Added formalization of size-change principle (experimental).
authorkrauss
Mon, 26 Feb 2007 21:34:16 +0100
changeset 22359 94a794672c8b
parent 22358 4d8a9e3a29f8
child 22360 26ead7ed4f4b
Added formalization of size-change principle (experimental).
src/HOL/IsaMakefile
src/HOL/Library/Graphs.thy
src/HOL/Library/Kleene_Algebras.thy
src/HOL/Library/Library.thy
src/HOL/Library/Library/ROOT.ML
src/HOL/Library/SCT_Definition.thy
src/HOL/Library/SCT_Examples.thy
src/HOL/Library/SCT_Implementation.thy
src/HOL/Library/SCT_Interpretation.thy
src/HOL/Library/SCT_Misc.thy
src/HOL/Library/SCT_Theorem.thy
src/HOL/Library/Size_Change_Termination.thy
src/HOL/Library/size_change_termination.ML
--- a/src/HOL/IsaMakefile	Mon Feb 26 20:14:52 2007 +0100
+++ b/src/HOL/IsaMakefile	Mon Feb 26 21:34:16 2007 +0100
@@ -207,7 +207,11 @@
   Library/Product_ord.thy Library/Char_ord.thy \
   Library/List_lexord.thy Library/Commutative_Ring.thy Library/comm_ring.ML \
   Library/Coinductive_List.thy Library/AssocList.thy \
-  Library/Parity.thy Library/GCD.thy Library/Binomial.thy
+  Library/Parity.thy Library/GCD.thy Library/Binomial.thy \
+  Library/Graphs.thy Library/Kleene_Algebras.thy Library/SCT_Misc.thy \
+  Library/SCT_Definition.thy Library/SCT_Theorem.thy Library/SCT_Interpretation.thy \
+  Library/SCT_Implementation.thy Library/Size_Change_Termination.thy \
+  Library/SCT_Examples.thy
 	@cd Library; $(ISATOOL) usedir $(OUT)/HOL Library
 
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Graphs.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,721 @@
+theory Graphs
+imports Main SCT_Misc Kleene_Algebras ExecutableSet
+begin
+
+
+section {* Basic types, Size Change Graphs *}
+
+datatype ('a, 'b) graph = 
+  Graph "('a \<times> 'b \<times> 'a) set"
+
+fun dest_graph :: "('a, 'b) graph \<Rightarrow> ('a \<times> 'b \<times> 'a) set"
+  where "dest_graph (Graph G) = G"
+
+lemma graph_dest_graph[simp]:
+  "Graph (dest_graph G) = G"
+  by (cases G) simp
+
+definition 
+  has_edge :: "('n,'e) graph \<Rightarrow> 'n \<Rightarrow> 'e \<Rightarrow> 'n \<Rightarrow> bool"
+("_ \<turnstile> _ \<leadsto>\<^bsup>_\<^esup> _")
+where
+  "has_edge G n e n' = ((n, e, n') \<in> dest_graph G)"
+
+
+
+section {* Graph composition *}
+
+fun grcomp :: "('n, 'e::times) graph \<Rightarrow> ('n, 'e) graph  \<Rightarrow> ('n, 'e) graph"
+where
+  "grcomp (Graph G) (Graph H) = 
+  Graph {(p,b,q) | p b q. 
+  (\<exists>k e e'. (p,e,k)\<in>G \<and> (k,e',q)\<in>H \<and> b = e * e')}"
+
+
+declare grcomp.simps[code del]
+
+
+lemma graph_ext:
+  assumes "\<And>n e n'. has_edge G n e n' = has_edge H n e n'"
+  shows "G = H"
+  using prems
+  by (cases G, cases H, auto simp:split_paired_all has_edge_def)
+
+
+instance graph :: (type, times) times 
+  graph_mult_def: "G * H == grcomp G H" ..
+
+instance graph :: (type, one) one 
+  graph_one_def: "1 == Graph { (x, 1, x) |x. True}" ..
+
+instance graph :: (type, type) zero 
+  graph_zero_def: "0 == Graph {}" ..
+
+instance graph :: (type, type) plus 
+  graph_plus_def: "G + H == Graph (dest_graph G \<union> dest_graph H)" ..
+
+
+subsection {* Simprules for the graph operations *}
+
+lemma in_grcomp:
+  "has_edge (G * H) p b q
+  = (\<exists>k e e'. has_edge G p e k \<and> has_edge H k e' q \<and> b = e * e')"
+  by (cases G, cases H) (auto simp:graph_mult_def has_edge_def image_def)
+
+lemma in_grunit:
+  "has_edge 1 p b q = (p = q \<and> b = 1)"
+  by (auto simp:graph_one_def has_edge_def)
+
+lemma in_grplus:
+  "has_edge (G + H) p b q = (has_edge G p b q \<or> has_edge H p b q)"
+  by (cases G, cases H, auto simp:has_edge_def graph_plus_def)
+
+lemma in_grzero:
+  "has_edge 0 p b q = False"
+  by (simp add:graph_zero_def has_edge_def)
+
+
+instance graph :: (type, semigroup_mult) semigroup_mult
+proof
+  fix G1 G2 G3 :: "('a,'b) graph"
+  
+  show "G1 * G2 * G3 = G1 * (G2 * G3)"
+  proof (rule graph_ext, rule trans)
+    fix p J q
+    show "has_edge ((G1 * G2) * G3) p J q =
+      (\<exists>G i H j I.
+      has_edge G1 p G i
+      \<and> has_edge G2 i H j
+      \<and> has_edge G3 j I q
+      \<and> J = (G * H) * I)"
+      by (simp only:in_grcomp) blast
+    show "\<dots> = has_edge (G1 * (G2 * G3)) p J q"
+      by (simp only:in_grcomp mult_assoc) blast
+  qed
+qed
+
+instance graph :: (type, monoid_mult) monoid_mult
+proof
+  fix G1 G2 G3 :: "('a,'b) graph"
+  
+  show "1 * G1 = G1" 
+    by (rule graph_ext) (auto simp:in_grcomp in_grunit)
+  show "G1 * 1 = G1"
+    by (rule graph_ext) (auto simp:in_grcomp in_grunit)
+qed
+
+
+lemma grcomp_rdist:
+  fixes G :: "('a::type, 'b::semigroup_mult) graph"
+  shows "G * (H + I) = G * H + G * I"
+  by (rule graph_ext, simp add:in_grcomp in_grplus) blast
+
+lemma grcomp_ldist:
+  fixes G :: "('a::type, 'b::semigroup_mult) graph"
+  shows "(G + H) * I = G * I + H * I"
+  by (rule graph_ext, simp add:in_grcomp in_grplus) blast
+
+fun grpow :: "nat \<Rightarrow> ('a::type, 'b::monoid_mult) graph \<Rightarrow> ('a, 'b) graph"
+where
+  "grpow 0 A = 1"
+| "grpow (Suc n) A = A * (grpow n A)"
+
+
+instance graph :: (type, monoid_mult) recpower 
+  graph_pow_def: "A ^ n == grpow n A" 
+  by default (simp_all add:graph_pow_def)
+
+subsection {* Order on Graphs *}
+
+instance graph :: (type, type) ord 
+  graph_leq_def: "G \<le> H == dest_graph G \<subseteq> dest_graph H"
+  graph_less_def: "G < H == dest_graph G \<subset> dest_graph H" ..
+
+instance graph :: (type, type) order
+proof
+  fix x y z :: "('a,'b) graph"
+
+  show "x \<le> x" unfolding graph_leq_def ..
+  
+  from order_trans
+  show "\<lbrakk>x \<le> y; y \<le> z\<rbrakk> \<Longrightarrow> x \<le> z" unfolding graph_leq_def .
+
+  show "\<lbrakk>x \<le> y; y \<le> x\<rbrakk> \<Longrightarrow> x = y" unfolding graph_leq_def 
+    by (cases x, cases y) simp
+
+  show "(x < y) = (x \<le> y \<and> x \<noteq> y)"
+    unfolding graph_leq_def graph_less_def
+    by (cases x, cases y) auto
+qed
+
+
+defs (overloaded)
+  Meet_graph_def: "Meet == \<lambda>Gs. Graph (\<Inter>(dest_graph ` Gs))"
+
+instance graph :: (type, type) comp_lat
+  by default (auto simp:Meet_graph_def is_join_def graph_leq_def le_fun_def le_bool_def in_grplus has_edge_def)
+
+lemma plus_graph_is_join: "is_join ((op +)::('a::type, 'b::monoid_mult) graph \<Rightarrow> ('a,'b) graph \<Rightarrow> ('a,'b) graph)"
+  unfolding is_join_def 
+proof (intro allI conjI impI)
+  fix a b x :: "('a, 'b) graph"
+
+  show "a \<le> a + b" "b \<le> a + b" "a \<le> x \<and> b \<le> x \<Longrightarrow> a + b \<le> x"
+    unfolding graph_leq_def graph_plus_def
+    by (cases a, cases b) auto
+qed
+
+lemma plus_is_join:
+  "(op +) =
+  (join :: ('a::type, 'b::monoid_mult) graph \<Rightarrow> ('a,'b) graph \<Rightarrow> ('a,'b) graph)"
+  using plus_graph_is_join by (simp add:join_unique)
+
+instance graph :: (type, monoid_mult) semiring_1
+proof
+  fix a b c :: "('a, 'b) graph"
+
+  show "a + b + c = a + (b + c)" 
+    and "a + b = b + a" unfolding graph_plus_def
+    by auto
+
+  show "0 + a = a" unfolding graph_zero_def graph_plus_def
+    by simp
+
+  show "0 * a = 0" "a * 0 = 0" unfolding graph_zero_def graph_mult_def
+    by (cases a, simp)+
+
+  show "(a + b) * c = a * c + b * c"
+    by (rule graph_ext, simp add:in_grcomp in_grplus) blast
+
+  show "a * (b + c) = a * b + a * c"
+    by (rule graph_ext, simp add:in_grcomp in_grplus) blast
+
+  show "(0::('a,'b) graph) \<noteq> 1" unfolding graph_zero_def graph_one_def
+    by simp
+qed
+
+
+instance graph :: (type, monoid_mult) idem_add
+proof
+  fix a :: "('a, 'b) graph"
+  show "a + a = a" unfolding plus_is_join by simp
+qed
+
+
+(* define star on graphs *)
+
+
+instance graph :: (type, monoid_mult) star
+  graph_star_def: "star G == (SUP n. G ^ n)" ..
+
+
+lemma graph_leqI:
+  assumes "\<And>n e n'. has_edge G n e n' \<Longrightarrow> has_edge H n e n'"
+  shows "G \<le> H"
+  using prems
+  unfolding graph_leq_def has_edge_def
+  by auto
+
+
+lemma in_graph_plusE:
+  assumes "has_edge (G + H) n e n'"
+  assumes "has_edge G n e n' \<Longrightarrow> P"
+  assumes "has_edge H n e n' \<Longrightarrow> P"
+  shows P
+  using prems
+  by (auto simp: in_grplus)
+
+
+
+lemma 
+  assumes "x \<in> S k"
+  shows "x \<in> (\<Union>k. S k)"
+  using prems by blast
+
+lemma graph_union_least:
+  assumes "\<And>n. Graph (G n) \<le> C"
+  shows "Graph (\<Union>n. G n) \<le> C"
+  using prems unfolding graph_leq_def
+  by auto
+
+lemma Sup_graph_eq:
+  "(SUP n. Graph (G n)) = Graph (\<Union>n. G n)"
+  unfolding SUP_def 
+  apply (rule order_antisym)
+  apply (rule Sup_least)
+  apply auto
+  apply (simp add:graph_leq_def)
+  apply auto
+  apply (rule graph_union_least)
+  apply (rule Sup_upper)
+  by auto
+
+lemma has_edge_leq: "has_edge G p b q = (Graph {(p,b,q)} \<le> G)"
+  unfolding has_edge_def graph_leq_def
+  by (cases G) simp
+
+
+lemma Sup_graph_eq2:
+  "(SUP n. G n) = Graph (\<Union>n. dest_graph (G n))"
+  using Sup_graph_eq[of "\<lambda>n. dest_graph (G n)", simplified]
+  by simp
+
+lemma in_SUP:
+  "has_edge (SUP x. Gs x) p b q = (\<exists>x. has_edge (Gs x) p b q)"
+  unfolding Sup_graph_eq2 has_edge_leq graph_leq_def
+  by simp
+
+instance graph :: (type, monoid_mult) kleene_by_comp_lat
+proof
+  fix a b c :: "('a, 'b) graph"
+
+  show "a \<le> b \<longleftrightarrow> a + b = b" unfolding graph_leq_def graph_plus_def
+    by (cases a, cases b) auto
+
+  from order_less_le show "a < b \<longleftrightarrow> a \<le> b \<and> a \<noteq> b" .
+
+  show "a * star b * c = (SUP n. a * b ^ n * c)"
+    unfolding graph_star_def
+    by (rule graph_ext) (force simp:in_SUP in_grcomp)
+qed
+
+
+lemma in_star: 
+  "has_edge (star G) a x b = (\<exists>n. has_edge (G ^ n) a x b)"
+  by (auto simp:graph_star_def in_SUP)
+
+lemma tcl_is_SUP:
+  "tcl (G::('a::type, 'b::monoid_mult) graph) =
+  (SUP n. G ^ (Suc n))"
+  unfolding tcl_def 
+  using star_cont[of 1 G G]
+  by (simp add:power_Suc power_commutes)
+
+
+lemma in_tcl: 
+  "has_edge (tcl G) a x b = (\<exists>n>0. has_edge (G ^ n) a x b)"
+  apply (auto simp: tcl_is_SUP in_SUP)
+  apply (rule_tac x = "n - 1" in exI, auto)
+  done
+
+
+
+section {* Infinite Paths *}
+
+types ('n, 'e) ipath = "('n \<times> 'e) sequence"
+
+definition has_ipath :: "('n, 'e) graph \<Rightarrow> ('n, 'e) ipath \<Rightarrow> bool"
+where
+  "has_ipath G p = 
+  (\<forall>i. has_edge G (fst (p i)) (snd (p i)) (fst (p (Suc i))))"
+
+
+
+section {* Finite Paths *}
+
+types ('n, 'e) fpath = "('n \<times> ('e \<times> 'n) list)"
+
+inductive2  has_fpath :: "('n, 'e) graph \<Rightarrow> ('n, 'e) fpath \<Rightarrow> bool" 
+  for G :: "('n, 'e) graph"
+where
+  has_fpath_empty: "has_fpath G (n, [])"
+| has_fpath_join: "\<lbrakk>G \<turnstile> n \<leadsto>\<^bsup>e\<^esup> n'; has_fpath G (n', es)\<rbrakk> \<Longrightarrow> has_fpath G (n, (e, n')#es)"
+
+definition 
+  "end_node p = 
+  (if snd p = [] then fst p else snd (snd p ! (length (snd p) - 1)))"
+
+definition path_nth :: "('n, 'e) fpath \<Rightarrow> nat \<Rightarrow> ('n \<times> 'e \<times> 'n)"
+where
+  "path_nth p k = (if k = 0 then fst p else snd (snd p ! (k - 1)), snd p ! k)"
+
+lemma endnode_nth:
+  assumes "length (snd p) = Suc k"
+  shows "end_node p = snd (snd (path_nth p k))"
+  using prems unfolding end_node_def path_nth_def
+  by auto
+
+lemma path_nth_graph:
+  assumes "k < length (snd p)"
+  assumes "has_fpath G p"
+  shows "(\<lambda>(n,e,n'). has_edge G n e n') (path_nth p k)"
+  using prems
+proof (induct k arbitrary:p)
+  case 0 thus ?case 
+    unfolding path_nth_def by (auto elim:has_fpath.cases)
+next
+  case (Suc k p)
+
+  from `has_fpath G p` show ?case 
+  proof (rule has_fpath.cases)
+    case goal1 with Suc show ?case by simp
+  next
+    fix n e n' es
+    assume st: "p = (n, (e, n') # es)"
+       "G \<turnstile> n \<leadsto>\<^bsup>e\<^esup> n'"
+       "has_fpath G (n', es)"
+    with Suc
+    have "(\<lambda>(n, b, a). G \<turnstile> n \<leadsto>\<^bsup>b\<^esup> a) (path_nth (n', es) k)" by simp
+    with st show ?thesis by (cases k, auto simp:path_nth_def)
+  qed
+qed
+
+lemma path_nth_connected:
+  assumes "Suc k < length (snd p)"
+  shows "fst (path_nth p (Suc k)) = snd (snd (path_nth p k))"
+  using prems
+  unfolding path_nth_def
+  by auto
+
+definition path_loop :: "('n, 'e) fpath \<Rightarrow> ('n, 'e) ipath" ("omega")
+where
+  "omega p \<equiv> (\<lambda>i. (\<lambda>(n,e,n'). (n,e)) (path_nth p (i mod (length (snd p)))))"
+
+lemma fst_p0: "fst (path_nth p 0) = fst p"
+  unfolding path_nth_def by simp
+
+lemma path_loop_connect:
+  assumes "fst p = end_node p"
+  and "0 < length (snd p)" (is "0 < ?l")
+  shows "fst (path_nth p (Suc i mod (length (snd p))))
+  = snd (snd (path_nth p (i mod length (snd p))))"
+  (is "\<dots> = snd (snd (path_nth p ?k))")
+proof -
+  from `0 < ?l` have "i mod ?l < ?l" (is "?k < ?l")
+    by simp
+
+  show ?thesis 
+  proof (cases "Suc ?k < ?l")
+    case True
+    hence "Suc ?k \<noteq> ?l" by simp
+    with path_nth_connected[OF True]
+    show ?thesis
+      by (simp add:mod_Suc)
+  next
+    case False 
+    with `?k < ?l` have wrap: "Suc ?k = ?l" by simp
+
+    hence "fst (path_nth p (Suc i mod ?l)) = fst (path_nth p 0)" 
+      by (simp add: mod_Suc)
+    also from fst_p0 have "\<dots> = fst p" .
+    also have "\<dots> = end_node p" .
+    also have "\<dots> = snd (snd (path_nth p ?k))" 
+      by (auto simp:endnode_nth wrap)
+    finally show ?thesis .
+  qed
+qed
+
+lemma path_loop_graph:
+  assumes "has_fpath G p"
+  and loop: "fst p = end_node p"
+  and nonempty: "0 < length (snd p)" (is "0 < ?l")
+  shows "has_ipath G (omega p)"
+proof (auto simp:has_ipath_def)
+  fix i 
+  from `0 < ?l` have "i mod ?l < ?l" (is "?k < ?l")
+    by simp
+  with path_nth_graph 
+  have pk_G: "(\<lambda>(n,e,n'). has_edge G n e n') (path_nth p ?k)" .
