split "nitpick_hol.ML" into two files to make it more manageable;
authorblanchet
Thu, 04 Feb 2010 16:03:15 +0100
changeset 35070 96136eb6218f
parent 34998 5e492a862b34
child 35071 3df45b0ce819
split "nitpick_hol.ML" into two files to make it more manageable; more refactoring to come
src/HOL/IsaMakefile
src/HOL/Nitpick.thy
src/HOL/Tools/Nitpick/nitpick.ML
src/HOL/Tools/Nitpick/nitpick_hol.ML
src/HOL/Tools/Nitpick/nitpick_kodkod.ML
src/HOL/Tools/Nitpick/nitpick_model.ML
src/HOL/Tools/Nitpick/nitpick_mono.ML
src/HOL/Tools/Nitpick/nitpick_nut.ML
src/HOL/Tools/Nitpick/nitpick_preproc.ML
src/HOL/Tools/Nitpick/nitpick_scope.ML
--- a/src/HOL/IsaMakefile	Thu Feb 04 13:36:52 2010 +0100
+++ b/src/HOL/IsaMakefile	Thu Feb 04 16:03:15 2010 +0100
@@ -206,6 +206,7 @@
   Tools/Nitpick/nitpick_mono.ML \
   Tools/Nitpick/nitpick_nut.ML \
   Tools/Nitpick/nitpick_peephole.ML \
+  Tools/Nitpick/nitpick_preproc.ML \
   Tools/Nitpick/nitpick_rep.ML \
   Tools/Nitpick/nitpick_scope.ML \
   Tools/Nitpick/nitpick_tests.ML \
--- a/src/HOL/Nitpick.thy	Thu Feb 04 13:36:52 2010 +0100
+++ b/src/HOL/Nitpick.thy	Thu Feb 04 16:03:15 2010 +0100
@@ -13,6 +13,7 @@
      ("Tools/Nitpick/kodkod_sat.ML")
      ("Tools/Nitpick/nitpick_util.ML")
      ("Tools/Nitpick/nitpick_hol.ML")
+     ("Tools/Nitpick/nitpick_preproc.ML")
      ("Tools/Nitpick/nitpick_mono.ML")
      ("Tools/Nitpick/nitpick_scope.ML")
      ("Tools/Nitpick/nitpick_peephole.ML")
@@ -237,6 +238,7 @@
 use "Tools/Nitpick/kodkod_sat.ML"
 use "Tools/Nitpick/nitpick_util.ML"
 use "Tools/Nitpick/nitpick_hol.ML"
+use "Tools/Nitpick/nitpick_preproc.ML"
 use "Tools/Nitpick/nitpick_mono.ML"
 use "Tools/Nitpick/nitpick_scope.ML"
 use "Tools/Nitpick/nitpick_peephole.ML"
--- a/src/HOL/Tools/Nitpick/nitpick.ML	Thu Feb 04 13:36:52 2010 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick.ML	Thu Feb 04 16:03:15 2010 +0100
@@ -69,6 +69,7 @@
 
 open Nitpick_Util
 open Nitpick_HOL
+open Nitpick_Preproc
 open Nitpick_Mono
 open Nitpick_Scope
 open Nitpick_Peephole
@@ -273,7 +274,7 @@
     val intro_table = inductive_intro_table ctxt def_table
     val ground_thm_table = ground_theorem_table thy
     val ersatz_table = ersatz_table thy
-    val (ext_ctxt as {wf_cache, ...}) =
+    val (hol_ctxt as {wf_cache, ...}) =
       {thy = thy, ctxt = ctxt, max_bisim_depth = max_bisim_depth, boxes = boxes,
        stds = stds, wfs = wfs, user_axioms = user_axioms, debug = debug,
        binary_ints = binary_ints, destroy_constrs = destroy_constrs,
@@ -292,7 +293,7 @@
     val _ = null (Term.add_tvars assms_t []) orelse
             raise NOT_SUPPORTED "schematic type variables"
     val (((def_ts, nondef_ts), (got_all_mono_user_axioms, no_poly_user_axioms)),
-         core_t) = preprocess_term ext_ctxt assms_t
+         core_t) = preprocess_term hol_ctxt assms_t
     val got_all_user_axioms =
       got_all_mono_user_axioms andalso no_poly_user_axioms
 
@@ -319,9 +320,9 @@
             handle TYPE (_, Ts, ts) =>
                    raise TYPE ("Nitpick.pick_them_nits_in_term", Ts, ts)
 
-    val core_u = nut_from_term ext_ctxt Eq core_t
-    val def_us = map (nut_from_term ext_ctxt DefEq) def_ts
-    val nondef_us = map (nut_from_term ext_ctxt Eq) nondef_ts
+    val core_u = nut_from_term hol_ctxt Eq core_t
+    val def_us = map (nut_from_term hol_ctxt DefEq) def_ts
+    val nondef_us = map (nut_from_term hol_ctxt Eq) nondef_ts
     val (free_names, const_names) =
       fold add_free_and_const_names (core_u :: def_us @ nondef_us) ([], [])
     val (sel_names, nonsel_names) =
@@ -344,12 +345,12 @@
       case triple_lookup (type_match thy) monos T of
         SOME (SOME b) => b
       | _ => is_type_always_monotonic T orelse
-             formulas_monotonic ext_ctxt T Plus def_ts nondef_ts core_t
+             formulas_monotonic hol_ctxt T Plus def_ts nondef_ts core_t
     fun is_deep_datatype T =
       is_datatype thy T andalso
       (is_word_type T orelse
        exists (curry (op =) T o domain_type o type_of) sel_names)
-    val all_Ts = ground_types_in_terms ext_ctxt (core_t :: def_ts @ nondef_ts)
+    val all_Ts = ground_types_in_terms hol_ctxt (core_t :: def_ts @ nondef_ts)
                  |> sort TermOrd.typ_ord
     val _ = if verbose andalso binary_ints = SOME true andalso
                exists (member (op =) [nat_T, int_T]) all_Ts then
@@ -522,7 +523,7 @@
         val plain_bounds = map (bound_for_plain_rel ctxt debug) plain_rels
         val plain_axioms = map (declarative_axiom_for_plain_rel kk) plain_rels
         val sel_bounds = map (bound_for_sel_rel ctxt debug datatypes) sel_rels
-        val dtype_axioms = declarative_axioms_for_datatypes ext_ctxt bits ofs kk
+        val dtype_axioms = declarative_axioms_for_datatypes hol_ctxt bits ofs kk
                                                             rel_table datatypes
         val declarative_axioms = plain_axioms @ dtype_axioms
         val univ_card = univ_card nat_card int_card main_j0
@@ -553,7 +554,7 @@
              if loc = "Nitpick_Kodkod.check_arity" andalso
                 not (Typtab.is_empty ofs) then
                problem_for_scope liberal
-                   {ext_ctxt = ext_ctxt, card_assigns = card_assigns,
+                   {hol_ctxt = hol_ctxt, card_assigns = card_assigns,
                     bits = bits, bisim_depth = bisim_depth,
                     datatypes = datatypes, ofs = Typtab.empty}
              else if loc = "Nitpick.pick_them_nits_in_term.\
@@ -891,7 +892,7 @@
         end
 
     val (skipped, the_scopes) =
-      all_scopes ext_ctxt sym_break cards_assigns maxes_assigns iters_assigns
+      all_scopes hol_ctxt sym_break cards_assigns maxes_assigns iters_assigns
                  bitss bisim_depths mono_Ts nonmono_Ts deep_dataTs
     val _ = if skipped > 0 then
               print_m (fn () => "Too many scopes. Skipping " ^
--- a/src/HOL/Tools/Nitpick/nitpick_hol.ML	Thu Feb 04 13:36:52 2010 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_hol.ML	Thu Feb 04 16:03:15 2010 +0100
@@ -13,7 +13,7 @@
   type unrolled = styp * styp
   type wf_cache = (styp * (bool * bool)) list
 
-  type extended_context = {
+  type hol_context = {
     thy: theory,
     ctxt: Proof.context,
     max_bisim_depth: int,
@@ -46,12 +46,24 @@
     wf_cache: wf_cache Unsynchronized.ref,
     constr_cache: (typ * styp list) list Unsynchronized.ref}
 
+  datatype fixpoint_kind = Lfp | Gfp | NoFp
+  datatype boxability =
+    InConstr | InSel | InExpr | InPair | InFunLHS | InFunRHS1 | InFunRHS2
+
   val name_sep : string
   val numeral_prefix : string
+  val ubfp_prefix : string
+  val lbfp_prefix : string
   val skolem_prefix : string
+  val special_prefix : string
+  val uncurry_prefix : string
   val eval_prefix : string
   val original_name : string -> string
   val s_conj : term * term -> term
+  val s_disj : term * term -> term
+  val strip_any_connective : term -> term list * term
+  val conjuncts_of : term -> term list
+  val disjuncts_of : term -> term list
   val unbit_and_unbox_type : typ -> typ
   val string_for_type : Proof.context -> typ -> string
   val prefix_name : string -> string -> string
@@ -76,6 +88,7 @@
   val is_record_type : typ -> bool
   val is_number_type : theory -> typ -> bool
   val const_for_iterator_type : typ -> styp
+  val strip_n_binders : int -> typ -> typ list * typ
   val nth_range_type : int -> typ -> typ
   val num_factors_in_type : typ -> int
   val num_binder_types : typ -> int
@@ -96,15 +109,18 @@
   val is_rep_fun : theory -> styp -> bool
   val is_quot_abs_fun : Proof.context -> styp -> bool
   val is_quot_rep_fun : Proof.context -> styp -> bool
+  val mate_of_rep_fun : theory -> styp -> styp
+  val is_constr_like : theory -> styp -> bool
+  val is_stale_constr : theory -> styp -> bool
   val is_constr : theory -> styp -> bool
-  val is_stale_constr : theory -> styp -> bool
   val is_sel : string -> bool
   val is_sel_like_and_no_discr : string -> bool
+  val box_type : hol_context -> boxability -> typ -> typ
   val discr_for_constr : styp -> styp
   val num_sels_for_constr_type : typ -> int
   val nth_sel_name_for_constr_name : string -> int -> string
   val nth_sel_for_constr : styp -> int -> styp
-  val boxed_nth_sel_for_constr : extended_context -> styp -> int -> styp
+  val boxed_nth_sel_for_constr : hol_context -> styp -> int -> styp
   val sel_no_from_name : string -> int
   val eta_expand : typ list -> term -> int -> term
   val extensionalize : term -> term
@@ -113,19 +129,25 @@
   val unregister_frac_type : string -> theory -> theory
   val register_codatatype : typ -> string -> styp list -> theory -> theory
   val unregister_codatatype : typ -> theory -> theory
-  val datatype_constrs : extended_context -> typ -> styp list
-  val boxed_datatype_constrs : extended_context -> typ -> styp list
-  val num_datatype_constrs : extended_context -> typ -> int
+  val datatype_constrs : hol_context -> typ -> styp list
+  val boxed_datatype_constrs : hol_context -> typ -> styp list
+  val num_datatype_constrs : hol_context -> typ -> int
   val constr_name_for_sel_like : string -> string
-  val boxed_constr_for_sel : extended_context -> styp -> styp
+  val boxed_constr_for_sel : hol_context -> styp -> styp
+  val discriminate_value : hol_context -> styp -> term -> term
+  val select_nth_constr_arg : theory -> styp -> term -> int -> typ -> term
+  val construct_value : theory -> styp -> term list -> term
   val card_of_type : (typ * int) list -> typ -> int
   val bounded_card_of_type : int -> int -> (typ * int) list -> typ -> int
   val bounded_exact_card_of_type :
-    extended_context -> int -> int -> (typ * int) list -> typ -> int
-  val is_finite_type : extended_context -> typ -> bool
+    hol_context -> int -> int -> (typ * int) list -> typ -> int
+  val is_finite_type : hol_context -> typ -> bool
+  val special_bounds : term list -> (indexname * typ) list
+  val is_funky_typedef : theory -> typ -> bool
   val all_axioms_of : theory -> term list * term list * term list
   val arity_of_built_in_const : bool -> styp -> int option
   val is_built_in_const : bool -> styp -> bool
+  val term_under_def : term -> term
   val case_const_names : theory -> (string * int) list
   val const_def_table : Proof.context -> term list -> const_table
   val const_nondef_table : term list -> const_table
@@ -134,22 +156,33 @@
   val inductive_intro_table : Proof.context -> const_table -> const_table
   val ground_theorem_table : theory -> term list Inttab.table
   val ersatz_table : theory -> (string * string) list
+  val add_simps : const_table Unsynchronized.ref -> string -> term list -> unit
+  val inverse_axioms_for_rep_fun : theory -> styp -> term list
+  val optimized_typedef_axioms : theory -> string * typ list -> term list
+  val optimized_quot_type_axioms : theory -> string * typ list -> term list
   val def_of_const : theory -> const_table -> styp -> term option
-  val is_inductive_pred : extended_context -> styp -> bool
+  val fixpoint_kind_of_const :
+    theory -> const_table -> string * typ -> fixpoint_kind
+  val is_inductive_pred : hol_context -> styp -> bool
+  val is_equational_fun : hol_context -> styp -> bool
   val is_constr_pattern_lhs : theory -> term -> bool
   val is_constr_pattern_formula : theory -> term -> bool
+  val unfold_defs_in_term : hol_context -> term -> term
+  val codatatype_bisim_axioms : hol_context -> typ -> term list
+  val is_well_founded_inductive_pred : hol_context -> styp -> bool
+  val unrolled_inductive_pred_const : hol_context -> bool -> styp -> term
+  val equational_fun_axioms : hol_context -> styp -> term list
+  val is_equational_fun_surely_complete : hol_context -> styp -> bool
   val merge_type_vars_in_terms : term list -> term list
-  val ground_types_in_type : extended_context -> typ -> typ list
-  val ground_types_in_terms : extended_context -> term list -> typ list
+  val ground_types_in_type : hol_context -> typ -> typ list
+  val ground_types_in_terms : hol_context -> term list -> typ list
   val format_type : int list -> int list -> typ -> typ
   val format_term_type :
     theory -> const_table -> (term option * int list) list -> term -> typ
   val user_friendly_const :
-   extended_context -> string * string -> (term option * int list) list
+   hol_context -> string * string -> (term option * int list) list
    -> styp -> term * typ
   val assign_operator_for_const : styp -> string
-  val preprocess_term :
-    extended_context -> term -> ((term list * term list) * (bool * bool)) * term
 end;
 
