--- a/doc-src/Intro/advanced.tex Tue May 06 13:43:54 1997 +0200
+++ b/doc-src/Intro/advanced.tex Tue May 06 13:49:29 1997 +0200
@@ -1024,14 +1024,14 @@
\index{simplification}\index{examples!of simplification}
-Isabelle's simplification tactics repeatedly apply equations to a subgoal,
-perhaps proving it. For efficiency, the rewrite rules must be
-packaged into a {\bf simplification set},\index{simplification sets}
-or {\bf simpset}. We take the standard simpset for first-order logic and
-insert the equations proved in the previous section, namely
-$0+n=n$ and ${\tt Suc}(m)+n={\tt Suc}(m+n)$:
+Isabelle's simplification tactics repeatedly apply equations to a
+subgoal, perhaps proving it. For efficiency, the rewrite rules must
+be packaged into a {\bf simplification set},\index{simplification
+ sets} or {\bf simpset}. We augment the implicit simpset of {\FOL}
+with the equations proved in the previous section, namely $0+n=n$ and
+${\tt Suc}(m)+n={\tt Suc}(m+n)$:
\begin{ttbox}
-val add_ss = FOL_ss addsimps [add_0, add_Suc];
+Addsimps [add_0, add_Suc];
\end{ttbox}
We state the goal for associativity of addition, and
use \ttindex{res_inst_tac} to invoke induction on~$k$:
@@ -1049,10 +1049,10 @@
{\out Suc(x) + m + n = Suc(x) + (m + n)}
\end{ttbox}
The base case holds easily; both sides reduce to $m+n$. The
-tactic~\ttindex{simp_tac} rewrites with respect to the given simplification
-set, applying the rewrite rules for addition:
+tactic~\ttindex{Simp_tac} rewrites with respect to the current
+simplification set, applying the rewrite rules for addition:
\begin{ttbox}
-by (simp_tac add_ss 1);
+by (Simp_tac 1);
{\out Level 2}
{\out k + m + n = k + (m + n)}
{\out 1. !!x. x + m + n = x + (m + n) ==>}
@@ -1060,10 +1060,10 @@
\end{ttbox}
The inductive step requires rewriting by the equations for addition
together the induction hypothesis, which is also an equation. The
-tactic~\ttindex{asm_simp_tac} rewrites using a simplification set and any
-useful assumptions:
+tactic~\ttindex{Asm_simp_tac} rewrites using the implicit
+simplification set and any useful assumptions:
\begin{ttbox}
-by (asm_simp_tac add_ss 1);
+by (Asm_simp_tac 1);
{\out Level 3}
{\out k + m + n = k + (m + n)}
{\out No subgoals!}
--- a/doc-src/Intro/intro.ind Tue May 06 13:43:54 1997 +0200
+++ b/doc-src/Intro/intro.ind Tue May 06 13:49:29 1997 +0200
@@ -20,7 +20,7 @@
\item {\tt allI} theorem, 37
\item arities
\subitem declaring, 4, \bold{49}
- \item {\tt asm_simp_tac}, 60
+ \item {\tt Asm_simp_tac}, 60
\item {\tt assume_tac}, 30, 32, 37, 47
\item assumptions
\subitem deleting, 20
@@ -207,7 +207,7 @@
\item search
\subitem depth-first, 63
\item signatures, \bold{9}
- \item {\tt simp_tac}, 60
+ \item {\tt Simp_tac}, 60
\item simplification, 59
\item simplification sets, 59
\item sort constraints, 25