+
+  from path_loop_connect[OF loop nonempty] pk_G
+  show "has_edge G (fst (omega p i)) (snd (omega p i)) (fst (omega p (Suc i)))"
+    unfolding path_loop_def has_edge_def split_def
+    by simp
+qed
+
+definition prod :: "('n, 'e::monoid_mult) fpath \<Rightarrow> 'e"
+where
+  "prod p = foldr (op *) (map fst (snd p)) 1"
+
+lemma prod_simps[simp]:
+  "prod (n, []) = 1"
+  "prod (n, (e,n')#es) = e * (prod (n',es))"
+unfolding prod_def
+by simp_all
+
+lemma power_induces_path:
+  assumes a: "has_edge (A ^ k) n G m"
+  obtains p 
+    where "has_fpath A p"
+      and "n = fst p" "m = end_node p"
+      and "G = prod p"
+      and "k = length (snd p)"
+  using a
+proof (induct k arbitrary:m n G thesis)
+  case (0 m n G)
+  let ?p = "(n, [])"
+  from 0 have "has_fpath A ?p" "m = end_node ?p" "G = prod ?p"
+    by (auto simp:in_grunit end_node_def intro:has_fpath.intros)
+  thus ?case using 0 by (auto simp:end_node_def)
+next
+  case (Suc k m n G)
+  hence "has_edge (A * A ^ k) n G m" 
+    by (simp add:power_Suc power_commutes)
+  then obtain G' H j where 
+    a_A: "has_edge A n G' j"
+    and H_pow: "has_edge (A ^ k) j H m"
+    and [simp]: "G = G' * H"
+    by (auto simp:in_grcomp) 
+
+  from H_pow and Suc
+  obtain p
+    where p_path: "has_fpath A p"
+    and [simp]: "j = fst p" "m = end_node p" "H = prod p" 
+    "k = length (snd p)"
+    by blast
+
+  let ?p' = "(n, (G', j)#snd p)"
+  from a_A and p_path
+  have "has_fpath A ?p'" "m = end_node ?p'" "G = prod ?p'"
+    by (auto simp:end_node_def nth.simps intro:has_fpath.intros split:nat.split)
+  thus ?case using Suc by auto
+qed
+
+
+
+
+
+section {* Sub-Paths *}
+
+
+definition sub_path :: "('n, 'e) ipath \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ('n, 'e) fpath"
+("(_\<langle>_,_\<rangle>)")
+where
+  "p\<langle>i,j\<rangle> =
+  (fst (p i), map (\<lambda>k. (snd (p k), fst (p (Suc k)))) [i ..< j])"
+
+
+lemma sub_path_is_path: 
+  assumes ipath: "has_ipath G p"
+  assumes l: "i \<le> j"
+  shows "has_fpath G (p\<langle>i,j\<rangle>)"
+  using l
+proof (induct i rule:inc_induct)
+  case 1 show ?case by (auto simp:sub_path_def intro:has_fpath.intros)
+next
+  case (2 i)
+  with ipath upt_rec[of i j]
+  show ?case
+    by (auto simp:sub_path_def has_ipath_def intro:has_fpath.intros)
+qed
+
+
+lemma sub_path_start[simp]:
+  "fst (p\<langle>i,j\<rangle>) = fst (p i)"
+  by (simp add:sub_path_def)
+
+lemma nth_upto[simp]: "k < j - i \<Longrightarrow> [i ..< j] ! k = i + k"
+  by (induct k) auto
+
+lemma sub_path_end[simp]:
+  "i < j \<Longrightarrow> end_node (p\<langle>i,j\<rangle>) = fst (p j)"
+  by (auto simp:sub_path_def end_node_def)
+
+lemma foldr_map: "foldr f (map g xs) = foldr (f o g) xs"
+  by (induct xs) auto
+
+lemma upto_append[simp]:
+  assumes "i \<le> j" "j \<le> k"
+  shows "[ i ..< j ] @ [j ..< k] = [i ..< k]"
+  using prems and upt_add_eq_append[of i j "k - j"]
+  by simp
+
+lemma foldr_monoid: "foldr (op *) xs 1 * foldr (op *) ys 1
+  = foldr (op *) (xs @ ys) (1::'a::monoid_mult)"
+  by (induct xs) (auto simp:mult_assoc)
+
+lemma sub_path_prod:
+  assumes "i < j"
+  assumes "j < k"
+  shows "prod (p\<langle>i,k\<rangle>) = prod (p\<langle>i,j\<rangle>) * prod (p\<langle>j,k\<rangle>)"
+  using prems
+  unfolding prod_def sub_path_def
+  by (simp add:map_compose[symmetric] comp_def)
+   (simp only:foldr_monoid map_append[symmetric] upto_append)
+
+
+lemma path_acgpow_aux:
+  assumes "length es = l"
+  assumes "has_fpath G (n,es)"
+  shows "has_edge (G ^ l) n (prod (n,es)) (end_node (n,es))"
+using prems
+proof (induct l arbitrary:n es)
+  case 0 thus ?case
+    by (simp add:in_grunit end_node_def) 
+next
+  case (Suc l n es)
+  hence "es \<noteq> []" by auto
+  let ?n' = "snd (hd es)"
+  let ?es' = "tl es"
+  let ?e = "fst (hd es)"
+
+  from Suc have len: "length ?es' = l" by auto
+
+  from Suc
+  have [simp]: "end_node (n, es) = end_node (?n', ?es')"
+    by (cases es) (auto simp:end_node_def nth.simps split:nat.split)
+
+  from `has_fpath G (n,es)`
+  have "has_fpath G (?n', ?es')"
+    by (rule has_fpath.cases) (auto intro:has_fpath.intros)
+  with Suc len
+  have "has_edge (G ^ l) ?n' (prod (?n', ?es')) (end_node (?n', ?es'))"
+    by auto
+  moreover
+  from `es \<noteq> []`
+  have "prod (n, es) = ?e * (prod (?n', ?es'))"
+    by (cases es) auto
+  moreover
+  from `has_fpath G (n,es)` have c:"has_edge G n ?e ?n'"
+    by (rule has_fpath.cases) (insert `es \<noteq> []`, auto)
+
+  ultimately
+  show ?case
+     unfolding power_Suc 
+     by (auto simp:in_grcomp)
+qed
+
+
+lemma path_acgpow:
+   "has_fpath G p
+  \<Longrightarrow> has_edge (G ^ length (snd p)) (fst p) (prod p) (end_node p)"
+by (cases p)
+   (rule path_acgpow_aux[of "snd p" "length (snd p)" _ "fst p", simplified])
+
+
+lemma star_paths:
+  "has_edge (star G) a x b =
+   (\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p)"
+proof
+  assume "has_edge (star G) a x b"
+  then obtain n where pow: "has_edge (G ^ n) a x b"
+    by (auto simp:in_star)
+
+  then obtain p where
+    "has_fpath G p" "a = fst p" "b = end_node p" "x = prod p"
+    by (rule power_induces_path)
+
+  thus "\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p"
+    by blast
+next
+  assume "\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p"
+  then obtain p where
+    "has_fpath G p" "a = fst p" "b = end_node p" "x = prod p"
+    by blast
+
+  hence "has_edge (G ^ length (snd p)) a x b"
+    by (auto intro:path_acgpow)
+
+  thus "has_edge (star G) a x b"
+    by (auto simp:in_star)
+qed
+
+
+lemma plus_paths:
+  "has_edge (tcl G) a x b =
+   (\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p \<and> 0 < length (snd p))"
+proof
+  assume "has_edge (tcl G) a x b"
+  
+  then obtain n where pow: "has_edge (G ^ n) a x b" and "0 < n"
+    by (auto simp:in_tcl)
+
+  from pow obtain p where
+    "has_fpath G p" "a = fst p" "b = end_node p" "x = prod p"
+    "n = length (snd p)"
+    by (rule power_induces_path)
+
+  with `0 < n`
+  show "\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p \<and> 0 < length (snd p) "
+    by blast
+next
+  assume "\<exists>p. has_fpath G p \<and> a = fst p \<and> b = end_node p \<and> x = prod p
+    \<and> 0 < length (snd p)"
+  then obtain p where
+    "has_fpath G p" "a = fst p" "b = end_node p" "x = prod p"
+    "0 < length (snd p)"
+    by blast
+
+  hence "has_edge (G ^ length (snd p)) a x b"
+    by (auto intro:path_acgpow)
+
+  with `0 < length (snd p)`
+  show "has_edge (tcl G) a x b"
+    by (auto simp:in_tcl)
+qed
+
+
+definition
+  "contract s p = 
+  (\<lambda>i. (fst (p (s i)), prod (p\<langle>s i,s (Suc i)\<rangle>)))"
+
+lemma ipath_contract:
+  assumes [simp]: "increasing s"
+  assumes ipath: "has_ipath G p"
+  shows "has_ipath (tcl G) (contract s p)"
+  unfolding has_ipath_def 
+proof
+  fix i
+  let ?p = "p\<langle>s i,s (Suc i)\<rangle>"
+
+  from increasing_strict 
+	have "fst (p (s (Suc i))) = end_node ?p" by simp
+  moreover
+  from increasing_strict[of s i "Suc i"] have "snd ?p \<noteq> []"
+    by (simp add:sub_path_def)
+  moreover
+  from ipath increasing_weak[of s] have "has_fpath G ?p"
+    by (rule sub_path_is_path) auto
+  ultimately
+  show "has_edge (tcl G) 
+    (fst (contract s p i)) (snd (contract s p i)) (fst (contract s p (Suc i)))"
+    unfolding contract_def plus_paths
+    by (intro exI) auto
+qed
+
+lemma prod_unfold:
+  "i < j \<Longrightarrow> prod (p\<langle>i,j\<rangle>) 
+  = snd (p i) * prod (p\<langle>Suc i, j\<rangle>)"
+  unfolding prod_def
+  by (simp add:sub_path_def upt_rec[of "i" j])
+
+
+lemma sub_path_loop:
+  assumes "0 < k"
+  assumes k:"k = length (snd loop)"
+  assumes loop: "fst loop = end_node loop"
+  shows "(omega loop)\<langle>k * i,k * Suc i\<rangle> = loop" (is "?\<omega> = loop")
+proof (rule prod_eqI)
+  show "fst ?\<omega> = fst loop"
+    by (auto simp:path_loop_def path_nth_def split_def k)
+  
+  show "snd ?\<omega> = snd loop"
+  proof (rule nth_equalityI[rule_format])
+    show leneq: "length (snd ?\<omega>) = length (snd loop)"
+      unfolding sub_path_def k by simp
+
+    fix j assume "j < length (snd (?\<omega>))"
+    with leneq and k have "j < k" by simp
+
+    have a: "\<And>i. fst (path_nth loop (Suc i mod k))
+      = snd (snd (path_nth loop (i mod k)))"
+      unfolding k
+      apply (rule path_loop_connect[OF loop])
+      by (insert prems, auto)
+
+    from `j < k` 
+    show "snd ?\<omega> ! j = snd loop ! j"
+      unfolding sub_path_def
+      apply (simp add:path_loop_def split_def add_ac)
+      apply (simp add:a k[symmetric])
+      by (simp add:path_nth_def)
+  qed
+qed
+      
+
+
+
+
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Kleene_Algebras.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,471 @@
+theory Kleene_Algebras
+imports Main 
+begin
+
+text {* A type class of kleene algebras *}
+
+class star = 
+  fixes star :: "'a \<Rightarrow> 'a"
+
+axclass idem_add \<subseteq> ab_semigroup_add
+  add_idem[simp]: "x + x = x"
+
+lemma add_idem2[simp]: "(x::'a::idem_add) + (x + y) = x + y"
+  unfolding add_assoc[symmetric]
+  by simp
+
+axclass order_by_add \<subseteq> idem_add, ord
+  order_def: "a \<le> b \<longleftrightarrow> a + b = b"
+  strict_order_def: "a < b \<longleftrightarrow> a \<le> b \<and> a \<noteq> b"
+
+lemma ord_simp1[simp]: "(x::'a::order_by_add) \<le> y \<Longrightarrow> x + y = y"
+  unfolding order_def .
+lemma ord_simp2[simp]: "(x::'a::order_by_add) \<le> y \<Longrightarrow> y + x = y"
+  unfolding order_def add_commute .
+lemma ord_intro: "(x::'a::order_by_add) + y = y \<Longrightarrow> x \<le> y"
+  unfolding order_def .
+
+instance order_by_add \<subseteq> order
+proof
+  fix x y z :: 'a
+  show "x \<le> x" unfolding order_def by simp
+
+  show "\<lbrakk>x \<le> y; y \<le> z\<rbrakk> \<Longrightarrow> x \<le> z"
+  proof (rule ord_intro)
+    assume "x \<le> y" "y \<le> z"
+
+    have "x + z = x + y + z" by (simp add:`y \<le> z` add_assoc)
+    also have "\<dots> = y + z" by (simp add:`x \<le> y`)
+    also have "\<dots> = z" by (simp add:`y \<le> z`)
+    finally show "x + z = z" .
+  qed
+
+  show "\<lbrakk>x \<le> y; y \<le> x\<rbrakk> \<Longrightarrow> x = y" unfolding order_def
+    by (simp add:add_commute)
+  show "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" by (fact strict_order_def)
+qed
+
+
+axclass pre_kleene \<subseteq> semiring_1, order_by_add
+
+instance pre_kleene \<subseteq> pordered_semiring
+proof
+  fix x y z :: 'a
+
+  assume "x \<le> y"
+   
+  show "z + x \<le> z + y"
+  proof (rule ord_intro)
+    have "z + x + (z + y) = x + y + z" by (simp add:add_ac)
+    also have "\<dots> = z + y" by (simp add:`x \<le> y` add_ac)
+    finally show "z + x + (z + y) = z + y" .
+  qed
+
+  show "z * x \<le> z * y"
+  proof (rule ord_intro)
+    from `x \<le> y` have "z * (x + y) = z * y" by simp
+    thus "z * x + z * y = z * y" by (simp add:right_distrib)
+  qed
+
+  show "x * z \<le> y * z"
+  proof (rule ord_intro)
+    from `x \<le> y` have "(x + y) * z = y * z" by simp
+    thus "x * z + y * z = y * z" by (simp add:left_distrib)
+  qed
+qed
+
+axclass kleene \<subseteq> pre_kleene, star
+  star1: "1 + a * star a \<le> star a"
+  star2: "1 + star a * a \<le> star a"
+  star3: "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
+  star4: "x * a \<le> x \<Longrightarrow> x * star a \<le> x"
+
+axclass kleene_by_comp_lat \<subseteq> 
+  pre_kleene, comp_lat, recpower, star
+
+  star_cont: "a * star b * c = (SUP n. a * b ^ n * c)"
+
+
+lemma plus_leI: 
+  fixes x :: "'a :: order_by_add"
+  shows "x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x + y \<le> z"
+  unfolding order_def by (simp add:add_assoc)
+
+
+
+
+lemma le_SUPI':
+  fixes l :: "'a :: comp_lat"
+  assumes "l \<le> M i"
+  shows "l \<le> (SUP i. M i)"
+  using prems
+  by (rule order_trans) (rule le_SUPI, rule refl)
+
+
+lemma zero_minimum[simp]: "(0::'a::pre_kleene) \<le> x"
+  unfolding order_def by simp
+
+instance kleene_by_comp_lat \<subseteq> kleene
+proof
+
+  fix a x :: 'a
+  
+  have [simp]: "1 \<le> star a"
+    unfolding star_cont[of 1 a 1, simplified] 
+    by (rule le_SUPI) (rule power_0[symmetric])
+  
+  show "1 + a * star a \<le> star a" 
+    apply (rule plus_leI, simp)
+    apply (simp add:star_cont[of a a 1, simplified])
+    apply (simp add:star_cont[of 1 a 1, simplified])
+    apply (intro SUP_leI le_SUPI)
+    by (rule power_Suc[symmetric])
+
+  show "1 + star a * a \<le> star a" 
+    apply (rule plus_leI, simp)
+    apply (simp add:star_cont[of 1 a a, simplified])
+    apply (simp add:star_cont[of 1 a 1, simplified])
+    apply (intro SUP_leI le_SUPI)
+    by (simp add:power_Suc[symmetric] power_commutes)
+
+  show "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
+  proof -
+    assume a: "a * x \<le> x"
+
+    {
+      fix n
+      have "a ^ (Suc n) * x \<le> a ^ n * x"
+      proof (induct n)
+        case 0 thus ?case by (simp add:a power_Suc)
+      next
+        case (Suc n)
+        hence "a * (a ^ Suc n * x) \<le> a * (a ^ n * x)"
+          by (auto intro: mult_mono)
+        thus ?case
+          by (simp add:power_Suc mult_assoc)
+      qed
+    }
+    note a = this
+    
+    {
+      fix n have "a ^ n * x \<le> x"
+      proof (induct n)
+        case 0 show ?case by simp
+      next
+        case (Suc n) with a[of n]
+        show ?case by simp
+      qed
+    }
+    note b = this
+    
+    show "star a * x \<le> x"
+      unfolding star_cont[of 1 a x, simplified]
+      by (rule SUP_leI) (rule b)
+  qed
+
+  show "x * a \<le> x \<Longrightarrow> x * star a \<le> x" (* symmetric *)
+  proof -
+    assume a: "x * a \<le> x"
+
+    {
+      fix n
+      have "x * a ^ (Suc n) \<le> x * a ^ n"
+      proof (induct n)
+        case 0 thus ?case by (simp add:a power_Suc)
+      next
+        case (Suc n)
+        hence "(x * a ^ Suc n) * a  \<le> (x * a ^ n) * a"
+          by (auto intro: mult_mono)
+        thus ?case
+          by (simp add:power_Suc power_commutes mult_assoc)
+      qed
+    }
+    note a = this
+    
+    {
+      fix n have "x * a ^ n \<le> x"
+      proof (induct n)
+        case 0 show ?case by simp
+      next
+        case (Suc n) with a[of n]
+        show ?case by simp
+      qed
+    }
+    note b = this
+    
+    show "x * star a \<le> x"
+      unfolding star_cont[of x a 1, simplified]
+      by (rule SUP_leI) (rule b)
+  qed
+qed
+
+lemma less_add[simp]:  
+  fixes a b :: "'a :: order_by_add"
+  shows "a \<le> a + b"
+  and "b \<le> a + b"
+  unfolding order_def 
+  by (auto simp:add_ac)
+
+lemma add_est1:
+  fixes a b c :: "'a :: order_by_add"
+  assumes a: "a + b \<le> c"
+  shows "a \<le> c"
+  using less_add(1) a
+  by (rule order_trans)
+
+lemma add_est2:
+  fixes a b c :: "'a :: order_by_add"
+  assumes a: "a + b \<le> c"
+  shows "b \<le> c"
+  using less_add(2) a
+  by (rule order_trans)
+
+
+lemma star3':
+  fixes a b x :: "'a :: kleene"
+  assumes a: "b + a * x \<le> x"
+  shows "star a * b \<le> x"
+proof (rule order_trans)
+  from a have "b \<le> x" by (rule add_est1)
+  show "star a * b \<le> star a * x"
+    by (rule mult_mono) (auto simp:`b \<le> x`)
+
+  from a have "a * x \<le> x" by (rule add_est2)
+  with star3 show "star a * x \<le> x" .
+qed
+
+
+lemma star4':
+  fixes a b x :: "'a :: kleene"
+  assumes a: "b + x * a \<le> x"
+  shows "b * star a \<le> x"
+proof (rule order_trans)
+  from a have "b \<le> x" by (rule add_est1)
+  show "b * star a \<le> x * star a"
+    by (rule mult_mono) (auto simp:`b \<le> x`)
+
+  from a have "x * a \<le> x" by (rule add_est2)
+  with star4 show "x * star a \<le> x" .
+qed
+
+
+lemma star_mono:
+  fixes x y :: "'a :: kleene"
+  assumes "x \<le> y"
+  shows "star x \<le> star y"
+  oops
+
+lemma star_idemp:
+  fixes x :: "'a :: kleene"
+  shows "star (star x) = star x"
+  oops
+
+lemma zero_star[simp]:
+  shows "star (0::'a::kleene) = 1"
+  oops
+
+
+lemma star_unfold_left:
+  fixes a :: "'a :: kleene"
+  shows "1 + a * star a = star a"
+proof (rule order_antisym, rule star1)
+
+  have "1 + a * (1 + a * star a) \<le> 1 + a * star a"
+    apply (rule add_mono, rule)
+    apply (rule mult_mono, auto)
+    apply (rule star1)
+    done
+
+  with star3' have "star a * 1 \<le> 1 + a * star a" .
+  thus "star a \<le> 1 + a * star a" by simp
+qed
+
+
+lemma star_unfold_right:  
+  fixes a :: "'a :: kleene"
+  shows "1 + star a * a = star a"
+proof (rule order_antisym, rule star2)
+
+  have "1 + (1 + star a * a) * a \<le> 1 + star a * a"
+    apply (rule add_mono, rule)
+    apply (rule mult_mono, auto)
+    apply (rule star2)
+    done
+
+  with star4' have "1 * star a \<le> 1 + star a * a" .
+  thus "star a \<le> 1 + star a * a" by simp
+qed
+
+
+
+lemma star_commute:
+  fixes a b x :: "'a :: kleene"
+  assumes a: "a * x = x * b"
+  shows "star a * x = x * star b"
+proof (rule order_antisym)
+
+  show "star a * x \<le> x * star b"
+  proof (rule star3', rule order_trans)
+
+    from a have "a * x \<le> x * b" by simp
+    hence "a * x * star b \<le> x * b * star b"
+      by (rule mult_mono) auto
+    thus "x + a * (x * star b) \<le> x + x * b * star b"
+      using add_mono by (auto simp: mult_assoc)
+
+    show "\<dots> \<le> x * star b"
+    proof -
+      have "x * (1 + b * star b) \<le> x * star b"
+        by (rule mult_mono[OF _ star1]) auto
+      thus ?thesis
+        by (simp add:right_distrib mult_assoc)
+    qed
+  qed
+
+  show "x * star b \<le> star a * x"
+  proof (rule star4', rule order_trans)
+
+    from a have b: "x * b \<le> a * x" by simp
+    have "star a * x * b \<le> star a * a * x"
+      unfolding mult_assoc
+      by (rule mult_mono[OF _ b]) auto
+    thus "x + star a * x * b \<le> x + star a * a * x"
+      using add_mono by auto
+
+    show "\<dots> \<le> star a * x"
+    proof -
+      have "(1 + star a * a) * x \<le> star a * x"
+        by (rule mult_mono[OF star2]) auto
+      thus ?thesis
+        by (simp add:left_distrib mult_assoc)
+    qed
+  qed
+qed      
+
+
+
+lemma star_assoc:
+  fixes c d :: "'a :: kleene"
+  shows "star (c * d) * c = c * star (d * c)"
+  oops
+
+lemma star_dist:
+  fixes a b :: "'a :: kleene"
+  shows "star (a + b) = star a * star (b * star a)"
+  oops
+
+lemma star_one:
+  fixes a p p' :: "'a :: kleene"
+  assumes "p * p' = 1" and "p' * p = 1"
+  shows "p' * star a * p = star (p' * a * p)"
+  oops
+
+
+lemma star_zero: 
+  "star (0::'a::kleene) = 1"
+  by (rule star_unfold_left[of 0, simplified])
+
+
+(* Own lemmas *)
+
+
+lemma x_less_star[simp]: 
+  fixes x :: "'a :: kleene"
+  shows "x \<le> x * star a"
+proof -
+  have "x \<le> x * (1 + a * star a)" by (simp add:right_distrib)
+  also have "\<dots> = x * star a" by (simp only: star_unfold_left)
+  finally show ?thesis .
+qed
+
+subsection {* Transitive Closure *}
+
+definition 
+  "tcl (x::'a::kleene) = star x * x"
+
+
+lemma tcl_zero: 
+  "tcl (0::'a::kleene) = 0"
+  unfolding tcl_def by simp
+
+
+subsection {* Naive Algorithm to generate the transitive closure *}
+
+function (default "\<lambda>x. 0", tailrec)
+  mk_tcl :: "('a::{plus,times,ord,zero}) \<Rightarrow> 'a \<Rightarrow> 'a"
+where
+  "mk_tcl A X = (if X * A \<le> X then X else mk_tcl A (X + X * A))"
+  by pat_completeness simp
+
+declare mk_tcl.simps[simp del] (* loops *)
+
+lemma mk_tcl_code[code]:
+  "mk_tcl A X = 
+  (let XA = X * A 
+  in if XA \<le> X then X else mk_tcl A (X + XA))"
+  unfolding mk_tcl.simps[of A X] Let_def ..