 structure Nitpick_HOL : NITPICK_HOL =
@@ -162,7 +195,7 @@
 type unrolled = styp * styp
 type wf_cache = (styp * (bool * bool)) list
 
-type extended_context = {
+type hol_context = {
   thy: theory,
   ctxt: Proof.context,
   max_bisim_depth: int,
@@ -195,6 +228,10 @@
   wf_cache: wf_cache Unsynchronized.ref,
   constr_cache: (typ * styp list) list Unsynchronized.ref}
 
+datatype fixpoint_kind = Lfp | Gfp | NoFp
+datatype boxability =
+  InConstr | InSel | InExpr | InPair | InFunLHS | InFunRHS1 | InFunRHS2
+
 structure Data = Theory_Data(
   type T = {frac_types: (string * (string * string) list) list,
             codatatypes: (string * (string * styp list)) list}
@@ -222,20 +259,11 @@
 val special_prefix = nitpick_prefix ^ "sp"
 val uncurry_prefix = nitpick_prefix ^ "unc"
 val eval_prefix = nitpick_prefix ^ "eval"
-val bound_var_prefix = "b"
-val cong_var_prefix = "c"
 val iter_var_prefix = "i"
-val val_var_prefix = nitpick_prefix ^ "v"
 val arg_var_prefix = "x"
 
 (* int -> string *)
 fun sel_prefix_for j = sel_prefix ^ string_of_int j ^ name_sep
-fun special_prefix_for j = special_prefix ^ string_of_int j ^ name_sep
-(* int -> int -> string *)
-fun skolem_prefix_for k j =
-  skolem_prefix ^ string_of_int k ^ "@" ^ string_of_int j ^ name_sep
-fun uncurry_prefix_for k j =
-  uncurry_prefix ^ string_of_int k ^ "@" ^ string_of_int j ^ name_sep
 
 (* string -> string * string *)
 val strip_first_name_sep =
@@ -260,9 +288,6 @@
   | s_disj (t1, t2) =
     if t1 = @{const True} orelse t2 = @{const True} then @{const True}
     else HOLogic.mk_disj (t1, t2)
-(* term -> term -> term *)
-fun mk_exists v t =
-  HOLogic.exists_const (fastype_of v) $ lambda v (incr_boundvars 1 t)
 
 (* term -> term -> term list *)
 fun strip_connective conn_t (t as (t0 $ t1 $ t2)) =
@@ -276,8 +301,8 @@
       ([t], @{const Not})
   | strip_any_connective t = ([t], @{const Not})
 (* term -> term list *)
-val conjuncts = strip_connective @{const "op &"}
-val disjuncts = strip_connective @{const "op |"}
+val conjuncts_of = strip_connective @{const "op &"}
+val disjuncts_of = strip_connective @{const "op |"}
 
 (* When you add constants to these lists, make sure to handle them in
    "Nitpick_Nut.nut_from_term", and perhaps in "Nitpick_Mono.consider_term" as
@@ -373,8 +398,6 @@
 fun shortest_name s = List.last (space_explode "." s) handle List.Empty => ""
 (* string -> term -> term *)
 val prefix_abs_vars = Term.map_abs_vars o prefix_name
-(* term -> term *)
-val shorten_abs_vars = Term.map_abs_vars shortest_name
 (* string -> string *)
 fun short_name s =
   case space_explode name_sep s of
@@ -441,7 +464,7 @@
   | const_for_iterator_type T =
     raise TYPE ("Nitpick_HOL.const_for_iterator_type", [T], [])
 
-(* int -> typ -> typ * typ *)
+(* int -> typ -> typ list * typ *)
 fun strip_n_binders 0 T = ([], T)
   | strip_n_binders n (Type ("fun", [T1, T2])) =
     strip_n_binders (n - 1) T2 |>> cons T1
@@ -552,7 +575,7 @@
 val is_real_datatype = is_some oo Datatype.get_info
 (* theory -> typ -> bool *)
 fun is_quot_type _ (Type ("IntEx.my_int", _)) = true (* FIXME *)
-  | is_quot_type _ (Type ("FSet.fset", _)) = true (* FIXME *)
+  | is_quot_type _ (Type ("FSet.fset", _)) = true
   | is_quot_type _ _ = false
 fun is_codatatype thy (T as Type (s, _)) =
     not (null (AList.lookup (op =) (#codatatypes (Data.get thy)) s
@@ -619,11 +642,11 @@
      | NONE => false)
   | is_rep_fun _ _ = false
 (* Proof.context -> styp -> bool *)
-fun is_quot_abs_fun _ ("IntEx.abs_my_int", _) = true (* FIXME *)
-  | is_quot_abs_fun _ ("FSet.abs_fset", _) = true (* FIXME *)
+fun is_quot_abs_fun _ ("IntEx.abs_my_int", _) = true
+  | is_quot_abs_fun _ ("FSet.abs_fset", _) = true
   | is_quot_abs_fun _ _ = false
-fun is_quot_rep_fun _ ("IntEx.rep_my_int", _) = true (* FIXME *)
-  | is_quot_rep_fun _ ("FSet.rep_fset", _) = true (* FIXME *)
+fun is_quot_rep_fun _ ("IntEx.rep_my_int", _) = true
+  | is_quot_rep_fun _ ("FSet.rep_fset", _) = true
   | is_quot_rep_fun _ _ = false
 
 (* theory -> styp -> styp *)
@@ -682,9 +705,6 @@
   String.isPrefix sel_prefix
   orf (member (op =) [@{const_name fst}, @{const_name snd}])
 
-datatype boxability =
-  InConstr | InSel | InExpr | InPair | InFunLHS | InFunRHS1 | InFunRHS2
-
 (* boxability -> boxability *)
 fun in_fun_lhs_for InConstr = InSel
   | in_fun_lhs_for _ = InFunLHS
@@ -693,8 +713,8 @@
   | in_fun_rhs_for InFunRHS1 = InFunRHS2
   | in_fun_rhs_for _ = InFunRHS1
 
-(* extended_context -> boxability -> typ -> bool *)
-fun is_boxing_worth_it (ext_ctxt : extended_context) boxy T =
+(* hol_context -> boxability -> typ -> bool *)
+fun is_boxing_worth_it (hol_ctxt : hol_context) boxy T =
   case T of
     Type ("fun", _) =>
     (boxy = InPair orelse boxy = InFunLHS) andalso
@@ -702,31 +722,31 @@
   | Type ("*", Ts) =>
     boxy = InPair orelse boxy = InFunRHS1 orelse boxy = InFunRHS2 orelse
     ((boxy = InExpr orelse boxy = InFunLHS) andalso
-     exists (is_boxing_worth_it ext_ctxt InPair)
-            (map (box_type ext_ctxt InPair) Ts))
+     exists (is_boxing_worth_it hol_ctxt InPair)
+            (map (box_type hol_ctxt InPair) Ts))
   | _ => false
-(* extended_context -> boxability -> string * typ list -> string *)
-and should_box_type (ext_ctxt as {thy, boxes, ...}) boxy (z as (s, Ts)) =
+(* hol_context -> boxability -> string * typ list -> string *)
+and should_box_type (hol_ctxt as {thy, boxes, ...}) boxy (z as (s, Ts)) =
   case triple_lookup (type_match thy) boxes (Type z) of
     SOME (SOME box_me) => box_me
-  | _ => is_boxing_worth_it ext_ctxt boxy (Type z)
-(* extended_context -> boxability -> typ -> typ *)
-and box_type ext_ctxt boxy T =
+  | _ => is_boxing_worth_it hol_ctxt boxy (Type z)
+(* hol_context -> boxability -> typ -> typ *)
+and box_type hol_ctxt boxy T =
   case T of
     Type (z as ("fun", [T1, T2])) =>
     if boxy <> InConstr andalso boxy <> InSel andalso
-       should_box_type ext_ctxt boxy z then
+       should_box_type hol_ctxt boxy z then
       Type (@{type_name fun_box},
-            [box_type ext_ctxt InFunLHS T1, box_type ext_ctxt InFunRHS1 T2])
+            [box_type hol_ctxt InFunLHS T1, box_type hol_ctxt InFunRHS1 T2])
     else
-      box_type ext_ctxt (in_fun_lhs_for boxy) T1
-      --> box_type ext_ctxt (in_fun_rhs_for boxy) T2
+      box_type hol_ctxt (in_fun_lhs_for boxy) T1
+      --> box_type hol_ctxt (in_fun_rhs_for boxy) T2
   | Type (z as ("*", Ts)) =>
     if boxy <> InConstr andalso boxy <> InSel
-       andalso should_box_type ext_ctxt boxy z then
-      Type (@{type_name pair_box}, map (box_type ext_ctxt InSel) Ts)
+       andalso should_box_type hol_ctxt boxy z then
+      Type (@{type_name pair_box}, map (box_type hol_ctxt InSel) Ts)
     else
-      Type ("*", map (box_type ext_ctxt
+      Type ("*", map (box_type hol_ctxt
                           (if boxy = InConstr orelse boxy = InSel then boxy
                            else InPair)) Ts)
   | _ => T
@@ -747,9 +767,9 @@
   | nth_sel_for_constr (s, T) n =
     (nth_sel_name_for_constr_name s n,
      body_type T --> nth (maybe_curried_binder_types T) n)
-(* extended_context -> styp -> int -> styp *)
-fun boxed_nth_sel_for_constr ext_ctxt =
-  apsnd (box_type ext_ctxt InSel) oo nth_sel_for_constr
+(* hol_context -> styp -> int -> styp *)
+fun boxed_nth_sel_for_constr hol_ctxt =
+  apsnd (box_type hol_ctxt InSel) oo nth_sel_for_constr
 
 (* string -> int *)
 fun sel_no_from_name s =
@@ -791,8 +811,8 @@
 fun zero_const T = Const (@{const_name zero_nat_inst.zero_nat}, T)
 fun suc_const T = Const (@{const_name Suc}, T --> T)
 
