Inductive characterization of wfrec combinator.
--- a/src/HOL/Wellfounded_Recursion.ML Tue May 22 15:12:11 2001 +0200
+++ b/src/HOL/Wellfounded_Recursion.ML Tue May 22 15:15:16 2001 +0200
@@ -249,92 +249,42 @@
by (asm_simp_tac HOL_ss 1);
qed "cut_apply";
-(*** is_recfun ***)
-
-Goalw [is_recfun_def,cut_def]
- "[| is_recfun r H a f; ~(b,a):r |] ==> f(b) = arbitrary";
-by (etac ssubst 1);
-by (asm_simp_tac HOL_ss 1);
-qed "is_recfun_undef";
-
-(*** NOTE! some simplifications need a different Solver!! ***)
-fun indhyp_tac hyps =
- (cut_facts_tac hyps THEN'
- DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
- eresolve_tac [transD, mp, allE]));
-val wf_super_ss = HOL_ss addSolver (mk_solver "WF" indhyp_tac);
-
-Goalw [is_recfun_def,cut_def]
- "[| wf(r); trans(r); is_recfun r H a f; is_recfun r H b g |] ==> \
- \ (x,a):r --> (x,b):r --> f(x)=g(x)";
-by (etac wf_induct 1);
-by (REPEAT (rtac impI 1 ORELSE etac ssubst 1));
-by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1);
-qed_spec_mp "is_recfun_equal";
-
-
-val prems as [wfr,transr,recfa,recgb,_] = goalw (the_context ()) [cut_def]
- "[| wf(r); trans(r); \
-\ is_recfun r H a f; is_recfun r H b g; (b,a):r |] ==> \
-\ cut f r b = g";
-val gundef = recgb RS is_recfun_undef
-and fisg = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal)));
-by (cut_facts_tac prems 1);
-by (rtac ext 1);
-by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg]) 1);
-qed "is_recfun_cut";
+(*** Inductive characterization of wfrec combinator; for details see: ***)
+(*** John Harrison, "Inductive definitions: automation and application" ***)
-(*** Main Existence Lemma -- Basic Properties of the_recfun ***)
-
-Goalw [the_recfun_def]
- "is_recfun r H a f ==> is_recfun r H a (the_recfun r H a)";
-by (eres_inst_tac [("P", "is_recfun r H a")] someI 1);
-qed "is_the_recfun";
+Goalw [adm_wf_def]
+ "[| wf R; adm_wf R F |] ==> EX! y. (x, y) : wfrec_rel R F";
+by (wf_ind_tac "x" [] 1);
+by (rtac ex1I 1);
+by (res_inst_tac [("g","%x. @y. (x, y) : wfrec_rel R F")] wfrec_rel.wfrecI 1);
+by (strip_tac 1);
+byev [etac allE 1, etac impE 1, atac 1];
+by (rtac (some_eq_ex RS ssubst) 1);
+by (etac ex1_implies_ex 1);
+by (etac wfrec_rel.elim 1);
+by (Asm_full_simp_tac 1);
+byev [etac allE 1, etac allE 1, etac allE 1, etac mp 1];
+by (strip_tac 1);
+by (rtac (some_equality RS ssubst) 1);
+by (ALLGOALS Blast_tac);
+qed "wfrec_unique";
-Goal "[| wf(r); trans(r) |] ==> is_recfun r H a (the_recfun r H a)";
-by (wf_ind_tac "a" [] 1);
-by (res_inst_tac [("f","cut (%y. H (the_recfun r H y) y) r a1")]
- is_the_recfun 1);
-by (rewtac is_recfun_def);
-by (stac cuts_eq 1);
-by (Clarify_tac 1);
-by (rtac H_cong2 1);
-by (subgoal_tac
- "the_recfun r H y = cut(%x. H(cut(the_recfun r H y) r x) x) r y" 1);
- by (Blast_tac 2);
-by (etac ssubst 1);
-by (simp_tac (HOL_ss addsimps [cuts_eq]) 1);
-by (Clarify_tac 1);
-by (stac cut_apply 1);
- by (fast_tac (claset() addDs [transD]) 1);