+
+lemma mk_tcl_lemma1:
+  fixes X :: "'a :: kleene"
+  shows "(X + X * A) * star A = X * star A"
+proof -
+  have "A * star A \<le> 1 + A * star A" by simp
+  also have "\<dots> = star A" by (simp add:star_unfold_left)
+  finally have "star A + A * star A = star A" by simp
+  hence "X * (star A + A * star A) = X * star A" by simp
+  thus ?thesis by (simp add:left_distrib right_distrib mult_ac)
+qed
+
+lemma mk_tcl_lemma2:
+  fixes X :: "'a :: kleene"
+  shows "X * A \<le> X \<Longrightarrow> X * star A = X"
+  by (rule order_antisym) (auto simp:star4)
+
+
+
+
+lemma mk_tcl_correctness:
+  fixes A X :: "'a :: {kleene}"
+  assumes "mk_tcl_dom (A, X)"
+  shows "mk_tcl A X = X * star A"
+  using prems
+  by induct (auto simp:mk_tcl_lemma1 mk_tcl_lemma2)
+
+lemma graph_implies_dom: "mk_tcl_graph x y \<Longrightarrow> mk_tcl_dom x"
+  by (rule mk_tcl_graph.induct) (auto intro:accI elim:mk_tcl_rel.cases)
+
+lemma mk_tcl_default: "\<not> mk_tcl_dom (a,x) \<Longrightarrow> mk_tcl a x = 0"
+  unfolding mk_tcl_def
+  by (rule fundef_default_value[OF mk_tcl_sum_def graph_implies_dom])
+
+
+text {* We can replace the dom-Condition of the correctness theorem 
+  with something executable *}
+
+lemma mk_tcl_correctness2:
+  fixes A X :: "'a :: {kleene}"
+  assumes "mk_tcl A A \<noteq> 0"
+  shows "mk_tcl A A = tcl A"
+  using prems mk_tcl_default mk_tcl_correctness
+  unfolding tcl_def 
+  by (auto simp:star_commute)
+
+
+
+
+
+end
+
+
+
+
+
+
+
+
+
+
+
+
+
+
--- a/src/HOL/Library/Library.thy	Mon Feb 26 20:14:52 2007 +0100
+++ b/src/HOL/Library/Library.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -27,6 +27,7 @@
   Quotient
   Ramsey
   State_Monad
+  Size_Change_Termination
   While_Combinator
   Word
   Zorn
--- a/src/HOL/Library/Library/ROOT.ML	Mon Feb 26 20:14:52 2007 +0100
+++ b/src/HOL/Library/Library/ROOT.ML	Mon Feb 26 21:34:16 2007 +0100
@@ -3,3 +3,4 @@
 use_thy "Library";
 use_thy "List_Prefix";
 use_thy "List_lexord";
+use_thy "SCT_Examples";
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/SCT_Definition.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,96 @@
+theory SCT_Definition
+imports Graphs Infinite_Set
+begin
+
+section {* Size-Change Graphs *}
+
+datatype sedge =
+  LESS ("\<down>")
+  | LEQ ("\<Down>")
+
+instance sedge :: times ..
+instance sedge :: one ..
+
+defs (overloaded)
+  one_sedge_def: "1 == \<Down>"
+  mult_sedge_def:" a * b == (if a = \<down> then \<down> else b)"
+
+instance sedge :: comm_monoid_mult
+proof
+  fix a b c :: sedge
+  show "a * b * c = a * (b * c)" by (simp add:mult_sedge_def)
+  show "1 * a = a" by (simp add:mult_sedge_def one_sedge_def)
+  show "a * b = b * a" unfolding mult_sedge_def
+    by (cases a, simp) (cases b, auto)
+qed
+
+instance sedge :: finite
+proof
+  have a: "UNIV = { LESS, LEQ }"
+    by auto (case_tac x, auto) (* FIXME *)
+  show "finite (UNIV::sedge set)"
+    by (simp add:a)
+qed
+
+
+types scg = "(nat, sedge) graph"
+types acg = "(nat, scg) graph"
+
+
+section {* Size-Change Termination *}
+
+abbreviation (input)
+  "desc P Q == ((\<exists>n.\<forall>i\<ge>n. P i) \<and> (\<exists>\<^sub>\<infinity>i. Q i))"
+
+abbreviation (input)
+  "dsc G i j \<equiv> has_edge G i LESS j"
+
+abbreviation (input)
+  "eq G i j \<equiv> has_edge G i LEQ j"
+
+abbreviation
+  eql :: "scg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
+("_ \<turnstile> _ \<leadsto> _")
+where
+  "eql G i j \<equiv> has_edge G i LESS j \<or> has_edge G i LEQ j"
+
+
+abbreviation (input) descat :: "(nat, scg) ipath \<Rightarrow> nat sequence \<Rightarrow> nat \<Rightarrow> bool"
+where
+  "descat p \<theta> i \<equiv> has_edge (snd (p i)) (\<theta> i) LESS (\<theta> (Suc i))"
+
+abbreviation (input) eqat :: "(nat, scg) ipath \<Rightarrow> nat sequence \<Rightarrow> nat \<Rightarrow> bool"
+where
+  "eqat p \<theta> i \<equiv> has_edge (snd (p i)) (\<theta> i) LEQ (\<theta> (Suc i))"
+
+
+abbreviation eqlat :: "(nat, scg) ipath \<Rightarrow> nat sequence \<Rightarrow> nat \<Rightarrow> bool"
+where
+  "eqlat p \<theta> i \<equiv> (has_edge (snd (p i)) (\<theta> i) LESS (\<theta> (Suc i))
+                  \<or> has_edge (snd (p i)) (\<theta> i) LEQ (\<theta> (Suc i)))"
+
+
+definition is_desc_thread :: "nat sequence \<Rightarrow> (nat, scg) ipath \<Rightarrow> bool"
+where
+  "is_desc_thread \<theta> p = ((\<exists>n.\<forall>i\<ge>n. eqlat p \<theta> i) \<and> (\<exists>\<^sub>\<infinity>i. descat p \<theta> i))" 
+
+definition SCT :: "acg \<Rightarrow> bool"
+where
+  "SCT \<A> = 
+  (\<forall>p. has_ipath \<A> p \<longrightarrow> (\<exists>\<theta>. is_desc_thread \<theta> p))"
+
+
+
+definition no_bad_graphs :: "acg \<Rightarrow> bool"
+where
+  "no_bad_graphs A = 
+  (\<forall>n G. has_edge A n G n \<and> G * G = G
+  \<longrightarrow> (\<exists>p. has_edge G p LESS p))"
+
+
+definition SCT' :: "acg \<Rightarrow> bool"
+where
+  "SCT' A = no_bad_graphs (tcl A)"
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/SCT_Examples.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,83 @@
+theory SCT_Examples
+imports Size_Change_Termination
+begin
+
+
+
+function f :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "f n 0 = n"
+| "f 0 (Suc m) = f (Suc m) m"
+| "f (Suc n) (Suc m) = f m n"
+by pat_completeness auto
+
+
+termination
+  unfolding f_rel_def lfp_const
+  apply (rule SCT_on_relations)
+  apply (tactic "SCT.abs_rel_tac") (* Build call descriptors *)
+  apply (rule ext, rule ext, simp) (* Show that they are correct *)
+  apply (tactic "SCT.mk_call_graph") (* Build control graph *)
+  apply (rule LJA_apply)                 (* Apply main theorem *)
+  apply (simp add:finite_acg_ins finite_acg_empty) (* show finiteness *)
+  apply (rule SCT'_exec)
+  by eval (* Evaluate to true *)
+
+
+function p :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "p m n r = (if r>0 then p m (r - 1) n else
+              if n>0 then p r (n - 1) m 
+                     else m)"
+by pat_completeness auto
+
+termination
+  unfolding p_rel_def lfp_const
+  apply (rule SCT_on_relations)
+  apply (tactic "SCT.abs_rel_tac") 
+  apply (rule ext, rule ext, simp) 
+  apply (tactic "SCT.mk_call_graph")
+  apply (rule LJA_apply)            
+  apply (simp add:finite_acg_ins finite_acg_empty) 
+  apply (rule SCT'_exec)
+  by eval
+
+function foo :: "bool \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "foo True (Suc n) m = foo True n (Suc m)"
+  "foo True 0 m = foo False 0 m"
+  "foo False n (Suc m) = foo False (Suc n) m"
+  "foo False n 0 = n"
+by pat_completeness auto
+
+termination
+  unfolding foo_rel_def lfp_const
+  apply (rule SCT_on_relations)
+  apply (tactic "SCT.abs_rel_tac") 
+  apply (rule ext, rule ext, simp) 
+  apply (tactic "SCT.mk_call_graph")
+  apply (rule LJA_apply)            
+  apply (simp add:finite_acg_ins finite_acg_empty) 
+  apply (rule SCT'_exec)
+  by eval
+
+
+function (sequential) 
+  bar :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "bar 0 (Suc n) m = bar m m m"
+| "bar k n m = 0"
+by pat_completeness auto
+
+termination
+  unfolding bar_rel_def lfp_const
+  apply (rule SCT_on_relations)
+  apply (tactic "SCT.abs_rel_tac") 
+  apply (rule ext, rule ext, simp) 
+  apply (tactic "SCT.mk_call_graph")
+  apply (rule LJA_apply)            
+  apply (simp add:finite_acg_ins finite_acg_empty) 
+  by (rule SCT'_empty)
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/SCT_Implementation.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,126 @@
+theory SCT_Implementation
+imports ExecutableSet SCT_Definition
+begin
+
+fun edges_match :: "('n \<times> 'e \<times> 'n) \<times> ('n \<times> 'e \<times> 'n) \<Rightarrow> bool"
+where
+  "edges_match ((n, e, m), (n',e',m')) = (m = n')"
+
+fun connect_edges :: 
+  "('n \<times> ('e::times) \<times> 'n) \<times> ('n \<times> 'e \<times> 'n)
+  \<Rightarrow> ('n \<times> 'e \<times> 'n)"
+where
+  "connect_edges ((n,e,m), (n', e', m')) = (n, e * e', m')"
+
+lemma grcomp_code[code]:
+  "grcomp (Graph G) (Graph H) = Graph (connect_edges ` { x \<in> G\<times>H. edges_match x })"
+  by (rule graph_ext) (auto simp:graph_mult_def has_edge_def image_def)
+
+
+definition test_SCT :: "acg \<Rightarrow> bool"
+where
+  "test_SCT \<A> = 
+  (let \<T> = mk_tcl \<A> \<A>
+    in (\<T> \<noteq> 0 \<and>
+       (\<forall>(n,G,m)\<in>dest_graph \<T>. 
+          n \<noteq> m \<or> G * G \<noteq> G \<or> 
+         (\<exists>(p::nat,e,q)\<in>dest_graph G. p = q \<and> e = LESS))))"
+
+
+lemma SCT'_exec:
+  assumes a: "test_SCT \<A>"
+  shows "SCT' \<A>"
+proof -
+  from mk_tcl_correctness2 a 
+  have "mk_tcl \<A> \<A> = tcl \<A>" 
+    unfolding test_SCT_def Let_def by auto
+  
+  with a
+  show ?thesis
+    unfolding SCT'_def no_bad_graphs_def test_SCT_def Let_def has_edge_def
+    by auto
+qed
+
+code_modulename SML
+  Implementation Graphs
+
+lemma [code func]:
+  "(G\<Colon>('a\<Colon>eq, 'b\<Colon>eq) graph) \<le> H \<longleftrightarrow> dest_graph G \<subseteq> dest_graph H"
+  "(G\<Colon>('a\<Colon>eq, 'b\<Colon>eq) graph) < H \<longleftrightarrow> dest_graph G \<subset> dest_graph H"
+  unfolding graph_leq_def graph_less_def by rule+
+
+lemma [code func]:
+  "(G\<Colon>('a\<Colon>eq, 'b\<Colon>eq) graph) + H = Graph (dest_graph G \<union> dest_graph H)"
+  unfolding graph_plus_def ..
+
+lemma [code func]:
+  "(G\<Colon>('a\<Colon>eq, 'b\<Colon>{eq, times}) graph) * H = grcomp G H"
+  unfolding graph_mult_def ..
+
+
+
+lemma SCT'_empty: "SCT' (Graph {})"
+  unfolding SCT'_def no_bad_graphs_def graph_zero_def[symmetric]
+  tcl_zero
+  by (simp add:in_grzero)
+
+
+
+subsection {* Witness checking *}
+
+
+definition test_SCT_witness :: "acg \<Rightarrow> acg \<Rightarrow> bool"
+where
+  "test_SCT_witness A T = 
+  (A \<le> T \<and> A * T \<le> T \<and>
+       (\<forall>(n,G,m)\<in>dest_graph T. 
+          n \<noteq> m \<or> G * G \<noteq> G \<or> 
+         (\<exists>(p::nat,e,q)\<in>dest_graph G. p = q \<and> e = LESS)))"
+
+
+lemma no_bad_graphs_ucl:
+  assumes "A \<le> B"
+  assumes "no_bad_graphs B"
+  shows "no_bad_graphs A"
+using prems
+unfolding no_bad_graphs_def has_edge_def graph_leq_def 
+by blast
+
+
+
+lemma SCT'_witness:
+  assumes a: "test_SCT_witness A T"
+  shows "SCT' A"
+proof -
+  from a have "A \<le> T" "A * T \<le> T" by (auto simp:test_SCT_witness_def)
+  hence "A + A * T \<le> T" 
+    by (subst add_idem[of T, symmetric], rule add_mono)
+  with star3' have "tcl A \<le> T" unfolding tcl_def .
+  moreover
+  from a have "no_bad_graphs T"
+    unfolding no_bad_graphs_def test_SCT_witness_def has_edge_def
+    by auto
+  ultimately
+  show ?thesis
+    unfolding SCT'_def
+    by (rule no_bad_graphs_ucl)
+qed
+
+
+code_modulename SML
+  Graphs SCT
+  Kleene_Algebras SCT
+  SCT_Implementation SCT
+
+code_gen test_SCT (SML -)
+
+
+end
+
+
+
+
+
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/SCT_Interpretation.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,413 @@
+theory SCT_Interpretation
+imports Main SCT_Misc SCT_Definition
+begin
+
+
+definition
+  "idseq R s x = (s 0 = x \<and> (\<forall>i. R (s (Suc i)) (s i)))"
+
+lemma not_acc_smaller:
+  assumes notacc: "\<not> acc R x"
+  shows "\<exists>y. R y x \<and> \<not> acc R y"
+proof (rule classical)
+  assume "\<not> ?thesis"
+  hence "\<And>y. R y x \<Longrightarrow> acc R y" by blast
+  with accI have "acc R x" .
+  with notacc show ?thesis by contradiction
+qed
+
+lemma non_acc_has_idseq:
+  assumes "\<not> acc R x"
+  shows "\<exists>s. idseq R s x"
+proof -
+  
+  have	"\<exists>f. \<forall>x. \<not>acc R x \<longrightarrow> R (f x) x \<and> \<not>acc R (f x)"
+	by (rule choice, auto simp:not_acc_smaller)
+  
+  then obtain f where
+	in_R: "\<And>x. \<not>acc R x \<Longrightarrow> R (f x) x"
+	and nia: "\<And>x. \<not>acc R x \<Longrightarrow> \<not>acc R (f x)"
+	by blast
+  
+  let ?s = "\<lambda>i. (f ^ i) x"
+  
+  {
+	fix i
+	have "\<not>acc R (?s i)"
+	  by (induct i) (auto simp:nia `\<not>acc R x`)
+	hence "R (f (?s i)) (?s i)"
+	  by (rule in_R)
+  }
+  
+  hence "idseq R ?s x"
+	unfolding idseq_def
+	by auto
+  
+  thus ?thesis by auto
+qed
+
+
+
+
+
+types ('a, 'q) cdesc =
+  "('q \<Rightarrow> bool) \<times> ('q \<Rightarrow> 'a) \<times>('q \<Rightarrow> 'a)"
+
+
+fun in_cdesc :: "('a, 'q) cdesc \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
+where
+  "in_cdesc (\<Gamma>, r, l) x y = (\<exists>q. x = r q \<and> y = l q \<and> \<Gamma> q)"
+
+fun mk_rel :: "('a, 'q) cdesc list \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
+where
+  "mk_rel [] x y = False"
+  "mk_rel (c#cs) x y =
+  (in_cdesc c x y \<or> mk_rel cs x y)"
+
+
+lemma some_rd:
+  assumes "mk_rel rds x y"
+  shows "\<exists>rd\<in>set rds. in_cdesc rd x y"
+  using prems
+  by (induct rds) (auto simp:in_cdesc_def)
+
+(* from a value sequence, get a sequence of rds *)
+
+lemma ex_cs:
+  assumes idseq: "idseq (mk_rel rds) s x"
+  shows "\<exists>cs. \<forall>i. cs i \<in> set rds \<and> in_cdesc (cs i) (s (Suc i)) (s i)"
+proof -
+  from idseq
+  have a: "\<forall>i. \<exists>rd \<in> set rds. in_cdesc rd (s (Suc i)) (s i)"
+	by (auto simp:idseq_def intro:some_rd)
+  
+  show ?thesis
+	by (rule choice) (insert a, blast)
+qed
+
+
+
+types ('q, 'a) interpr = "('a, 'q) cdesc \<times> (nat \<Rightarrow> 'a \<Rightarrow> nat)"
+types 'a measures = "nat \<Rightarrow> 'a \<Rightarrow> nat"
+
+
+fun stepP :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow> 
+  ('a \<Rightarrow> nat) \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> bool"
+where
+  "stepP (\<Gamma>1,r1,l1) (\<Gamma>2,r2,l2) m1 m2 R
+  = (\<forall>q\<^isub>1 q\<^isub>2. \<Gamma>1 q\<^isub>1 \<and> \<Gamma>2 q\<^isub>2 \<and> r1 q\<^isub>1 = l2 q\<^isub>2 
+  \<longrightarrow> R (m2 (l2 q\<^isub>2)) ((m1 (l1 q\<^isub>1))))"
+
+
+definition
+  decr :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow> 
+  ('a \<Rightarrow> nat) \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool"
+where
+  "decr c1 c2 m1 m2 = stepP c1 c2 m1 m2 (op <)"
+
+definition
+  decreq :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow> 
+  ('a \<Rightarrow> nat) \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool"
+where
+  "decreq c1 c2 m1 m2 = stepP c1 c2 m1 m2 (op \<le>)"
+
+definition
+  no_step :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow> bool"
+where
+  "no_step c1 c2 = stepP c1 c2 (\<lambda>x. 0) (\<lambda>x. 0) (\<lambda>x y. False)"
+
+
+
+lemma decr_in_cdesc:
+  assumes	"in_cdesc RD1 y x"
+  assumes "in_cdesc RD2 z y"
+  assumes "decr RD1 RD2 m1 m2"
+  shows "m2 y < m1 x"
+  using prems
+  by (cases RD1, cases RD2, auto simp:decr_def)
+
+lemma decreq_in_cdesc:
+  assumes	"in_cdesc RD1 y x"
+  assumes "in_cdesc RD2 z y"
+  assumes "decreq RD1 RD2 m1 m2"
+  shows "m2 y \<le> m1 x"
+  using prems
+  by (cases RD1, cases RD2, auto simp:decreq_def)
+
+
+lemma no_inf_desc_nat_sequence:
+  fixes s :: "nat \<Rightarrow> nat"
+  assumes leq: "\<And>i. n \<le> i \<Longrightarrow> s (Suc i) \<le> s i"
+  assumes less: "\<exists>\<^sub>\<infinity>i. s (Suc i) < s i"
+  shows False
+proof -
+  {
+	fix i j:: nat 
+	assume "n \<le> i"
+	assume "i \<le> j"
+	{
+	  fix k 
+	  have "s (i + k) \<le> s i"
+	  proof (induct k)
+		case 0 thus ?case by simp
+	  next
+		case (Suc k)
+		with leq[of "i + k"] `n \<le> i`
+		show ?case by simp
+	  qed
+	}
+	from this[of "j - i"] `n \<le> i` `i \<le> j`
+	have "s j \<le> s i" by auto
+  }
+  note decr = this
+  
+  let ?min = "LEAST x. x \<in> range (\<lambda>i. s (n + i))"
+  have "?min \<in> range (\<lambda>i. s (n + i))"
+	by (rule LeastI) auto
+  then obtain k where min: "?min = s (n + k)" by auto
+  
+  from less 
+  obtain k' where "n + k < k'"
+	and "s (Suc k') < s k'"
+	unfolding INF_nat by auto
+  
+  with decr[of "n + k" k'] min
+  have "s (Suc k') < ?min" by auto
+  moreover from `n + k < k'`
+  have "s (Suc k') = s (n + (Suc k' - n))" by simp
+  ultimately
+  show False using not_less_Least by blast
+qed
+
+
+
+definition
+  approx :: "scg \<Rightarrow> ('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc 
+  \<Rightarrow> 'a measures \<Rightarrow> 'a measures \<Rightarrow> bool"
+  where
+  "approx G C C' M M'
+  = (\<forall>i j. (dsc G i j \<longrightarrow> decr C C' (M i) (M' j))
+  \<and>(eq G i j \<longrightarrow> decreq C C' (M i) (M' j)))"
+
+
+
+
+(* Unfolding "approx" for finite graphs *)
+
+lemma approx_empty: 
+  "approx (Graph {}) c1 c2 ms1 ms2"
+  unfolding approx_def has_edge_def dest_graph.simps by simp
+
+lemma approx_less:
+  assumes "stepP c1 c2 (ms1 i) (ms2 j) (op <)"
+  assumes "approx (Graph Es) c1 c2 ms1 ms2"
+  shows "approx (Graph (insert (i, \<down>, j) Es)) c1 c2 ms1 ms2"
+  using prems
+  unfolding approx_def has_edge_def dest_graph.simps decr_def
+  by auto
+
+lemma approx_leq:
+  assumes "stepP c1 c2 (ms1 i) (ms2 j) (op \<le>)"
+  assumes "approx (Graph Es) c1 c2 ms1 ms2"
+  shows "approx (Graph (insert (i, \<Down>, j) Es)) c1 c2 ms1 ms2"
+  using prems
+  unfolding approx_def has_edge_def dest_graph.simps decreq_def
+  by auto
+
+
+lemma "approx (Graph {(1, \<down>, 2),(2, \<Down>, 3)}) c1 c2 ms1 ms2"
+  apply (intro approx_less approx_leq approx_empty) 
+  oops
+
+
+(*
+fun
+  no_step :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow> bool"
+where
+  "no_step (\<Gamma>1, r1, l1) (\<Gamma>2, r2, l2) =
+  (\<forall>q\<^isub>1 q\<^isub>2. \<Gamma>1 q\<^isub>1 \<and> \<Gamma>2 q\<^isub>2 \<and> r1 q\<^isub>1 = l2 q\<^isub>2 \<longrightarrow> False)"
+*)
+
+lemma no_stepI:
+  "stepP c1 c2 m1 m2 (\<lambda>x y. False)
+  \<Longrightarrow> no_step c1 c2"
+by (cases c1, cases c2) (auto simp: no_step_def)
+
+definition
+  sound_int :: "acg \<Rightarrow> ('a, 'q) cdesc list 
+  \<Rightarrow> 'a measures list \<Rightarrow> bool"
+where
+  "sound_int \<A> RDs M =
+  (\<forall>n<length RDs. \<forall>m<length RDs.