-(* extended_context -> typ -> styp list *)
-fun uncached_datatype_constrs ({thy, stds, ...} : extended_context)
+(* hol_context -> typ -> styp list *)
+fun uncached_datatype_constrs ({thy, stds, ...} : hol_context)
                               (T as Type (s, Ts)) =
     (case AList.lookup (op =) (#codatatypes (Data.get thy)) s of
        SOME (_, xs' as (_ :: _)) => map (apsnd (repair_constr_type thy T)) xs'
@@ -829,49 +849,49 @@
        else
          [])
   | uncached_datatype_constrs _ _ = []
-(* extended_context -> typ -> styp list *)
-fun datatype_constrs (ext_ctxt as {constr_cache, ...}) T =
+(* hol_context -> typ -> styp list *)
+fun datatype_constrs (hol_ctxt as {constr_cache, ...}) T =
   case AList.lookup (op =) (!constr_cache) T of
     SOME xs => xs
   | NONE =>
-    let val xs = uncached_datatype_constrs ext_ctxt T in
+    let val xs = uncached_datatype_constrs hol_ctxt T in
       (Unsynchronized.change constr_cache (cons (T, xs)); xs)
     end
-fun boxed_datatype_constrs ext_ctxt =
-  map (apsnd (box_type ext_ctxt InConstr)) o datatype_constrs ext_ctxt
-(* extended_context -> typ -> int *)
+fun boxed_datatype_constrs hol_ctxt =
+  map (apsnd (box_type hol_ctxt InConstr)) o datatype_constrs hol_ctxt
+(* hol_context -> typ -> int *)
 val num_datatype_constrs = length oo datatype_constrs
 
 (* string -> string *)
 fun constr_name_for_sel_like @{const_name fst} = @{const_name Pair}
   | constr_name_for_sel_like @{const_name snd} = @{const_name Pair}
   | constr_name_for_sel_like s' = original_name s'
-(* extended_context -> styp -> styp *)
-fun boxed_constr_for_sel ext_ctxt (s', T') =
+(* hol_context -> styp -> styp *)
+fun boxed_constr_for_sel hol_ctxt (s', T') =
   let val s = constr_name_for_sel_like s' in
-    AList.lookup (op =) (boxed_datatype_constrs ext_ctxt (domain_type T')) s
+    AList.lookup (op =) (boxed_datatype_constrs hol_ctxt (domain_type T')) s
     |> the |> pair s
   end
 
-(* extended_context -> styp -> term *)
-fun discr_term_for_constr ext_ctxt (x as (s, T)) =
+(* hol_context -> styp -> term *)
+fun discr_term_for_constr hol_ctxt (x as (s, T)) =
   let val dataT = body_type T in
     if s = @{const_name Suc} then
       Abs (Name.uu, dataT,
            @{const Not} $ HOLogic.mk_eq (zero_const dataT, Bound 0))
-    else if num_datatype_constrs ext_ctxt dataT >= 2 then
+    else if num_datatype_constrs hol_ctxt dataT >= 2 then
       Const (discr_for_constr x)
     else
       Abs (Name.uu, dataT, @{const True})
   end
-(* extended_context -> styp -> term -> term *)
-fun discriminate_value (ext_ctxt as {thy, ...}) (x as (_, T)) t =
+(* hol_context -> styp -> term -> term *)
+fun discriminate_value (hol_ctxt as {thy, ...}) (x as (_, T)) t =
   case strip_comb t of
     (Const x', args) =>
     if x = x' then @{const True}
     else if is_constr_like thy x' then @{const False}
-    else betapply (discr_term_for_constr ext_ctxt x, t)
-  | _ => betapply (discr_term_for_constr ext_ctxt x, t)
+    else betapply (discr_term_for_constr hol_ctxt x, t)
+  | _ => betapply (discr_term_for_constr hol_ctxt x, t)
 
 (* styp -> term -> term *)
 fun nth_arg_sel_term_for_constr (x as (s, T)) n =
@@ -920,26 +940,6 @@
       | _ => list_comb (Const x, args)
     end
 
-(* extended_context -> typ -> term -> term *)
-fun constr_expand (ext_ctxt as {thy, ...}) T t =
-  (case head_of t of
-     Const x => if is_constr_like thy x then t else raise SAME ()
-   | _ => raise SAME ())
-  handle SAME () =>
-         let
-           val x' as (_, T') =
-             if is_pair_type T then
-               let val (T1, T2) = HOLogic.dest_prodT T in
-                 (@{const_name Pair}, T1 --> T2 --> T)
-               end
-             else
-               datatype_constrs ext_ctxt T |> hd
-           val arg_Ts = binder_types T'
-         in
-           list_comb (Const x', map2 (select_nth_constr_arg thy x' t)
-                                     (index_seq 0 (length arg_Ts)) arg_Ts)
-         end
-
 (* (typ * int) list -> typ -> int *)
 fun card_of_type assigns (Type ("fun", [T1, T2])) =
     reasonable_power (card_of_type assigns T2) (card_of_type assigns T1)
@@ -975,8 +975,8 @@
                     card_of_type assigns T
                     handle TYPE ("Nitpick_HOL.card_of_type", _, _) =>
                            default_card)
-(* extended_context -> int -> (typ * int) list -> typ -> int *)
-fun bounded_exact_card_of_type ext_ctxt max default_card assigns T =
+(* hol_context -> int -> (typ * int) list -> typ -> int *)
+fun bounded_exact_card_of_type hol_ctxt max default_card assigns T =
   let
     (* typ list -> typ -> int *)
     fun aux avoid T =
@@ -1006,13 +1006,13 @@
        | @{typ bool} => 2
        | @{typ unit} => 1
        | Type _ =>
-         (case datatype_constrs ext_ctxt T of
+         (case datatype_constrs hol_ctxt T of
             [] => if is_integer_type T orelse is_bit_type T then 0
                   else raise SAME ()
           | constrs =>
             let
               val constr_cards =
-                datatype_constrs ext_ctxt T
+                datatype_constrs hol_ctxt T
                 |> map (Integer.prod o map (aux (T :: avoid)) o binder_types
                         o snd)
             in
@@ -1024,9 +1024,9 @@
              AList.lookup (op =) assigns T |> the_default default_card
   in Int.min (max, aux [] T) end
 
-(* extended_context -> typ -> bool *)
-fun is_finite_type ext_ctxt =
-  not_equal 0 o bounded_exact_card_of_type ext_ctxt 1 2 []
+(* hol_context -> typ -> bool *)
+fun is_finite_type hol_ctxt =
+  not_equal 0 o bounded_exact_card_of_type hol_ctxt 1 2 []
 
 (* term -> bool *)
 fun is_ground_term (t1 $ t2) = is_ground_term t1 andalso is_ground_term t2
@@ -1052,7 +1052,7 @@
   member (op =) [@{type_name unit}, @{type_name "*"}, @{type_name "+"},
                  @{type_name int}] s orelse
   is_frac_type thy (Type (s, []))
-(* theory -> term -> bool *)
+(* theory -> typ -> bool *)
 fun is_funky_typedef thy (Type (s, _)) = is_funky_typedef_name thy s
   | is_funky_typedef _ _ = false
 (* term -> bool *)
@@ -1199,8 +1199,6 @@
       |> normalized_rhs_of thy |> Option.map (prefix_abs_vars s)
     handle List.Empty => NONE
 
-datatype fixpoint_kind = Lfp | Gfp | NoFp
-
 (* term -> fixpoint_kind *)
 fun fixpoint_kind_of_rhs (Abs (_, _, t)) = fixpoint_kind_of_rhs t
   | fixpoint_kind_of_rhs (Const (@{const_name lfp}, _) $ Abs _) = Lfp
@@ -1299,35 +1297,6 @@
   Unsynchronized.change simp_table
       (Symtab.update (s, eqs @ these (Symtab.lookup (!simp_table) s)))
 
-(* Similar to "Refute.specialize_type" but returns all matches rather than only
-   the first (preorder) match. *)
-(* theory -> styp -> term -> term list *)
-fun multi_specialize_type thy slack (x as (s, T)) t =
-  let
-    (* term -> (typ * term) list -> (typ * term) list *)
-    fun aux (Const (s', T')) ys =
-        if s = s' then
-          ys |> (if AList.defined (op =) ys T' then
-                   I
-                 else
-                  cons (T', Refute.monomorphic_term
-                                (Sign.typ_match thy (T', T) Vartab.empty) t)
-                  handle Type.TYPE_MATCH => I
-                       | Refute.REFUTE _ =>
-                         if slack then
-                           I
-                         else
-                           raise NOT_SUPPORTED ("too much polymorphism in \
-                                                \axiom involving " ^ quote s))
-        else
-          ys
-      | aux _ ys = ys
-  in map snd (fold_aterms aux t []) end
-
-(* theory -> bool -> const_table -> styp -> term list *)
-fun nondef_props_for_const thy slack table (x as (s, _)) =
-  these (Symtab.lookup table s) |> maps (multi_specialize_type thy slack x)
-
 (* theory -> styp -> term list *)
 fun inverse_axioms_for_rep_fun thy (x as (_, T)) =
   let val abs_T = domain_type T in
@@ -1336,7 +1305,7 @@
     |> pairself (Refute.specialize_type thy x o prop_of o the)
     ||> single |> op ::
   end
-(* theory -> styp list -> term list *)
+(* theory -> string * typ list -> term list *)
 fun optimized_typedef_axioms thy (abs_z as (abs_s, abs_Ts)) =
   let val abs_T = Type abs_z in
     if is_univ_typedef thy abs_T then
@@ -1392,15 +1361,15 @@
     list_comb (Bound j, map2 (select_nth_constr_arg thy x (Bound 0))
                              (index_seq 0 (length arg_Ts)) arg_Ts)
   end
-(* extended_context -> typ -> int * styp -> term -> term *)
-fun add_constr_case (ext_ctxt as {thy, ...}) res_T (j, x) res_t =
+(* hol_context -> typ -> int * styp -> term -> term *)
+fun add_constr_case (hol_ctxt as {thy, ...}) res_T (j, x) res_t =
   Const (@{const_name If}, bool_T --> res_T --> res_T --> res_T)
-  $ discriminate_value ext_ctxt x (Bound 0) $ constr_case_body thy (j, x)
+  $ discriminate_value hol_ctxt x (Bound 0) $ constr_case_body thy (j, x)
   $ res_t
-(* extended_context -> typ -> typ -> term *)
-fun optimized_case_def (ext_ctxt as {thy, ...}) dataT res_T =
+(* hol_context -> typ -> typ -> term *)
+fun optimized_case_def (hol_ctxt as {thy, ...}) dataT res_T =
   let
-    val xs = datatype_constrs ext_ctxt dataT
+    val xs = datatype_constrs hol_ctxt dataT
     val xs' = filter_out (fn (s, _) => s = @{const_name NonStd}) xs
     val func_Ts = map ((fn T => binder_types T ---> res_T) o snd) xs'
   in
@@ -1409,19 +1378,19 @@
          val (xs'', x) = split_last xs'
        in
          constr_case_body thy (1, x)
-         |> fold_rev (add_constr_case ext_ctxt res_T)
+         |> fold_rev (add_constr_case hol_ctxt res_T)
                      (length xs' downto 2 ~~ xs'')
        end
      else
        Const (@{const_name undefined}, dataT --> res_T) $ Bound 0
-       |> fold_rev (add_constr_case ext_ctxt res_T)
+       |> fold_rev (add_constr_case hol_ctxt res_T)
                    (length xs' downto 1 ~~ xs'))
     |> fold_rev (curry absdummy) (func_Ts @ [dataT])
   end
 
