analysis_options) (ctxt : Proof.context) pred pol (modes, (pos_modes, neg_modes)) vs ps = let fun choose_mode_of_prem (Prem t) = partial_hd - (sort (deriv_ord thy pol pred modes t) (all_derivations_of thy pos_modes vs t)) + (sort (deriv_ord ctxt pol pred modes t) (all_derivations_of ctxt pos_modes vs t)) | choose_mode_of_prem (Sidecond t) = SOME (Context Bool, missing_vars vs t) | choose_mode_of_prem (Negprem t) = partial_hd - (sort (deriv_ord thy (not pol) pred modes t) + (sort (deriv_ord ctxt (not pol) pred modes t) (filter (fn (d, missing_vars) => is_all_input (head_mode_of d)) - (all_derivations_of thy neg_modes vs t))) - | choose_mode_of_prem p = raise Fail ("choose_mode_of_prem: " ^ string_of_prem thy p) + (all_derivations_of ctxt neg_modes vs t))) + | choose_mode_of_prem p = raise Fail ("choose_mode_of_prem: " ^ string_of_prem ctxt p) in if #reorder_premises mode_analysis_options then - partial_hd (sort (premise_ord thy pol pred modes) (ps ~~ map choose_mode_of_prem ps)) + partial_hd (sort (premise_ord ctxt pol pred modes) (ps ~~ map choose_mode_of_prem ps)) else SOME (hd ps, choose_mode_of_prem (hd ps)) end -fun check_mode_clause' (mode_analysis_options : mode_analysis_options) thy pred param_vs (modes : +fun check_mode_clause' (mode_analysis_options : mode_analysis_options) ctxt pred param_vs (modes : (string * ((bool * mode) * bool) list) list) ((pol, mode) : bool * mode) (ts, ps) = let val vTs = distinct (op =) (fold Term.add_frees (map dest_indprem ps) (fold Term.add_frees ts [])) @@ -1367,7 +1377,7 @@ val modes = map (fn (s, ms) => (s, map (fn ((p, m), r) => m) ms)) modes' in (modes, modes) end val (in_ts, out_ts) = split_mode mode ts - val in_vs = maps (vars_of_destructable_term (ProofContext.init_global thy)) in_ts + val in_vs = maps (vars_of_destructable_term ctxt) in_ts val out_vs = terms_vs out_ts fun known_vs_after p vs = (case p of Prem t => union (op =) vs (term_vs t) @@ -1377,7 +1387,7 @@ fun check_mode_prems acc_ps rnd vs [] = SOME (acc_ps, vs, rnd) | check_mode_prems acc_ps rnd vs ps = (case - (select_mode_prem mode_analysis_options thy pred pol (modes', (pos_modes', neg_modes')) vs ps) of + (select_mode_prem mode_analysis_options ctxt pred pol (modes', (pos_modes', neg_modes')) vs ps) of SOME (p, SOME (deriv, [])) => check_mode_prems ((p, deriv) :: acc_ps) rnd (known_vs_after p vs) (filter_out (equal p) ps) | SOME (p, SOME (deriv, missing_vars)) => @@ -1393,7 +1403,7 @@ case check_mode_prems [] false in_vs ps of NONE => NONE | SOME (acc_ps, vs, rnd) => - if forall (is_constructable thy vs) (in_ts @ out_ts) then + if forall (is_constructable vs) (in_ts @ out_ts) then SOME (ts, rev acc_ps, rnd) else if #use_random mode_analysis_options andalso pol then @@ -1473,11 +1483,12 @@ fun infer_modes mode_analysis_options options compilation preds all_modes param_vs clauses thy = let + val ctxt = ProofContext.init_global thy val collect_errors = false fun appair f (x1, x2) (y1, y2) = (f x1 y1, f x2 y2) - fun needs_random s (false, m) = ((false, m), false) - | needs_random s (true, m) = ((true, m), member (op =) (#needs_random (the_pred_data thy s)) m) - fun add_polarity_and_random_bit s b ms = map (fn m => needs_random s (b, m)) ms + fun add_needs_random s (false, m) = ((false, m), false) + | add_needs_random s (true, m) = ((true, m), needs_random ctxt s m) + fun add_polarity_and_random_bit s b ms = map (fn m => add_needs_random s (b, m)) ms val prednames = map fst preds (* extramodes contains all modes of all constants, should we only use the necessary ones - what is the impact on performance? *) @@ -1492,15 +1503,13 @@ if #infer_pos_and_neg_modes mode_analysis_options then let val pos_extra_modes = - map_filter (fn name => Option.map (pair name) (try (modes_of compilation thy) name)) + map_filter (fn name => Option.map (pair name) (try (modes_of compilation ctxt) name)) relevant_prednames - (* all_modes_of compilation thy *) |> filter_out (fn (name, _) => member (op =) prednames name) val neg_extra_modes = map_filter (fn name => Option.map (pair name) - (try (modes_of (negative_compilation_of compilation) thy) name)) + (try (modes_of (negative_compilation_of compilation) ctxt) name)) relevant_prednames - (*all_modes_of (negative_compilation_of compilation) thy*) |> filter_out (fn (name, _) => member (op =) prednames name) in map (fn (s, ms) => (s, (add_polarity_and_random_bit s true ms) @@ -1509,9 +1518,8 @@ end else map (fn (s, ms) => (s, (add_polarity_and_random_bit s true ms))) - (map_filter (fn name => Option.map (pair name) (try (modes_of compilation thy) name)) + (map_filter (fn name => Option.map (pair name) (try (modes_of compilation ctxt) name)) relevant_prednames - (*all_modes_of compilation thy*) |> filter_out (fn (name, _) => member (op =) prednames name)) val _ = print_extra_modes options extra_modes val start_modes = @@ -1521,7 +1529,7 @@ else map (fn (s, ms) => (s, map (fn m => ((true, m), false)) ms)) all_modes fun iteration modes = map - (check_modes_pred' mode_analysis_options options thy param_vs clauses + (check_modes_pred' mode_analysis_options options ctxt param_vs clauses (modes @ extra_modes)) modes val ((modes : (string * ((bool * mode) * bool) list) list), errors) = Output.cond_timeit false "Fixpount computation of mode analysis" (fn () => @@ -1532,7 +1540,7 @@ in (modes', errors @ flat new_errors) end) (start_modes, []) else (fixp (fn modes => map fst (iteration modes)) start_modes, [])) - val moded_clauses = map (get_modes_pred' mode_analysis_options thy param_vs clauses + val moded_clauses = map (get_modes_pred' mode_analysis_options ctxt param_vs clauses (modes @ extra_modes)) modes val thy' = fold (fn (s, ms) => if member (op =) (map fst preds) s then set_needs_random s (map_filter (fn ((true, m), true) => SOME m | _ => NONE) ms) else I) @@ -1671,11 +1679,11 @@ (t, Term Input) => SOME t | (t, Term Output) => NONE | (Const (name, T), Context mode) => - (case alternative_compilation_of (ProofContext.theory_of ctxt) name mode of + (case alternative_compilation_of ctxt name mode of SOME alt_comp => SOME (alt_comp compfuns T) | NONE => SOME (Const (function_name_of (Comp_Mod.compilation compilation_modifiers) - (ProofContext.theory_of ctxt) name mode, + ctxt name mode, Comp_Mod.funT_of compilation_modifiers mode T))) | (Free (s, T), Context m) => SOME (Free (s, Comp_Mod.funT_of compilation_modifiers m T)) @@ -1813,7 +1821,7 @@ (** switch detection analysis **) -fun find_switch_test thy (i, is) (ts, prems) = +fun find_switch_test ctxt (i, is) (ts, prems) = let val t = nth_pair is (nth ts i) val T = fastype_of t @@ -1821,7 +1829,7 @@ case T of TFree _ => NONE | Type (Tcon, _) => - (case Datatype_Data.get_constrs thy Tcon of + (case Datatype_Data.get_constrs (ProofContext.theory_of ctxt) Tcon of NONE => NONE | SOME cs => (case strip_comb t of @@ -1830,11 +1838,11 @@ | (Const (c, T), _) => if AList.defined (op =) cs c then SOME (c, T) else NONE)) end -fun partition_clause thy pos moded_clauses = +fun partition_clause ctxt pos moded_clauses = let fun insert_list eq (key, value) = AList.map_default eq (key, []) (cons value) fun find_switch_test' moded_clause (cases, left) = - case find_switch_test thy pos moded_clause of + case find_switch_test ctxt pos moded_clause of SOME (c, T) => (insert_list (op =) ((c, T), moded_clause) cases, left) | NONE => (cases, moded_clause :: left) in @@ -1844,12 +1852,12 @@ datatype switch_tree = Atom of moded_clause list | Node of (position * ((string * typ) * switch_tree) list) * switch_tree -fun mk_switch_tree thy mode moded_clauses = +fun mk_switch_tree ctxt mode moded_clauses = let fun select_best_switch moded_clauses input_position best_switch = let val ord = option_ord (rev_order o int_ord o (pairself (length o snd o snd))) - val partition = partition_clause thy input_position moded_clauses + val partition = partition_clause ctxt input_position moded_clauses val switch = if (length (fst partition) > 1) then SOME (input_position, partition) else NONE in case ord (switch, best_switch) of LESS => best_switch @@ -1937,9 +1945,8 @@ (* compilation of predicates *) -fun compile_pred options compilation_modifiers thy all_vs param_vs s T (pol, mode) moded_cls = +fun compile_pred options compilation_modifiers ctxt all_vs param_vs s T (pol, mode) moded_cls = let - val