+  no_step (RDs ! n) (RDs ! m) \<or>
+  (\<exists>G. (\<A> \<turnstile> n \<leadsto>\<^bsup>G\<^esup> m) \<and> approx G (RDs ! n) (RDs ! m) (M ! n) (M ! m)))"
+
+
+(* The following are uses by the tactics *)
+lemma length_simps: "length [] = 0" "length (x#xs) = Suc (length xs)"
+  by auto
+
+lemma all_less_zero: "\<forall>n<(0::nat). P n"
+  by simp
+
+lemma all_less_Suc:
+  assumes Pk: "P k"
+  assumes Pn: "\<forall>n<k. P n"
+  shows "\<forall>n<Suc k. P n"
+proof (intro allI impI)
+  fix n assume "n < Suc k"
+  show "P n"
+  proof (cases "n < k")
+    case True with Pn show ?thesis by simp
+  next
+    case False with `n < Suc k` have "n = k" by simp
+    with Pk show ?thesis by simp
+  qed
+qed
+
+
+lemma step_witness:
+  assumes "in_cdesc RD1 y x"
+  assumes "in_cdesc RD2 z y"
+  shows "\<not> no_step RD1 RD2"
+  using prems
+  by (cases RD1, cases RD2) (auto simp:no_step_def)
+
+
+theorem SCT_on_relations:
+  assumes R: "R = mk_rel RDs"
+  assumes sound: "sound_int \<A> RDs M"
+  assumes "SCT \<A>"
+  shows "\<forall>x. acc R x"
+proof (rule, rule classical)
+  fix x
+  assume "\<not> acc R x"
+  with non_acc_has_idseq	
+  have "\<exists>s. idseq R s x" .
+  then obtain s where "idseq R s x" ..
+  hence "\<exists>cs. \<forall>i. cs i \<in> set RDs \<and>
+	in_cdesc (cs i) (s (Suc i)) (s i)"
+	unfolding R by (rule ex_cs) 
+  then obtain cs where
+	[simp]: "\<And>i. cs i \<in> set RDs"
+	  and ird[simp]: "\<And>i. in_cdesc (cs i) (s (Suc i)) (s i)"
+	by blast
+  
+  let ?cis = "\<lambda>i. index_of RDs (cs i)"
+  have "\<forall>i. \<exists>G. (\<A> \<turnstile> ?cis i \<leadsto>\<^bsup>G\<^esup> (?cis (Suc i)))
+	\<and> approx G (RDs ! ?cis i) (RDs ! ?cis (Suc i)) 
+	(M ! ?cis i) (M ! ?cis (Suc i))" (is "\<forall>i. \<exists>G. ?P i G")
+  proof
+	fix i
+	let ?n = "?cis i" and ?n' = "?cis (Suc i)"
+    
+	have "in_cdesc (RDs ! ?n) (s (Suc i)) (s i)"
+	  "in_cdesc (RDs ! ?n') (s (Suc (Suc i))) (s (Suc i))"
+	  by (simp_all add:index_of_member)
+	with step_witness
+ 	have "\<not> no_step (RDs ! ?n) (RDs ! ?n')" .
+	moreover have
+	  "?n < length RDs" 
+	  "?n' < length RDs"
+	  by (simp_all add:index_of_length[symmetric])
+	ultimately
+	obtain G
+	  where "\<A> \<turnstile> ?n \<leadsto>\<^bsup>G\<^esup> ?n'"
+	  and "approx G (RDs ! ?n) (RDs ! ?n') (M ! ?n) (M ! ?n')"
+	  using sound
+	  unfolding sound_int_def by auto
+    
+	thus "\<exists>G. ?P i G" by blast
+  qed
+  with choice
+  have "\<exists>Gs. \<forall>i. ?P i (Gs i)" .
+  then obtain Gs where 
+	A: "\<And>i. \<A> \<turnstile> ?cis i \<leadsto>\<^bsup>(Gs i)\<^esup> (?cis (Suc i))" 
+	and B: "\<And>i. approx (Gs i) (RDs ! ?cis i) (RDs ! ?cis (Suc i)) 
+	(M ! ?cis i) (M ! ?cis (Suc i))"
+	by blast
+  
+  let ?p = "\<lambda>i. (?cis i, Gs i)"
+  
+  from A have "has_ipath \<A> ?p"
+	unfolding has_ipath_def
+	by auto
+  
+  with `SCT \<A>` SCT_def 
+  obtain th where "is_desc_thread th ?p"
+	by auto
+  
+  then obtain n
+	where fr: "\<forall>i\<ge>n. eqlat ?p th i"
+	and inf: "\<exists>\<^sub>\<infinity>i. descat ?p th i"
+	unfolding is_desc_thread_def by auto
+  
+  from B
+  have approx:
+	"\<And>i. approx (Gs i) (cs i) (cs (Suc i)) 
+	(M ! ?cis i) (M ! ?cis (Suc i))"
+	by (simp add:index_of_member)
+  
+  let ?seq = "\<lambda>i. (M ! ?cis i) (th i) (s i)"
+  
+  have "\<And>i. n < i \<Longrightarrow> ?seq (Suc i) \<le> ?seq i"
+  proof -
+	fix i 
+	let ?q1 = "th i" and ?q2 = "th (Suc i)"
+	assume "n < i"
+	
+	with fr	have "eqlat ?p th i" by simp 
+	hence "dsc (Gs i) ?q1 ?q2 \<or> eq (Gs i) ?q1 ?q2" 
+      by simp
+	thus "?seq (Suc i) \<le> ?seq i"
+	proof
+	  assume "dsc (Gs i) ?q1 ?q2"
+	  
+	  with approx
+	  have a:"decr (cs i) (cs (Suc i)) 
+		((M ! ?cis i) ?q1) ((M ! ?cis (Suc i)) ?q2)" 
+		unfolding approx_def by auto
+      
+	  show ?thesis
+		apply (rule less_imp_le)
+		apply (rule decr_in_cdesc[of _ "s (Suc i)" "s i"])
+		by (rule ird a)+
+	next
+	  assume "eq (Gs i) ?q1 ?q2"
+	  
+	  with approx
+	  have a:"decreq (cs i) (cs (Suc i)) 
+		((M ! ?cis i) ?q1) ((M ! ?cis (Suc i)) ?q2)" 
+		unfolding approx_def by auto
+      
+	  show ?thesis
+		apply (rule decreq_in_cdesc[of _ "s (Suc i)" "s i"])
+		by (rule ird a)+
+	qed
+  qed
+  moreover have "\<exists>\<^sub>\<infinity>i. ?seq (Suc i) < ?seq i" unfolding INF_nat
+  proof 
+	fix i 
+	from inf obtain j where "i < j" and d: "descat ?p th j"
+	  unfolding INF_nat by auto
+	let ?q1 = "th j" and ?q2 = "th (Suc j)"
+	from d have "dsc (Gs j) ?q1 ?q2" by auto
+	
+	with approx
+	have a:"decr (cs j) (cs (Suc j)) 
+	  ((M ! ?cis j) ?q1) ((M ! ?cis (Suc j)) ?q2)" 
+	  unfolding approx_def by auto
+    
+	have "?seq (Suc j) < ?seq j"
+	  apply (rule decr_in_cdesc[of _ "s (Suc j)" "s j"])
+	  by (rule ird a)+
+	with `i < j` 
+	show "\<exists>j. i < j \<and> ?seq (Suc j) < ?seq j" by auto
+  qed
+  ultimately have False
+    by (rule no_inf_desc_nat_sequence[of "Suc n"]) simp
+  thus "acc R x" ..
+qed
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/SCT_Misc.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,206 @@
+theory SCT_Misc
+imports Main
+begin
+
+
+subsection {* Searching in lists *}
+
+fun index_of :: "'a list \<Rightarrow> 'a \<Rightarrow> nat"
+where
+  "index_of [] c = 0"
+| "index_of (x#xs) c = (if x = c then 0 else Suc (index_of xs c))"
+
+lemma index_of_member: 
+  "(x \<in> set l) \<Longrightarrow> (l ! index_of l x = x)"
+  by (induct l) auto
+
+lemma index_of_length:
+  "(x \<in> set l) = (index_of l x < length l)"
+  by (induct l) auto
+
+
+
+subsection {* Some reasoning tools *}
+
+lemma inc_induct[consumes 1]:
+  assumes less: "i \<le> j"
+  assumes base: "P j"
+  assumes step: "\<And>i. \<lbrakk>i < j; P (Suc i)\<rbrakk> \<Longrightarrow> P i"
+  shows "P i"
+  using less
+proof (induct d\<equiv>"j - i" arbitrary: i)
+  case (0 i)
+  with `i \<le> j` have "i = j" by simp
+  with base show ?case by simp
+next
+  case (Suc d i)
+  hence "i < j" "P (Suc i)"
+    by simp_all
+  thus "P i" by (rule step)
+qed
+
+lemma strict_inc_induct[consumes 1]:
+  assumes less: "i < j"
+  assumes base: "\<And>i. j = Suc i \<Longrightarrow> P i"
+  assumes step: "\<And>i. \<lbrakk>i < j; P (Suc i)\<rbrakk> \<Longrightarrow> P i"
+  shows "P i"
+  using less
+proof (induct d\<equiv>"j - i - 1" arbitrary: i)
+  case (0 i)
+  with `i < j` have "j = Suc i" by simp
+  with base show ?case by simp
+next
+  case (Suc d i)
+  hence "i < j" "P (Suc i)"
+    by simp_all
+  thus "P i" by (rule step)
+qed
+
+
+lemma three_cases:
+  assumes "a1 \<Longrightarrow> thesis"
+  assumes "a2 \<Longrightarrow> thesis"
+  assumes "a3 \<Longrightarrow> thesis"
+  assumes "\<And>R. \<lbrakk>a1 \<Longrightarrow> R; a2 \<Longrightarrow> R; a3 \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
+  shows "thesis"
+  using prems
+  by auto
+
+
+section {* Sequences *}
+
+types
+  'a sequence = "nat \<Rightarrow> 'a"
+
+subsection {* Increasing sequences *}
+
+definition increasing :: "(nat \<Rightarrow> nat) \<Rightarrow> bool"
+where
+  "increasing s = (\<forall>i j. i < j \<longrightarrow> s i < s j)"
+
+lemma increasing_strict:
+  assumes "increasing s"
+  assumes "i < j"
+  shows "s i < s j"
+  using prems
+  unfolding increasing_def by simp
+
+lemma increasing_weak:
+  assumes "increasing s"
+  assumes "i \<le> j"
+  shows "s i \<le> s j"
+  using prems increasing_strict[of s i j]
+  by (cases "i<j") auto
+
+lemma increasing_inc:
+  assumes [simp]: "increasing s"
+  shows "n \<le> s n"
+proof (induct n)
+  case (Suc n)
+  with increasing_strict[of s n "Suc n"]
+  show ?case by auto
+qed auto
+
+
+lemma increasing_bij:
+  assumes [simp]: "increasing s"
+  shows "(s i < s j) = (i < j)"
+proof
+  assume "s i < s j"
+  show "i < j"
+  proof (rule classical)
+    assume "\<not> ?thesis"
+    hence "j \<le> i" by arith
+    with increasing_weak have "s j \<le> s i" by simp
+    with `s i < s j` show ?thesis by simp
+  qed
+qed (simp add:increasing_strict)
+
+
+
+
+subsection {* Sections induced by an increasing sequence *}
+
+abbreviation
+  "section s i == {s i ..< s (Suc i)}"
+
+definition
+  "section_of s n = (LEAST i. n < s (Suc i))"
+
+
+lemma section_help:
+  assumes [intro, simp]: "increasing s"
+  shows "\<exists>i. n < s (Suc i)" 
+proof -
+  from increasing_inc have "n \<le> s n" .
+  also from increasing_strict have "\<dots> < s (Suc n)" by simp
+  finally show ?thesis ..
+qed
+
+lemma section_of2:
+  assumes "increasing s"
+  shows "n < s (Suc (section_of s n))"
+  unfolding section_of_def
+  by (rule LeastI_ex) (rule section_help)
+
+
+lemma section_of1:
+  assumes [simp, intro]: "increasing s"
+  assumes "s i \<le> n"
+  shows "s (section_of s n) \<le> n"
+proof (rule classical)
+  let ?m = "section_of s n"
+
+  assume "\<not> ?thesis"
+  hence a: "n < s ?m" by simp
+  
+  have nonzero: "?m \<noteq> 0"
+  proof
+    assume "?m = 0"
+    from increasing_weak have "s 0 \<le> s i" by simp
+    also note `\<dots> \<le> n`
+    finally show False using `?m = 0` `n < s ?m` by simp 
+  qed
+  with a have "n < s (Suc (?m - 1))" by simp
+  with Least_le have "?m \<le> ?m - 1"
+    unfolding section_of_def .
+  with nonzero show ?thesis by simp
+qed
+
+lemma section_of_known: 
+  assumes [simp]: "increasing s"
+  assumes in_sect: "k \<in> section s i"
+  shows "section_of s k = i" (is "?s = i")
+proof (rule classical)
+  assume "\<not> ?thesis"
+
+  hence "?s < i \<or> ?s > i" by arith
+  thus ?thesis
+  proof
+    assume "?s < i"
+    hence "Suc ?s \<le> i" by simp
+    with increasing_weak have "s (Suc ?s) \<le> s i" by simp
+    moreover have "k < s (Suc ?s)" using section_of2 by simp
+    moreover from in_sect have "s i \<le> k" by simp
+    ultimately show ?thesis by simp 
+  next
+    assume "i < ?s" hence "Suc i \<le> ?s" by simp
+    with increasing_weak have "s (Suc i) \<le> s ?s" by simp
+    moreover 
+    from in_sect have "s i \<le> k" by simp
+    with section_of1 have "s ?s \<le> k" by simp
+    moreover from in_sect have "k < s (Suc i)" by simp
+    ultimately show ?thesis by simp
+  qed
+qed 
+
+  
+lemma in_section_of: 
+  assumes [simp, intro]: "increasing s"
+  assumes "s i \<le> k"
+  shows "k \<in> section s (section_of s k)"
+  using prems
+  by (auto intro:section_of1 section_of2)
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/SCT_Theorem.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,1416 @@
+theory SCT_Theorem
+imports Main Ramsey SCT_Misc SCT_Definition
+begin
+
+
+section {* The size change criterion SCT *}
+
+
+definition is_thread :: "nat \<Rightarrow> nat sequence \<Rightarrow> (nat, scg) ipath \<Rightarrow> bool"
+where
+  "is_thread n \<theta> p = (\<forall>i\<ge>n. eqlat p \<theta> i)"
+
+definition is_fthread :: 
+  "nat sequence \<Rightarrow> (nat, scg) ipath \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
+where
+  "is_fthread \<theta> mp i j = (\<forall>k\<in>{i..<j}. eqlat mp \<theta> k)"
+
+definition is_desc_fthread ::
+  "nat sequence \<Rightarrow> (nat, scg) ipath \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
+where
+  "is_desc_fthread \<theta> mp i j = 
+  (is_fthread \<theta> mp i j \<and>
+  (\<exists>k\<in>{i..<j}. descat mp \<theta> k))"
+
+definition
+  "has_fth p i j n m = 
+  (\<exists>\<theta>. is_fthread \<theta> p i j \<and> \<theta> i = n \<and> \<theta> j = m)"
+
+definition
+  "has_desc_fth p i j n m = 
+  (\<exists>\<theta>. is_desc_fthread \<theta> p i j \<and> \<theta> i = n \<and> \<theta> j = m)"
+
+
+
+section {* Bounded graphs and threads *}
+
+definition 
+  "bounded_scg (P::nat) (G::scg) = 
+  (\<forall>p e p'. has_edge G p e p' \<longrightarrow> p < P \<and> p' < P)"
+
+definition
+  "bounded_acg P ACG = 
+  (\<forall>n G n'. has_edge ACG n G n' \<longrightarrow> n < P \<and> n' < P \<and> bounded_scg P G)"
+  
+definition
+  "bounded_mp P mp = (\<forall>i. bounded_scg P (snd (mp i)))"
+
+definition (* = finite (range \<theta>) *)
+  "bounded_th (P::nat) n \<theta> = (\<forall>i>n. \<theta> i < P)"
+
+
+definition 
+  "finite_scg (G::scg) = (\<exists>P. bounded_scg P G)"
+
+definition
+  "finite_acg (A::acg) = (\<exists>P. bounded_acg P A)"
+
+
+lemma "finite (insert x A) = finite A"
+by simp
+
+
+lemma finite_scg_finite[simp]: "finite_scg (Graph G) = finite G"
+proof
+  assume "finite_scg (Graph G)"
+  thm bounded_scg_def
+  
+  then obtain P where bounded: "bounded_scg P (Graph G)" 
+    by (auto simp:finite_scg_def)
+
+  show "finite G"
+  proof (rule finite_subset)
+    from bounded 
+    show "G \<subseteq> {0 .. P - 1} \<times> { LESS, LEQ } \<times> { 0 .. P - 1}"
+      apply (auto simp:bounded_scg_def has_edge_def)
+      apply force
+      apply (case_tac "aa", auto)
+      apply force
+      done
+
+    show "finite \<dots>"
+      by (auto intro: finite_cartesian_product finite_atLeastAtMost)
+  qed
+next
+
+  assume "finite G"
+  thus "finite_scg (Graph G)"
+  proof induct
+    show "finite_scg (Graph {})"
+      unfolding finite_scg_def bounded_scg_def has_edge_def by auto
+  next
+    fix x G 
+    assume "finite G" "x \<notin> G" "finite_scg (Graph G)"
+    then obtain P
+      where bG: "bounded_scg P (Graph G)" 
+      by (auto simp:finite_scg_def)
+    
+    obtain p e p' where x: "x = (p, e, p')" by (cases x, auto)
+    
+    let ?Q = "max P (max (Suc p) (Suc p'))"
+    have "P \<le> ?Q" "Suc p \<le> ?Q" "Suc p' \<le> ?Q" by auto
+    with bG
+    have "bounded_scg ?Q (Graph (insert x G))" 
+      unfolding x bounded_scg_def has_edge_def
+      apply simp
+      apply (intro allI, elim allE)
+      by auto
+    thus "finite_scg (Graph (insert x G))"
+      by (auto simp:finite_scg_def)
+  qed
+qed
+
+
+lemma finite_acg_empty:
+  "finite_acg (Graph {})"
+unfolding finite_acg_def bounded_acg_def has_edge_def
+by auto
+
+
+
+lemma bounded_scg_up: "bounded_scg P G \<Longrightarrow> P \<le> Q \<Longrightarrow> bounded_scg Q G"
+  unfolding bounded_scg_def
+  by force
+
+
+lemma bounded_up: "bounded_acg P G \<Longrightarrow> P \<le> Q \<Longrightarrow> bounded_acg Q G"
+  unfolding bounded_acg_def 
+  apply auto
+  apply force+
+  apply (rule bounded_scg_up)
+  by auto
+
+lemma bacg_insert:
+  assumes "bounded_acg P (Graph A)"
+  assumes "n < P" "m < P" "bounded_scg P G"
+  shows "bounded_acg P (Graph (insert (n, G, m) A))"
+  using prems
+  unfolding bounded_acg_def has_edge_def 
+  by auto
+
+lemma finite_acg_ins:
+  "finite_acg (Graph (insert (n,G,m) A)) = 
+  (finite_scg G \<and> finite_acg (Graph A))" (is "?A = (?B \<and> ?C)")
+proof
+  assume "?A"
+  thus "?B \<and> ?C"
+    unfolding finite_acg_def bounded_acg_def finite_scg_def has_edge_def
+    by auto
+next
+  assume "?B \<and> ?C"
+  thus ?A
+  proof
+    assume "?B" "?C"
+
+    from `?C`
+    obtain P where bA: "bounded_acg P (Graph A)" by (auto simp:finite_acg_def)
+    from `?B` 
+    obtain P' where bG: "bounded_scg P' G" by (auto simp:finite_scg_def)
+
+    let ?Q = "max (max P P') (max (Suc n) (Suc m))"
+    have "P \<le> ?Q" "n < ?Q" "m < ?Q" by auto
+    have "bounded_acg ?Q (Graph (insert (n, G, m) A))"
+      apply (rule bacg_insert)
+      apply (rule bounded_up)
+      apply (rule bA)
+      apply auto
+      apply (rule bounded_scg_up)
+      apply (rule bG)
+      by auto
+    thus "finite_acg (Graph (insert (n, G, m) A))"
+      by (auto simp:finite_acg_def)
+  qed
+qed
+
+
+lemma bounded_mpath:
+  assumes "has_ipath acg mp"
+  and "bounded_acg P acg"
+  shows "bounded_mp P mp"
+  using prems
+  unfolding bounded_acg_def bounded_mp_def has_ipath_def
+  by blast
+
+lemma bounded_th: 
+  assumes th: "is_thread n \<theta> mp"
+  and mp: "bounded_mp P mp"
+  shows "bounded_th P n \<theta>"
+  unfolding bounded_th_def
+proof (intro allI impI)
+  fix i assume "n < i"
+  
+  from mp have "bounded_scg P (snd (mp i))" unfolding bounded_mp_def ..