-(* extended_context -> string -> typ -> typ -> term -> term *)
-fun optimized_record_get (ext_ctxt as {thy, ...}) s rec_T res_T t =
-  let val constr_x = hd (datatype_constrs ext_ctxt rec_T) in
+(* hol_context -> string -> typ -> typ -> term -> term *)
+fun optimized_record_get (hol_ctxt as {thy, ...}) s rec_T res_T t =
+  let val constr_x = hd (datatype_constrs hol_ctxt rec_T) in
     case no_of_record_field thy s rec_T of
       ~1 => (case rec_T of
                Type (_, Ts as _ :: _) =>
@@ -1430,16 +1399,16 @@
                  val j = num_record_fields thy rec_T - 1
                in
                  select_nth_constr_arg thy constr_x t j res_T
-                 |> optimized_record_get ext_ctxt s rec_T' res_T
+                 |> optimized_record_get hol_ctxt s rec_T' res_T
                end
              | _ => raise TYPE ("Nitpick_HOL.optimized_record_get", [rec_T],
                                 []))
     | j => select_nth_constr_arg thy constr_x t j res_T
   end
-(* extended_context -> string -> typ -> term -> term -> term *)
-fun optimized_record_update (ext_ctxt as {thy, ...}) s rec_T fun_t rec_t =
+(* hol_context -> string -> typ -> term -> term -> term *)
+fun optimized_record_update (hol_ctxt as {thy, ...}) s rec_T fun_t rec_t =
   let
-    val constr_x as (_, constr_T) = hd (datatype_constrs ext_ctxt rec_T)
+    val constr_x as (_, constr_T) = hd (datatype_constrs hol_ctxt rec_T)
     val Ts = binder_types constr_T
     val n = length Ts
     val special_j = no_of_record_field thy s rec_T
@@ -1450,7 +1419,7 @@
                         if j = special_j then
                           betapply (fun_t, t)
                         else if j = n - 1 andalso special_j = ~1 then
-                          optimized_record_update ext_ctxt s
+                          optimized_record_update hol_ctxt s
                               (rec_T |> dest_Type |> snd |> List.last) fun_t t
                         else
                           t
@@ -1473,19 +1442,19 @@
     fixpoint_kind_of_rhs (the (def_of_const thy table x))
     handle Option.Option => NoFp
 
-(* extended_context -> styp -> bool *)
+(* hol_context -> styp -> bool *)
 fun is_real_inductive_pred ({thy, fast_descrs, def_table, intro_table, ...}
-                            : extended_context) x =
+                            : hol_context) x =
   not (null (def_props_for_const thy fast_descrs intro_table x)) andalso
   fixpoint_kind_of_const thy def_table x <> NoFp
 fun is_real_equational_fun ({thy, fast_descrs, simp_table, psimp_table, ...}
-                            : extended_context) x =
+                            : hol_context) x =
   exists (fn table => not (null (def_props_for_const thy fast_descrs table x)))
          [!simp_table, psimp_table]
-fun is_inductive_pred ext_ctxt =
-  is_real_inductive_pred ext_ctxt andf (not o is_real_equational_fun ext_ctxt)
-fun is_equational_fun (ext_ctxt as {thy, def_table, ...}) =
-  (is_real_equational_fun ext_ctxt orf is_real_inductive_pred ext_ctxt
+fun is_inductive_pred hol_ctxt =
+  is_real_inductive_pred hol_ctxt andf (not o is_real_equational_fun hol_ctxt)
+fun is_equational_fun (hol_ctxt as {thy, def_table, ...}) =
+  (is_real_equational_fun hol_ctxt orf is_real_inductive_pred hol_ctxt
    orf (String.isPrefix ubfp_prefix orf String.isPrefix lbfp_prefix) o fst)
   andf (not o has_trivial_definition thy def_table)
 
@@ -1522,11 +1491,11 @@
     SOME t' => is_constr_pattern_lhs thy t'
   | NONE => false
 
+(* Prevents divergence in case of cyclic or infinite definition dependencies. *)
 val unfold_max_depth = 255
-val axioms_max_depth = 255
 
-(* extended_context -> term -> term *)
-fun unfold_defs_in_term (ext_ctxt as {thy, destroy_constrs, fast_descrs,
+(* hol_context -> term -> term *)
+fun unfold_defs_in_term (hol_ctxt as {thy, destroy_constrs, fast_descrs,
                                       case_names, def_table, ground_thm_table,
                                       ersatz_table, ...}) =
   let
@@ -1600,7 +1569,7 @@
                 val (dataT, res_T) = nth_range_type n T
                                      |> pairf domain_type range_type
               in
-                (optimized_case_def ext_ctxt dataT res_T
+                (optimized_case_def hol_ctxt dataT res_T
                  |> do_term (depth + 1) Ts, ts)
               end
             | _ =>
@@ -1628,11 +1597,11 @@
               else if is_record_get thy x then
                 case length ts of
                   0 => (do_term depth Ts (eta_expand Ts t 1), [])
-                | _ => (optimized_record_get ext_ctxt s (domain_type T)
+                | _ => (optimized_record_get hol_ctxt s (domain_type T)
                             (range_type T) (do_term depth Ts (hd ts)), tl ts)
               else if is_record_update thy x then
                 case length ts of
-                  2 => (optimized_record_update ext_ctxt
+                  2 => (optimized_record_update hol_ctxt
                             (unsuffix Record.updateN s) (nth_range_type 2 T)
                             (do_term depth Ts (hd ts))
                             (do_term depth Ts (nth ts 1)), [])
@@ -1645,7 +1614,7 @@
                   else
                     (Const x, ts)
                 end
-              else if is_equational_fun ext_ctxt x then
+              else if is_equational_fun hol_ctxt x then
                 (Const x, ts)
               else case def_of_const thy def_table x of
                 SOME def =>
@@ -1662,10 +1631,10 @@
         in s_betapplys (const, map (do_term depth Ts) ts) |> Envir.beta_norm end
   in do_term 0 [] end
 
-(* extended_context -> typ -> term list *)
-fun codatatype_bisim_axioms (ext_ctxt as {thy, ...}) T =
+(* hol_context -> typ -> term list *)
+fun codatatype_bisim_axioms (hol_ctxt as {thy, ...}) T =
   let
-    val xs = datatype_constrs ext_ctxt T
+    val xs = datatype_constrs hol_ctxt T
     val set_T = T --> bool_T
     val iter_T = @{typ bisim_iterator}
     val bisim_const = Const (@{const_name bisim}, iter_T --> T --> T --> bool_T)
@@ -1688,14 +1657,14 @@
       let
         val arg_Ts = binder_types T
         val core_t =
-          discriminate_value ext_ctxt x y_var ::
+          discriminate_value hol_ctxt x y_var ::
           map2 (nth_sub_bisim x) (index_seq 0 (length arg_Ts)) arg_Ts
           |> foldr1 s_conj
       in List.foldr absdummy core_t arg_Ts end
   in
     [HOLogic.eq_const bool_T $ (bisim_const $ n_var $ x_var $ y_var)
      $ (@{term "op |"} $ (HOLogic.eq_const iter_T $ n_var $ zero_const iter_T)
-        $ (betapplys (optimized_case_def ext_ctxt T bool_T,
+        $ (betapplys (optimized_case_def hol_ctxt T bool_T,
                       map case_func xs @ [x_var]))),
      HOLogic.eq_const set_T $ (bisim_const $ bisim_max $ x_var)
      $ (Const (@{const_name insert}, T --> set_T --> set_T)
@@ -1754,10 +1723,10 @@
 val termination_tacs = [Lexicographic_Order.lex_order_tac true,
                         ScnpReconstruct.sizechange_tac]
 
-(* extended_context -> const_table -> styp -> bool *)
+(* hol_context -> const_table -> styp -> bool *)
 fun uncached_is_well_founded_inductive_pred
         ({thy, ctxt, debug, fast_descrs, tac_timeout, intro_table, ...}
-         : extended_context) (x as (_, T)) =
+         : hol_context) (x as (_, T)) =
   case def_props_for_const thy fast_descrs intro_table x of
     [] => raise TERM ("Nitpick_HOL.uncached_is_well_founded_inductive",
                       [Const x])
@@ -1797,11 +1766,11 @@
     handle List.Empty => false
          | NO_TRIPLE () => false
 
-(* The type constraint below is a workaround for a Poly/ML bug. *)
+(* The type constraint below is a workaround for a Poly/ML crash. *)
 
-(* extended_context -> styp -> bool *)
+(* hol_context -> styp -> bool *)
 fun is_well_founded_inductive_pred
-        (ext_ctxt as {thy, wfs, def_table, wf_cache, ...} : extended_context)
+        (hol_ctxt as {thy, wfs, def_table, wf_cache, ...} : hol_context)
         (x as (s, _)) =
   case triple_lookup (const_match thy) wfs x of
     SOME (SOME b) => b
@@ -1811,7 +1780,7 @@
                 | NONE =>
                   let
                     val gfp = (fixpoint_kind_of_const thy def_table x = Gfp)
-                    val wf = uncached_is_well_founded_inductive_pred ext_ctxt x
+                    val wf = uncached_is_well_founded_inductive_pred hol_ctxt x
                   in
                     Unsynchronized.change wf_cache (cons (x, (gfp, wf))); wf
                   end
@@ -1842,14 +1811,14 @@
       | do_disjunct j t =
         case num_occs_of_bound_in_term j t of
           0 => true
-        | 1 => exists (curry (op =) (Bound j) o head_of) (conjuncts t)
+        | 1 => exists (curry (op =) (Bound j) o head_of) (conjuncts_of t)
         | _ => false
     (* term -> bool *)
     fun do_lfp_def (Const (@{const_name lfp}, _) $ t2) =
         let val (xs, body) = strip_abs t2 in
           case length xs of
             1 => false
-          | n => forall (do_disjunct (n - 1)) (disjuncts body)
+          | n => forall (do_disjunct (n - 1)) (disjuncts_of body)
         end
       | do_lfp_def _ = false
   in do_lfp_def o strip_abs_body end
@@ -1887,7 +1856,7 @@
               end
           val (nonrecs, recs) =
             List.partition (curry (op =) 0 o num_occs_of_bound_in_term j)
-                           (disjuncts body)
+                           (disjuncts_of body)
           val base_body = nonrecs |> List.foldl s_disj @{const False}
           val step_body = recs |> map (repair_rec j)
                                |> List.foldl s_disj @{const False} 
@@ -1901,8 +1870,8 @@
         raise TERM ("Nitpick_HOL.linear_pred_base_and_step_rhss.aux", [t])
   in aux end
 
-(* extended_context -> styp -> term -> term *)
-fun starred_linear_pred_const (ext_ctxt as {simp_table, ...}) (x as (s, T))
+(* hol_context -> styp -> term -> term *)
+fun starred_linear_pred_const (hol_ctxt as {simp_table, ...}) (x as (s, T))
                               def =
   let
     val j = maxidx_of_term def + 1
@@ -1933,11 +1902,11 @@
                     $ list_comb (Const step_x, outer_bounds)))
               $ list_comb (Const base_x, outer_bounds)
               |> ap_curry tuple_arg_Ts tuple_T bool_T)
-    |> unfold_defs_in_term ext_ctxt
+    |> unfold_defs_in_term hol_ctxt
   end
 
-(* extended_context -> bool -> styp -> term *)
-fun unrolled_inductive_pred_const (ext_ctxt as {thy, star_linear_preds,
+(* hol_context -> bool -> styp -> term *)
+fun unrolled_inductive_pred_const (hol_ctxt as {thy, star_linear_preds,
                                                 def_table, simp_table, ...})
                                   gfp (x as (s, T)) =
   let
@@ -1946,11 +1915,11 @@
     val unrolled_const = Const x' $ zero_const iter_T
     val def = the (def_of_const thy def_table x)
   in
-    if is_equational_fun ext_ctxt x' then
+    if is_equational_fun hol_ctxt x' then
       unrolled_const (* already done *)
     else if not gfp andalso is_linear_inductive_pred_def def andalso
          star_linear_preds then
-      starred_linear_pred_const ext_ctxt x def
+      starred_linear_pred_const hol_ctxt x def
     else
       let
         val j = maxidx_of_term def + 1
@@ -1973,8 +1942,8 @@
       in unrolled_const end
   end
 
