--- a/src/HOL/IsaMakefile Thu Aug 06 12:45:28 1998 +0200
+++ b/src/HOL/IsaMakefile Thu Aug 06 12:46:18 1998 +0200
@@ -180,8 +180,11 @@
HOL-Lambda: HOL $(LOG)/HOL-Lambda.gz
$(LOG)/HOL-Lambda.gz: $(OUT)/HOL Lambda/Commutation.ML \
- Lambda/Commutation.thy Lambda/Eta.ML Lambda/Eta.thy Lambda/Lambda.ML \
- Lambda/Lambda.thy Lambda/ParRed.ML Lambda/ParRed.thy Lambda/ROOT.ML
+ Lambda/Commutation.thy Lambda/Eta.ML Lambda/Eta.thy Lambda/InductTermi.ML \
+ Lambda/InductTermi.thy Lambda/Lambda.ML Lambda/Lambda.thy \
+ Lambda/ListApplication.ML Lambda/ListApplication.thy Lambda/ListBeta.ML \
+ Lambda/ListBeta.thy Lambda/ListOrder.ML Lambda/ListOrder.thy \
+ Lambda/ParRed.ML Lambda/ParRed.thy Lambda/ROOT.ML
@$(ISATOOL) usedir $(OUT)/HOL Lambda
--- a/src/HOL/List.ML Thu Aug 06 12:45:28 1998 +0200
+++ b/src/HOL/List.ML Thu Aug 06 12:46:18 1998 +0200
@@ -222,6 +222,22 @@
qed "tl_append2";
Addsimps [tl_append2];
+(* trivial rules for solving @-equations automatically *)
+
+Goal "xs = ys ==> xs = [] @ ys";
+by(Asm_simp_tac 1);
+qed "eq_Nil_appendI";
+
+Goal "[| x#xs1 = ys; xs = xs1 @ zs |] ==> x#xs = ys@zs";
+bd sym 1;
+by(Asm_simp_tac 1);
+qed "Cons_eq_appendI";
+
+Goal "[| xs@xs1 = zs; ys = xs1 @ us |] ==> xs@ys = zs@us";
+bd sym 1;
+by(Asm_simp_tac 1);
+qed "append_eq_appendI";
+
(** map **)
@@ -316,6 +332,8 @@
by (eresolve_tac prems 1);
qed "rev_induct";
+fun rev_induct_tac xs = res_inst_tac [("xs",xs)] rev_induct;
+
Goal "(xs = [] --> P) --> (!ys y. xs = ys@[y] --> P) --> P";
by (res_inst_tac [("xs","xs")] rev_induct 1);
by (Auto_tac);
@@ -382,6 +400,28 @@
qed "in_set_filter";
Addsimps [in_set_filter];
+Goal "(x : set xs) = (? ys zs. xs = ys@x#zs)";
+by(induct_tac "xs" 1);
+ by(Simp_tac 1);
+by(Asm_simp_tac 1);
+br iffI 1;
+by(blast_tac (claset() addIs [eq_Nil_appendI,Cons_eq_appendI]) 1);
+by(REPEAT(etac exE 1));
+by(exhaust_tac "ys" 1);
+by(Auto_tac);
+qed "in_set_conv_decomp";
+
+(* eliminate `lists' in favour of `set' *)
+
+Goal "(xs : lists A) = (!x : set xs. x : A)";
+by(induct_tac "xs" 1);
+by(Auto_tac);
+qed "in_lists_conv_set";
+
+bind_thm("in_listsD",in_lists_conv_set RS iffD1);
+AddSDs [in_listsD];
+bind_thm("in_listsI",in_lists_conv_set RS iffD2);
+AddSIs [in_listsI];
(** list_all **)
@@ -747,6 +787,38 @@
qed_goal "zip_Cons_Cons" thy "zip (x#xs) (y#ys) = (x,y)#zip xs ys"
(K [Simp_tac 1]);
+
+(** foldl **)
+section "foldl";
+
+Goal "!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys";
+by(induct_tac "xs" 1);
+by(Auto_tac);
+qed_spec_mp "foldl_append";
+Addsimps [foldl_append];
+
+(* Note: `n <= foldl op+ n ns' looks simpler, but is more difficult to use
+ because it requires an additional transitivity step
+*)
+Goal "!n::nat. m <= n --> m <= foldl op+ n ns";
+by(induct_tac "ns" 1);
+ by(Simp_tac 1);
+by(Asm_full_simp_tac 1);
+by(blast_tac (claset() addIs [trans_le_add1]) 1);
+qed_spec_mp "start_le_sum";
+
+Goal "n : set ns ==> n <= foldl op+ 0 ns";
+by(auto_tac (claset() addIs [start_le_sum],
+ simpset() addsimps [in_set_conv_decomp]));
+qed "elem_le_sum";
+
+Goal "!m. (foldl op+ m ns = 0) = (m=0 & (!n : set ns. n=0))";
+by(induct_tac "ns" 1);
+by(Auto_tac);
+qed_spec_mp "sum_eq_0_conv";
+AddIffs [sum_eq_0_conv];
+
+
(** nodups & remdups **)
section "nodups & remdups";