+  moreover
+  from th `n < i` have "eqlat mp \<theta> i" unfolding is_thread_def by auto
+  ultimately
+  show "\<theta> i < P" unfolding bounded_scg_def by auto
+qed
+
+
+lemma finite_range:
+  fixes f :: "nat \<Rightarrow> 'a"
+  assumes fin: "finite (range f)"
+  shows "\<exists>x. \<exists>\<^sub>\<infinity>i. f i = x"
+proof (rule classical)
+  assume "\<not>(\<exists>x. \<exists>\<^sub>\<infinity>i. f i = x)"
+  hence "\<forall>x. \<exists>j. \<forall>i>j. f i \<noteq> x"
+    unfolding INF_nat by blast
+  with choice
+  have "\<exists>j. \<forall>x. \<forall>i>(j x). f i \<noteq> x" .
+  then obtain j where 
+    neq: "\<And>x i. j x < i \<Longrightarrow> f i \<noteq> x" by blast
+
+  from fin have "finite (range (j o f))" 
+    by (auto simp:comp_def)
+  with finite_nat_bounded
+  obtain m where "range (j o f) \<subseteq> {..<m}" by blast
+  hence "j (f m) < m" unfolding comp_def by auto
+
+  with neq[of "f m" m] show ?thesis by blast
+qed
+
+
+lemma bounded_th_infinite_visit:
+  fixes \<theta> :: "nat sequence"
+  assumes b: "bounded_th P n \<theta>"
+  shows "\<exists>p. \<exists>\<^sub>\<infinity>i. \<theta> i = p" 
+proof -
+  have split: "range \<theta> = (\<theta> ` {0 .. n}) \<union> (\<theta> ` {i. n < i})"
+    (is "\<dots> = ?A \<union> ?B")
+    unfolding image_Un[symmetric] by auto
+
+  have "finite ?A" by (rule finite_imageI) auto
+  moreover
+  have "finite ?B"
+  proof (rule finite_subset)
+    from b
+    show "?B \<subseteq> { 0 ..< P }"
+      unfolding bounded_th_def
+      by auto
+    show "finite \<dots>" by auto
+  qed
+
+  ultimately have "finite (range \<theta>)"
+    unfolding split by auto
+
+  with finite_range show ?thesis .
+qed
+
+
+lemma bounded_scgcomp:
+  "bounded_scg P A 
+  \<Longrightarrow> bounded_scg P B 
+  \<Longrightarrow> bounded_scg P (A * B)"
+  unfolding bounded_scg_def
+  by (auto simp:in_grcomp)
+
+lemma bounded_acgcomp:
+  "bounded_acg P A 
+  \<Longrightarrow> bounded_acg P B 
+  \<Longrightarrow> bounded_acg P (A * B)"
+  unfolding bounded_acg_def
+  by (auto simp:in_grcomp intro!:bounded_scgcomp) 
+
+lemma bounded_acgpow:
+  "bounded_acg P A
+  \<Longrightarrow> bounded_acg P (A ^ (Suc n))"
+  by (induct n, simp add:power_Suc) 
+   (subst power_Suc, blast intro:bounded_acgcomp)
+
+lemma bounded_plus:
+  assumes b: "bounded_acg P acg"
+  shows "bounded_acg P (tcl acg)"
+  unfolding bounded_acg_def
+proof (intro allI impI conjI)
+  fix n G m
+  assume "tcl acg \<turnstile> n \<leadsto>\<^bsup>G\<^esup> m"
+  then obtain i where "0 < i" and i: "acg ^ i \<turnstile> n \<leadsto>\<^bsup>G\<^esup> m"
+    unfolding in_tcl by auto (* FIXME: Disambiguate \<turnstile> Grammar *)
+  from b have "bounded_acg P (acg ^ (Suc (i - 1)))"
+    by (rule bounded_acgpow)
+  with `0 < i` have "bounded_acg P (acg ^ i)" by simp
+  with i
+  show "n < P" "m < P" "bounded_scg P G"
+    unfolding bounded_acg_def
+    by auto
+qed
+
+
+lemma bounded_scg_def':
+  "bounded_scg P G = (\<forall>(p,e,p')\<in>dest_graph G. p < P \<and> p' < P)"
+  unfolding bounded_scg_def has_edge_def
+  by auto
+
+
+lemma finite_bounded_scg: "finite { G. bounded_scg P G }"
+proof (rule finite_subset)
+  show "{G. bounded_scg P G} \<subseteq> 
+    Graph ` (Pow ({0 .. P - 1} \<times> UNIV \<times> {0 .. P - 1}))"
+  proof (rule, simp)
+    fix G 
+    
+    assume b: "bounded_scg P G"
+
+    show "G \<in> Graph ` Pow ({0..P - Suc 0} \<times> UNIV \<times> {0..P - Suc 0})"
+    proof (cases G)
+      fix G' assume [simp]: "G = Graph G'"
+      
+      from b show ?thesis
+        by (auto simp:bounded_scg_def' image_def)
+    qed
+  qed
+
+  show "finite \<dots>"
+    apply (rule finite_imageI)
+    apply (unfold finite_Pow_iff)
+    by (intro finite_cartesian_product finite_atLeastAtMost 
+      finite_class.finite)
+qed
+
+lemma bounded_finite:
+  assumes bounded: "bounded_acg P A"
+  shows "finite (dest_graph A)"
+proof (rule finite_subset)
+  
+  from bounded
+  show "dest_graph A \<subseteq> {0 .. P - 1} \<times> { G. bounded_scg P G } \<times> { 0 .. P - 1}"
+    by (auto simp:bounded_acg_def has_edge_def) force+
+
+  show "finite \<dots>"
+    by (intro finite_cartesian_product finite_atLeastAtMost finite_bounded_scg)
+qed
+
+
+
+section {* Contraction and more *}
+
+
+abbreviation 
+  "pdesc P == (fst P, prod P, end_node P)"
+
+lemma pdesc_acgplus: 
+  assumes "has_ipath \<A> p"
+  and "i < j"
+  shows "has_edge (tcl \<A>) (fst (p\<langle>i,j\<rangle>)) (prod (p\<langle>i,j\<rangle>)) (end_node (p\<langle>i,j\<rangle>))"
+  unfolding plus_paths
+  apply (rule exI)
+  apply (insert prems)  
+  by (auto intro:sub_path_is_path[of "\<A>" p i j] simp:sub_path_def)
+
+
+
+
+lemma combine_fthreads: 
+  assumes range: "i < j" "j \<le> k"
+  shows 
+  "has_fth p i k m r =
+  (\<exists>n. has_fth p i j m n \<and> has_fth p j k n r)" (is "?L = ?R")
+proof (intro iffI)
+  assume "?L"
+  then obtain \<theta>
+    where "is_fthread \<theta> p i k" 
+    and [simp]: "\<theta> i = m" "\<theta> k = r"
+    by (auto simp:has_fth_def)
+
+  with range
+  have "is_fthread \<theta> p i j" and "is_fthread \<theta> p j k"
+    by (auto simp:is_fthread_def)
+  hence "has_fth p i j m (\<theta> j)" and "has_fth p j k (\<theta> j) r"
+    by (auto simp:has_fth_def)
+  thus "?R" by auto
+next
+  assume "?R"
+  then obtain n \<theta>1 \<theta>2
+    where ths: "is_fthread \<theta>1 p i j" "is_fthread \<theta>2 p j k"
+    and [simp]: "\<theta>1 i = m" "\<theta>1 j = n" "\<theta>2 j = n" "\<theta>2 k = r"
+    by (auto simp:has_fth_def)
+
+  let ?\<theta> = "(\<lambda>i. if i < j then \<theta>1 i else \<theta>2 i)"
+  have "is_fthread ?\<theta> p i k"
+    unfolding is_fthread_def
+  proof
+    fix l assume range: "l \<in> {i..<k}"
+    
+    show "eqlat p ?\<theta> l"
+    proof (cases rule:three_cases)
+      assume "Suc l < j"
+      with ths range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    next
+      assume "Suc l = j"
+      hence "l < j" "\<theta>2 (Suc l) = \<theta>1 (Suc l)" by auto
+      with ths range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    next
+      assume "j \<le> l"
+      with ths range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    qed arith
+  qed
+  moreover 
+  have "?\<theta> i = m" "?\<theta> k = r" using range by auto
+  ultimately show "has_fth p i k m r" 
+    by (auto simp:has_fth_def)
+qed 
+
+
+lemma desc_is_fthread:
+  "is_desc_fthread \<theta> p i k \<Longrightarrow> is_fthread \<theta> p i k"
+  unfolding is_desc_fthread_def
+  by simp
+
+
+lemma combine_dfthreads: 
+  assumes range: "i < j" "j \<le> k"
+  shows 
+  "has_desc_fth p i k m r =
+  (\<exists>n. (has_desc_fth p i j m n \<and> has_fth p j k n r)
+  \<or> (has_fth p i j m n \<and> has_desc_fth p j k n r))" (is "?L = ?R")
+proof 
+  assume "?L"
+  then obtain \<theta>
+    where desc: "is_desc_fthread \<theta> p i k" 
+    and [simp]: "\<theta> i = m" "\<theta> k = r"
+    by (auto simp:has_desc_fth_def)
+
+  hence "is_fthread \<theta> p i k"
+    by (simp add: desc_is_fthread)
+  with range have fths: "is_fthread \<theta> p i j" "is_fthread \<theta> p j k"
+    unfolding is_fthread_def
+    by auto
+  hence hfths: "has_fth p i j m (\<theta> j)" "has_fth p j k (\<theta> j) r"
+    by (auto simp:has_fth_def)
+
+  from desc obtain l 
+    where "i \<le> l" "l < k"
+    and "descat p \<theta> l"
+    by (auto simp:is_desc_fthread_def)
+
+  with fths
+  have "is_desc_fthread \<theta> p i j \<or> is_desc_fthread \<theta> p j k"
+    unfolding is_desc_fthread_def
+    by (cases "l < j") auto
+  hence "has_desc_fth p i j m (\<theta> j) \<or> has_desc_fth p j k (\<theta> j) r"
+    by (auto simp:has_desc_fth_def)
+  with hfths show ?R
+    by auto
+next
+  assume "?R"
+  then obtain n \<theta>1 \<theta>2
+    where "(is_desc_fthread \<theta>1 p i j \<and> is_fthread \<theta>2 p j k)
+    \<or> (is_fthread \<theta>1 p i j \<and> is_desc_fthread \<theta>2 p j k)"
+    and [simp]: "\<theta>1 i = m" "\<theta>1 j = n" "\<theta>2 j = n" "\<theta>2 k = r"
+    by (auto simp:has_fth_def has_desc_fth_def)
+
+  hence ths2: "is_fthread \<theta>1 p i j" "is_fthread \<theta>2 p j k"
+    and dths: "is_desc_fthread \<theta>1 p i j \<or> is_desc_fthread \<theta>2 p j k"
+    by (auto simp:desc_is_fthread)
+
+  let ?\<theta> = "(\<lambda>i. if i < j then \<theta>1 i else \<theta>2 i)"
+  have "is_fthread ?\<theta> p i k"
+    unfolding is_fthread_def
+  proof
+    fix l assume range: "l \<in> {i..<k}"
+    
+    show "eqlat p ?\<theta> l"
+    proof (cases rule:three_cases)
+      assume "Suc l < j"
+      with ths2 range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    next
+      assume "Suc l = j"
+      hence "l < j" "\<theta>2 (Suc l) = \<theta>1 (Suc l)" by auto
+      with ths2 range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    next
+      assume "j \<le> l"
+      with ths2 range show ?thesis 
+	unfolding is_fthread_def Ball_def
+	by simp
+    qed arith
+  qed
+  moreover
+  from dths
+  have "\<exists>l. i \<le> l \<and> l < k \<and> descat p ?\<theta> l"
+  proof
+    assume "is_desc_fthread \<theta>1 p i j"
+
+    then obtain l where range: "i \<le> l" "l < j" and "descat p \<theta>1 l"
+      unfolding is_desc_fthread_def Bex_def by auto
+    hence "descat p ?\<theta> l" 
+      by (cases "Suc l = j", auto)
+    with `j \<le> k` and range show ?thesis 
+      by (rule_tac x="l" in exI, auto)
+  next
+    assume "is_desc_fthread \<theta>2 p j k"
+    then obtain l where range: "j \<le> l" "l < k" and "descat p \<theta>2 l"
+      unfolding is_desc_fthread_def Bex_def by auto
+    with `i < j` have "descat p ?\<theta> l" "i \<le> l"
+      by auto
+    with range show ?thesis 
+      by (rule_tac x="l" in exI, auto)
+  qed
+  ultimately have "is_desc_fthread ?\<theta> p i k"
+    by (simp add: is_desc_fthread_def Bex_def)
+
+  moreover 
+  have "?\<theta> i = m" "?\<theta> k = r" using range by auto
+
+  ultimately show "has_desc_fth p i k m r" 
+    by (auto simp:has_desc_fth_def)
+qed 
+
+    
+
+lemma fth_single:
+  "has_fth p i (Suc i) m n = eql (snd (p i)) m n" (is "?L = ?R")
+proof 
+  assume "?L" thus "?R"
+    unfolding is_fthread_def Ball_def has_fth_def
+    by auto
+next
+  let ?\<theta> = "\<lambda>k. if k = i then m else n"
+  assume edge: "?R"
+  hence "is_fthread ?\<theta> p i (Suc i) \<and> ?\<theta> i = m \<and> ?\<theta> (Suc i) = n"
+    unfolding is_fthread_def Ball_def
+    by auto
+
+  thus "?L"
+    unfolding has_fth_def 
+    by auto
+qed
+
+lemma desc_fth_single:
+  "has_desc_fth p i (Suc i) m n = 
+  dsc (snd (p i)) m n" (is "?L = ?R")
+proof 
+  assume "?L" thus "?R"
+    unfolding is_desc_fthread_def has_desc_fth_def is_fthread_def
+    Bex_def 
+    by (elim exE conjE) (case_tac "k = i", auto)
+next
+  let ?\<theta> = "\<lambda>k. if k = i then m else n"
+  assume edge: "?R"
+  hence "is_desc_fthread ?\<theta> p i (Suc i) \<and> ?\<theta> i = m \<and> ?\<theta> (Suc i) = n"
+    unfolding is_desc_fthread_def is_fthread_def Ball_def Bex_def
+    by auto
+  thus "?L"
+    unfolding has_desc_fth_def 
+    by auto
+qed
+
+lemma mk_eql: "(G \<turnstile> m \<leadsto>\<^bsup>e\<^esup> n) \<Longrightarrow> eql G m n"
+  by (cases e, auto)
+
+lemma eql_scgcomp:
+  "eql (G * H) m r =
+  (\<exists>n. eql G m n \<and> eql H n r)" (is "?L = ?R")
+proof
+  show "?L \<Longrightarrow> ?R"
+    by (auto simp:in_grcomp intro!:mk_eql)
+
+  assume "?R"
+  then obtain n where l: "eql G m n" and r:"eql H n r" by auto
+  thus ?L
+    by (cases "dsc G m n") (auto simp:in_grcomp mult_sedge_def)
+qed
+
+lemma desc_scgcomp:
+  "dsc (G * H) m r =
+  (\<exists>n. (dsc G m n \<and> eql H n r) \<or> (eq G m n \<and> dsc H n r))" (is "?L = ?R")
+proof
+  show "?R \<Longrightarrow> ?L" by (auto simp:in_grcomp mult_sedge_def)
+
+  assume "?L"
+  thus ?R
+    by (auto simp:in_grcomp mult_sedge_def)
+  (case_tac "e", auto, case_tac "e'", auto)
+qed
+
+
+lemma has_fth_unfold:
+  assumes "i < j"
+  shows "has_fth p i j m n = 
+    (\<exists>r. has_fth p i (Suc i) m r \<and> has_fth p (Suc i) j r n)"
+    by (rule combine_fthreads) (insert `i < j`, auto)
+
+lemma has_dfth_unfold:
+  assumes range: "i < j"
+  shows 
+  "has_desc_fth p i j m r =
+  (\<exists>n. (has_desc_fth p i (Suc i) m n \<and> has_fth p (Suc i) j n r)
+  \<or> (has_fth p i (Suc i) m n \<and> has_desc_fth p (Suc i) j n r))"
+  by (rule combine_dfthreads) (insert `i < j`, auto)
+
+
+lemma Lemma7a:
+assumes "i \<le> j"
+shows
+  "has_fth p i j m n = 
+  eql (prod (p\<langle>i,j\<rangle>)) m n"
+using prems
+proof (induct i arbitrary: m rule:inc_induct)
+  case 1 show ?case
+    unfolding has_fth_def is_fthread_def sub_path_def
+    by (auto simp:in_grunit one_sedge_def)
+next
+  case (2 i)
+  note IH = `\<And>m. has_fth p (Suc i) j m n = 
+  eql (prod (p\<langle>Suc i,j\<rangle>)) m n`
+
+  have "has_fth p i j m n 
+    = (\<exists>r. has_fth p i (Suc i) m r \<and> has_fth p (Suc i) j r n)"
+    by (rule has_fth_unfold[OF `i < j`])
+  also have "\<dots> = (\<exists>r. has_fth p i (Suc i) m r 
+    \<and> eql (prod (p\<langle>Suc i,j\<rangle>)) r n)"
+    by (simp only:IH)
+  also have "\<dots> = (\<exists>r. eql (snd (p i)) m r
+    \<and> eql (prod (p\<langle>Suc i,j\<rangle>)) r n)"
+    by (simp only:fth_single)
+  also have "\<dots> = eql (snd (p i) * prod (p\<langle>Suc i,j\<rangle>)) m n"
+    by (simp only:eql_scgcomp)
+  also have "\<dots> = eql (prod (p\<langle>i,j\<rangle>)) m n"
+    by (simp only:prod_unfold[OF `i < j`])
+  finally show ?case .
+qed
+
+
+lemma Lemma7b:
+assumes "i \<le> j"
+shows
+  "has_desc_fth p i j m n = 
+  dsc (prod (p\<langle>i,j\<rangle>)) m n"
+using prems
+proof (induct i arbitrary: m rule:inc_induct)
+  case 1 show ?case
+    unfolding has_desc_fth_def is_desc_fthread_def sub_path_def 
+    by (auto simp:in_grunit one_sedge_def)
+next
+  case (2 i)
+  thus ?case 
+    by (simp only:prod_unfold desc_scgcomp desc_fth_single
+    has_dfth_unfold fth_single Lemma7a) auto
+qed
+
+
+lemma descat_contract:
+  assumes [simp]: "increasing s"
+  shows
+  "descat (contract s p) \<theta> i = 
+  has_desc_fth p (s i) (s (Suc i)) (\<theta> i) (\<theta> (Suc i))"
+  by (simp add:Lemma7b increasing_weak contract_def)
+
+lemma eqlat_contract:
+  assumes [simp]: "increasing s"
+  shows
+  "eqlat (contract s p) \<theta> i = 
+  has_fth p (s i) (s (Suc i)) (\<theta> i) (\<theta> (Suc i))"
+  by (auto simp:Lemma7a increasing_weak contract_def)
+
+
+subsection {* Connecting threads *}
+
+definition
+  "connect s \<theta>s = (\<lambda>k. \<theta>s (section_of s k) k)"
+
+
+lemma next_in_range:
+  assumes [simp]: "increasing s"
+  assumes a: "k \<in> section s i"
+  shows "(Suc k \<in> section s i) \<or> (Suc k \<in> section s (Suc i))"
+proof -
+  from a have "k < s (Suc i)" by simp
+  
+  hence "Suc k < s (Suc i) \<or> Suc k = s (Suc i)" by arith
+  thus ?thesis
+  proof
+    assume "Suc k < s (Suc i)"
+    with a have "Suc k \<in> section s i" by simp
+    thus ?thesis ..
+  next
+    assume eq: "Suc k = s (Suc i)"
+    with increasing_strict have "Suc k < s (Suc (Suc i))" by simp
+    with eq have "Suc k \<in> section s (Suc i)" by simp
+    thus ?thesis ..