-(* extended_context -> styp -> term *)
-fun raw_inductive_pred_axiom ({thy, def_table, ...} : extended_context) x =
+(* hol_context -> styp -> term *)
+fun raw_inductive_pred_axiom ({thy, def_table, ...} : hol_context) x =
   let
     val def = the (def_of_const thy def_table x)
     val (outer, fp_app) = strip_abs def
@@ -1992,24 +1961,29 @@
     HOLogic.mk_eq (list_comb (Const x, bounds), naked_rhs)
     |> HOLogic.mk_Trueprop |> curry subst_bounds (rev vars)
   end
-fun inductive_pred_axiom ext_ctxt (x as (s, T)) =
+fun inductive_pred_axiom hol_ctxt (x as (s, T)) =
   if String.isPrefix ubfp_prefix s orelse String.isPrefix lbfp_prefix s then
     let val x' = (after_name_sep s, T) in
-      raw_inductive_pred_axiom ext_ctxt x' |> subst_atomic [(Const x', Const x)]
+      raw_inductive_pred_axiom hol_ctxt x' |> subst_atomic [(Const x', Const x)]
     end
   else
-    raw_inductive_pred_axiom ext_ctxt x
+    raw_inductive_pred_axiom hol_ctxt x
 
-(* extended_context -> styp -> term list *)
-fun raw_equational_fun_axioms (ext_ctxt as {thy, fast_descrs, simp_table,
+(* hol_context -> styp -> term list *)
+fun raw_equational_fun_axioms (hol_ctxt as {thy, fast_descrs, simp_table,
                                             psimp_table, ...}) (x as (s, _)) =
   case def_props_for_const thy fast_descrs (!simp_table) x of
     [] => (case def_props_for_const thy fast_descrs psimp_table x of
-             [] => [inductive_pred_axiom ext_ctxt x]
+             [] => [inductive_pred_axiom hol_ctxt x]
            | psimps => psimps)
   | simps => simps
-
 val equational_fun_axioms = map extensionalize oo raw_equational_fun_axioms
+(* hol_context -> styp -> bool *)
+fun is_equational_fun_surely_complete hol_ctxt x =
+  case raw_equational_fun_axioms hol_ctxt x of
+    [@{const Trueprop} $ (Const (@{const_name "op ="}, _) $ t1 $ _)] =>
+    strip_comb t1 |> snd |> forall is_Var
+  | _ => false
 
 (* term list -> term list *)
 fun merge_type_vars_in_terms ts =
@@ -2028,1261 +2002,27 @@
       | coalesce T = T
   in map (map_types (map_atyps coalesce)) ts end
 