-by (fold_tac [is_recfun_def]);
-by (asm_simp_tac (wf_super_ss addsimps[is_recfun_cut]) 1);
-qed "unfold_the_recfun";
-
-Goal "[| wf r; trans r; (x,a) : r; (x,b) : r |] \
-\ ==> the_recfun r H a x = the_recfun r H b x";
-by (best_tac (claset() addIs [is_recfun_equal, unfold_the_recfun]) 1);
-qed "the_recfun_equal";
-
-(** Removal of the premise trans(r) **)
-val th = rewrite_rule[is_recfun_def]
- (trans_trancl RSN (2,(wf_trancl RS unfold_the_recfun)));
+Goalw [adm_wf_def] "adm_wf R (%f x. F (cut f R x) x)";
+by (strip_tac 1);
+by (rtac (cuts_eq RS iffD2 RS subst) 1);
+by (atac 1);
+by (rtac refl 1);
+qed "adm_lemma";
Goalw [wfrec_def]
"wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a";
-by (rtac H_cong2 1);
-by (simp_tac (HOL_ss addsimps [cuts_eq]) 1);
-by (rtac allI 1);
-by (rtac impI 1);
-by (res_inst_tac [("a1","a")] (th RS ssubst) 1);
-by (assume_tac 1);
-by (ftac wf_trancl 1);
-by (ftac r_into_trancl 1);
-by (asm_simp_tac (HOL_ss addsimps [cut_apply]) 1);
-by (rtac H_cong2 1); (*expose the equality of cuts*)
-by (simp_tac (HOL_ss addsimps [cuts_eq, cut_apply, r_into_trancl]) 1);
-by (blast_tac (claset() addIs [the_recfun_equal, transD, trans_trancl,
- r_into_trancl]) 1);
+by (rtac (adm_lemma RSN (2, wfrec_unique) RS some1_equality) 1);
+by (atac 1);
+by (rtac wfrec_rel.wfrecI 1);
+by (strip_tac 1);
+by (rtac (some_eq_ex RS iffD2) 1);
+by (rtac (adm_lemma RSN (2, wfrec_unique) RS ex1_implies_ex) 1);
+by (atac 1);
qed "wfrec";
(*---------------------------------------------------------------------------
--- a/src/HOL/Wellfounded_Recursion.thy Tue May 22 15:12:11 2001 +0200
+++ b/src/HOL/Wellfounded_Recursion.thy Tue May 22 15:15:16 2001 +0200
@@ -8,6 +8,14 @@
Wellfounded_Recursion = Transitive_Closure +
+consts
+ wfrec_rel :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => ('a * 'b) set"
+
+inductive "wfrec_rel R F"
+intrs
+ wfrecI "ALL z. (z, x) : R --> (z, g z) : wfrec_rel R F ==>
+ (x, F g x) : wfrec_rel R F"
+
constdefs
wf :: "('a * 'a)set => bool"
"wf(r) == (!P. (!x. (!y. (y,x):r --> P(y)) --> P(x)) --> (!x. P(x)))"
@@ -18,15 +26,12 @@
cut :: "('a => 'b) => ('a * 'a)set => 'a => 'a => 'b"
"cut f r x == (%y. if (y,x):r then f y else arbitrary)"
- is_recfun :: "('a * 'a)set => (('a=>'b) => ('a=>'b)) =>'a=>('a=>'b) => bool"
- "is_recfun r H a f == (f = cut (%x. H (cut f r x) x) r a)"
+ adm_wf :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => bool"
+ "adm_wf R F == ALL f g x.
+ (ALL z. (z, x) : R --> f z = g z) --> F f x = F g x"
- the_recfun :: "('a * 'a)set => (('a=>'b) => ('a=>'b)) => 'a => 'a => 'b"
- "the_recfun r H a == (@f. is_recfun r H a f)"
-
- wfrec :: "('a * 'a)set => (('a=>'b) => ('a=>'b)) => 'a => 'b"
- "wfrec r H == (%x. H (cut (the_recfun (trancl r) (%f v. H (cut f r v) v) x)
- r x) x)"
+ wfrec :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b"
+ "wfrec R F == %x. @y. (x, y) : wfrec_rel R (%f x. F (cut f R x) x)"
axclass
wellorder < linorder