+  qed
+qed
+
+
+
+lemma connect_threads:
+  assumes [simp]: "increasing s"
+  assumes connected: "\<theta>s i (s (Suc i)) = \<theta>s (Suc i) (s (Suc i))"
+  assumes fth: "is_fthread (\<theta>s i) p (s i) (s (Suc i))"
+
+  shows
+  "is_fthread (connect s \<theta>s) p (s i) (s (Suc i))"
+  unfolding is_fthread_def
+proof 
+  fix k assume krng: "k \<in> section s i"
+
+  with fth have eqlat: "eqlat p (\<theta>s i) k" 
+    unfolding is_fthread_def by simp
+
+  from krng and next_in_range 
+  have "(Suc k \<in> section s i) \<or> (Suc k \<in> section s (Suc i))" 
+    by simp
+  thus "eqlat p (connect s \<theta>s) k"
+  proof
+    assume "Suc k \<in> section s i"
+    with krng eqlat show ?thesis
+      unfolding connect_def
+      by (simp only:section_of_known `increasing s`)
+  next
+    assume skrng: "Suc k \<in> section s (Suc i)"
+    with krng have "Suc k = s (Suc i)" by auto
+
+    with krng skrng eqlat show ?thesis
+      unfolding connect_def
+      by (simp only:section_of_known connected[symmetric] `increasing s`)
+  qed
+qed
+
+
+lemma connect_dthreads:
+  assumes inc[simp]: "increasing s"
+  assumes connected: "\<theta>s i (s (Suc i)) = \<theta>s (Suc i) (s (Suc i))"
+  assumes fth: "is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))"
+
+  shows
+  "is_desc_fthread (connect s \<theta>s) p (s i) (s (Suc i))"
+  unfolding is_desc_fthread_def
+proof 
+  show "is_fthread (connect s \<theta>s) p (s i) (s (Suc i))"
+    apply (rule connect_threads)
+    apply (insert fth)
+    by (auto simp:connected is_desc_fthread_def)
+
+  from fth
+  obtain k where dsc: "descat p (\<theta>s i) k" and krng: "k \<in> section s i"
+    unfolding is_desc_fthread_def by blast
+  
+  from krng and next_in_range 
+  have "(Suc k \<in> section s i) \<or> (Suc k \<in> section s (Suc i))" 
+    by simp
+  hence "descat p (connect s \<theta>s) k"
+  proof
+    assume "Suc k \<in> section s i"
+    with krng dsc show ?thesis unfolding connect_def
+      by (simp only:section_of_known inc)
+  next
+    assume skrng: "Suc k \<in> section s (Suc i)"
+    with krng have "Suc k = s (Suc i)" by auto
+
+    with krng skrng dsc show ?thesis unfolding connect_def
+      by (simp only:section_of_known connected[symmetric] inc)
+  qed
+  with krng show "\<exists>k\<in>section s i. descat p (connect s \<theta>s) k" ..
+qed
+
+
+
+lemma mk_inf_thread:
+  assumes [simp]: "increasing s"
+  assumes fths: "\<And>i. i > n \<Longrightarrow> is_fthread \<theta> p (s i) (s (Suc i))"
+  shows "is_thread (s (Suc n)) \<theta> p"
+  unfolding is_thread_def 
+proof (intro allI impI)
+  fix j assume st: "s (Suc n) \<le> j"
+
+  let ?k = "section_of s j"
+  from in_section_of st
+  have rs: "j \<in> section s ?k" by simp
+
+  with st have "s (Suc n) < s (Suc ?k)" by simp
+  with increasing_bij have "n < ?k" by simp
+  with rs and fths[of ?k]
+  show "eqlat p \<theta> j" by (simp add:is_fthread_def)
+qed
+
+
+lemma mk_inf_desc_thread:
+  assumes [simp]: "increasing s"
+  assumes fths: "\<And>i. i > n \<Longrightarrow> is_fthread \<theta> p (s i) (s (Suc i))"
+  assumes fdths: "\<exists>\<^sub>\<infinity>i. is_desc_fthread \<theta> p (s i) (s (Suc i))"
+  shows "is_desc_thread \<theta> p"
+  unfolding is_desc_thread_def 
+proof (intro exI conjI)
+
+  from mk_inf_thread[of s n] is_thread_def fths
+  show "\<forall>i\<ge>s (Suc n). eqlat p \<theta> i" by simp
+
+  show "\<exists>\<^sub>\<infinity>l. descat p \<theta> l"
+    unfolding INF_nat
+  proof
+    fix i 
+    
+    let ?k = "section_of s i"
+    from fdths obtain j
+      where "?k < j" "is_desc_fthread \<theta> p (s j) (s (Suc j))"
+      unfolding INF_nat by auto
+    then obtain l where "s j \<le> l" and desc: "descat p \<theta> l"
+      unfolding is_desc_fthread_def
+      by auto
+
+    have "i < s (Suc ?k)" by (rule section_of2)
+    also have "\<dots> \<le> s j" 
+      by (rule increasing_weak[of s], assumption)
+    (insert `?k < j`, arith)
+    also note `\<dots> \<le> l`
+    finally have "i < l" .
+    with desc
+    show "\<exists>l. i < l \<and> descat p \<theta> l" by blast
+  qed
+qed
+
+
+lemma desc_ex_choice:
+  assumes A: "((\<exists>n.\<forall>i\<ge>n. \<exists>x. P x i) \<and> (\<exists>\<^sub>\<infinity>i. \<exists>x. Q x i))"
+  and imp: "\<And>x i. Q x i \<Longrightarrow> P x i"
+  shows "\<exists>xs. ((\<exists>n.\<forall>i\<ge>n. P (xs i) i) \<and> (\<exists>\<^sub>\<infinity>i. Q (xs i) i))"
+  (is "\<exists>xs. ?Ps xs \<and> ?Qs xs")
+proof
+  let ?w = "\<lambda>i. (if (\<exists>x. Q x i) then (SOME x. Q x i)
+                                 else (SOME x. P x i))"
+
+  from A
+  obtain n where P: "\<And>i. n \<le> i \<Longrightarrow> \<exists>x. P x i"
+    by auto
+  {
+    fix i::'a assume "n \<le> i"
+
+    have "P (?w i) i"
+    proof (cases "\<exists>x. Q x i")
+      case True
+      hence "Q (?w i) i" by (auto intro:someI)
+      with imp show "P (?w i) i" .
+    next
+      case False
+      with P[OF `n \<le> i`] show "P (?w i) i" 
+        by (auto intro:someI)
+    qed
+  }
+
+  hence "?Ps ?w" by (rule_tac x=n in exI) auto
+
+  moreover
+  from A have "\<exists>\<^sub>\<infinity>i. (\<exists>x. Q x i)" ..
+  hence "?Qs ?w" by (rule INF_mono) (auto intro:someI)
+  ultimately
+  show "?Ps ?w \<and> ?Qs ?w" ..
+qed
+
+
+
+lemma dthreads_join:
+  assumes [simp]: "increasing s"
+  assumes dthread: "is_desc_thread \<theta> (contract s p)"
+  shows "\<exists>\<theta>s. desc (\<lambda>i. is_fthread (\<theta>s i) p (s i) (s (Suc i))
+                           \<and> \<theta>s i (s i) = \<theta> i 
+                           \<and> \<theta>s i (s (Suc i)) = \<theta> (Suc i))
+                   (\<lambda>i. is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))
+                           \<and> \<theta>s i (s i) = \<theta> i 
+                           \<and> \<theta>s i (s (Suc i)) = \<theta> (Suc i))"
+    apply (rule desc_ex_choice)
+    apply (insert dthread)
+    apply (simp only:is_desc_thread_def)
+    apply (simp add:eqlat_contract)
+    apply (simp add:descat_contract)
+    apply (simp only:has_fth_def has_desc_fth_def)
+    by (auto simp:is_desc_fthread_def)
+
+
+
+lemma INF_drop_prefix:
+  "(\<exists>\<^sub>\<infinity>i::nat. i > n \<and> P i) = (\<exists>\<^sub>\<infinity>i. P i)"
+  apply (auto simp:INF_nat)
+  apply (drule_tac x = "max m n" in spec)
+  apply (elim exE conjE)
+  apply (rule_tac x = "na" in exI)
+  by auto
+
+
+
+lemma contract_keeps_threads:
+  assumes inc[simp]: "increasing s"
+  shows "(\<exists>\<theta>. is_desc_thread \<theta> p) 
+  \<longleftrightarrow> (\<exists>\<theta>. is_desc_thread \<theta> (contract s p))"
+  (is "?A \<longleftrightarrow> ?B")
+proof 
+  assume "?A"
+  then obtain \<theta> n 
+    where fr: "\<forall>i\<ge>n. eqlat p \<theta> i" 
+    and ds: "\<exists>\<^sub>\<infinity>i. descat p \<theta> i"
+    unfolding is_desc_thread_def 
+    by auto
+
+  let ?c\<theta> = "\<lambda>i. \<theta> (s i)"
+
+  have "is_desc_thread ?c\<theta> (contract s p)"
+    unfolding is_desc_thread_def
+  proof (intro exI conjI)
+    
+    show "\<forall>i\<ge>n. eqlat (contract s p) ?c\<theta> i"
+    proof (intro allI impI)
+      fix i assume "n \<le> i"
+      also have "i \<le> s i" 
+	    using increasing_inc by auto
+      finally have "n \<le> s i" .
+
+      with fr have "is_fthread \<theta> p (s i) (s (Suc i))"
+	    unfolding is_fthread_def by auto
+      hence "has_fth p (s i) (s (Suc i)) (\<theta> (s i)) (\<theta> (s (Suc i)))"
+	    unfolding has_fth_def by auto
+      with less_imp_le[OF increasing_strict]
+      have "eql (prod (p\<langle>s i,s (Suc i)\<rangle>)) (\<theta> (s i)) (\<theta> (s (Suc i)))"
+	    by (simp add:Lemma7a)
+      thus "eqlat (contract s p) ?c\<theta> i" unfolding contract_def
+	    by auto
+    qed
+
+    show "\<exists>\<^sub>\<infinity>i. descat (contract s p) ?c\<theta> i"
+      unfolding INF_nat 
+    proof 
+      fix i
+
+      let ?K = "section_of s (max (s (Suc i)) n)"
+      from `\<exists>\<^sub>\<infinity>i. descat p \<theta> i` obtain j
+	    where "s (Suc ?K) < j" "descat p \<theta> j"
+	    unfolding INF_nat by blast
+      
+      let ?L = "section_of s j"
+      {
+	    fix x assume r: "x \<in> section s ?L"
+
+	    have e1: "max (s (Suc i)) n < s (Suc ?K)" by (rule section_of2)
+        note `s (Suc ?K) < j`
+        also have "j < s (Suc ?L)"
+          by (rule section_of2)
+        finally have "Suc ?K \<le> ?L"
+          by (simp add:increasing_bij)          
+	    with increasing_weak have "s (Suc ?K) \<le> s ?L" by simp
+	    with e1 r have "max (s (Suc i)) n < x" by simp
+        
+	    hence "(s (Suc i)) < x" "n < x" by auto
+      }
+      note range_est = this
+      
+      have "is_desc_fthread \<theta> p (s ?L) (s (Suc ?L))"
+	    unfolding is_desc_fthread_def is_fthread_def
+      proof
+	    show "\<forall>m\<in>section s ?L. eqlat p \<theta> m"
+        proof 
+          fix m assume "m\<in>section s ?L"
+          with range_est(2) have "n < m" . 
+          with fr show "eqlat p \<theta> m" by simp
+        qed
+        
+
+        from in_section_of inc less_imp_le[OF `s (Suc ?K) < j`]
+	    have "j \<in> section s ?L" .
+
+	    with `descat p \<theta> j`
+	    show "\<exists>m\<in>section s ?L. descat p \<theta> m" ..
+      qed
+      
+      with less_imp_le[OF increasing_strict]
+      have a: "descat (contract s p) ?c\<theta> ?L"
+	    unfolding contract_def Lemma7b[symmetric]
+	    by (auto simp:Lemma7b[symmetric] has_desc_fth_def)
+      
+      have "i < ?L"
+      proof (rule classical)
+	    assume "\<not> i < ?L" 
+	    hence "s ?L < s (Suc i)" 
+          by (simp add:increasing_bij)
+	    also have "\<dots> < s ?L"
+	      by (rule range_est(1)) (simp add:increasing_strict)
+	    finally show ?thesis .
+      qed
+      with a show "\<exists>l. i < l \<and> descat (contract s p) ?c\<theta> l"
+        by blast
+    qed
+  qed
+  with exI show "?B" .
+next
+  assume "?B"
+  then obtain \<theta> 
+    where dthread: "is_desc_thread \<theta> (contract s p)" ..
+
+  with dthreads_join inc 
+  obtain \<theta>s where ths_spec:
+    "desc (\<lambda>i. is_fthread (\<theta>s i) p (s i) (s (Suc i))
+                  \<and> \<theta>s i (s i) = \<theta> i 
+                  \<and> \<theta>s i (s (Suc i)) = \<theta> (Suc i))
+          (\<lambda>i. is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))
+                  \<and> \<theta>s i (s i) = \<theta> i 
+                  \<and> \<theta>s i (s (Suc i)) = \<theta> (Suc i))" 
+    (is "desc ?alw ?inf") 
+    by blast
+
+  then obtain n where fr: "\<forall>i\<ge>n. ?alw i" by blast
+  hence connected: "\<And>i. n < i \<Longrightarrow> \<theta>s i (s (Suc i)) = \<theta>s (Suc i) (s (Suc i))"
+    by auto
+  
+  let ?j\<theta> = "connect s \<theta>s"
+  
+  from fr ths_spec have ths_spec2:
+    "\<And>i. i > n \<Longrightarrow> is_fthread (\<theta>s i) p (s i) (s (Suc i))"
+    "\<exists>\<^sub>\<infinity>i. is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))"
+    by (auto intro:INF_mono)
+  
+  have p1: "\<And>i. i > n \<Longrightarrow> is_fthread ?j\<theta> p (s i) (s (Suc i))"
+    by (rule connect_threads) (auto simp:connected ths_spec2)
+  
+  from ths_spec2(2)
+  have "\<exists>\<^sub>\<infinity>i. n < i \<and> is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))"
+    unfolding INF_drop_prefix .
+  
+  hence p2: "\<exists>\<^sub>\<infinity>i. is_desc_fthread ?j\<theta> p (s i) (s (Suc i))"
+    apply (rule INF_mono)
+    apply (rule connect_dthreads)
+    by (auto simp:connected)
+  
+  with `increasing s` p1
+  have "is_desc_thread ?j\<theta> p" 
+    by (rule mk_inf_desc_thread)
+  with exI show "?A" .
+qed
+
+
+
+lemma repeated_edge:
+  assumes "\<And>i. i > n \<Longrightarrow> dsc (snd (p i)) k k"
+  shows "is_desc_thread (\<lambda>i. k) p"
+  using prems
+  unfolding is_desc_thread_def 
+  apply (auto)
+  apply (rule_tac x="Suc n" in exI, auto)
+  apply (rule INF_mono[where P="\<lambda>i. n < i"])
+  apply (simp only:INF_nat)
+  by auto arith
+
+
+lemma fin_from_inf:
+  assumes "is_thread n \<theta> p"
+  assumes "n < i"
+  assumes "i < j"
+  shows "is_fthread \<theta> p i j"
+  using prems
+  unfolding is_thread_def is_fthread_def 
+  by auto
+
+
+
+section {* Ramsey's Theorem *}
+
+
+definition 
+  "set2pair S = (THE (x,y). x < y \<and> S = {x,y})"
+
+lemma set2pair_conv: 
+  fixes x y :: nat
+  assumes "x < y"
+  shows "set2pair {x, y} = (x, y)"
+  unfolding set2pair_def
+proof (rule the_equality, simp_all only:split_conv split_paired_all)
+  from `x < y` show "x < y \<and> {x,y}={x,y}" by simp
+next
+  fix a b
+  assume a: "a < b \<and> {x, y} = {a, b}"
+  hence "{a, b} = {x, y}" by simp_all
+  hence "(a, b) = (x, y) \<or> (a, b) = (y, x)" 
+    by (cases "x = y") auto
+  thus "(a, b) = (x, y)"
+  proof 
+    assume "(a, b) = (y, x)"
+    with a and `x < y`
+    show ?thesis by auto (* contradiction *)
+  qed
+qed  
+
+definition 
+  "set2list = inv set"
+
+lemma finite_set2list: 
+  assumes [intro]: "finite S" 
+  shows "set (set2list S) = S"
+  unfolding set2list_def 
+proof (rule f_inv_f)
+  from finite_list
+  have "\<exists>l. set l = S" .
+  thus "S \<in> range set"
+    unfolding image_def
+    by auto
+qed
+
+
+corollary RamseyNatpairs:
+  fixes S :: "'a set"
+    and f :: "nat \<times> nat \<Rightarrow> 'a"
+
+  assumes "finite S"
+  and inS: "\<And>x y. x < y \<Longrightarrow> f (x, y) \<in> S"
+
+  obtains T :: "nat set" and s :: "'a"
+  where "infinite T"
+    and "s \<in> S"
+    and "\<And>x y. \<lbrakk>x \<in> T; y \<in> T; x < y\<rbrakk> \<Longrightarrow> f (x, y) = s"
+proof -
+  from `finite S`
+  have "set (set2list S) = S" by (rule finite_set2list)
+  then 
+  obtain l where S: "S = set l" by auto
+  also from set_conv_nth have "\<dots> = {l ! i |i. i < length l}" .
+  finally have "S = {l ! i |i. i < length l}" .
+
+  let ?s = "length l"
+
+  from inS 
+  have index_less: "\<And>x y. x \<noteq> y \<Longrightarrow> index_of l (f (set2pair {x, y})) < ?s"
+  proof -
+    fix x y :: nat
+    assume neq: "x \<noteq> y"
+    have "f (set2pair {x, y}) \<in> S"
+    proof (cases "x < y")
+      case True hence "set2pair {x, y} = (x, y)"
+	by (rule set2pair_conv)
+      with True inS
+      show ?thesis by simp
+    next
+      case False 
+      with neq have y_less: "y < x" by simp
+      have x:"{x,y} = {y,x}" by auto
+      with y_less have "set2pair {x, y} = (y, x)"
+	by (simp add:set2pair_conv)
+      with y_less inS
+      show ?thesis by simp
+    qed
+
+    thus "index_of l (f (set2pair {x, y})) < length l"
+      by (simp add: S index_of_length)
+  qed
+
+  have "\<exists>Y. infinite Y \<and>
+    (\<exists>t. t < ?s \<and>
+         (\<forall>x\<in>Y. \<forall>y\<in>Y. x \<noteq> y \<longrightarrow>
+                      index_of l (f (set2pair {x, y})) = t))"
+    by (rule Ramsey2[of "UNIV::nat set", simplified])
+       (auto simp:index_less)
+  then obtain T i
+    where inf: "infinite T"
+    and "i < length l"
+    and d: "\<And>x y. \<lbrakk>x \<in> T; y\<in>T; x \<noteq> y\<rbrakk>
+    \<Longrightarrow> index_of l (f (set2pair {x, y})) = i"
+    by auto
+
+  have  "l ! i \<in> S" unfolding S
+    by (rule nth_mem)
+  moreover
+  have "\<And>x y. x \<in> T \<Longrightarrow> y\<in>T \<Longrightarrow> x < y
+    \<Longrightarrow> f (x, y) = l ! i"
+  proof -
+    fix x y assume "x \<in> T" "y \<in> T" "x < y"
+    with d have 
+      "index_of l (f (set2pair {x, y})) = i" by auto
+    with `x < y`
+    have "i = index_of l (f (x, y))" 
+      by (simp add:set2pair_conv)
+    with `i < length l`
+    show "f (x, y) = l ! i" 
+      by (auto intro:index_of_member[symmetric] iff:index_of_length)
+  qed
+  moreover note inf
+  ultimately
+  show ?thesis using prems
+    by blast
+qed
+
+
+section {* Main Result *}
+
+
+theorem LJA_Theorem4: 
+  assumes "bounded_acg P \<A>"
+  shows "SCT \<A> \<longleftrightarrow> SCT' \<A>"
+proof
+  assume "SCT \<A>"
+  
+  show "SCT' \<A>"
+  proof (rule classical)
+    assume "\<not> SCT' \<A>"
+    
+    then obtain n G
+      where in_closure: "(tcl \<A>) \<turnstile> n \<leadsto>\<^bsup>G\<^esup> n"
+      and idemp: "G * G = G"
+      and no_strict_arc: "\<forall>p. \<not>(G \<turnstile> p \<leadsto>\<^bsup>\<down>\<^esup> p)"
+      unfolding SCT'_def no_bad_graphs_def by auto
+    
+    from in_closure obtain k
+      where k_pow: "\<A> ^ k \<turnstile> n \<leadsto>\<^bsup>G\<^esup> n"
+      and "0 < k"
+      unfolding in_tcl by auto
+	
+    from power_induces_path k_pow
+    obtain loop where loop_props:
+      "has_fpath \<A> loop"
+      "n = fst loop" "n = end_node loop"
+      "G = prod loop" "k = length (snd loop)" . 