-(* extended_context -> typ -> typ list -> typ list *)
-fun add_ground_types ext_ctxt T accum =
+(* hol_context -> typ -> typ list -> typ list *)
+fun add_ground_types hol_ctxt T accum =
   case T of
-    Type ("fun", Ts) => fold (add_ground_types ext_ctxt) Ts accum
-  | Type ("*", Ts) => fold (add_ground_types ext_ctxt) Ts accum
-  | Type (@{type_name itself}, [T1]) => add_ground_types ext_ctxt T1 accum
+    Type ("fun", Ts) => fold (add_ground_types hol_ctxt) Ts accum
+  | Type ("*", Ts) => fold (add_ground_types hol_ctxt) Ts accum
+  | Type (@{type_name itself}, [T1]) => add_ground_types hol_ctxt T1 accum
   | Type (_, Ts) =>
     if member (op =) (@{typ prop} :: @{typ bool} :: @{typ unit} :: accum) T then
       accum
     else
       T :: accum
-      |> fold (add_ground_types ext_ctxt)
-              (case boxed_datatype_constrs ext_ctxt T of
+      |> fold (add_ground_types hol_ctxt)
+              (case boxed_datatype_constrs hol_ctxt T of
                  [] => Ts
                | xs => map snd xs)
   | _ => insert (op =) T accum
-(* extended_context -> typ -> typ list *)
-fun ground_types_in_type ext_ctxt T = add_ground_types ext_ctxt T []
-(* extended_context -> term list -> typ list *)
-fun ground_types_in_terms ext_ctxt ts =
-  fold (fold_types (add_ground_types ext_ctxt)) ts []
-
-(* typ list -> int -> term -> bool *)
-fun has_heavy_bounds_or_vars Ts level t =
-  let
-    (* typ list -> bool *)
-    fun aux [] = false
-      | aux [T] = is_fun_type T orelse is_pair_type T
-      | aux _ = true
-  in aux (map snd (Term.add_vars t []) @ map (nth Ts) (loose_bnos t)) end
-
-(* typ list -> int -> int -> int -> term -> term *)
-fun fresh_value_var Ts k n j t =
-  Var ((val_var_prefix ^ nat_subscript (n - j), k), fastype_of1 (Ts, t))
-
-(* theory -> typ list -> bool -> int -> int -> term -> term list -> term list
-   -> term * term list *)
-fun pull_out_constr_comb thy Ts relax k level t args seen =
-  let val t_comb = list_comb (t, args) in
-    case t of
-      Const x =>
-      if not relax andalso is_constr thy x andalso
-         not (is_fun_type (fastype_of1 (Ts, t_comb))) andalso
-         has_heavy_bounds_or_vars Ts level t_comb andalso
-         not (loose_bvar (t_comb, level)) then
-        let
-          val (j, seen) = case find_index (curry (op =) t_comb) seen of
-                            ~1 => (0, t_comb :: seen)
-                          | j => (j, seen)
-        in (fresh_value_var Ts k (length seen) j t_comb, seen) end
-      else
-        (t_comb, seen)
-    | _ => (t_comb, seen)
-  end
-
-(* (term -> term) -> typ list -> int -> term list -> term list *)
-fun equations_for_pulled_out_constrs mk_eq Ts k seen =
-  let val n = length seen in
-    map2 (fn j => fn t => mk_eq (fresh_value_var Ts k n j t, t))
-         (index_seq 0 n) seen
-  end
-
-(* theory -> bool -> term -> term *)
-fun pull_out_universal_constrs thy def t =
-  let
-    val k = maxidx_of_term t + 1
-    (* typ list -> bool -> term -> term list -> term list -> term * term list *)
-    fun do_term Ts def t args seen =
-      case t of
-        (t0 as Const (@{const_name "=="}, _)) $ t1 $ t2 =>
-        do_eq_or_imp Ts true def t0 t1 t2 seen
-      | (t0 as @{const "==>"}) $ t1 $ t2 =>
-        if def then (t, []) else do_eq_or_imp Ts false def t0 t1 t2 seen
-      | (t0 as Const (@{const_name "op ="}, _)) $ t1 $ t2 =>
-        do_eq_or_imp Ts true def t0 t1 t2 seen
-      | (t0 as @{const "op -->"}) $ t1 $ t2 =>
-        do_eq_or_imp Ts false def t0 t1 t2 seen
-      | Abs (s, T, t') =>
-        let val (t', seen) = do_term (T :: Ts) def t' [] seen in
-          (list_comb (Abs (s, T, t'), args), seen)
-        end
-      | t1 $ t2 =>
-        let val (t2, seen) = do_term Ts def t2 [] seen in
-          do_term Ts def t1 (t2 :: args) seen
-        end
-      | _ => pull_out_constr_comb thy Ts def k 0 t args seen
-    (* typ list -> bool -> bool -> term -> term -> term -> term list
-       -> term * term list *)
-    and do_eq_or_imp Ts eq def t0 t1 t2 seen =
-      let
-        val (t2, seen) = if eq andalso def then (t2, seen)
-                         else do_term Ts false t2 [] seen
-        val (t1, seen) = do_term Ts false t1 [] seen
-      in (t0 $ t1 $ t2, seen) end
-    val (concl, seen) = do_term [] def t [] []
-  in
-    Logic.list_implies (equations_for_pulled_out_constrs Logic.mk_equals [] k
-                                                         seen, concl)
-  end
-
-(* extended_context -> bool -> term -> term *)
-fun destroy_pulled_out_constrs (ext_ctxt as {thy, ...}) axiom t =
-  let
-    (* styp -> int *)
-    val num_occs_of_var =
-      fold_aterms (fn Var z => (fn f => fn z' => f z' |> z = z' ? Integer.add 1)
-                    | _ => I) t (K 0)
-    (* bool -> term -> term *)
-    fun aux careful ((t0 as Const (@{const_name "=="}, _)) $ t1 $ t2) =
-        aux_eq careful true t0 t1 t2
-      | aux careful ((t0 as @{const "==>"}) $ t1 $ t2) =
-        t0 $ aux false t1 $ aux careful t2
-      | aux careful ((t0 as Const (@{const_name "op ="}, _)) $ t1 $ t2) =
-        aux_eq careful true t0 t1 t2
-      | aux careful ((t0 as @{const "op -->"}) $ t1 $ t2) =
-        t0 $ aux false t1 $ aux careful t2
-      | aux careful (Abs (s, T, t')) = Abs (s, T, aux careful t')
-      | aux careful (t1 $ t2) = aux careful t1 $ aux careful t2
-      | aux _ t = t
-    (* bool -> bool -> term -> term -> term -> term *)
-    and aux_eq careful pass1 t0 t1 t2 =
-      ((if careful then
-          raise SAME ()
-        else if axiom andalso is_Var t2 andalso
-                num_occs_of_var (dest_Var t2) = 1 then
-          @{const True}
-        else case strip_comb t2 of
-          (* The first case is not as general as it could be. *)
-          (Const (@{const_name PairBox}, _),
-                  [Const (@{const_name fst}, _) $ Var z1,
-                   Const (@{const_name snd}, _) $ Var z2]) =>
-          if z1 = z2 andalso num_occs_of_var z1 = 2 then @{const True}
-          else raise SAME ()
-        | (Const (x as (s, T)), args) =>
-          let val arg_Ts = binder_types T in
-            if length arg_Ts = length args andalso
-               (is_constr thy x orelse s = @{const_name Pair} orelse
-                x = (@{const_name Suc}, nat_T --> nat_T)) andalso
-               (not careful orelse not (is_Var t1) orelse
-                String.isPrefix val_var_prefix (fst (fst (dest_Var t1)))) then
-              discriminate_value ext_ctxt x t1 ::
-              map3 (sel_eq x t1) (index_seq 0 (length args)) arg_Ts args
-              |> foldr1 s_conj
-            else
-              raise SAME ()
-          end
-        | _ => raise SAME ())
-       |> body_type (type_of t0) = prop_T ? HOLogic.mk_Trueprop)
-      handle SAME () => if pass1 then aux_eq careful false t0 t2 t1
-                        else t0 $ aux false t2 $ aux false t1
-    (* styp -> term -> int -> typ -> term -> term *)
-    and sel_eq x t n nth_T nth_t =
-      HOLogic.eq_const nth_T $ nth_t $ select_nth_constr_arg thy x t n nth_T
-      |> aux false
-  in aux axiom t end
-
-(* theory -> term -> term *)
-fun simplify_constrs_and_sels thy t =
-  let
-    (* term -> int -> term *)
-    fun is_nth_sel_on t' n (Const (s, _) $ t) =
-        (t = t' andalso is_sel_like_and_no_discr s andalso
-         sel_no_from_name s = n)
-      | is_nth_sel_on _ _ _ = false
-    (* term -> term list -> term *)
-    fun do_term (Const (@{const_name Rep_Frac}, _)
-                 $ (Const (@{const_name Abs_Frac}, _) $ t1)) [] = do_term t1 []
-      | do_term (Const (@{const_name Abs_Frac}, _)
-                 $ (Const (@{const_name Rep_Frac}, _) $ t1)) [] = do_term t1 []
-      | do_term (t1 $ t2) args = do_term t1 (do_term t2 [] :: args)
-      | do_term (t as Const (x as (s, T))) (args as _ :: _) =
-        ((if is_constr_like thy x then
-            if length args = num_binder_types T then
-              case hd args of
-                Const (x' as (_, T')) $ t' =>
-                if domain_type T' = body_type T andalso
-                   forall (uncurry (is_nth_sel_on t'))
-                          (index_seq 0 (length args) ~~ args) then
-                  t'
-                else
-                  raise SAME ()
-              | _ => raise SAME ()
-            else
-              raise SAME ()
-          else if is_sel_like_and_no_discr s then
-            case strip_comb (hd args) of
-              (Const (x' as (s', T')), ts') =>
-              if is_constr_like thy x' andalso
-                 constr_name_for_sel_like s = s' andalso
-                 not (exists is_pair_type (binder_types T')) then
-                list_comb (nth ts' (sel_no_from_name s), tl args)
-              else
-                raise SAME ()
-            | _ => raise SAME ()
-          else
-            raise SAME ())
-         handle SAME () => betapplys (t, args))
-      | do_term (Abs (s, T, t')) args =
-        betapplys (Abs (s, T, do_term t' []), args)
-      | do_term t args = betapplys (t, args)
-  in do_term t [] end
-
-(* term -> term *)
-fun curry_assms (@{const "==>"} $ (@{const Trueprop}
-                                   $ (@{const "op &"} $ t1 $ t2)) $ t3) =
-    curry_assms (Logic.list_implies ([t1, t2] |> map HOLogic.mk_Trueprop, t3))
-  | curry_assms (@{const "==>"} $ t1 $ t2) =
-    @{const "==>"} $ curry_assms t1 $ curry_assms t2
-  | curry_assms t = t
-
-(* term -> term *)
-val destroy_universal_equalities =
-  let
-    (* term list -> (indexname * typ) list -> term -> term *)
-    fun aux prems zs t =
-      case t of
-        @{const "==>"} $ t1 $ t2 => aux_implies prems zs t1 t2
-      | _ => Logic.list_implies (rev prems, t)
-    (* term list -> (indexname * typ) list -> term -> term -> term *)
-    and aux_implies prems zs t1 t2 =
-      case t1 of
-        Const (@{const_name "=="}, _) $ Var z $ t' => aux_eq prems zs z t' t1 t2
-      | @{const Trueprop} $ (Const (@{const_name "op ="}, _) $ Var z $ t') =>
-        aux_eq prems zs z t' t1 t2
-      | @{const Trueprop} $ (Const (@{const_name "op ="}, _) $ t' $ Var z) =>
-        aux_eq prems zs z t' t1 t2
-      | _ => aux (t1 :: prems) (Term.add_vars t1 zs) t2
-    (* term list -> (indexname * typ) list -> indexname * typ -> term -> term
-       -> term -> term *)
-    and aux_eq prems zs z t' t1 t2 =
-      if not (member (op =) zs z) andalso
-         not (exists_subterm (curry (op =) (Var z)) t') then
-        aux prems zs (subst_free [(Var z, t')] t2)
-      else
-        aux (t1 :: prems) (Term.add_vars t1 zs) t2
-  in aux [] [] end
-
-(* theory -> term -> term *)
-fun pull_out_existential_constrs thy t =
-  let
-    val k = maxidx_of_term t + 1
-    (* typ list -> int -> term -> term list -> term list -> term * term list *)
-    fun aux Ts num_exists t args seen =
-      case t of
-        (t0 as Const (@{const_name Ex}, _)) $ Abs (s1, T1, t1) =>
-        let
-          val (t1, seen') = aux (T1 :: Ts) (num_exists + 1) t1 [] []
-          val n = length seen'
-          (* unit -> term list *)
-          fun vars () = map2 (fresh_value_var Ts k n) (index_seq 0 n) seen'
-        in
-          (equations_for_pulled_out_constrs HOLogic.mk_eq Ts k seen'
-           |> List.foldl s_conj t1 |> fold mk_exists (vars ())
-           |> curry3 Abs s1 T1 |> curry (op $) t0, seen)
-        end
-      | t1 $ t2 =>
-        let val (t2, seen) = aux Ts num_exists t2 [] seen in
-          aux Ts num_exists t1 (t2 :: args) seen
-        end
-      | Abs (s, T, t') =>
-        let
-          val (t', seen) = aux (T :: Ts) 0 t' [] (map (incr_boundvars 1) seen)
-        in (list_comb (Abs (s, T, t'), args), map (incr_boundvars ~1) seen) end
-      | _ =>
-        if num_exists > 0 then
-          pull_out_constr_comb thy Ts false k num_exists t args seen
-        else
-          (list_comb (t, args), seen)
-  in aux [] 0 t [] [] |> fst end
-
-(* theory -> int -> term list -> term list -> (term * term list) option *)
-fun find_bound_assign _ _ _ [] = NONE
-  | find_bound_assign thy j seen (t :: ts) =
-    let
-      (* bool -> term -> term -> (term * term list) option *)
-      fun aux pass1 t1 t2 =
-        (if loose_bvar1 (t2, j) then
-           if pass1 then aux false t2 t1 else raise SAME ()
-         else case t1 of
-           Bound j' => if j' = j then SOME (t2, ts @ seen) else raise SAME ()
-         | Const (s, Type ("fun", [T1, T2])) $ Bound j' =>
-           if j' = j andalso s = sel_prefix_for 0 ^ @{const_name FunBox} then
-             SOME (construct_value thy (@{const_name FunBox}, T2 --> T1) [t2],
-                   ts @ seen)
-           else
-             raise SAME ()
-         | _ => raise SAME ())
-        handle SAME () => find_bound_assign thy j (t :: seen) ts
-    in
-      case t of
-        Const (@{const_name "op ="}, _) $ t1 $ t2 => aux true t1 t2
-      | _ => find_bound_assign thy j (t :: seen) ts
-    end
-
-(* int -> term -> term -> term *)
-fun subst_one_bound j arg t =
-  let
-    fun aux (Bound i, lev) =
-        if i < lev then raise SAME ()
-        else if i = lev then incr_boundvars (lev - j) arg
-        else Bound (i - 1)
-      | aux (Abs (a, T, body), lev) = Abs (a, T, aux (body, lev + 1))
-      | aux (f $ t, lev) =
-        (aux (f, lev) $ (aux (t, lev) handle SAME () => t)
-         handle SAME () => f $ aux (t, lev))
-      | aux _ = raise SAME ()
-  in aux (t, j) handle SAME () => t end
-
-(* theory -> term -> term *)
-fun destroy_existential_equalities thy =
-  let
-    (* string list -> typ list -> term list -> term *)
-    fun kill [] [] ts = foldr1 s_conj ts
-      | kill (s :: ss) (T :: Ts) ts =
-        (case find_bound_assign thy (length ss) [] ts of
-           SOME (_, []) => @{const True}
-         | SOME (arg_t, ts) =>
-           kill ss Ts (map (subst_one_bound (length ss)
-                                (incr_bv (~1, length ss + 1, arg_t))) ts)
-         | NONE =>
-           Const (@{const_name Ex}, (T --> bool_T) --> bool_T)
-           $ Abs (s, T, kill ss Ts ts))
-      | kill _ _ _ = raise UnequalLengths
-    (* string list -> typ list -> term -> term *)
-    fun gather ss Ts ((t0 as Const (@{const_name Ex}, _)) $ Abs (s1, T1, t1)) =
-        gather (ss @ [s1]) (Ts @ [T1]) t1
-      | gather [] [] (Abs (s, T, t1)) = Abs (s, T, gather [] [] t1)
-      | gather [] [] (t1 $ t2) = gather [] [] t1 $ gather [] [] t2