ctxt = ProofContext.init_global thy val compilation_modifiers = if pol then compilation_modifiers else negative_comp_modifiers_of compilation_modifiers val additional_arguments = Comp_Mod.additional_arguments compilation_modifiers @@ -1967,7 +1974,7 @@ if detect_switches options then the_default (mk_bot compfuns (HOLogic.mk_tupleT outTs)) (compile_switch compilation_modifiers ctxt all_vs param_vs additional_arguments - mode in_ts' outTs (mk_switch_tree thy mode moded_cls)) + mode in_ts' outTs (mk_switch_tree ctxt mode moded_cls)) else let val cl_ts = @@ -1983,7 +1990,7 @@ end val fun_const = Const (function_name_of (Comp_Mod.compilation compilation_modifiers) - (ProofContext.theory_of ctxt) s mode, funT) + ctxt s mode, funT) in HOLogic.mk_Trueprop (HOLogic.mk_eq (list_comb (fun_const, in_ts @ additional_arguments), compilation)) @@ -2044,7 +2051,7 @@ (Free (x, T), x :: names) end -fun create_intro_elim_rule mode defthm mode_id funT pred thy = +fun create_intro_elim_rule ctxt mode defthm mode_id funT pred = let val funtrm = Const (mode_id, funT) val Ts = binder_types (fastype_of pred) @@ -2072,11 +2079,11 @@ val simprules = [defthm, @{thm eval_pred}, @{thm "split_beta"}, @{thm "fst_conv"}, @{thm "snd_conv"}, @{thm pair_collapse}] val unfolddef_tac = Simplifier.asm_full_simp_tac (HOL_basic_ss addsimps simprules) 1 - val introthm = Goal.prove (ProofContext.init_global thy) + val introthm = Goal.prove ctxt (argnames @ hoarg_names' @ ["y"]) [] introtrm (fn _ => unfolddef_tac) val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT)); val elimtrm = Logic.list_implies ([funpropE, Logic.mk_implies (predpropE, P)], P) - val elimthm = Goal.prove (ProofContext.init_global thy) + val elimthm = Goal.prove ctxt (argnames @ ["y", "P"]) [] elimtrm (fn _ => unfolddef_tac) val opt_neg_introthm = if is_all_input mode then @@ -2090,7 +2097,7 @@ Simplifier.asm_full_simp_tac (HOL_basic_ss addsimps (@{thm if_False} :: @{thm Predicate.not_pred_eq} :: simprules)) 1 THEN rtac @{thm Predicate.singleI} 1 - in SOME (Goal.prove (ProofContext.init_global thy) (argnames @ hoarg_names') [] + in SOME (Goal.prove ctxt (argnames @ hoarg_names') [] neg_introtrm (fn _ => tac)) end else NONE @@ -2131,8 +2138,9 @@ val ([definition], thy') = thy |> Sign.add_consts_i [(Binding.name mode_cbasename, funT, NoSyn)] |> PureThy.add_defs false [((Binding.name (mode_cbasename ^ "_def"), def), [])] + val ctxt' = ProofContext.init_global thy' val rules as ((intro, elim), _) = - create_intro_elim_rule mode definition mode_cname funT (Const (name, T)) thy' + create_intro_elim_rule ctxt' mode definition mode_cname funT (Const (name, T)) in thy' |> set_function_name Pred name mode mode_cname |> add_predfun_data name mode (definition, rules) @@ -2301,10 +2309,9 @@ fun prove_sidecond ctxt t = let - val thy = ProofContext.theory_of ctxt fun preds_of t nameTs = case strip_comb t of (f as Const (name, T), args) => - if is_registered thy name then (name, T) :: nameTs + if is_registered ctxt name then (name, T) :: nameTs else fold preds_of args nameTs | _ => nameTs val preds = preds_of t [] @@ -2402,10 +2409,9 @@ fun prove_one_direction options ctxt clauses preds pred mode moded_clauses = let - val thy = ProofContext.theory_of ctxt val T = the (AList.lookup (op =) preds pred) val nargs = length (binder_types T) - val pred_case_rule = the_elim_of thy pred + val pred_case_rule = the_elim_of ctxt pred in REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"})) THEN print_tac options "before applying elim rule" @@ -2495,7 +2501,7 @@ fun prove_sidecond2 options ctxt t = let fun preds_of t nameTs = case strip_comb t of (f as Const (name, T), args) => - if is_registered (ProofContext.theory_of ctxt) name then (name, T) :: nameTs + if is_registered ctxt name then (name, T) :: nameTs else fold preds_of args nameTs | _ => nameTs val preds = preds_of t [] @@ -2512,7 +2518,7 @@ fun prove_clause2 options ctxt pred mode (ts, ps) i = let - val pred_intro_rule = nth (intros_of (ProofContext.theory_of ctxt) pred) (i - 1) + val pred_intro_rule = nth (intros_of ctxt pred) (i - 1) val (in_ts, clause_out_ts) = split_mode mode ts; fun prove_prems2 out_ts [] = print_tac options "before prove_match2 - last call:" @@ -2635,8 +2641,8 @@ map (fn (pred, modes) => (pred, map (fn (mode, value) => value) modes)) preds_modes_table -fun compile_preds options comp_modifiers thy all_vs param_vs preds moded_clauses = - map_preds_modes (fn pred => compile_pred options comp_modifiers thy all_vs param_vs pred +fun compile_preds options comp_modifiers ctxt all_vs param_vs preds moded_clauses = + map_preds_modes (fn pred => compile_pred options comp_modifiers ctxt all_vs param_vs pred (the (AList.lookup (op =) preds pred))) moded_clauses fun prove options thy clauses preds moded_clauses compiled_terms = @@ -2649,25 +2655,25 @@ compiled_terms (* preparation of introduction rules into special datastructures *) -fun dest_prem thy params t = +fun dest_prem ctxt params t = (case strip_comb t of (v as Free _, ts) => if member (op =) params v then Prem t else Sidecond t - | (c as Const (@{const_name Not}, _), [t]) => (case dest_prem thy params t of + | (c as Const (@{const_name Not}, _), [t]) => (case dest_prem ctxt params t of Prem t => Negprem t | Negprem _ => error ("Double negation not allowed in premise: " ^ - Syntax.string_of_term_global thy (c $ t)) + Syntax.string_of_term ctxt (c $ t)) | Sidecond t => Sidecond (c $ t)) | (c as Const (s, _), ts) => - if is_registered thy s then Prem t else Sidecond t + if is_registered ctxt s then Prem t else Sidecond t | _ => Sidecond t) fun prepare_intrs options compilation thy prednames intros = let + val ctxt = ProofContext.init_global thy val intrs = map prop_of intros val preds = map (fn c => Const (c, Sign.the_const_type thy c)) prednames val (preds, intrs) = unify_consts thy preds intrs - val ([preds, intrs], _) = fold_burrow (Variable.import_terms false) [preds, intrs] - (ProofContext.init_global thy) + val ([preds, intrs], _) = fold_burrow (Variable.import_terms false) [preds, intrs] ctxt val preds = map dest_Const preds val all_vs = terms_vs intrs val all_modes = @@ -2698,7 +2704,7 @@ fun add_clause intr clauses = let val (Const (name, T), ts) = strip_comb (HOLogic.dest_Trueprop (Logic.strip_imp_concl intr)) - val prems = map (dest_prem thy params o HOLogic.dest_Trueprop) (Logic.strip_imp_prems intr) + val prems = map (dest_prem ctxt params o HOLogic.dest_Trueprop) (Logic.strip_imp_prems intr) in AList.update op = (name, these (AList.lookup op = clauses name) @ [(ts, prems)]) clauses @@ -2755,20 +2761,19 @@ (* create code equation *) -fun add_code_equations thy preds result_thmss = +fun add_code_equations ctxt preds result_thmss = let - val ctxt = ProofContext.init_global thy fun add_code_equation (predname, T) (pred, result_thms) = let val full_mode = fold_rev (curry Fun) (map (K Input) (binder_types T)) Bool in - if member (op =) (modes_of Pred thy predname) full_mode then + if member (op =) (modes_of Pred ctxt predname) full_mode then let val Ts = binder_types T val arg_names = Name.variant_list [] (map (fn i => "x" ^ string_of_int i) (1 upto length Ts)) val args = map2 (curry Free) arg_names Ts - val predfun = Const (function_name_of Pred thy predname full_mode, + val predfun = Const (function_name_of Pred ctxt predname full_mode, Ts ---> PredicateCompFuns.mk_predT @{typ unit}) val rhs = @{term Predicate.holds} $ (list_comb (predfun, args)) val eq_term = HOLogic.mk_Trueprop @@ -2794,7 +2799,7 @@ define_functions : options -> (string * typ) list -> string * (bool * mode) list -> theory -> theory, prove : options -> theory -> (string * (term list * indprem list) list) list -> (string * typ) list -> moded_clause list pred_mode_table -> term pred_mode_table -> thm pred_mode_table, - add_code_equations : theory -> (string * typ) list + add_code_equations : Proof.context -> (string * typ) list -> (string * thm list) list -> (string * thm list) list, comp_modifiers : Comp_Mod.comp_modifiers, use_random : bool, @@ -2805,6 +2810,7 @@ let fun dest_steps (Steps s) = s val compilation = Comp_Mod.compilation (#comp_modifiers (dest_steps steps)) + val ctxt = ProofContext.init_global thy val _ = print_step options ("Starting predicate compiler (compilation: " ^ string_of_compilation compilation ^ ") for predicates " ^ commas prednames ^ "...") @@ -2812,35 +2818,36 @@ (*val _ = map (check_format_of_intro_rule thy) (maps (intros_of thy) prednames)*) val _ = if show_intermediate_results options then - tracing (commas (map (Display.string_of_thm_global thy) (maps (intros_of thy) prednames))) + tracing (commas (map (Display.string_of_thm ctxt) (maps (intros_of ctxt) prednames))) else () val (preds, all_vs, param_vs, all_modes, clauses) = - prepare_intrs options compilation thy prednames (maps (intros_of thy) prednames) + prepare_intrs options compilation thy prednames (maps (intros_of ctxt) prednames) val _ = print_step options "Infering modes..." val ((moded_clauses, errors), thy') = - Output.cond_timeit true "Infering modes" + Output.cond_timeit (!Quickcheck.timing) "Infering modes" (fn _ => infer_modes mode_analysis_options options compilation preds all_modes param_vs clauses thy) val modes = map (fn (p, mps) => (p, map fst mps)) moded_clauses val _ = check_expected_modes preds options modes (*val _ = check_proposed_modes preds options modes (fst extra_modes) errors*) - val _ = print_modes options thy' modes + val _ = print_modes options modes val _ = print_step options "Defining executable functions..." val thy'' = Output.cond_timeit (!Quickcheck.timing) "Defining executable functions..." (fn _ => fold (#define_functions (dest_steps steps) options preds) modes thy' |> Theory.checkpoint) + val ctxt'' = ProofContext.init_global thy'' val _ = print_step options "Compiling equations..." val compiled_terms = Output.cond_timeit (!Quickcheck.timing) "Compiling equations...." (fn _ => compile_preds options - (#comp_modifiers (dest_steps steps)) thy'' all_vs param_vs preds moded_clauses) - val _ = print_compiled_terms options thy'' compiled_terms + (#comp_modifiers (dest_steps steps)) ctxt'' all_vs param_vs preds moded_clauses) + val _ = print_compiled_terms options ctxt'' compiled_terms val _ = print_step options "Proving equations..." val result_thms = Output.cond_timeit (!Quickcheck.timing) "Proving equations...." (fn _ => #prove (dest_steps steps) options thy'' clauses preds moded_clauses compiled_terms) - val result_thms' = #add_code_equations (dest_steps steps) thy'' preds + val result_thms' = #add_code_equations (dest_steps steps) ctxt'' preds (maps_modes result_thms) val qname = #qname (dest_steps steps) val attrib = fn thy => Attrib.attribute_i thy (Attrib.internal (K (Thm.declaration_attribute @@ -2873,8 +2880,9 @@ let fun dest_steps (Steps s) = s val defined = defined_functions (Comp_Mod.compilation (#comp_modifiers (dest_steps steps))) + val ctxt = ProofContext.init_global thy val thy' = thy - |> PredData.map (fold (extend (fetch_pred_data thy) (depending_preds_of thy)) names) + |> PredData.map (fold (extend (fetch_pred_data ctxt) (depending_preds_of ctxt)) names) |> Theory.checkpoint; fun strong_conn_of gr keys = Graph.strong_conn (Graph.subgraph (member (op =) (Graph.all_succs gr keys)) gr) @@ -2882,7 +2890,7 @@ val thy'' = fold_rev (fn preds => fn thy => - if not (forall (defined thy) preds) then + if not (forall (defined (ProofContext.init_global thy)) preds) then let val mode_analysis_options = {use_random = #use_random (dest_steps steps), reorder_premises = @@ -3025,15 +3033,17 @@ let val thy = ProofContext.theory_of lthy val const = prep_const thy raw_const + val ctxt = ProofContext.init_global thy val lthy' = Local_Theory.theory (PredData.map - (extend (fetch_pred_data thy) (depending_preds_of thy) const)) lthy + (extend (fetch_pred_data ctxt) (depending_preds_of ctxt) const)) lthy val thy' = ProofContext.theory_of lthy' - val preds = Graph.all_succs (PredData.get thy') [const] |> filter_out (has_elim thy') + val ctxt' = ProofContext.init_global thy' + val preds = Graph.all_succs (PredData.get thy') [const] |> filter_out (has_elim ctxt') fun mk_cases const = let val T = Sign.the_const_type thy const val pred = Const (const, T) - val intros = intros_of thy' const + val intros = intros_of ctxt' const in mk_casesrule lthy' pred intros end val cases_rules = map mk_cases preds val cases = @@ -3083,11 +3093,11 @@ (unit -> int -> int -> int * int -> int -> (term * int) Lazy_Sequence.lazy_sequence) option) (*FIXME turn this into an LCF-guarded preprocessor for comprehensions*) -fun analyze_compr thy compfuns param_user_modes (compilation, arguments) t_compr = +fun analyze_compr ctxt compfuns param_user_modes (compilation, arguments) t_compr = let val all_modes_of = all_modes_of compilation val split = case t_compr of (Const (@{const_name Collect}, _) $ t) => t - | _ => error ("Not a set comprehension: " ^ Syntax.string_of_term_global thy t_compr); + | _ => error ("Not a set comprehension: " ^ Syntax.string_of_term ctxt t_compr); val (body, Ts, fp) = HOLogic.strip_psplits split; val output_names = Name.variant_list (Term.add_free_names body []) (map (fn i => "x" ^ string_of_int i) (1 upto length Ts)) @@ -3098,9 +3108,9 @@ val (pred as Const (name, T), all_args) = case strip_comb body of (Const (name, T), all_args) => (Const (name, T), all_args) - | (head, _) => error ("Not a constant: " ^ Syntax.string_of_term_global thy head) + | (head, _) => error ("Not a constant: " ^ Syntax.string_of_term ctxt head) in - if defined_functions compilation thy name then + if defined_functions compilation ctxt name then let fun extract_mode (Const ("Pair", _) $ t1 $ t2) = Pair (extract_mode t1, extract_mode t2) | extract_mode (Free (x, _)) = if member (op =) output_names x then Output else Input @@ -3123,9 +3133,13 @@ instance_of (m1, Input) andalso instance_of (m2, Input) | instance_of (Pair (m1, m2), Output) = instance_of (m1, Output) andalso instance_of (m2, Output) + | instance_of (Input, Pair (m1, m2)) = + instance_of (Input, m1) andalso instance_of (Input, m2) + | instance_of (Output, Pair (m1, m2)) = + instance_of (Output, m1) andalso instance_of (Output, m2) | instance_of _ = false in forall instance_of (strip_fun_mode m1 ~~ strip_fun_mode m2) end - val derivs = all_derivations_of thy (all_modes_of thy) [] body + val derivs = all_derivations_of ctxt (all_modes_of ctxt) [] body |> filter (fn (d, missing_vars) => let val (p_mode :: modes) = collect_context_modes d @@ -3137,10 +3151,10 @@ |> map fst val deriv = case derivs of [] => error ("No mode possible for comprehension " - ^ Syntax.string_of_term_global thy t_compr) + ^ Syntax.string_of_term ctxt t_compr) | [d] => d | d :: _ :: _ => (warning ("Multiple modes possible for comprehension " - ^ Syntax.string_of_term_global thy t_compr); d); + ^ Syntax.string_of_term ctxt t_compr); d); val (_, outargs) = split_mode (head_mode_of deriv) all_args val additional_arguments = case compilation of @@ -3164,7 +3178,7 @@ | DSeq => dseq_comp_modifiers | Pos_Random_DSeq => pos_random_dseq_comp_modifiers | New_Pos_Random_DSeq => new_pos_random_dseq_comp_modifiers - val t_pred = compile_expr comp_modifiers (ProofContext.init_global thy) + val t_pred = compile_expr comp_modifiers ctxt (body, deriv) additional_arguments; val T_pred = dest_predT compfuns (fastype_of t_pred) val arrange = split_lambda (HOLogic.mk_tuple outargs) output_tuple @@ -3175,7 +3189,7 @@ error "Evaluation with values is not possible because compilation with code_pred was not invoked" end -fun eval thy stats param_user_modes (options as (compilation, arguments)) k t_compr = +fun eval ctxt stats param_user_modes (options as (compilation, arguments)) k t_compr = let fun count xs x = let @@ -3190,7 +3204,7 @@ | Pos_Random_DSeq => Random_Sequence_CompFuns.compfuns | New_Pos_Random_DSeq => New_Pos_Random_Sequence_CompFuns.compfuns | _ => PredicateCompFuns.compfuns - val t = analyze_compr thy compfuns param_user_modes options t_compr; + val t = analyze_compr ctxt compfuns param_user_modes options t_compr; val T = dest_predT compfuns (fastype_of t); val t' = if stats andalso compilation = New_Pos_Random_DSeq then @@ -3199,6 +3213,7 @@ @{term Code_Numeral.of_nat} $ (HOLogic.size_const T $ Bound 0)))) t else mk_map compfuns T HOLogic.termT (HOLogic.term_of_const T) t + val thy = ProofContext.theory_of ctxt val (ts, statistics) = case compilation of (* Random => @@ -3250,8 +3265,7 @@ fun values ctxt param_user_modes ((raw_expected, stats), comp_options) k t_compr = let - val thy = ProofContext.theory_of ctxt - val ((T, ts), statistics) = eval thy stats param_user_modes comp_options k t_compr + val ((T, ts), statistics) = eval ctxt stats param_user_modes comp_options k t_compr val setT = HOLogic.mk_setT T val elems = HOLogic.mk_set T ts val cont = Free ("...", setT)