+
+    with `0 < k` and path_loop_graph
+    have "has_ipath \<A> (omega loop)" by blast
+    with `SCT \<A>` 
+    have thread: "\<exists>\<theta>. is_desc_thread \<theta> (omega loop)" by (auto simp:SCT_def)
+
+    let ?s = "\<lambda>i. k * i"
+    let ?cp = "\<lambda>i. (n, G)"
+
+    from loop_props have "fst loop = end_node loop" by auto
+    with `0 < k` `k = length (snd loop)`
+    have "\<And>i. (omega loop)\<langle>?s i,?s (Suc i)\<rangle> = loop"
+      by (rule sub_path_loop)
+
+    with `n = fst loop` `G = prod loop` `k = length (snd loop)`
+    have a: "contract ?s (omega loop) = ?cp"
+      unfolding contract_def
+      by (simp add:path_loop_def split_def fst_p0)
+
+    from `0 < k` have "increasing ?s"
+      by (auto simp:increasing_def)
+    with thread have "\<exists>\<theta>. is_desc_thread \<theta> ?cp"
+      unfolding a[symmetric] 
+      by (unfold contract_keeps_threads[symmetric])
+
+    then obtain \<theta> where desc: "is_desc_thread \<theta> ?cp" by auto
+
+    then obtain n where thr: "is_thread n \<theta> ?cp" 
+      unfolding is_desc_thread_def is_thread_def 
+      by auto
+
+    have "bounded_th P n \<theta>" 
+    proof -
+      from `bounded_acg P \<A>`
+      have "bounded_acg P (tcl \<A>)" by (rule bounded_plus)
+      with in_closure have "bounded_scg P G"
+        unfolding bounded_acg_def by simp
+      hence "bounded_mp P ?cp"
+        unfolding bounded_mp_def by simp
+      with thr bounded_th 
+      show ?thesis by auto
+    qed
+    with bounded_th_infinite_visit
+    obtain p where inf_visit: "\<exists>\<^sub>\<infinity>i. \<theta> i = p" by blast
+
+    then obtain i where "n < i" "\<theta> i = p" 
+      by (auto simp:INF_nat)
+
+    from desc
+    have "\<exists>\<^sub>\<infinity>i. descat ?cp \<theta> i"
+      unfolding is_desc_thread_def by auto
+    then obtain j 
+      where "i < j" and "descat ?cp \<theta> j"
+      unfolding INF_nat by auto
+    from inf_visit obtain k where "j < k" "\<theta> k = p"
+      by (auto simp:INF_nat)
+
+    from `i < j` `j < k` `n < i` thr fin_from_inf `descat ?cp \<theta> j`
+    have "is_desc_fthread \<theta> ?cp i k"
+      unfolding is_desc_fthread_def
+      by auto
+
+    with `\<theta> k = p` `\<theta> i = p`
+    have dfth: "has_desc_fth ?cp i k p p"
+      unfolding has_desc_fth_def
+      by auto
+
+    from `i < j` `j < k` have "i < k" by auto
+    hence "prod (?cp\<langle>i, k\<rangle>) = G"
+    proof (induct i rule:strict_inc_induct)
+      case 1 thus ?case by (simp add:sub_path_def)
+    next
+      case (2 i) thus ?case
+	by (simp add:sub_path_def upt_rec[of i k] idemp)
+    qed
+
+    with `i < j` `j < k` dfth Lemma7b
+    have "dsc G p p" by auto
+    with no_strict_arc have False by auto
+    thus ?thesis ..
+  qed
+next
+  assume "SCT' \<A>"
+
+  show "SCT \<A>"
+  proof (rule classical)
+    assume "\<not> SCT \<A>"
+
+    with SCT_def
+    obtain p 
+      where ipath: "has_ipath \<A> p"
+      and no_desc_th: "\<not> (\<exists>\<theta>. is_desc_thread \<theta> p)"
+      by auto
+
+    from `bounded_acg P \<A>`
+    have "finite (dest_graph (tcl \<A>))" (is "finite ?AG")
+      by (intro bounded_finite bounded_plus)
+
+    from pdesc_acgplus[OF ipath]
+    have a: "\<And>x y. x<y \<Longrightarrow> pdesc p\<langle>x,y\<rangle> \<in> dest_graph (tcl \<A>)"
+      unfolding has_edge_def .
+      
+    obtain S G
+      where "infinite S" "G \<in> dest_graph (tcl \<A>)" 
+      and all_G: "\<And>x y. \<lbrakk> x \<in> S; y \<in> S; x < y\<rbrakk> \<Longrightarrow> 
+      pdesc (p\<langle>x,y\<rangle>) = G"
+      apply (rule RamseyNatpairs[of ?AG "\<lambda>(x,y). pdesc p\<langle>x, y\<rangle>"])
+      apply (rule `finite (dest_graph (tcl \<A>))`)
+      by (simp only:split_conv, rule a, auto)
+
+    obtain n H m where
+      G_struct: "G = (n, H, m)" by (cases G) simp
+
+    let ?s = "enumerate S"
+    let ?q = "contract ?s p"
+
+    note all_in_S[simp] = enumerate_in_set[OF `infinite S`]
+	from `infinite S` 
+    have inc[simp]: "increasing ?s" 
+      unfolding increasing_def by (simp add:enumerate_mono)
+    note increasing_bij[OF this, simp]
+      
+    from ipath_contract inc ipath
+    have "has_ipath (tcl \<A>) ?q" .
+
+    from all_G G_struct 
+    have all_H: "\<And>i. (snd (?q i)) = H"
+	  unfolding contract_def 
+      by simp
+    
+    have loop: "(tcl \<A>) \<turnstile> n \<leadsto>\<^bsup>H\<^esup> n"
+      and idemp: "H * H = H"
+    proof - 
+      let ?i = "?s 0" and ?j = "?s (Suc 0)" and ?k = "?s (Suc (Suc 0))"
+      
+      have "pdesc (p\<langle>?i,?j\<rangle>) = G"
+		and "pdesc (p\<langle>?j,?k\<rangle>) = G"
+		and "pdesc (p\<langle>?i,?k\<rangle>) = G"
+		using all_G 
+		by auto
+	  
+      with G_struct 
+      have "m = end_node (p\<langle>?i,?j\<rangle>)"
+				"n = fst (p\<langle>?j,?k\<rangle>)"
+				and Hs:	"prod (p\<langle>?i,?j\<rangle>) = H"
+				"prod (p\<langle>?j,?k\<rangle>) = H"
+				"prod (p\<langle>?i,?k\<rangle>) = H"
+		by auto
+			
+      hence "m = n" by simp
+      thus "tcl \<A> \<turnstile> n \<leadsto>\<^bsup>H\<^esup> n"
+		using G_struct `G \<in> dest_graph (tcl \<A>)`
+		by (simp add:has_edge_def)
+	  
+      from sub_path_prod[of ?i ?j ?k p]      
+      show "H * H = H"
+		unfolding Hs by simp
+    qed
+    moreover have "\<And>k. \<not>dsc H k k"
+    proof
+      fix k :: nat assume "dsc H k k"
+      
+      with all_H repeated_edge
+      have "\<exists>\<theta>. is_desc_thread \<theta> ?q" by fast
+	  with inc have "\<exists>\<theta>. is_desc_thread \<theta> p"
+		by (subst contract_keeps_threads) 
+      with no_desc_th
+      show False ..
+    qed
+    ultimately 
+    have False
+      using `SCT' \<A>`[unfolded SCT'_def no_bad_graphs_def]
+      by blast
+    thus ?thesis ..
+  qed
+qed
+
+
+
+lemma LJA_apply:
+  assumes fin: "finite_acg A"
+  assumes "SCT' A"
+  shows "SCT A"
+proof -
+  from fin obtain P where b: "bounded_acg P A"
+    unfolding finite_acg_def ..
+  show ?thesis using LJA_Theorem4[OF b]
+    by simp
+qed
+
+
+
+
+
+
+end
+
+
+
+
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Size_Change_Termination.thy	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,104 @@
+theory Size_Change_Termination
+imports SCT_Theorem SCT_Interpretation SCT_Implementation 
+uses "size_change_termination.ML"
+begin
+
+use "size_change_termination.ML"
+
+
+
+section {* Simplifier setup *}
+
+text {* This is needed to run the SCT algorithm in the simplifier: *}
+
+lemma setbcomp_simps:
+  "{x\<in>{}. P x} = {}"
+  "{x\<in>insert y ys. P x} = (if P y then insert y {x\<in>ys. P x} else {x\<in>ys. P x})"
+  by auto
+
+lemma setbcomp_cong:
+  "A = B \<Longrightarrow> (\<And>x. P x = Q x) \<Longrightarrow> {x\<in>A. P x} = {x\<in>B. Q x}"
+  by auto
+
+lemma cartprod_simps:
+  "{} \<times> A = {}"
+  "insert a A \<times> B = Pair a ` B \<union> (A \<times> B)"
+  by (auto simp:image_def)
+
+lemma image_simps:
+  "fu ` {} = {}"
+  "fu ` insert a A = insert (fu a) (fu ` A)"
+  by (auto simp:image_def)
+
+lemmas union_simps = 
+  Un_empty_left Un_empty_right Un_insert_left
+  
+lemma subset_simps:
+  "{} \<subseteq> B"
+  "insert a A \<subseteq> B \<equiv> a \<in> B \<and> A \<subseteq> B"
+  by auto 
+
+lemma element_simps:
+  "x \<in> {} \<equiv> False"
+  "x \<in> insert a A \<equiv> x = a \<or> x \<in> A"
+  by auto
+
+lemma set_eq_simp:
+  "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A" by auto
+
+lemma ball_simps:
+  "\<forall>x\<in>{}. P x \<equiv> True"
+  "(\<forall>x\<in>insert a A. P x) \<equiv> P a \<and> (\<forall>x\<in>A. P x)"
+by auto
+
+lemma bex_simps:
+  "\<exists>x\<in>{}. P x \<equiv> False"
+  "(\<exists>x\<in>insert a A. P x) \<equiv> P a \<or> (\<exists>x\<in>A. P x)"
+by auto
+
+lemmas set_simps =
+  setbcomp_simps
+  cartprod_simps image_simps union_simps subset_simps
+  element_simps set_eq_simp
+  ball_simps bex_simps
+
+lemma sedge_simps:
+  "\<down> * x = \<down>"
+  "\<Down> * x = x"
+  by (auto simp:mult_sedge_def)
+
+lemmas sctTest_simps =
+  simp_thms
+  if_True
+  if_False
+  nat.inject
+  nat.distinct
+  Pair_eq 
+
+  grcomp_code 
+  edges_match.simps 
+  connect_edges.simps 
+
+  sedge_simps
+  sedge.distinct
+  set_simps
+
+  graph_mult_def 
+  graph_leq_def
+  dest_graph.simps
+  graph_plus_def
+  graph.inject
+  graph_zero_def
+
+  test_SCT_def
+  mk_tcl_code
+
+  Let_def
+  split_conv
+
+lemmas sctTest_congs = 
+  if_weak_cong let_weak_cong setbcomp_cong
+
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/size_change_termination.ML	Mon Feb 26 21:34:16 2007 +0100
@@ -0,0 +1,881 @@
+
+structure SCT = struct
+
+fun matrix [] ys = []
+  | matrix (x::xs) ys = map (pair x) ys :: matrix xs ys
+
+fun map_matrix f xss = map (map f) xss
+
+val scgT = Sign.read_typ (the_context (), K NONE) "scg"
+val acgT = Sign.read_typ (the_context (), K NONE) "acg"
+
+fun edgeT nT eT = HOLogic.mk_prodT (nT, HOLogic.mk_prodT (eT, nT))
+fun graphT nT eT = Type ("Graphs.graph", [nT, eT])
+
+fun graph_const nT eT = Const ("Graphs.graph.Graph", HOLogic.mk_setT (edgeT nT eT) --> graphT nT eT)
+
+
+val no_step_const = "SCT_Interpretation.no_step"
+val no_step_def = thm "SCT_Interpretation.no_step_def"
+val no_stepI = thm "SCT_Interpretation.no_stepI"
+
+fun mk_no_step RD1 RD2 = 
+    let val RDT = fastype_of RD1
+    in Const (no_step_const, RDT --> RDT --> HOLogic.boolT) $ RD1 $ RD2 end
+
+val decr_const = "SCT_Interpretation.decr"
+val decr_def = thm "SCT_Interpretation.decr_def"
+
+fun mk_decr RD1 RD2 M1 M2 = 
+    let val RDT = fastype_of RD1
+      val MT = fastype_of M1
+    in Const (decr_const, RDT --> RDT --> MT --> MT --> HOLogic.boolT) $ RD1 $ RD2 $ M1 $ M2 end
+
+val decreq_const = "SCT_Interpretation.decreq"
+val decreq_def = thm "SCT_Interpretation.decreq_def"
+
+fun mk_decreq RD1 RD2 M1 M2 = 
+    let val RDT = fastype_of RD1
+      val MT = fastype_of M1
+    in Const (decreq_const, RDT --> RDT --> MT --> MT --> HOLogic.boolT) $ RD1 $ RD2 $ M1 $ M2 end
+
+val stepP_const = "SCT_Interpretation.stepP"
+val stepP_def = thm "SCT_Interpretation.stepP.simps"
+
+fun mk_stepP RD1 RD2 M1 M2 Rel = 
+    let val RDT = fastype_of RD1
+      val MT = fastype_of M1
+    in 
+      Const (stepP_const, RDT --> RDT --> MT --> MT --> (fastype_of Rel) --> HOLogic.boolT) 
+            $ RD1 $ RD2 $ M1 $ M2 $ Rel 
+    end
+
+val approx_const = "SCT_Interpretation.approx"
+val approx_empty = thm "SCT_Interpretation.approx_empty"
+val approx_less = thm "SCT_Interpretation.approx_less"
+val approx_leq = thm "SCT_Interpretation.approx_leq"
+
+fun mk_approx G RD1 RD2 Ms1 Ms2 = 
+    let val RDT = fastype_of RD1
+      val MsT = fastype_of Ms1
+    in Const (approx_const, scgT --> RDT --> RDT --> MsT --> MsT --> HOLogic.boolT) $ G $ RD1 $ RD2 $ Ms1 $ Ms2 end
+
+val sound_int_const = "SCT_Interpretation.sound_int"
+val sound_int_def = thm "SCT_Interpretation.sound_int_def"
+fun mk_sound_int A RDs M =
+    let val RDsT = fastype_of RDs
+      val MT = fastype_of M
+    in Const (sound_int_const, acgT --> RDsT --> MT --> HOLogic.boolT) $ A $ RDs $ M end
+
+
+val nth_const = "List.nth"
+fun mk_nth xs =
+    let val lT as Type (_, [T]) = fastype_of xs
+    in Const (nth_const, lT --> HOLogic.natT --> T) $ xs end
+
+
+val less_nat_const = Const ("Orderings.less", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT)
+val lesseq_nat_const = Const ("Orderings.less_eq", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT)
+
+
+(*
+val has_edge_const = "Graphs.has_edge"
+fun mk_has_edge G n e n' =
+    let val nT = fastype_of n and eT = fastype_of e
+    in Const (has_edge_const, graphT nT eT --> nT --> eT --> nT --> HOLogic.boolT) $ n $ e $ n' end
+*)
+
+
+val has_edge_simps = [thm "Graphs.has_edge_def", thm "Graphs.dest_graph.simps"]
+
+val all_less_zero = thm "SCT_Interpretation.all_less_zero"
+val all_less_Suc = thm "SCT_Interpretation.all_less_Suc"
+
+
+
+(* Lists as finite multisets *)
+
+(* --> Library *)
+fun del_index n [] = []
+  | del_index n (x :: xs) =
+    if n>0 then x :: del_index (n - 1) xs else xs 
+
+
+fun remove1 eq x [] = []
+  | remove1 eq x (y :: ys) = if eq (x, y) then ys else y :: remove1 eq x ys
+
+
+fun multi_union eq [] ys = ys
+  | multi_union eq (x::xs) ys = x :: multi_union eq xs (remove1 eq x ys)
+
+
+fun dest_ex (Const ("Ex", _) $ Abs (a as (_,T,_))) =
+    let
+      val (n, body) = Term.dest_abs a
+    in
+      (Free (n, T), body)
+    end
+  | dest_ex _ = raise Match
+                         
+fun dest_all_ex (t as (Const ("Ex",_) $ _)) = 
+    let
+      val (v,b) = dest_ex t
+      val (vs, b') = dest_all_ex b
+    in
+      (v :: vs, b')
+    end
+  | dest_all_ex t = ([],t)
+
+
+fun dist_vars [] vs = (assert (null vs) "dist_vars"; [])
+  | dist_vars (T::Ts) vs = 
+    case find_index (fn v => fastype_of v = T) vs of
+      ~1 => Free ("", T) :: dist_vars Ts vs
+    |  i => (nth vs i) :: dist_vars Ts (del_index i vs)
+
+
+fun dest_case rebind t =
+    let
+      val (_ $ _ $ rhs :: _ $ _ $ match :: guards) = HOLogic.dest_conj t
+      val guard = case guards of [] => HOLogic.true_const | gs => foldr1 HOLogic.mk_conj gs
+    in 
+      foldr1 HOLogic.mk_prod [rebind guard, rebind rhs, rebind match]
+    end
+
+fun bind_many [] = I
+  | bind_many vs = FundefLib.tupled_lambda (foldr1 HOLogic.mk_prod vs)
+
+(* Builds relation descriptions from a relation definition *)
+fun mk_reldescs (Abs a) = 
+    let
+      val (_, Abs a') = Term.dest_abs a
+      val (_, b) = Term.dest_abs a'
+      val cases = HOLogic.dest_disj b
+      val (vss, bs) = split_list (map dest_all_ex cases)
+      val unionTs = fold (multi_union (op =)) (map (map fastype_of) vss) []
+      val rebind = map (bind_many o dist_vars unionTs) vss
+                 
+      val RDs = map2 dest_case rebind bs
+    in
+      HOLogic.mk_list (fastype_of (hd RDs)) RDs
+    end
+
+fun abs_rel_tac (st : thm) =
+    let
+      val thy = theory_of_thm st
+      val (def, rd) = HOLogic.dest_eq (HOLogic.dest_Trueprop (hd (prems_of st)))
+      val RDs = cterm_of thy (mk_reldescs def)
+      val rdvar = Var (the_single (Term.add_vars rd [])) |> cterm_of thy
+    in
+      Seq.single (cterm_instantiate [(rdvar, RDs)] st)
+    end
+
+
+(* very primitive *)
+fun measures_of RD =
+    let
+      val domT = range_type (fastype_of (fst (HOLogic.dest_prod (snd (HOLogic.dest_prod RD)))))
+      val measures = LexicographicOrder.mk_base_funs domT
+    in
+      measures
+    end
+
+
+
+val mk_number = HOLogic.mk_nat
+val dest_number = HOLogic.dest_nat
+
+fun nums_to i = map mk_number (0 upto (i - 1))
+
+
+fun unfold_then_auto thm = 
+    (SIMPSET (unfold_tac [thm]))
+      THEN (CLASIMPSET auto_tac)
+
+val nth_simps = [thm "List.nth_Cons_0", thm "List.nth_Cons_Suc"]
+val nth_ss = (HOL_basic_ss addsimps nth_simps)
+val simp_nth_tac = simp_tac nth_ss
+
+
+
+fun tabulate_tlist thy l =
+    let
+      val n = length (HOLogic.dest_list l)
+      val table = Inttab.make (map (fn i => (i, Simplifier.rewrite nth_ss (cterm_of thy (mk_nth l $ mk_number i)))) (0 upto n - 1))
+    in
+      the o Inttab.lookup table
+    end
+
+val get_elem = snd o Logic.dest_equals o prop_of
+
+
+(* Attempt a proof of a given goal *)
+
+datatype proof_result = 
+    Success of thm
+  | Stuck of thm
+  | Fail
+  | False
+  | Timeout (* not implemented *)
+
+fun try_to_prove tactic cgoal =
+    case SINGLE tactic (Goal.init cgoal) of
+      NONE => Fail
+    | SOME st => if Thm.no_prems st 
+                 then Success (Goal.finish st)
+                 else if prems_of st = [HOLogic.Trueprop $ HOLogic.false_const] then False 
+                 else Stuck st
+
+fun simple_result (Success thm) = SOME thm
+  | simple_result _ = NONE
+
+
+fun inst_nums thy i j (t:thm) = 
+  instantiate' [] [NONE, NONE, NONE, SOME (cterm_of thy (mk_number i)), NONE, SOME (cterm_of thy (mk_number j))] t
+
+datatype call_fact =
+   NoStep of thm
+ | Graph of (term * thm)
+
+fun rand (_ $ t) = t
+
+fun setup_probe_goal thy domT Dtab Mtab (i, j) =
+    let
+      val RD1 = get_elem (Dtab i)
+      val RD2 = get_elem (Dtab j)
+      val Ms1 = get_elem (Mtab i)
+      val Ms2 = get_elem (Mtab j)
+
+      val Mst1 = HOLogic.dest_list (rand Ms1)
+      val Mst2 = HOLogic.dest_list (rand Ms2)
+
+      val mvar1 = Free ("sctmfv1", domT --> HOLogic.natT)
+      val mvar2 = Free ("sctmfv2", domT --> HOLogic.natT)
+      val relvar = Free ("sctmfrel", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT)
+      val N = length Mst1 and M = length Mst2
+      val saved_state = HOLogic.mk_Trueprop (mk_stepP RD1 RD2 mvar1 mvar2 relvar)
+                         |> cterm_of thy
+                         |> Goal.init
+                         |> CLASIMPSET auto_tac |> Seq.hd
+                         
+      val no_step = saved_state 
+                      |> forall_intr (cterm_of thy relvar)
+                      |> forall_elim (cterm_of thy (Abs ("", HOLogic.natT, Abs ("", HOLogic.natT, HOLogic.false_const))))
+                      |> CLASIMPSET auto_tac |> Seq.hd
+
+    in
+      if Thm.no_prems no_step
+      then NoStep (Goal.finish no_step RS no_stepI)
+      else
+        let
+          fun set_m1 i =
+              let 
+                val M1 = nth Mst1 i
+                val with_m1 = saved_state
+                                |> forall_intr (cterm_of thy mvar1)
+                                |> forall_elim (cterm_of thy M1)
+                                |> CLASIMPSET auto_tac |> Seq.hd
+
+                fun set_m2 j = 
+                    let 
+                      val M2 = nth Mst2 j
+                      val with_m2 = with_m1
+                                      |> forall_intr (cterm_of thy mvar2)
+                                      |> forall_elim (cterm_of thy M2)