-      | gather [] [] t = t
-      | gather ss Ts t = kill ss Ts (conjuncts (gather [] [] t))
-  in gather [] [] end
-
-(* term -> term *)
-fun distribute_quantifiers t =
-  case t of
-    (t0 as Const (@{const_name All}, T0)) $ Abs (s, T1, t1) =>
-    (case t1 of
-       (t10 as @{const "op &"}) $ t11 $ t12 =>
-       t10 $ distribute_quantifiers (t0 $ Abs (s, T1, t11))
-           $ distribute_quantifiers (t0 $ Abs (s, T1, t12))
-     | (t10 as @{const Not}) $ t11 =>
-       t10 $ distribute_quantifiers (Const (@{const_name Ex}, T0)
-                                     $ Abs (s, T1, t11))
-     | t1 =>
-       if not (loose_bvar1 (t1, 0)) then
-         distribute_quantifiers (incr_boundvars ~1 t1)
-       else
-         t0 $ Abs (s, T1, distribute_quantifiers t1))
-  | (t0 as Const (@{const_name Ex}, T0)) $ Abs (s, T1, t1) =>
-    (case distribute_quantifiers t1 of
-       (t10 as @{const "op |"}) $ t11 $ t12 =>
-       t10 $ distribute_quantifiers (t0 $ Abs (s, T1, t11))
-           $ distribute_quantifiers (t0 $ Abs (s, T1, t12))
-     | (t10 as @{const "op -->"}) $ t11 $ t12 =>
-       t10 $ distribute_quantifiers (Const (@{const_name All}, T0)
-                                     $ Abs (s, T1, t11))
-           $ distribute_quantifiers (t0 $ Abs (s, T1, t12))
-     | (t10 as @{const Not}) $ t11 =>
-       t10 $ distribute_quantifiers (Const (@{const_name All}, T0)
-                                     $ Abs (s, T1, t11))
-     | t1 =>
-       if not (loose_bvar1 (t1, 0)) then
-         distribute_quantifiers (incr_boundvars ~1 t1)
-       else
-         t0 $ Abs (s, T1, distribute_quantifiers t1))
-  | t1 $ t2 => distribute_quantifiers t1 $ distribute_quantifiers t2
-  | Abs (s, T, t') => Abs (s, T, distribute_quantifiers t')
-  | _ => t
-
-(* int -> int -> (int -> int) -> term -> term *)
-fun renumber_bounds j n f t =
-  case t of
-    t1 $ t2 => renumber_bounds j n f t1 $ renumber_bounds j n f t2
-  | Abs (s, T, t') => Abs (s, T, renumber_bounds (j + 1) n f t')
-  | Bound j' =>
-    Bound (if j' >= j andalso j' < j + n then f (j' - j) + j else j')
-  | _ => t
-
-val quantifier_cluster_threshold = 7
-
-(* theory -> term -> term *)
-fun push_quantifiers_inward thy =
-  let
-    (* string -> string list -> typ list -> term -> term *)
-    fun aux quant_s ss Ts t =
-      (case t of
-         (t0 as Const (s0, _)) $ Abs (s1, T1, t1 as _ $ _) =>
-         if s0 = quant_s then
-           aux s0 (s1 :: ss) (T1 :: Ts) t1
-         else if quant_s = "" andalso
-                 (s0 = @{const_name All} orelse s0 = @{const_name Ex}) then
-           aux s0 [s1] [T1] t1
-         else
-           raise SAME ()
-       | _ => raise SAME ())
-      handle SAME () =>
-             case t of
-               t1 $ t2 =>
-               if quant_s = "" then
-                 aux "" [] [] t1 $ aux "" [] [] t2
-               else
-                 let
-                   val typical_card = 4
-                   (* ('a -> ''b list) -> 'a list -> ''b list *)
-                   fun big_union proj ps =
-                     fold (fold (insert (op =)) o proj) ps []
-                   val (ts, connective) = strip_any_connective t
-                   val T_costs =
-                     map (bounded_card_of_type 65536 typical_card []) Ts
-                   val t_costs = map size_of_term ts
-                   val num_Ts = length Ts
-                   (* int -> int *)
-                   val flip = curry (op -) (num_Ts - 1)
-                   val t_boundss = map (map flip o loose_bnos) ts
-                   (* (int list * int) list -> int list
-                      -> (int list * int) list *)
-                   fun merge costly_boundss [] = costly_boundss
-                     | merge costly_boundss (j :: js) =
-                       let
-                         val (yeas, nays) =
-                           List.partition (fn (bounds, _) =>
-                                              member (op =) bounds j)
-                                          costly_boundss
-                         val yeas_bounds = big_union fst yeas
-                         val yeas_cost = Integer.sum (map snd yeas)
-                                         * nth T_costs j
-                       in merge ((yeas_bounds, yeas_cost) :: nays) js end
-                   (* (int list * int) list -> int list -> int *)
-                   val cost = Integer.sum o map snd oo merge
-                   (* Inspired by Claessen & Sörensson's polynomial binary
-                      splitting heuristic (p. 5 of their MODEL 2003 paper). *)
-                   (* (int list * int) list -> int list -> int list *)
-                   fun heuristically_best_permutation _ [] = []
-                     | heuristically_best_permutation costly_boundss js =
-                       let
-                         val (costly_boundss, (j, js)) =
-                           js |> map (`(merge costly_boundss o single))
-                              |> sort (int_ord
-                                       o pairself (Integer.sum o map snd o fst))
-                              |> split_list |>> hd ||> pairf hd tl
-                       in
-                         j :: heuristically_best_permutation costly_boundss js
-                       end
-                   val js =
-                     if length Ts <= quantifier_cluster_threshold then
-                       all_permutations (index_seq 0 num_Ts)
-                       |> map (`(cost (t_boundss ~~ t_costs)))
-                       |> sort (int_ord o pairself fst) |> hd |> snd
-                     else
-                       heuristically_best_permutation (t_boundss ~~ t_costs)
-                                                      (index_seq 0 num_Ts)
-                   val back_js = map (fn j => find_index (curry (op =) j) js)
-                                     (index_seq 0 num_Ts)
-                   val ts = map (renumber_bounds 0 num_Ts (nth back_js o flip))
-                                ts
-                   (* (term * int list) list -> term *)
-                   fun mk_connection [] =
-                       raise ARG ("Nitpick_HOL.push_quantifiers_inward.aux.\
-                                  \mk_connection", "")
-                     | mk_connection ts_cum_bounds =
-                       ts_cum_bounds |> map fst
-                       |> foldr1 (fn (t1, t2) => connective $ t1 $ t2)
-                   (* (term * int list) list -> int list -> term *)
-                   fun build ts_cum_bounds [] = ts_cum_bounds |> mk_connection
-                     | build ts_cum_bounds (j :: js) =
-                       let
-                         val (yeas, nays) =
-                           List.partition (fn (_, bounds) =>
-                                              member (op =) bounds j)
-                                          ts_cum_bounds
-                           ||> map (apfst (incr_boundvars ~1))
-                       in
-                         if null yeas then
-                           build nays js
-                         else
-                           let val T = nth Ts (flip j) in
-                             build ((Const (quant_s, (T --> bool_T) --> bool_T)
-                                     $ Abs (nth ss (flip j), T,
-                                            mk_connection yeas),
-                                      big_union snd yeas) :: nays) js
-                           end
-                       end
-                 in build (ts ~~ t_boundss) js end
-             | Abs (s, T, t') => Abs (s, T, aux "" [] [] t')
-             | _ => t
-  in aux "" [] [] end
-
-(* polarity -> string -> bool *)
-fun is_positive_existential polar quant_s =
-  (polar = Pos andalso quant_s = @{const_name Ex}) orelse
-  (polar = Neg andalso quant_s <> @{const_name Ex})
-
-(* extended_context -> int -> term -> term *)
-fun skolemize_term_and_more (ext_ctxt as {thy, def_table, skolems, ...})
-                            skolem_depth =
-  let
-    (* int list -> int list *)
-    val incrs = map (Integer.add 1)
-    (* string list -> typ list -> int list -> int -> polarity -> term -> term *)
-    fun aux ss Ts js depth polar t =
-      let
-        (* string -> typ -> string -> typ -> term -> term *)
-        fun do_quantifier quant_s quant_T abs_s abs_T t =
-          if not (loose_bvar1 (t, 0)) then
-            aux ss Ts js depth polar (incr_boundvars ~1 t)
-          else if depth <= skolem_depth andalso
-                  is_positive_existential polar quant_s then
-            let
-              val j = length (!skolems) + 1
-              val sko_s = skolem_prefix_for (length js) j ^ abs_s
-              val _ = Unsynchronized.change skolems (cons (sko_s, ss))
-              val sko_t = list_comb (Const (sko_s, rev Ts ---> abs_T),
-                                     map Bound (rev js))
-              val abs_t = Abs (abs_s, abs_T, aux ss Ts (incrs js) depth polar t)
-            in
-              if null js then betapply (abs_t, sko_t)
-              else Const (@{const_name Let}, abs_T --> quant_T) $ sko_t $ abs_t
-            end
-          else
-            Const (quant_s, quant_T)
-            $ Abs (abs_s, abs_T,
-                   if is_higher_order_type abs_T then
-                     t
-                   else
-                     aux (abs_s :: ss) (abs_T :: Ts) (0 :: incrs js)
-                         (depth + 1) polar t)
-      in
-        case t of
-          Const (s0 as @{const_name all}, T0) $ Abs (s1, T1, t1) =>
-          do_quantifier s0 T0 s1 T1 t1
-        | @{const "==>"} $ t1 $ t2 =>
-          @{const "==>"} $ aux ss Ts js depth (flip_polarity polar) t1
-          $ aux ss Ts js depth polar t2
-        | @{const Pure.conjunction} $ t1 $ t2 =>
-          @{const Pure.conjunction} $ aux ss Ts js depth polar t1
-          $ aux ss Ts js depth polar t2
-        | @{const Trueprop} $ t1 =>
-          @{const Trueprop} $ aux ss Ts js depth polar t1
-        | @{const Not} $ t1 =>
-          @{const Not} $ aux ss Ts js depth (flip_polarity polar) t1
-        | Const (s0 as @{const_name All}, T0) $ Abs (s1, T1, t1) =>
-          do_quantifier s0 T0 s1 T1 t1
-        | Const (s0 as @{const_name Ex}, T0) $ Abs (s1, T1, t1) =>
-          do_quantifier s0 T0 s1 T1 t1
-        | @{const "op &"} $ t1 $ t2 =>
-          @{const "op &"} $ aux ss Ts js depth polar t1
-          $ aux ss Ts js depth polar t2
-        | @{const "op |"} $ t1 $ t2 =>
-          @{const "op |"} $ aux ss Ts js depth polar t1
-          $ aux ss Ts js depth polar t2
-        | @{const "op -->"} $ t1 $ t2 =>
-          @{const "op -->"} $ aux ss Ts js depth (flip_polarity polar) t1
-          $ aux ss Ts js depth polar t2
-        | (t0 as Const (@{const_name Let}, T0)) $ t1 $ t2 =>
-          t0 $ t1 $ aux ss Ts js depth polar t2
-        | Const (x as (s, T)) =>
-          if is_inductive_pred ext_ctxt x andalso
-             not (is_well_founded_inductive_pred ext_ctxt x) then
-            let
-              val gfp = (fixpoint_kind_of_const thy def_table x = Gfp)
-              val (pref, connective, set_oper) =
-                if gfp then
-                  (lbfp_prefix,
-                   @{const "op |"},
-                   @{const_name upper_semilattice_fun_inst.sup_fun})
-                else
-                  (ubfp_prefix,
-                   @{const "op &"},
-                   @{const_name lower_semilattice_fun_inst.inf_fun})
-              (* unit -> term *)
-              fun pos () = unrolled_inductive_pred_const ext_ctxt gfp x
-                           |> aux ss Ts js depth polar
-              fun neg () = Const (pref ^ s, T)
-            in
-              (case polar |> gfp ? flip_polarity of
-                 Pos => pos ()
-               | Neg => neg ()
-               | Neut =>
-                 if is_fun_type T then
-                   let
-                     val ((trunk_arg_Ts, rump_arg_T), body_T) =
-                       T |> strip_type |>> split_last
-                     val set_T = rump_arg_T --> body_T
-                     (* (unit -> term) -> term *)
-                     fun app f =
-                       list_comb (f (),
-                                  map Bound (length trunk_arg_Ts - 1 downto 0))
-                   in
-                     List.foldr absdummy
-                                (Const (set_oper, set_T --> set_T --> set_T)
-                                        $ app pos $ app neg) trunk_arg_Ts
-                   end
-                 else
-                   connective $ pos () $ neg ())
-            end
-          else
-            Const x
-        | t1 $ t2 =>
-          betapply (aux ss Ts [] (skolem_depth + 1) polar t1,
-                    aux ss Ts [] depth Neut t2)
-        | Abs (s, T, t1) => Abs (s, T, aux ss Ts (incrs js) depth polar t1)
-        | _ => t
-      end
-  in aux [] [] [] 0 Pos end
-
-(* extended_context -> styp -> (int * term option) list *)
-fun static_args_in_term ({ersatz_table, ...} : extended_context) x t =
-  let
-    (* term -> term list -> term list -> term list list *)
-    fun fun_calls (Abs (_, _, t)) _ = fun_calls t []
-      | fun_calls (t1 $ t2) args = fun_calls t2 [] #> fun_calls t1 (t2 :: args)
-      | fun_calls t args =
-        (case t of
-           Const (x' as (s', T')) =>
-           x = x' orelse (case AList.lookup (op =) ersatz_table s' of
-                            SOME s'' => x = (s'', T')
-                          | NONE => false)
-         | _ => false) ? cons args
-    (* term list list -> term list list -> term list -> term list list *)
-    fun call_sets [] [] vs = [vs]
-      | call_sets [] uss vs = vs :: call_sets uss [] []
-      | call_sets ([] :: _) _ _ = []
-      | call_sets ((t :: ts) :: tss) uss vs =
-        OrdList.insert TermOrd.term_ord t vs |> call_sets tss (ts :: uss)
-    val sets = call_sets (fun_calls t [] []) [] []
-    val indexed_sets = sets ~~ (index_seq 0 (length sets))
-  in
-    fold_rev (fn (set, j) =>
-                 case set of
-                   [Var _] => AList.lookup (op =) indexed_sets set = SOME j
-                              ? cons (j, NONE)
-                 | [t as Const _] => cons (j, SOME t)
-                 | [t as Free _] => cons (j, SOME t)