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_data.ML Thu May 20 16:22:50 2010 +0200 +++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_data.ML Thu May 20 16:25:22 2010 +0200 @@ -253,8 +253,9 @@ fun obtain_specification_graph options thy t = let + val ctxt = ProofContext.init_global thy fun is_nondefining_const (c, T) = member (op =) logic_operator_names c - fun has_code_pred_intros (c, T) = can (Predicate_Compile_Core.intros_of thy) c + fun has_code_pred_intros (c, T) = can (Predicate_Compile_Core.intros_of ctxt) c fun case_consts (c, T) = is_some (Datatype.info_of_case thy c) fun is_datatype_constructor (c, T) = is_some (Datatype.info_of_constr thy (c, T)) fun defiants_of specs =
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_quickcheck.ML Thu May 20 16:22:50 2010 +0200 +++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_quickcheck.ML Thu May 20 16:25:22 2010 +0200 @@ -216,12 +216,13 @@ (*val _ = Predicate_Compile_Core.print_all_modes compilation thy4*) val _ = Output.tracing ("Preprocessing time: " ^ string_of_int (snd preproc_time)) val _ = Output.tracing ("Core compilation time: " ^ string_of_int (snd core_comp_time)) - val modes = Predicate_Compile_Core.modes_of compilation thy4 full_constname + val ctxt4 = ProofContext.init_global thy4 + val modes = Predicate_Compile_Core.modes_of compilation ctxt4 full_constname val output_mode = fold_rev (curry Fun) (map (K Output) (binder_types constT)) Bool val prog = if member eq_mode modes output_mode then let - val name = Predicate_Compile_Core.function_name_of compilation thy4 + val name = Predicate_Compile_Core.function_name_of compilation ctxt4 full_constname output_mode val T = case compilation of
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_specialisation.ML Thu May 20 16:22:50 2010 +0200 +++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_specialisation.ML Thu May 20 16:25:22 2010 +0200 @@ -181,7 +181,7 @@ if member (op =) ((map fst specs) @ black_list) pred_name then thy else - (case try (Predicate_Compile_Core.intros_of thy) pred_name of + (case try (Predicate_Compile_Core.intros_of (ProofContext.init_global thy)) pred_name of NONE => thy | SOME [] => thy | SOME intros =>
--- a/src/HOLCF/Fixrec.thy Thu May 20 16:22:50 2010 +0200 +++ b/src/HOLCF/Fixrec.thy Thu May 20 16:25:22 2010 +0200 @@ -65,30 +65,6 @@ == "CONST maybe_when\<cdot>t1\<cdot>(\<Lambda> x. t2)\<cdot>m" -subsubsection {* Monadic bind operator *} - -definition - bind :: "'a maybe \<rightarrow> ('a \<rightarrow> 'b maybe) \<rightarrow> 'b maybe" where - "bind = (\<Lambda> m f. case m of fail \<Rightarrow> fail | return\<cdot>x \<Rightarrow> f\<cdot>x)" - -text {* monad laws *} - -lemma bind_strict [simp]: "bind\<cdot>\<bottom>\<cdot>f = \<bottom>" -by (simp add: bind_def) - -lemma bind_fail [simp]: "bind\<cdot>fail\<cdot>f = fail" -by (simp add: bind_def) - -lemma left_unit [simp]: "bind\<cdot>(return\<cdot>a)\<cdot>k = k\<cdot>a" -by (simp add: bind_def) - -lemma right_unit [simp]: "bind\<cdot>m\<cdot>return = m" -by (rule_tac p=m in maybeE, simp_all) - -lemma bind_assoc: - "bind\<cdot>(bind\<cdot>m\<cdot>k)\<cdot>h = bind\<cdot>m\<cdot>(\<Lambda> a. bind\<cdot>(k\<cdot>a)\<cdot>h)" -by (rule_tac p=m in maybeE, simp_all) - subsubsection {* Run operator *} definition @@ -169,7 +145,7 @@ definition branch :: "('a \<rightarrow> 'b maybe) \<Rightarrow> ('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'c maybe)" where - "branch p \<equiv> \<Lambda> r x. bind\<cdot>(p\<cdot>x)\<cdot>(\<Lambda> y. return\<cdot>(r\<cdot>y))" + "branch p \<equiv> \<Lambda> r x. maybe_when\<cdot>fail\<cdot>(\<Lambda> y. return\<cdot>(r\<cdot>y))\<cdot>(p\<cdot>x)" lemma branch_rews: "p\<cdot>x = \<bottom> \<Longrightarrow> branch p\<cdot>r\<cdot>x = \<bottom>" @@ -277,7 +253,7 @@ definition cpair_pat :: "('a, 'c) pat \<Rightarrow> ('b, 'd) pat \<Rightarrow> ('a \<times> 'b, 'c \<times> 'd) pat" where "cpair_pat p1 p2 = (\<Lambda>(x, y). - bind\<cdot>(p1\<cdot>x)\<cdot>(\<Lambda> a. bind\<cdot>(p2\<cdot>y)\<cdot>(\<Lambda> b. return\<cdot>(a, b))))" + maybe_when\<cdot>fail\<cdot>(\<Lambda> a. maybe_when\<cdot>fail\<cdot>(\<Lambda> b. return\<cdot>(a, b))\<cdot>(p2\<cdot>y))\<cdot>(p1\<cdot>x))" definition spair_pat :: @@ -425,7 +401,7 @@ definition as_pat :: "('a \<rightarrow> 'b maybe) \<Rightarrow> 'a \<rightarrow> ('a \<times> 'b) maybe" where - "as_pat p = (\<Lambda> x. bind\<cdot>(p\<cdot>x)\<cdot>(\<Lambda> a. return\<cdot>(x, a)))" + "as_pat p = (\<Lambda> x. maybe_when\<cdot>fail\<cdot>(\<Lambda> a. return\<cdot>(x, a))\<cdot>(p\<cdot>x))" definition lazy_pat :: "('a \<rightarrow> 'b::pcpo maybe) \<Rightarrow> ('a \<rightarrow> 'b maybe)" where @@ -608,7 +584,7 @@ (@{const_name UU}, @{const_name match_UU}) ] *} -hide_const (open) return bind fail run cases +hide_const (open) return fail run cases lemmas [fixrec_simp] = run_strict run_fail run_return
--- a/src/HOLCF/IsaMakefile Thu May 20 16:22:50 2010 +0200 +++ b/src/HOLCF/IsaMakefile Thu May 20 16:25:22 2010 +0200 @@ -7,6 +7,7 @@ default: HOLCF images: HOLCF IOA test: HOLCF-IMP HOLCF-ex HOLCF-FOCUS \ + HOLCF-Tutorial \ IOA-ABP IOA-NTP IOA-Modelcheck IOA-Storage IOA-ex all: images test @@ -78,6 +79,19 @@ @$(ISABELLE_TOOL) usedir -b -g true -r $(OUT)/HOL HOLCF +## HOLCF-Tutorial + +HOLCF-Tutorial: HOLCF $(LOG)/HOLCF-Tutorial.gz + +$(LOG)/HOLCF-Tutorial.gz: $(OUT)/HOLCF \ + Tutorial/Domain_ex.thy \ + Tutorial/Fixrec_ex.thy \ + Tutorial/New_Domain.thy \ + Tutorial/document/root.tex \ + Tutorial/ROOT.ML + @$(ISABELLE_TOOL) usedir $(OUT)/HOLCF Tutorial + + ## HOLCF-IMP HOLCF-IMP: HOLCF $(LOG)/HOLCF-IMP.gz @@ -95,15 +109,12 @@ ../HOL/Library/Nat_Infinity.thy \ ex/Dagstuhl.thy \ ex/Dnat.thy \ - ex/Domain_ex.thy \ ex/Domain_Proofs.thy \ ex/Fix2.thy \ - ex/Fixrec_ex.thy \ ex/Focus_ex.thy \ ex/Hoare.thy \ ex/Letrec.thy \ ex/Loop.thy \ - ex/New_Domain.thy \ ex/Powerdomain_ex.thy \ ex/Stream.thy \ ex/Strict_Fun.thy \ @@ -201,4 +212,4 @@ $(LOG)/HOLCF-ex.gz $(LOG)/HOLCF-FOCUS.gz $(OUT)/IOA \ $(LOG)/IOA.gz $(LOG)/IOA-ABP.gz $(LOG)/IOA-NTP.gz \ $(LOG)/IOA-Modelcheck.gz $(LOG)/IOA-Storage.gz \ - $(LOG)/IOA-ex.gz + $(LOG)/IOA-ex.gz $(LOG)/HOLCF-Tutorial.gz
--- a/src/HOLCF/Tools/Domain/domain_constructors.ML Thu May 20 16:22:50 2010 +0200 +++ b/src/HOLCF/Tools/Domain/domain_constructors.ML Thu May 20 16:25:22 2010 +0200 @@ -952,7 +952,7 @@ val (fun1, fun2, taken) = pat_lhs (pat, args); val defs = @{thm branch_def} :: pat_defs; val goal = mk_trp (mk_strict fun1); - val rules = @{thm Fixrec.bind_strict} :: case_rews; + val rules = @{thms maybe_when_rews} @ case_rews; val tacs = [simp_tac (beta_ss addsimps rules) 1]; in prove thy defs goal (K tacs) end; fun pat_apps (i, (pat, (con, args))) = @@ -967,7 +967,7 @@ val concl = mk_trp (mk_eq (fun1 ` con_app, rhs)); val goal = Logic.list_implies (assms, concl); val defs = @{thm branch_def} :: pat_defs; - val rules = @{thms bind_fail left_unit} @ case_rews; + val rules = @{thms maybe_when_rews} @ case_rews; val tacs = [asm_simp_tac (beta_ss addsimps rules) 1]; in prove thy defs goal (K tacs) end; in map_index pat_app spec end;
--- a/src/HOLCF/Tools/fixrec.ML Thu May 20 16:22:50 2010 +0200 +++ b/src/HOLCF/Tools/fixrec.ML Thu May 20 16:25:22 2010 +0200 @@ -125,10 +125,20 @@ val (lhss, rhss) = ListPair.unzip (map (dest_eqs o snd) spec); val functional = lambda_tuple lhss (mk_tuple rhss); val fixpoint = mk_fix (mk_cabs functional); - + val cont_thm = - Goal.prove lthy [] [] (mk_trp (mk_cont functional)) - (K (simp_tac (simpset_of lthy) 1)); + let + val prop = mk_trp (mk_cont functional); + fun err () = error ( + "Continuity proof failed; please check that cont2cont rules\n" ^ + "are configured for all non-HOLCF constants.\n" ^ + "The error occurred for the goal statement:\n" ^ + Syntax.string_of_term lthy prop); + fun check th = case Thm.nprems_of th of 0 => all_tac th | n => err (); + val tac = simp_tac (simpset_of lthy) 1 THEN check; + in + Goal.prove lthy [] [] prop (K tac) + end; fun one_def (l as Free(n,_)) r = let val b = Long_Name.base_name n