+                                      |> CLASIMPSET auto_tac |> Seq.hd
+
+                      val decr = forall_intr (cterm_of thy relvar)
+                                   #> forall_elim (cterm_of thy less_nat_const)
+                                   #> CLASIMPSET auto_tac #> Seq.hd
+
+                      val decreq = forall_intr (cterm_of thy relvar)
+                                     #> forall_elim (cterm_of thy lesseq_nat_const)
+                                     #> CLASIMPSET auto_tac #> Seq.hd
+
+                      val thm1 = decr with_m2
+                    in
+                      if Thm.no_prems thm1 
+                      then ((rtac (inst_nums thy i j approx_less) 1) THEN (simp_nth_tac 1) THEN (rtac (Goal.finish thm1) 1))
+                      else let val thm2 = decreq with_m2 in
+                             if Thm.no_prems thm2 
+                             then ((rtac (inst_nums thy i j approx_leq) 1) THEN (simp_nth_tac 1) THEN (rtac (Goal.finish thm2) 1))
+                             else all_tac end
+                    end
+              in set_m2 end
+
+          val goal = HOLogic.mk_Trueprop (mk_approx (Var (("G", 0), scgT)) RD1 RD2 Ms1 Ms2)
+
+          val tac = (EVERY (map (fn n => EVERY (map (set_m1 n) (0 upto M - 1))) (0 upto N - 1)))
+                      THEN (rtac approx_empty 1)
+
+          val approx_thm = goal 
+                    |> cterm_of thy
+                    |> Goal.init
+                    |> tac |> Seq.hd
+                    |> Goal.finish
+
+          val _ $ (_ $ G $ _ $ _ $ _ $ _) = prop_of approx_thm
+        in
+          Graph (G, approx_thm)
+        end
+    end
+
+
+
+
+
+fun probe_nostep thy Dtab i j =
+    HOLogic.mk_Trueprop (mk_no_step (get_elem (Dtab i)) (get_elem (Dtab j))) 
+      |> cterm_of thy
+      |> try_to_prove (unfold_then_auto no_step_def)
+      |> simple_result
+
+fun probe_decr thy RD1 RD2 m1 m2 =
+    HOLogic.mk_Trueprop (mk_decr RD1 RD2 m1 m2)
+      |> cterm_of thy 
+      |> try_to_prove (unfold_then_auto decr_def)
+      |> simple_result
+
+fun probe_decreq thy RD1 RD2 m1 m2 =
+    HOLogic.mk_Trueprop (mk_decreq RD1 RD2 m1 m2)
+      |> cterm_of thy 
+      |> try_to_prove (unfold_then_auto decreq_def)
+      |> simple_result
+
+
+fun pr_tac (st : thm) = Seq.single (Output.warning (PolyML.makestring st); st)
+fun pr_thm (st : thm) = (Output.warning (PolyML.makestring st); st)
+
+
+fun build_approximating_graph thy Dtab Mtab Mss mlens mint nint =
+    let 
+      val D1 = Dtab mint and D2 = Dtab nint
+      val Mst1 = Mtab mint and Mst2 = Mtab nint
+
+      val RD1 = get_elem D1 and RD2 = get_elem D2
+      val Ms1 = get_elem Mst1 and Ms2 = get_elem Mst2
+
+      val goal = HOLogic.mk_Trueprop (mk_approx (Var (("G", 0), scgT)) RD1 RD2 Ms1 Ms2)
+
+      val Ms1 = nth (nth Mss mint) and Ms2 = nth (nth Mss mint)
+
+      fun add_edge (i,j) = 
+          case timeap_msg ("decr(" ^ string_of_int i ^ "," ^ string_of_int j ^ ")")
+                          (probe_decr thy RD1 RD2 (Ms1 i)) (Ms2 j) of
+            SOME thm => (Output.warning "Success"; (rtac (inst_nums thy i j approx_less) 1) THEN (simp_nth_tac 1) THEN (rtac thm 1))
+          | NONE => case timeap_msg ("decr(" ^ string_of_int i ^ "," ^ string_of_int j ^ ")")
+                                    (probe_decreq thy RD1 RD2 (Ms1 i)) (Ms2 j) of
+                      SOME thm => (Output.warning "Success"; (rtac (inst_nums thy i j approx_leq) 1) THEN (simp_nth_tac 1) THEN (rtac thm 1))
+                    | NONE => all_tac
+
+      val approx_thm =
+          goal
+            |> cterm_of thy
+            |> Goal.init
+            |> SINGLE ((EVERY (map add_edge (product (0 upto (nth mlens mint) - 1) (0 upto (nth mlens nint) - 1))))
+                       THEN (rtac approx_empty 1))
+            |> the
+            |> Goal.finish
+
+      val _ $ (_ $ G $ _ $ _ $ _ $ _) = prop_of approx_thm
+    in
+      (G, approx_thm)
+    end
+
+
+
+fun prove_call_fact thy Dtab Mtab Mss mlens (m, n) =
+    case probe_nostep thy Dtab m n of
+      SOME thm => (Output.warning "NoStep"; NoStep thm)
+    | NONE => Graph (build_approximating_graph thy Dtab Mtab Mss mlens m n)
+
+
+fun mk_edge m G n = HOLogic.mk_prod (m, HOLogic.mk_prod (G, n))
+
+
+fun mk_set T [] = Const ("{}", HOLogic.mk_setT T)
+  | mk_set T (x :: xs) = Const ("insert",
+      T --> HOLogic.mk_setT T --> HOLogic.mk_setT T) $ x $ mk_set T xs
+
+fun dest_set (Const ("{}", _)) = []
+  | dest_set (Const ("insert", _) $ x $ xs) = x :: dest_set xs
+
+val pr_graph = Sign.string_of_term
+
+
+fun pr_matrix thy = map_matrix (fn Graph (G, _) => pr_graph thy G | _ => "X")
+
+val in_graph_tac = 
+    simp_tac (HOL_basic_ss addsimps has_edge_simps) 1
+    THEN SIMPSET (fn x => simp_tac x 1) (* FIXME reduce simpset *)
+
+fun approx_tac (NoStep thm) = rtac disjI1 1 THEN rtac thm 1
+  | approx_tac (Graph (G, thm)) =
+    rtac disjI2 1 
+    THEN rtac exI 1
+    THEN rtac conjI 1
+    THEN rtac thm 2
+    THEN in_graph_tac
+
+fun all_less_tac [] = rtac all_less_zero 1
+  | all_less_tac (t :: ts) = rtac all_less_Suc 1 
+                                  THEN simp_nth_tac 1
+                                  THEN t 
+                                  THEN all_less_tac ts
+
+
+val length_const = "Nat.size"
+fun mk_length l = Const (length_const, fastype_of l --> HOLogic.natT) $ l
+val length_simps = thms "SCT_Interpretation.length_simps"
+
+
+
+fun mk_call_graph (st : thm) =
+    let
+      val thy = theory_of_thm st
+      val _ $ _ $ RDlist $ _ = HOLogic.dest_Trueprop (hd (prems_of st))
+
+      val RDs = HOLogic.dest_list RDlist
+      val n = length RDs 
+
+      val Mss = map measures_of RDs
+
+      val domT = domain_type (fastype_of (hd (hd Mss)))
+
+      val mfuns = map (fn Ms => mk_nth (HOLogic.mk_list (fastype_of (hd Ms)) Ms)) Mss
+                      |> (fn l => HOLogic.mk_list (fastype_of (hd l)) l)
+
+      val Dtab = tabulate_tlist thy RDlist
+      val Mtab = tabulate_tlist thy mfuns
+
+      val len_simp = Simplifier.rewrite (HOL_basic_ss addsimps length_simps) (cterm_of thy (mk_length RDlist))
+
+      val mlens = map length Mss
+
+      val indices = (n - 1 downto 0)
+      val pairs = matrix indices indices
+      val parts = map_matrix (fn (n,m) =>
+                                 (timeap_msg (string_of_int n ^ "," ^ string_of_int m) 
+                                             (setup_probe_goal thy domT Dtab Mtab) (n,m))) pairs
+
+
+      val s = fold_index (fn (i, cs) => fold_index (fn (j, Graph (G, _)) => prefix ("(" ^ string_of_int i ^ "," ^ string_of_int j ^ "): " ^
+                                                                            pr_graph thy G ^ ",\n")
+                                                     | _ => I) cs) parts ""
+      val _ = Output.warning s
+  
+
+      val ACG = map_filter (fn (Graph (G, _),(m, n)) => SOME (mk_edge (mk_number m) G (mk_number n)) | _ => NONE) (flat parts ~~ flat pairs)
+                    |> mk_set (edgeT HOLogic.natT scgT)
+                    |> curry op $ (graph_const HOLogic.natT scgT)
+
+
+      val sound_int_goal = HOLogic.mk_Trueprop (mk_sound_int ACG RDlist mfuns)
+
+      val tac = 
+          (SIMPSET (unfold_tac [sound_int_def, len_simp]))
+            THEN all_less_tac (map (all_less_tac o map approx_tac) parts)
+    in
+      tac (instantiate' [] [SOME (cterm_of thy ACG), SOME (cterm_of thy mfuns)] st)
+    end
+                  
+
+
+
+
+
+
+
+
+
+
+
+(* Faster implementation of transitive closures *)
+
+(* sedge: Only relevant edges. Qtrees have separate value for 0 *)
+datatype sedge = LESS | LEQ | BOTH
+
+
+
+datatype key = KHere | K0 of key | K1 of key
+
+datatype 'a stree = 
+  sLeaf of 'a
+  | sBranch of ('a * 'a stree * 'a stree)
+
+(*
+fun lookup (sLeaf x) KHere = x
+  | lookup (sBranch x s t) KHere = x
+  | lookup (sBranch x s t) (K0 k) = lookup s k
+  | lookup (sBranch x s t) (K1 k) = lookup t k
+  | lookup _ _ = raise Match
+*)
+
+datatype 'a qtree =
+  QEmpty
+  | QNode of 'a
+  | QQuad of ('a qtree * 'a qtree * 'a qtree * 'a qtree)
+
+fun qlookup z QEmpty k l = z
+  | qlookup z (QNode S) k l = S
+  | qlookup z (QQuad (a, b, c, d)) (K0 k) (K0 l) = qlookup z a k l
+  | qlookup z (QQuad (a, b, c, d)) (K0 k) (K1 l) = qlookup z b k l
+  | qlookup z (QQuad (a, b, c, d)) (K1 k) (K0 l) = qlookup z c k l
+  | qlookup z (QQuad (a, b, c, d)) (K1 k) (K1 l) = qlookup z d k l
+  | qlookup _ _ _ _ = raise Match
+
+
+
+(* Size-change graphs *)
+
+type
+  scg = sedge qtree
+
+
+(* addition of single edges *)
+fun add_sedge BOTH _ = BOTH
+  | add_sedge LESS LESS = LESS
+  | add_sedge LESS _ = BOTH
+  | add_sedge LEQ LEQ = LEQ
+  | add_sedge LEQ _ = BOTH
+
+fun mult_sedge LESS _ = LESS
+  | mult_sedge _ LESS = LESS
+  | mult_sedge LEQ x = x
+  | mult_sedge BOTH _ = BOTH
+
+fun subsumes_edge LESS LESS = true
+  | subsumes_edge LEQ _ = true
+  | subsumes_edge _ _ = false
+
+
+
+
+(* subsumes_SCG G H := G contains strictly less estimations than H *)
+fun subsumes_SCG (QEmpty : scg) (H : scg) = true
+  | subsumes_SCG (QQuad (a, b, c, d)) (QQuad (e,f,g,h)) =
+    (subsumes_SCG a e) andalso (subsumes_SCG b f)
+    andalso (subsumes_SCG c g) andalso (subsumes_SCG d h)
+  | subsumes_SCG (QNode e) (QNode e') = subsumes_edge e e'
+  | subsumes_SCG _ QEmpty = false
+  | subsumes_SCG _ _ = raise Match
+
+
+(* managing lists of SCGs. *)
+
+(* 
+ Graphs are partially ordered. A list of graphs has the invariant that no G,H with G <= H.
+ To maintain this when adding a new graph G, check 
+   (1) G <= H for some H in l => Do nothing
+   (2) has to be added. Then, all H <= G can be removed. 
+
+ We can check (2) first, removing all smaller graphs. 
+ If we could remove at least one, just add G in the end (Invariant!).
+ Otherwise, check again, if G needs to be added at all. 
+
+ OTOH, doing (1) first is probably better, because it does not produce garbage unless needed.
+
+ The definition is tail-recursive. Order is not preserved (unneccessary).
+*)
+
+
+
+fun add_scg' G Hs = (* returns a flag indicating if the graph was really added *)
+    if exists (fn H => subsumes_SCG H G) Hs then (false, Hs)  (* redundant addition *)
+    else (true, G :: remove (uncurry subsumes_SCG) G Hs) (* remove all new redundancy and add G *)
+         (* NB: This does the second checks twice :-( *)
+
+(* Simpler version *)
+fun add_scg' G Hs = (not (member (op =) Hs G), insert (op =) G Hs)
+
+
+val add_scg = snd oo add_scg' (* without flag *)
+
+
+
+
+
+(* quadtrees *)
+
+fun keylen 0 = 0 
+  | keylen n = (keylen (n div 2)) + 1
+
+fun mk_key 0 _  = KHere
+  | mk_key l m = if m mod 2 = 0 
+                 then K0 (mk_key (l - 1) (m div 2)) 
+                 else K1 (mk_key (l - 1) (m div 2)) 
+
+
+fun qupdate f KHere KHere n = f n
+  | qupdate f (K0 k) (K0 k') (QQuad (a, b, c, d)) = QQuad (qupdate f k k' a, b, c, d)
+  | qupdate f (K0 k) (K1 k') (QQuad (a, b, c, d)) = QQuad (a, qupdate f k k' b, c, d)
+  | qupdate f (K1 k) (K0 k') (QQuad (a, b, c, d)) = QQuad (a, b, qupdate f k k' c, d)
+  | qupdate f (K1 k) (K1 k') (QQuad (a, b, c, d)) = QQuad (a, b, c, qupdate f k k' d)
+
+
+
+
+
+
+
+
+(* quadtree composition *)
+
+fun qadd A QEmpty q = q
+  | qadd A q QEmpty = q
+  | qadd A (QNode s) (QNode t) = QNode (A s t)
+  | qadd A (QQuad (a, b, c, d)) (QQuad (e, f, g, h)) =
+    QQuad (qadd A a e, qadd A b f, qadd A c g, qadd A d h)
+  | qadd _ _ _ = raise Match
+
+
+fun qmult A m QEmpty H = QEmpty
+  | qmult A m G QEmpty = QEmpty
+  | qmult A m (QNode x) (QNode y) = QNode (m x y)
+  | qmult A m (QQuad (a, b, c, d)) (QQuad (e, f, g, h)) = 
+    QQuad ((qadd A (qmult A m a e) (qmult A m b g)),
+           (qadd A (qmult A m a f) (qmult A m b h)),
+           (qadd A (qmult A m c e) (qmult A m d g)),
+           (qadd A (qmult A m c f) (qmult A m d h)))
+  | qmult _ _ _ _ = raise Match
+
+
+val (mult_scg : scg -> scg -> scg) = qmult add_sedge mult_sedge
+
+(* Misc notes:
+
+- When building the tcl: Check on addition and raise FAIL if the property is not true... (pract)
+
+- Can we reduce subsumption checking by some integer fingerprints?
+
+ Number of edges: LESS(G) LEQ(G)
+  G <= H ==> E(G) <= E(H)
+  
+
+
+How to check:
+
+For each pair of adjacent edges: n -> m -> q
+ compute all product SCGS and check if they are subsumed by something in the tcl.
+
+ all midnode m: all fromnode n: all tonode q: alledges (n,m) e: alledges (m,q) e': subsumes (e*e') (edgs m,q)
+
+ This is still quite a lot of checking... But: no garbage, just inspection. Can probably be done in logic. 
+
+*)
+
+
+
+(* Operations on lists: These preserve the invariants *)
+fun SCGs_mult Gs Hs = fold (fn (G,H) => add_scg (mult_scg G H)) (product Gs Hs) []
+val SCGs_plus = fold add_scg
+
+
+fun add_scgs Gs Hs = fold_rev (fn G => fn (Xs,As) => 
+                                      let val (b, Xs') = add_scg' G Xs
+                                      in (Xs', if b then G::As else As) end)
+                          Gs (Hs,[])
+
+(* Transitive Closure for lists of SCGs *)
+fun SCGs_tcl Gs =
+    let
+      fun aux S [] = S
+        | aux S (H::HS) =
+          let val (S', Ns) = add_scgs (map (mult_scg H) Gs) S
+          in aux S' (SCGs_plus Ns HS) end
+    in
+      aux Gs Gs
+    end
+
+
+
+(* Kleene algorithm: DP version, with imperative array... *)
+
+
+
+
+(* Terrible imperative stuff: *)
+type matrix = scg list array array
+
+fun mupdate i j f M = 
+    let 
+      val row = Array.sub (M, i)
+      val x = Array.sub (row, j)
+    in 
+      Array.update (row, j, f x)
+    end
+
+fun mget i j M = Array.sub(Array.sub(M,i),j)
+
+fun print_scg (x : scg) = Output.warning (PolyML.makestring x);
+
+
+fun kleene add mult tcl M =
+    let
+      val n = Array.length M
+
+      fun update Mkk i j k = 
+          let
+            val Mik = mget i k M
+            val Mkj = mget k j M
+          in
+            mupdate i j (fn X => X |> add (mult Mik (mult Mkk Mkj))
+                                   |> add (mult Mik Mkj))
+                    M
+          end
+
+      fun step k () =
+          let
+            val _ = mupdate k k tcl M
+            val Mkk = mget k k M
+
+            val no_k = filter_out (fn i => i = k) (0 upto (n - 1)) 
+            val _ = fold (fn i => fold (fn j => K (update Mkk i j k)) no_k) no_k ()
+
+            val _ = fold (fn i => K (update Mkk i k k)) no_k ()
+
+            val _ = fold (fn j => K (update Mkk k j k)) no_k ()
+          in
+            ()
+          end
+    in
+      fold step (0 upto (n - 1)) ()
+    end
+
+val (SCGs_kleene : matrix -> unit) = kleene SCGs_plus SCGs_mult SCGs_tcl
+
+
+fun andop x y = x andalso y
+fun orop x y = x orelse y
+
+fun array2 n x = Array.tabulate (n, (fn i => Array.array (n, x)))
+
+(*val bool_kleene = kleene orop andop I
+
+
+fun test_bool () =
+    let
+      val M = array2 2 false
+      val _ = mupdate 0 1 (K true) M
+      val _ = mupdate 1 0 (K true) M
+      val _ = bool_kleene M
+    in
+      M
+    end
+*)
+
+(* Standard 2-2-Size-change graphs *)
+
+val swap = QQuad(QEmpty, QNode LEQ,
+                 QNode LEQ, QEmpty)
+
+val swapRTop = QQuad(QNode LESS, QNode LEQ,
+                     QNode LEQ, QEmpty)
+
+val BTopRBot = QQuad(QNode LEQ, QEmpty,
+                     QEmpty, QNode LESS)
+
+val RTopBBot = QQuad(QNode LESS, QEmpty,
+                     QEmpty, QNode LEQ)
+
+val R2Straight = QQuad(QNode LESS, QEmpty,
+                       QEmpty, QNode LESS)
+
+val R3StraightUp = QQuad(QNode LESS, QEmpty,
+                         QNode LESS, QNode LESS)
+
+val R3StraightDn = QQuad(QNode LESS, QNode LESS,
+                         QEmpty, QNode LESS)
+
+
+
+
+val diag = QQuad(QEmpty, QNode LEQ,
+                 QEmpty, QEmpty)
+
+val straight = QQuad(QNode LEQ, QEmpty,
+                     QEmpty, QEmpty)
+
+
+
+val R467913 = ([R2Straight, R3StraightDn, R3StraightDn] @ replicate 11 R2Straight @ [R3StraightUp, R3StraightUp])
+                |> map single
+
+val swapPos = [(0,8),(0,9),(0,10),(3,4),(3,5),(11,12)]
+
+val BRPos = (map (pair 5) (0 :: (3 upto 7)))
+            @ (map (pair 8) [8,9,11,12,13])
+            @ (map (pair 12) [8,9,11,12,13])
+
+val RBPos = map (pair 10) (3 upto 10)
+
+fun afold f arr x = Array.foldl (uncurry f) x arr
+
+fun msize M = afold (afold (curry op + o length)) M 0
+
+fun TestM () =
+    let
+      val M = array2 16 ([] : scg list)
+      val _ = Array.update (M, 4, Array.fromList R467913)
+      val _ = Array.update (M, 6, Array.fromList R467913)
+      val _ = Array.update (M, 7, Array.fromList R467913)
+      val _ = Array.update (M, 9, Array.fromList R467913)
+      val _ = Array.update (M, 13, Array.fromList R467913)
+
+      val _ = map (fn (i,j) => mupdate i j (K [swap]) M) swapPos
+      val _ = map (fn (i,j) => mupdate i j (K [BTopRBot]) M) BRPos
+      val _ = map (fn (i,j) => mupdate i j (K [RTopBBot]) M) RBPos
+
+      val _ = mupdate 1 14 (K [swapRTop]) M
+      val _ = mupdate 2 15 (K [swapRTop]) M
+
+      val G = [QQuad (QNode LEQ, QNode LESS, QEmpty, QNode LESS)]
+      val _ = mupdate 5 1 (K G) M
+      val _ = mupdate 8 2 (K G) M
+      val _ = mupdate 12 2 (K G) M
+
+      val G = [QQuad (QNode LESS, QEmpty, QNode LESS, QNode LEQ)]
+      val _ = mupdate 10 14 (K G) M
+
+      val G = [QQuad (QEmpty, QNode LEQ, QNode LESS, QNode LESS)]
+      val _ = mupdate 14 1 (K G) M
+      val _ = mupdate 14 2 (K G) M
+      val _ = mupdate 15 1 (K G) M
+      val _ = mupdate 15 2 (K G) M
+    in
+      M
+    end
+
+
+
+
+
+fun add_edge x QEmpty = QNode x
+  | add_edge x (QNode y) = QNode (add_sedge x y)
+
+
+fun sedge2ML (Const ("SCT_Definition.sedge.LESS", _)) = LESS
+  | sedge2ML (Const ("SCT_Definition.sedge.LEQ", _)) = LEQ
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+end                   
+
+
+
+
+
+