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOLCF/Tutorial/Domain_ex.thy Thu May 20 16:25:22 2010 +0200 @@ -0,0 +1,211 @@ +(* Title: HOLCF/ex/Domain_ex.thy + Author: Brian Huffman +*) + +header {* Domain package examples *} + +theory Domain_ex +imports HOLCF +begin + +text {* Domain constructors are strict by default. *} + +domain d1 = d1a | d1b "d1" "d1" + +lemma "d1b\<cdot>\<bottom>\<cdot>y = \<bottom>" by simp + +text {* Constructors can be made lazy using the @{text "lazy"} keyword. *} + +domain d2 = d2a | d2b (lazy "d2") + +lemma "d2b\<cdot>x \<noteq> \<bottom>" by simp + +text {* Strict and lazy arguments may be mixed arbitrarily. *} + +domain d3 = d3a | d3b (lazy "d2") "d2" + +lemma "P (d3b\<cdot>x\<cdot>y = \<bottom>) \<longleftrightarrow> P (y = \<bottom>)" by simp + +text {* Selectors can be used with strict or lazy constructor arguments. *} + +domain d4 = d4a | d4b (lazy d4b_left :: "d2") (d4b_right :: "d2") + +lemma "y \<noteq> \<bottom> \<Longrightarrow> d4b_left\<cdot>(d4b\<cdot>x\<cdot>y) = x" by simp + +text {* Mixfix declarations can be given for data constructors. *} + +domain d5 = d5a | d5b (lazy "d5") "d5" (infixl ":#:" 70) + +lemma "d5a \<noteq> x :#: y :#: z" by simp + +text {* Mixfix declarations can also be given for type constructors. *} + +domain ('a, 'b) lazypair (infixl ":*:" 25) = + lpair (lazy lfst :: 'a) (lazy lsnd :: 'b) (infixl ":*:" 75) + +lemma "\<forall>p::('a :*: 'b). p \<sqsubseteq> lfst\<cdot>p :*: lsnd\<cdot>p" +by (rule allI, case_tac p, simp_all) + +text {* Non-recursive constructor arguments can have arbitrary types. *} + +domain ('a, 'b) d6 = d6 "int lift" "'a \<oplus> 'b u" (lazy "('a :*: 'b) \<times> ('b \<rightarrow> 'a)") + +text {* + Indirect recusion is allowed for sums, products, lifting, and the + continuous function space. However, the domain package does not + generate an induction rule in terms of the constructors. +*} + +domain 'a d7 = d7a "'a d7 \<oplus> int lift" | d7b "'a \<otimes> 'a d7" | d7c (lazy "'a d7 \<rightarrow> 'a") + -- "Indirect recursion detected, skipping proofs of (co)induction rules" + +text {* Note that @{text d7.induct} is absent. *} + +text {* + Indirect recursion is also allowed using previously-defined datatypes. +*} + +domain 'a slist = SNil | SCons 'a "'a slist" + +domain 'a stree = STip | SBranch "'a stree slist" + +text {* Mutually-recursive datatypes can be defined using the @{text "and"} keyword. *} + +domain d8 = d8a | d8b "d9" and d9 = d9a | d9b (lazy "d8") + +text {* Non-regular recursion is not allowed. *} +(* +domain ('a, 'b) altlist = ANil | ACons 'a "('b, 'a) altlist" + -- "illegal direct recursion with different arguments" +domain 'a nest = Nest1 'a | Nest2 "'a nest nest" + -- "illegal direct recursion with different arguments" +*) + +text {* + Mutually-recursive datatypes must have all the same type arguments, + not necessarily in the same order. +*} + +domain ('a, 'b) list1 = Nil1 | Cons1 'a "('b, 'a) list2" + and ('b, 'a) list2 = Nil2 | Cons2 'b "('a, 'b) list1" + +text {* Induction rules for flat datatypes have no admissibility side-condition. *} + +domain 'a flattree = Tip | Branch "'a flattree" "'a flattree" + +lemma "\<lbrakk>P \<bottom>; P Tip; \<And>x y. \<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>; P x; P y\<rbrakk> \<Longrightarrow> P (Branch\<cdot>x\<cdot>y)\<rbrakk> \<Longrightarrow> P x" +by (rule flattree.induct) -- "no admissibility requirement" + +text {* Trivial datatypes will produce a warning message. *} + +domain triv = Triv triv triv + -- "domain @{text Domain_ex.triv} is empty!" + +lemma "(x::triv) = \<bottom>" by (induct x, simp_all) + +text {* Lazy constructor arguments may have unpointed types. *} + +domain natlist = nnil | ncons (lazy "nat discr") natlist + +text {* Class constraints may be given for type parameters on the LHS. *} + +domain ('a::cpo) box = Box (lazy 'a) + + +subsection {* Generated constants and theorems *} + +domain 'a tree = Leaf (lazy 'a) | Node (left :: "'a tree") (right :: "'a tree") + +lemmas tree_abs_defined_iff = + iso.abs_defined_iff [OF iso.intro [OF tree.abs_iso tree.rep_iso]] + +text {* Rules about ismorphism *} +term tree_rep +term tree_abs +thm tree.rep_iso +thm tree.abs_iso +thm tree.iso_rews + +text {* Rules about constructors *} +term Leaf +term Node +thm Leaf_def Node_def +thm tree.nchotomy +thm tree.exhaust +thm tree.compacts +thm tree.con_rews +thm tree.dist_les +thm tree.dist_eqs +thm tree.inverts +thm tree.injects + +text {* Rules about case combinator *} +term tree_when +thm tree.tree_when_def +thm tree.when_rews + +text {* Rules about selectors *} +term left +term right +thm tree.sel_rews + +text {* Rules about discriminators *} +term is_Leaf +term is_Node +thm tree.dis_rews + +text {* Rules about pattern match combinators *} +term Leaf_pat +term Node_pat +thm tree.pat_rews + +text {* Rules about monadic pattern match combinators *} +term match_Leaf +term match_Node +thm tree.match_rews + +text {* Rules about take function *} +term tree_take +thm tree.take_def +thm tree.take_0 +thm tree.take_Suc +thm tree.take_rews +thm tree.chain_take +thm tree.take_take +thm tree.deflation_take +thm tree.take_below +thm tree.take_lemma +thm tree.lub_take +thm tree.reach +thm tree.finite_induct + +text {* Rules about finiteness predicate *} +term tree_finite +thm tree.finite_def +thm tree.finite (* only generated for flat datatypes *) + +text {* Rules about bisimulation predicate *} +term tree_bisim +thm tree.bisim_def +thm tree.coinduct + +text {* Induction rule *} +thm tree.induct + + +subsection {* Known bugs *} + +text {* Declaring a mixfix with spaces causes some strange parse errors. *} +(* +domain xx = xx ("x y") + -- "Inner syntax error: unexpected end of input" +*) + +text {* + Non-cpo type parameters currently do not work. +*} +(* +domain ('a::type) stream = snil | scons (lazy "'a discr") "'a stream" +*) + +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOLCF/Tutorial/Fixrec_ex.thy Thu May 20 16:25:22 2010 +0200 @@ -0,0 +1,246 @@ +(* Title: HOLCF/ex/Fixrec_ex.thy + Author: Brian Huffman +*) + +header {* Fixrec package examples *} + +theory Fixrec_ex +imports HOLCF +begin + +subsection {* Basic @{text fixrec} examples *} + +text {* + Fixrec patterns can mention any constructor defined by the domain + package, as well as any of the following built-in constructors: + Pair, spair, sinl, sinr, up, ONE, TT, FF. +*} + +text {* Typical usage is with lazy constructors. *} + +fixrec down :: "'a u \<rightarrow> 'a" +where "down\<cdot>(up\<cdot>x) = x" + +text {* With strict constructors, rewrite rules may require side conditions. *} + +fixrec from_sinl :: "'a \<oplus> 'b \<rightarrow> 'a" +where "x \<noteq> \<bottom> \<Longrightarrow> from_sinl\<cdot>(sinl\<cdot>x) = x" + +text {* Lifting can turn a strict constructor into a lazy one. *} + +fixrec from_sinl_up :: "'a u \<oplus> 'b \<rightarrow> 'a" +where "from_sinl_up\<cdot>(sinl\<cdot>(up\<cdot>x)) = x" + +text {* Fixrec also works with the HOL pair constructor. *} + +fixrec down2 :: "'a u \<times> 'b u \<rightarrow> 'a \<times> 'b" +where "down2\<cdot>(up\<cdot>x, up\<cdot>y) = (x, y)" + + +subsection {* Examples using @{text fixrec_simp} *} + +text {* A type of lazy lists. *} + +domain 'a llist = lNil | lCons (lazy 'a) (lazy "'a llist") + +text {* A zip function for lazy lists. *} + +text {* Notice that the patterns are not exhaustive. *} + +fixrec + lzip :: "'a llist \<rightarrow> 'b llist \<rightarrow> ('a \<times> 'b) llist" +where + "lzip\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>(lCons\<cdot>y\<cdot>ys) = lCons\<cdot>(x, y)\<cdot>(lzip\<cdot>xs\<cdot>ys)" +| "lzip\<cdot>lNil\<cdot>lNil = lNil" + +text {* @{text fixrec_simp} is useful for producing strictness theorems. *} +text {* Note that pattern matching is done in left-to-right order. *} + +lemma lzip_stricts [simp]: + "lzip\<cdot>\<bottom>\<cdot>ys = \<bottom>" + "lzip\<cdot>lNil\<cdot>\<bottom> = \<bottom>" + "lzip\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>\<bottom> = \<bottom>" +by fixrec_simp+ + +text {* @{text fixrec_simp} can also produce rules for missing cases. *} + +lemma lzip_undefs [simp]: + "lzip\<cdot>lNil\<cdot>(lCons\<cdot>y\<cdot>ys) = \<bottom>" + "lzip\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>lNil = \<bottom>" +by fixrec_simp+ + + +subsection {* Pattern matching with bottoms *} + +text {* + As an alternative to using @{text fixrec_simp}, it is also possible + to use bottom as a constructor pattern. When using a bottom + pattern, the right-hand-side must also be bottom; otherwise, @{text + fixrec} will not be able to prove the equation. +*} + +fixrec + from_sinr_up :: "'a \<oplus> 'b\<^sub>\<bottom> \<rightarrow> 'b" +where + "from_sinr_up\<cdot>\<bottom> = \<bottom>" +| "from_sinr_up\<cdot>(sinr\<cdot>(up\<cdot>x)) = x" + +text {* + If the function is already strict in that argument, then the bottom + pattern does not change the meaning of the function. For example, + in the definition of @{term from_sinr_up}, the first equation is + actually redundant, and could have been proven separately by + @{text fixrec_simp}. +*} + +text {* + A bottom pattern can also be used to make a function strict in a + certain argument, similar to a bang-pattern in Haskell. +*} + +fixrec + seq :: "'a \<rightarrow> 'b \<rightarrow> 'b" +where + "seq\<cdot>\<bottom>\<cdot>y = \<bottom>" +| "x \<noteq> \<bottom> \<Longrightarrow> seq\<cdot>x\<cdot>y = y" + + +subsection {* Skipping proofs of rewrite rules *} + +text {* Another zip function for lazy lists. *} + +text {* + Notice that this version has overlapping patterns. + The second equation cannot be proved as a theorem + because it only applies when the first pattern fails. +*} + +fixrec (permissive) + lzip2 :: "'a llist \<rightarrow> 'b llist \<rightarrow> ('a \<times> 'b) llist" +where + "lzip2\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>(lCons\<cdot>y\<cdot>ys) = lCons\<cdot>(x, y)\<cdot>(lzip\<cdot>xs\<cdot>ys)" +| "lzip2\<cdot>xs\<cdot>ys = lNil" + +text {* + Usually fixrec tries to prove all equations as theorems. + The "permissive" option overrides this behavior, so fixrec + does not produce any simp rules. +*} + +text {* Simp rules can be generated later using @{text fixrec_simp}. *} + +lemma lzip2_simps [simp]: + "lzip2\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>(lCons\<cdot>y\<cdot>ys) = lCons\<cdot>(x, y)\<cdot>(lzip\<cdot>xs\<cdot>ys)" + "lzip2\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>lNil = lNil" + "lzip2\<cdot>lNil\<cdot>(lCons\<cdot>y\<cdot>ys) = lNil" + "lzip2\<cdot>lNil\<cdot>lNil = lNil" +by fixrec_simp+ + +lemma lzip2_stricts [simp]: + "lzip2\<cdot>\<bottom>\<cdot>ys = \<bottom>" + "lzip2\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>\<bottom> = \<bottom>" +by fixrec_simp+ + + +subsection {* Mutual recursion with @{text fixrec} *} + +text {* Tree and forest types. *} + +domain 'a tree = Leaf (lazy 'a) | Branch (lazy "'a forest") +and 'a forest = Empty | Trees (lazy "'a tree") "'a forest" + +text {* + To define mutually recursive functions, give multiple type signatures + separated by the keyword @{text "and"}. +*} + +fixrec + map_tree :: "('a \<rightarrow> 'b) \<rightarrow> ('a tree \<rightarrow> 'b tree)" +and + map_forest :: "('a \<rightarrow> 'b) \<rightarrow> ('a forest \<rightarrow> 'b forest)" +where + "map_tree\<cdot>f\<cdot>(Leaf\<cdot>x) = Leaf\<cdot>(f\<cdot>x)" +| "map_tree\<cdot>f\<cdot>(Branch\<cdot>ts) = Branch\<cdot>(map_forest\<cdot>f\<cdot>ts)" +| "map_forest\<cdot>f\<cdot>Empty = Empty" +| "ts \<noteq> \<bottom> \<Longrightarrow> + map_forest\<cdot>f\<cdot>(Trees\<cdot>t\<cdot>ts) = Trees\<cdot>(map_tree\<cdot>f\<cdot>t)\<cdot>(map_forest\<cdot>f\<cdot>ts)" + +lemma map_tree_strict [simp]: "map_tree\<cdot>f\<cdot>\<bottom> = \<bottom>" +by fixrec_simp + +lemma map_forest_strict [simp]: "map_forest\<cdot>f\<cdot>\<bottom> = \<bottom>" +by fixrec_simp + +(* + Theorems generated: + @{text map_tree_def} @{thm map_tree_def} + @{text map_forest_def} @{thm map_forest_def} + @{text map_tree.unfold} @{thm map_tree.unfold} + @{text map_forest.unfold} @{thm map_forest.unfold} + @{text map_tree.simps} @{thm map_tree.simps} + @{text map_forest.simps} @{thm map_forest.simps} + @{text map_tree_map_forest.induct} @{thm map_tree_map_forest.induct} +*) + + +subsection {* Looping simp rules *} + +text {* + The defining equations of a fixrec definition are declared as simp + rules by default. In some cases, especially for constants with no + arguments or functions with variable patterns, the defining + equations may cause the simplifier to loop. In these cases it will + be necessary to use a @{text "[simp del]"} declaration. +*} + +fixrec + repeat :: "'a \<rightarrow> 'a llist" +where + [simp del]: "repeat\<cdot>x = lCons\<cdot>x\<cdot>(repeat\<cdot>x)" + +text {* + We can derive other non-looping simp rules for @{const repeat} by + using the @{text subst} method with the @{text repeat.simps} rule. +*} + +lemma repeat_simps [simp]: + "repeat\<cdot>x \<noteq> \<bottom>" + "repeat\<cdot>x \<noteq> lNil" + "repeat\<cdot>x = lCons\<cdot>y\<cdot>ys \<longleftrightarrow> x = y \<and> repeat\<cdot>x = ys" +by (subst repeat.simps, simp)+ + +lemma llist_when_repeat [simp]: + "llist_when\<cdot>z\<cdot>f\<cdot>(repeat\<cdot>x) = f\<cdot>x\<cdot>(repeat\<cdot>x)" +by (subst repeat.simps, simp) + +text {* + For mutually-recursive constants, looping might only occur if all + equations are in the simpset at the same time. In such cases it may + only be necessary to declare @{text "[simp del]"} on one equation. +*} + +fixrec + inf_tree :: "'a tree" and inf_forest :: "'a forest" +where + [simp del]: "inf_tree = Branch\<cdot>inf_forest" +| "inf_forest = Trees\<cdot>inf_tree\<cdot>(Trees\<cdot>inf_tree\<cdot>Empty)" + + +subsection {* Using @{text fixrec} inside locales *} + +locale test = + fixes foo :: "'a \<rightarrow> 'a" + assumes foo_strict: "foo\<cdot>\<bottom> = \<bottom>" +begin + +fixrec + bar :: "'a u \<rightarrow> 'a" +where + "bar\<cdot>(up\<cdot>x) = foo\<cdot>x" + +lemma bar_strict: "bar\<cdot>\<bottom> = \<bottom>" +by fixrec_simp + +end + +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOLCF/Tutorial/New_Domain.thy Thu May 20 16:25:22 2010 +0200 @@ -0,0 +1,92 @@ +(* Title: HOLCF/ex/New_Domain.thy + Author: Brian Huffman +*) + +header {* Definitional domain package *} + +theory New_Domain +imports HOLCF +begin + +text {* + The definitional domain package only works with representable domains, + i.e. types in class @{text rep}. +*} + +default_sort rep + +text {* + Provided that @{text rep} is the default sort, the @{text new_domain} + package should work with any type definition supported by the old + domain package. +*} + +new_domain 'a llist = LNil | LCons (lazy 'a) (lazy "'a llist") + +text {* + The difference is that the new domain package is completely + definitional, and does not generate any axioms. The following type + and constant definitions are not produced by the old domain package. +*} + +thm type_definition_llist +thm llist_abs_def llist_rep_def + +text {* + The new domain package also adds support for indirect recursion with + user-defined datatypes. This definition of a tree datatype uses + indirect recursion through the lazy list type constructor. +*} + +new_domain 'a ltree = Leaf (lazy 'a) | Branch (lazy "'a ltree llist") + +text {* + For indirect-recursive definitions, the domain package is not able to + generate a high-level induction rule. (It produces a warning + message instead.) The low-level reach lemma (now proved as a + theorem, no longer generated as an axiom) can be used to derive + other induction rules. +*} + +thm ltree.reach + +text {* + The definition of the take function uses map functions associated with + each type constructor involved in the definition. A map function + for the lazy list type has been generated by the new domain package. +*} + +thm ltree.take_rews +thm llist_map_def + +lemma ltree_induct: + fixes P :: "'a ltree \<Rightarrow> bool" + assumes adm: "adm P" + assumes bot: "P \<bottom>" + assumes Leaf: "\<And>x. P (Leaf\<cdot>x)" + assumes Branch: "\<And>f l. \<forall>x. P (f\<cdot>x) \<Longrightarrow> P (Branch\<cdot>(llist_map\<cdot>f\<cdot>l))" + shows "P x" +proof - + have "P (\<Squnion>i. ltree_take i\<cdot>x)" + using adm + proof (rule admD) + fix i + show "P (ltree_take i\<cdot>x)" + proof (induct i arbitrary: x) + case (0 x) + show "P (ltree_take 0\<cdot>x)" by (simp add: bot) + next + case (Suc n x) + show "P (ltree_take (Suc n)\<cdot>x)" + apply (cases x) + apply (simp add: bot) + apply (simp add: Leaf) + apply (simp add: Branch Suc) + done + qed + qed (simp add: ltree.chain_take) + thus ?thesis + by (simp add: ltree.reach) +qed + +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOLCF/Tutorial/ROOT.ML Thu May 20 16:25:22 2010 +0200 @@ -0,0 +1,1 @@ +use_thys ["Domain_ex", "Fixrec_ex", "New_Domain"];
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOLCF/Tutorial/document/root.tex Thu May 20 16:25:22 2010 +0200 @@ -0,0 +1,29 @@ + +% HOLCF/document/root.tex + +\documentclass[11pt,a4paper]{article} +\usepackage{graphicx,isabelle,isabellesym,latexsym} +\usepackage[only,bigsqcap]{stmaryrd} +\usepackage[latin1]{inputenc} +\usepackage{pdfsetup} + +\urlstyle{rm} +%\isabellestyle{it} +\pagestyle{myheadings} + +\begin{document} + +\title{Isabelle/HOLCF Tutorial} +\maketitle + +\tableofcontents + +%\newpage + +%\renewcommand{\isamarkupheader}[1]% +%{\section{\isabellecontext: #1}\markright{THEORY~``\isabellecontext''}} + +\parindent 0pt\parskip 0.5ex +\input{session} + +\end{document}
--- a/src/HOLCF/ex/Domain_ex.thy Thu May 20 16:22:50 2010 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,210 +0,0 @@ -(* Title: HOLCF/ex/Domain_ex.thy - Author: Brian Huffman -*) - -header {* Domain package examples *} - -theory Domain_ex -imports HOLCF -begin - -text {* Domain constructors are strict by default. *} - -domain d1 = d1a | d1b "d1" "d1" - -lemma "d1b\<cdot>\<bottom>\<cdot>y = \<bottom>" by simp - -text {* Constructors can be made lazy using the @{text "lazy"} keyword. *} - -domain d2 = d2a | d2b (lazy "d2") - -lemma "d2b\<cdot>x \<noteq> \<bottom>" by simp - -text {* Strict and lazy arguments may be mixed arbitrarily. *} - -domain d3 = d3a | d3b (lazy "d2") "d2" - -lemma "P (d3b\<cdot>x\<cdot>y = \<bottom>) \<longleftrightarrow> P (y = \<bottom>)" by simp - -text {* Selectors can be used with strict or lazy constructor arguments. *} - -domain d4 = d4a | d4b (lazy d4b_left :: "d2") (d4b_right :: "d2") - -lemma "y \<noteq> \<bottom> \<Longrightarrow> d4b_left\<cdot>(d4b\<cdot>x\<cdot>y) = x" by simp - -text {* Mixfix declarations can be given for data constructors. *} - -domain d5 = d5a | d5b (lazy "d5") "d5" (infixl ":#:" 70) - -lemma "d5a \<noteq> x :#: y :#: z" by simp - -text {* Mixfix declarations can also be given for type constructors. *} - -domain ('a, 'b) lazypair (infixl ":*:" 25) = - lpair (lazy lfst :: 'a) (lazy lsnd :: 'b) (infixl ":*:" 75) - -lemma "\<forall>p::('a :*: 'b). p \<sqsubseteq> lfst\<cdot>p :*: lsnd\<cdot>p" -by (rule allI, case_tac p, simp_all) - -text {* Non-recursive constructor arguments can have arbitrary types. *} - -domain ('a, 'b) d6 = d6 "int lift" "'a \<oplus> 'b u" (lazy "('a :*: 'b) \<times> ('b \<rightarrow> 'a)") - -text {* - Indirect recusion is allowed for sums, products, lifting, and the - continuous function space. However, the domain package does not - generate an induction rule in terms of the constructors. -*} - -domain 'a d7 = d7a "'a d7 \<oplus> int lift" | d7b "'a \<otimes> 'a d7" | d7c (lazy "'a d7 \<rightarrow> 'a") - -- "Indirect recursion detected, skipping proofs of (co)induction rules" -(* d7.induct is absent *) - -text {* - Indirect recursion is also allowed using previously-defined datatypes. -*} - -domain 'a slist = SNil | SCons 'a "'a slist" - -domain 'a stree = STip | SBranch "'a stree slist" - -text {* Mutually-recursive datatypes can be defined using the @{text "and"} keyword. *} - -domain d8 = d8a | d8b "d9" and d9 = d9a | d9b (lazy "d8") - -text {* Non-regular recursion is not allowed. *} -(* -domain ('a, 'b) altlist = ANil | ACons 'a "('b, 'a) altlist" - -- "illegal direct recursion with different arguments" -domain 'a nest = Nest1 'a | Nest2 "'a nest nest" - -- "illegal direct recursion with different arguments" -*) - -text {* - Mutually-recursive datatypes must have all the same type arguments, - not necessarily in the same order. -*} - -domain ('a, 'b) list1 = Nil1 | Cons1 'a "('b, 'a) list2" - and ('b, 'a) list2 = Nil2 | Cons2 'b "('a, 'b) list1" - -text {* Induction rules for flat datatypes have no admissibility side-condition. *} - -domain 'a flattree = Tip | Branch "'a flattree" "'a flattree" - -lemma "\<lbrakk>P \<bottom>; P Tip; \<And>x y. \<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>; P x; P y\<rbrakk> \<Longrightarrow> P (Branch\<cdot>x\<cdot>y)\<rbrakk> \<Longrightarrow> P x" -by (rule flattree.induct) -- "no admissibility requirement" - -text {* Trivial datatypes will produce a warning message. *} - -domain triv = Triv triv triv - -- "domain Domain_ex.triv is empty!" - -lemma "(x::triv) = \<bottom>" by (induct x, simp_all) - -text {* Lazy constructor arguments may have unpointed types. *} - -domain natlist = nnil | ncons (lazy "nat discr") natlist - -text {* Class constraints may be given for type parameters on the LHS. *} - -domain ('a::cpo) box = Box (lazy 'a) - - -subsection {* Generated constants and theorems *} - -domain 'a tree = Leaf (lazy 'a) | Node (left :: "'a tree") (right :: "'a tree") - -lemmas tree_abs_defined_iff = - iso.abs_defined_iff [OF iso.intro [OF tree.abs_iso tree.rep_iso]] - -text {* Rules about ismorphism *} -term tree_rep -term tree_abs -thm tree.rep_iso -thm tree.abs_iso -thm tree.iso_rews - -text {* Rules about constructors *} -term Leaf -term Node -thm Leaf_def Node_def -thm tree.nchotomy -thm tree.exhaust -thm tree.compacts -thm tree.con_rews -thm tree.dist_les -thm tree.dist_eqs -thm tree.inverts -thm tree.injects - -text {* Rules about case combinator *} -term tree_when -thm tree.tree_when_def -thm tree.when_rews - -text {* Rules about selectors *} -term left -term right -thm tree.sel_rews - -text {* Rules about discriminators *} -term is_Leaf -term is_Node -thm tree.dis_rews - -text {* Rules about pattern match combinators *} -term Leaf_pat -term Node_pat -thm tree.pat_rews - -text {* Rules about monadic pattern match combinators *} -term match_Leaf -term match_Node -thm tree.match_rews - -text {* Rules about take function *} -term tree_take -thm tree.take_def -thm tree.take_0 -thm tree.take_Suc -thm tree.take_rews -thm tree.chain_take -thm tree.take_take -thm tree.deflation_take -thm tree.take_below -thm tree.take_lemma -thm tree.lub_take -thm tree.reach -thm tree.finite_induct - -text {* Rules about finiteness predicate *} -term tree_finite -thm tree.finite_def -thm tree.finite (* only generated for flat datatypes *) - -text {* Rules about bisimulation predicate *} -term tree_bisim -thm tree.bisim_def -thm tree.coinduct - -text {* Induction rule *} -thm tree.induct - - -subsection {* Known bugs *} - -text {* Declaring a mixfix with spaces causes some strange parse errors. *} -(* -domain xx = xx ("x y") - -- "Inner syntax error: unexpected end of input" -*) - -text {* - Non-cpo type parameters currently do not work. -*} -(* -domain ('a::type) stream = snil | scons (lazy "'a discr") "'a stream" -*) - -end
--- a/src/HOLCF/ex/Fixrec_ex.thy Thu May 20 16:22:50 2010 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,203 +0,0 @@ -(* Title: HOLCF/ex/Fixrec_ex.thy - Author: Brian Huffman -*) - -header {* Fixrec package examples *} - -theory Fixrec_ex -imports HOLCF -begin - -subsection {* Basic @{text fixrec} examples *} - -text {* - Fixrec patterns can mention any constructor defined by the domain - package, as well as any of the following built-in constructors: - Pair, spair, sinl, sinr, up, ONE, TT, FF. -*} - -text {* Typical usage is with lazy constructors. *} - -fixrec down :: "'a u \<rightarrow> 'a" -where "down\<cdot>(up\<cdot>x) = x" - -text {* With strict constructors, rewrite rules may require side conditions. *} - -fixrec from_sinl :: "'a \<oplus> 'b \<rightarrow> 'a" -where "x \<noteq> \<bottom> \<Longrightarrow> from_sinl\<cdot>(sinl\<cdot>x) = x" - -text {* Lifting can turn a strict constructor into a lazy one. *} - -fixrec from_sinl_up :: "'a u \<oplus> 'b \<rightarrow> 'a" -where "from_sinl_up\<cdot>(sinl\<cdot>(up\<cdot>x)) = x" - -text {* Fixrec also works with the HOL pair constructor. *} - -fixrec down2 :: "'a u \<times> 'b u \<rightarrow> 'a \<times> 'b" -where "down2\<cdot>(up\<cdot>x, up\<cdot>y) = (x, y)" - - -subsection {* Examples using @{text fixrec_simp} *} - -text {* A type of lazy lists. *} - -domain 'a llist = lNil | lCons (lazy 'a) (lazy "'a llist") - -text {* A zip function for lazy lists. *} - -text {* Notice that the patterns are not exhaustive. *} - -fixrec - lzip :: "'a llist \<rightarrow> 'b llist \<rightarrow> ('a \<times> 'b) llist" -where - "lzip\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>(lCons\<cdot>y\<cdot>ys) = lCons\<cdot>(x, y)\<cdot>(lzip\<cdot>xs\<cdot>ys)" -| "lzip\<cdot>lNil\<cdot>lNil = lNil" - -text {* @{text fixrec_simp} is useful for producing strictness theorems. *} -text {* Note that pattern matching is done in left-to-right order. *} - -lemma lzip_stricts [simp]: - "lzip\<cdot>\<bottom>\<cdot>ys = \<bottom>" - "lzip\<cdot>lNil\<cdot>\<bottom> = \<bottom>" - "lzip\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>\<bottom> = \<bottom>" -by fixrec_simp+ - -text {* @{text fixrec_simp} can also produce rules for missing cases. *} - -lemma lzip_undefs [simp]: - "lzip\<cdot>lNil\<cdot>(lCons\<cdot>y\<cdot>ys) = \<bottom>" - "lzip\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>lNil = \<bottom>" -by fixrec_simp+ - - -subsection {* Pattern matching with bottoms *} - -text {* - As an alternative to using @{text fixrec_simp}, it is also possible - to use bottom as a constructor pattern. When using a bottom - pattern, the right-hand-side must also be bottom; otherwise, @{text - fixrec} will not be able to prove the equation. -*} - -fixrec - from_sinr_up :: "'a \<oplus> 'b\<^sub>\<bottom> \<rightarrow> 'b" -where - "from_sinr_up\<cdot>\<bottom> = \<bottom>" -| "from_sinr_up\<cdot>(sinr\<cdot>(up\<cdot>x)) = x" - -text {* - If the function is already strict in that argument, then the bottom - pattern does not change the meaning of the function. For example, - in the definition of @{term from_sinr_up}, the first equation is - actually redundant, and could have been proven separately by - @{text fixrec_simp}. -*} - -text {* - A bottom pattern can also be used to make a function strict in a - certain argument, similar to a bang-pattern in Haskell. -*} - -fixrec - seq :: "'a \<rightarrow> 'b \<rightarrow> 'b" -where - "seq\<cdot>\<bottom>\<cdot>y = \<bottom>" -| "x \<noteq> \<bottom> \<Longrightarrow> seq\<cdot>x\<cdot>y = y" - - -subsection {* Skipping proofs of rewrite rules *} - -text {* Another zip function for lazy lists. *} - -text {* - Notice that this version has overlapping patterns. - The second equation cannot be proved as a theorem - because it only applies when the first pattern fails. -*} - -fixrec (permissive) - lzip2 :: "'a llist \<rightarrow> 'b llist \<rightarrow> ('a \<times> 'b) llist" -where - "lzip2\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>(lCons\<cdot>y\<cdot>ys) = lCons\<cdot>(x, y)\<cdot>(lzip\<cdot>xs\<cdot>ys)" -| "lzip2\<cdot>xs\<cdot>ys = lNil" - -text {* - Usually fixrec tries to prove all equations as theorems. - The "permissive" option overrides this behavior, so fixrec - does not produce any simp rules. -*} - -text {* Simp rules can be generated later using @{text fixrec_simp}. *} - -lemma lzip2_simps [simp]: - "lzip2\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>(lCons\<cdot>y\<cdot>ys) = lCons\<cdot>(x, y)\<cdot>(lzip\<cdot>xs\<cdot>ys)" - "lzip2\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>lNil = lNil" - "lzip2\<cdot>lNil\<cdot>(lCons\<cdot>y\<cdot>ys) = lNil" - "lzip2\<cdot>lNil\<cdot>lNil = lNil" -by fixrec_simp+ - -lemma lzip2_stricts [simp]: - "lzip2\<cdot>\<bottom>\<cdot>ys = \<bottom>" - "lzip2\<cdot>(lCons\<cdot>x\<cdot>xs)\<cdot>\<bottom> = \<bottom>" -by fixrec_simp+ - - -subsection {* Mutual recursion with @{text fixrec} *} - -text {* Tree and forest types. *} - -domain 'a tree = Leaf (lazy 'a) | Branch (lazy "'a forest") -and 'a forest = Empty | Trees (lazy "'a tree") "'a forest" - -text {* - To define mutually recursive functions, give multiple type signatures - separated by the keyword @{text "and"}. -*} - -fixrec - map_tree :: "('a \<rightarrow> 'b) \<rightarrow> ('a tree \<rightarrow> 'b tree)" -and - map_forest :: "('a \<rightarrow> 'b) \<rightarrow> ('a forest \<rightarrow> 'b forest)" -where - "map_tree\<cdot>f\<cdot>(Leaf\<cdot>x) = Leaf\<cdot>(f\<cdot>x)" -| "map_tree\<cdot>f\<cdot>(Branch\<cdot>ts) = Branch\<cdot>(map_forest\<cdot>f\<cdot>ts)" -| "map_forest\<cdot>f\<cdot>Empty = Empty" -| "ts \<noteq> \<bottom> \<Longrightarrow> - map_forest\<cdot>f\<cdot>(Trees\<cdot>t\<cdot>ts) = Trees\<cdot>(map_tree\<cdot>f\<cdot>t)\<cdot>(map_forest\<cdot>f\<cdot>ts)" - -lemma map_tree_strict [simp]: "map_tree\<cdot>f\<cdot>\<bottom> = \<bottom>" -by fixrec_simp - -lemma map_forest_strict [simp]: "map_forest\<cdot>f\<cdot>\<bottom> = \<bottom>" -by fixrec_simp - -text {* - Theorems generated: - @{text map_tree_def} @{thm map_tree_def} - @{text map_forest_def} @{thm map_forest_def} - @{text map_tree.unfold} @{thm map_tree.unfold} - @{text map_forest.unfold} @{thm map_forest.unfold} - @{text map_tree.simps} @{thm map_tree.simps} - @{text map_forest.simps} @{thm map_forest.simps} - @{text map_tree_map_forest.induct} @{thm map_tree_map_forest.induct} -*} - - -subsection {* Using @{text fixrec} inside locales *} - -locale test = - fixes foo :: "'a \<rightarrow> 'a" - assumes foo_strict: "foo\<cdot>\<bottom> = \<bottom>" -begin - -fixrec - bar :: "'a u \<rightarrow> 'a" -where - "bar\<cdot>(up\<cdot>x) = foo\<cdot>x" - -lemma bar_strict: "bar\<cdot>\<bottom> = \<bottom>" -by fixrec_simp - -end - -end
--- a/src/HOLCF/ex/New_Domain.thy Thu May 20 16:22:50 2010 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,92 +0,0 @@ -(* Title: HOLCF/ex/New_Domain.thy - Author: Brian Huffman -*) - -header {* Definitional domain package *} - -theory New_Domain -imports HOLCF -begin - -text {* - The definitional domain package only works with representable domains, - i.e. types in class @{text rep}. -*} - -default_sort rep - -text {* - Provided that @{text rep} is the default sort, the @{text new_domain} - package should work with any type definition supported by the old - domain package. -*} - -new_domain 'a llist = LNil | LCons (lazy 'a) (lazy "'a llist") - -text {* - The difference is that the new domain package is completely - definitional, and does not generate any axioms. The following type - and constant definitions are not produced by the old domain package. -*} - -thm type_definition_llist -thm llist_abs_def llist_rep_def - -text {* - The new domain package also adds support for indirect recursion with - user-defined datatypes. This definition of a tree datatype uses - indirect recursion through the lazy list type constructor. -*} - -new_domain 'a ltree = Leaf (lazy 'a) | Branch (lazy "'a ltree llist") - -text {* - For indirect-recursive definitions, the domain package is not able to - generate a high-level induction rule. (It produces a warning - message instead.) The low-level reach lemma (now proved as a - theorem, no longer generated as an axiom) can be used to derive - other induction rules. -*} - -thm ltree.reach - -text {* - The definition of the take function uses map functions associated with - each type constructor involved in the definition. A map function - for the lazy list type has been generated by the new domain package. -*} - -thm ltree.take_rews -thm llist_map_def - -lemma ltree_induct: - fixes P :: "'a ltree \<Rightarrow> bool" - assumes adm: "adm P" - assumes bot: "P \<bottom>" - assumes Leaf: "\<And>x. P (Leaf\<cdot>x)" - assumes Branch: "\<And>f l. \<forall>x. P (f\<cdot>x) \<Longrightarrow> P (Branch\<cdot>(llist_map\<cdot>f\<cdot>l))" - shows "P x" -proof - - have "P (\<Squnion>i. ltree_take i\<cdot>x)" - using adm - proof (rule admD) - fix i - show "P (ltree_take i\<cdot>x)" - proof (induct i arbitrary: x) - case (0 x) - show "P (ltree_take 0\<cdot>x)" by (simp add: bot) - next - case (Suc n x) - show "P (ltree_take (Suc n)\<cdot>x)" - apply (cases x) - apply (simp add: bot) - apply (simp add: Leaf) - apply (simp add: Branch Suc) - done - qed - qed (simp add: ltree.chain_take) - thus ?thesis - by (simp add: ltree.reach) -qed - -end
--- a/src/HOLCF/ex/ROOT.ML Thu May 20 16:22:50 2010 +0200 +++ b/src/HOLCF/ex/ROOT.ML Thu May 20 16:25:22 2010 +0200 @@ -4,7 +4,6 @@ *) use_thys ["Dnat", "Stream", "Dagstuhl", "Focus_ex", "Fix2", "Hoare", - "Loop", "Fixrec_ex", "Powerdomain_ex", "Domain_ex", "Domain_Proofs", + "Loop", "Powerdomain_ex", "Domain_Proofs", "Letrec", - "Strict_Fun", - "New_Domain"]; + "Strict_Fun"];