-                 | _ => I) indexed_sets []
-  end
-(* extended_context -> styp -> term list -> (int * term option) list *)
-fun static_args_in_terms ext_ctxt x =
-  map (static_args_in_term ext_ctxt x)
-  #> fold1 (OrdList.inter (prod_ord int_ord (option_ord TermOrd.term_ord)))
-
-(* term -> term list *)
-fun params_in_equation (@{const "==>"} $ _ $ t2) = params_in_equation t2
-  | params_in_equation (@{const Trueprop} $ t1) = params_in_equation t1
-  | params_in_equation (Const (@{const_name "op ="}, _) $ t1 $ _) =
-    snd (strip_comb t1)
-  | params_in_equation _ = []
-
-(* styp -> styp -> int list -> term list -> term list -> term -> term *)
-fun specialize_fun_axiom x x' fixed_js fixed_args extra_args t =
-  let
-    val k = fold Integer.max (map maxidx_of_term (fixed_args @ extra_args)) 0
-            + 1
-    val t = map_aterms (fn Var ((s, i), T) => Var ((s, k + i), T) | t' => t') t
-    val fixed_params = filter_indices fixed_js (params_in_equation t)
-    (* term list -> term -> term *)
-    fun aux args (Abs (s, T, t)) = list_comb (Abs (s, T, aux [] t), args)
-      | aux args (t1 $ t2) = aux (aux [] t2 :: args) t1
-      | aux args t =
-        if t = Const x then
-          list_comb (Const x', extra_args @ filter_out_indices fixed_js args)
-        else
-          let val j = find_index (curry (op =) t) fixed_params in
-            list_comb (if j >= 0 then nth fixed_args j else t, args)
-          end
-  in aux [] t end
-
-(* typ list -> term -> bool *)
-fun is_eligible_arg Ts t =
-  let val bad_Ts = map snd (Term.add_vars t []) @ map (nth Ts) (loose_bnos t) in
-    null bad_Ts orelse
-    (is_higher_order_type (fastype_of1 (Ts, t)) andalso
-     forall (not o is_higher_order_type) bad_Ts)
-  end
-
-(* (int * term option) list -> (int * term) list -> int list *)
-fun overlapping_indices [] _ = []
-  | overlapping_indices _ [] = []
-  | overlapping_indices (ps1 as (j1, t1) :: ps1') (ps2 as (j2, t2) :: ps2') =
-    if j1 < j2 then overlapping_indices ps1' ps2
-    else if j1 > j2 then overlapping_indices ps1 ps2'
-    else overlapping_indices ps1' ps2' |> the_default t2 t1 = t2 ? cons j1
-
-val special_depth = 20
-
-(* extended_context -> int -> term -> term *)
-fun specialize_consts_in_term (ext_ctxt as {thy, specialize, simp_table,
-                                            special_funs, ...}) depth t =
-  if not specialize orelse depth > special_depth then
-    t
-  else
-    let
-      val blacklist = if depth = 0 then []
-                      else case term_under_def t of Const x => [x] | _ => []
-      (* term list -> typ list -> term -> term *)
-      fun aux args Ts (Const (x as (s, T))) =
-          ((if not (member (op =) blacklist x) andalso not (null args) andalso
-               not (String.isPrefix special_prefix s) andalso
-               is_equational_fun ext_ctxt x then
-              let
-                val eligible_args = filter (is_eligible_arg Ts o snd)
-                                           (index_seq 0 (length args) ~~ args)
-                val _ = not (null eligible_args) orelse raise SAME ()
-                val old_axs = equational_fun_axioms ext_ctxt x
-                              |> map (destroy_existential_equalities thy)
-                val static_params = static_args_in_terms ext_ctxt x old_axs
-                val fixed_js = overlapping_indices static_params eligible_args
-                val _ = not (null fixed_js) orelse raise SAME ()
-                val fixed_args = filter_indices fixed_js args
-                val vars = fold Term.add_vars fixed_args []
-                           |> sort (TermOrd.fast_indexname_ord o pairself fst)
-                val bound_js = fold (fn t => fn js => add_loose_bnos (t, 0, js))
-                                    fixed_args []
-                               |> sort int_ord
-                val live_args = filter_out_indices fixed_js args
-                val extra_args = map Var vars @ map Bound bound_js @ live_args
-                val extra_Ts = map snd vars @ filter_indices bound_js Ts
-                val k = maxidx_of_term t + 1
-                (* int -> term *)
-                fun var_for_bound_no j =
-                  Var ((bound_var_prefix ^
-                        nat_subscript (find_index (curry (op =) j) bound_js
-                                       + 1), k),
-                       nth Ts j)
-                val fixed_args_in_axiom =
-                  map (curry subst_bounds
-                             (map var_for_bound_no (index_seq 0 (length Ts))))
-                      fixed_args
-              in
-                case AList.lookup (op =) (!special_funs)
-                                  (x, fixed_js, fixed_args_in_axiom) of
-                  SOME x' => list_comb (Const x', extra_args)
-                | NONE =>
-                  let
-                    val extra_args_in_axiom =
-                      map Var vars @ map var_for_bound_no bound_js
-                    val x' as (s', _) =
-                      (special_prefix_for (length (!special_funs) + 1) ^ s,
-                       extra_Ts @ filter_out_indices fixed_js (binder_types T)
-                       ---> body_type T)
-                    val new_axs =
-                      map (specialize_fun_axiom x x' fixed_js
-                               fixed_args_in_axiom extra_args_in_axiom) old_axs
-                    val _ =
-                      Unsynchronized.change special_funs
-                          (cons ((x, fixed_js, fixed_args_in_axiom), x'))
-                    val _ = add_simps simp_table s' new_axs
-                  in list_comb (Const x', extra_args) end
-              end
-            else
-              raise SAME ())
-           handle SAME () => list_comb (Const x, args))
-        | aux args Ts (Abs (s, T, t)) =
-          list_comb (Abs (s, T, aux [] (T :: Ts) t), args)
-        | aux args Ts (t1 $ t2) = aux (aux [] Ts t2 :: args) Ts t1
-        | aux args _ t = list_comb (t, args)
-    in aux [] [] t end
-
-(* theory -> term -> int Termtab.tab -> int Termtab.tab *)
-fun add_to_uncurry_table thy t =
-  let
-    (* term -> term list -> int Termtab.tab -> int Termtab.tab *)
-    fun aux (t1 $ t2) args table =
-        let val table = aux t2 [] table in aux t1 (t2 :: args) table end
-      | aux (Abs (_, _, t')) _ table = aux t' [] table
-      | aux (t as Const (x as (s, _))) args table =
-        if is_built_in_const true x orelse is_constr_like thy x orelse
-           is_sel s orelse s = @{const_name Sigma} then
-          table
-        else
-          Termtab.map_default (t, 65536) (curry Int.min (length args)) table
-      | aux _ _ table = table
-  in aux t [] end
-
-(* int Termtab.tab term -> term *)
-fun uncurry_term table t =
-  let
-    (* term -> term list -> term *)
-    fun aux (t1 $ t2) args = aux t1 (aux t2 [] :: args)
-      | aux (Abs (s, T, t')) args = betapplys (Abs (s, T, aux t' []), args)
-      | aux (t as Const (s, T)) args =
-        (case Termtab.lookup table t of
-           SOME n =>
-           if n >= 2 then
-             let
-               val (arg_Ts, rest_T) = strip_n_binders n T
-               val j =
-                 if hd arg_Ts = @{typ bisim_iterator} orelse
-                    is_fp_iterator_type (hd arg_Ts) then
-                   1
-                 else case find_index (not_equal bool_T) arg_Ts of
-                   ~1 => n
-                 | j => j
-               val ((before_args, tuple_args), after_args) =
-                 args |> chop n |>> chop j
-               val ((before_arg_Ts, tuple_arg_Ts), rest_T) =
-                 T |> strip_n_binders n |>> chop j
-               val tuple_T = HOLogic.mk_tupleT tuple_arg_Ts
-             in
-               if n - j < 2 then
-                 betapplys (t, args)
-               else
-                 betapplys (Const (uncurry_prefix_for (n - j) j ^ s,
-                                   before_arg_Ts ---> tuple_T --> rest_T),
-                            before_args @ [mk_flat_tuple tuple_T tuple_args] @
-                            after_args)
-             end
-           else
-             betapplys (t, args)
-         | NONE => betapplys (t, args))
-      | aux t args = betapplys (t, args)
-  in aux t [] end
-
-(* (term -> term) -> int -> term -> term *)
-fun coerce_bound_no f j t =
-  case t of
-    t1 $ t2 => coerce_bound_no f j t1 $ coerce_bound_no f j t2
-  | Abs (s, T, t') => Abs (s, T, coerce_bound_no f (j + 1) t')
-  | Bound j' => if j' = j then f t else t
-  | _ => t
-
-(* extended_context -> bool -> term -> term *)
-fun box_fun_and_pair_in_term (ext_ctxt as {thy, fast_descrs, ...}) def orig_t =
-  let
-    (* typ -> typ *)
-    fun box_relational_operator_type (Type ("fun", Ts)) =
-        Type ("fun", map box_relational_operator_type Ts)
-      | box_relational_operator_type (Type ("*", Ts)) =
-        Type ("*", map (box_type ext_ctxt InPair) Ts)
-      | box_relational_operator_type T = T
-    (* typ -> typ -> term -> term *)
-    fun coerce_bound_0_in_term new_T old_T =
-      old_T <> new_T ? coerce_bound_no (coerce_term [new_T] old_T new_T) 0
-    (* typ list -> typ -> term -> term *)
-    and coerce_term Ts new_T old_T t =
-      if old_T = new_T then
-        t
-      else
-        case (new_T, old_T) of
-          (Type (new_s, new_Ts as [new_T1, new_T2]),
-           Type ("fun", [old_T1, old_T2])) =>
-          (case eta_expand Ts t 1 of
-             Abs (s, _, t') =>
-             Abs (s, new_T1,
-                  t' |> coerce_bound_0_in_term new_T1 old_T1
-                     |> coerce_term (new_T1 :: Ts) new_T2 old_T2)
-             |> Envir.eta_contract
-             |> new_s <> "fun"
-                ? construct_value thy (@{const_name FunBox},
-                                       Type ("fun", new_Ts) --> new_T) o single
-           | t' => raise TERM ("Nitpick_HOL.box_fun_and_pair_in_term.\
-                               \coerce_term", [t']))
-        | (Type (new_s, new_Ts as [new_T1, new_T2]),
-           Type (old_s, old_Ts as [old_T1, old_T2])) =>
-          if old_s = @{type_name fun_box} orelse
-             old_s = @{type_name pair_box} orelse old_s = "*" then
-            case constr_expand ext_ctxt old_T t of
-              Const (@{const_name FunBox}, _) $ t1 =>
-              if new_s = "fun" then
-                coerce_term Ts new_T (Type ("fun", old_Ts)) t1
-              else
-                construct_value thy
-                    (@{const_name FunBox}, Type ("fun", new_Ts) --> new_T)
-                     [coerce_term Ts (Type ("fun", new_Ts))
-                                  (Type ("fun", old_Ts)) t1]
-            | Const _ $ t1 $ t2 =>
-              construct_value thy
-                  (if new_s = "*" then @{const_name Pair}
-                   else @{const_name PairBox}, new_Ts ---> new_T)
-                  [coerce_term Ts new_T1 old_T1 t1,
-                   coerce_term Ts new_T2 old_T2 t2]
-            | t' => raise TERM ("Nitpick_HOL.box_fun_and_pair_in_term.\
-                                \coerce_term", [t'])
-          else
-            raise TYPE ("coerce_term", [new_T, old_T], [t])
-        | _ => raise TYPE ("coerce_term", [new_T, old_T], [t])
-    (* indexname * typ -> typ * term -> typ option list -> typ option list *)
-    fun add_boxed_types_for_var (z as (_, T)) (T', t') =
-      case t' of
-        Var z' => z' = z ? insert (op =) T'
-      | Const (@{const_name Pair}, _) $ t1 $ t2 =>
-        (case T' of
-           Type (_, [T1, T2]) =>
-           fold (add_boxed_types_for_var z) [(T1, t1), (T2, t2)]
-         | _ => raise TYPE ("Nitpick_HOL.box_fun_and_pair_in_term.\
-                            \add_boxed_types_for_var", [T'], []))
-      | _ => exists_subterm (curry (op =) (Var z)) t' ? insert (op =) T
-    (* typ list -> typ list -> term -> indexname * typ -> typ *)
-    fun box_var_in_def new_Ts old_Ts t (z as (_, T)) =
-      case t of
-        @{const Trueprop} $ t1 => box_var_in_def new_Ts old_Ts t1 z
-      | Const (s0, _) $ t1 $ _ =>
-        if s0 = @{const_name "=="} orelse s0 = @{const_name "op ="} then
-          let
-            val (t', args) = strip_comb t1
-            val T' = fastype_of1 (new_Ts, do_term new_Ts old_Ts Neut t')
-          in
-            case fold (add_boxed_types_for_var z)
-                      (fst (strip_n_binders (length args) T') ~~ args) [] of
-              [T''] => T''
-            | _ => T
-          end
-        else
-          T
-      | _ => T
-    (* typ list -> typ list -> polarity -> string -> typ -> string -> typ
-       -> term -> term *)
-    and do_quantifier new_Ts old_Ts polar quant_s quant_T abs_s abs_T t =
-      let
-        val abs_T' =
-          if polar = Neut orelse is_positive_existential polar quant_s then
-            box_type ext_ctxt InFunLHS abs_T
-          else
-            abs_T
-        val body_T = body_type quant_T
-      in
-        Const (quant_s, (abs_T' --> body_T) --> body_T)
-        $ Abs (abs_s, abs_T',
-               t |> do_term (abs_T' :: new_Ts) (abs_T :: old_Ts) polar)
-      end
-    (* typ list -> typ list -> string -> typ -> term -> term -> term *)
-    and do_equals new_Ts old_Ts s0 T0 t1 t2 =
-      let
-        val (t1, t2) = pairself (do_term new_Ts old_Ts Neut) (t1, t2)
-        val (T1, T2) = pairself (curry fastype_of1 new_Ts) (t1, t2)
-        val T = [T1, T2] |> sort TermOrd.typ_ord |> List.last
-      in
-        list_comb (Const (s0, T --> T --> body_type T0),
-                   map2 (coerce_term new_Ts T) [T1, T2] [t1, t2])
-      end
-    (* string -> typ -> term *)
-    and do_description_operator s T =
-      let val T1 = box_type ext_ctxt InFunLHS (range_type T) in
-        Const (s, (T1 --> bool_T) --> T1)
-      end
-    (* typ list -> typ list -> polarity -> term -> term *)
-    and do_term new_Ts old_Ts polar t =
-      case t of
-        Const (s0 as @{const_name all}, T0) $ Abs (s1, T1, t1) =>
-        do_quantifier new_Ts old_Ts polar s0 T0 s1 T1 t1
-      | Const (s0 as @{const_name "=="}, T0) $ t1 $ t2 =>
-        do_equals new_Ts old_Ts s0 T0 t1 t2
-      | @{const "==>"} $ t1 $ t2 =>
-        @{const "==>"} $ do_term new_Ts old_Ts (flip_polarity polar) t1
-        $ do_term new_Ts old_Ts polar t2
-      | @{const Pure.conjunction} $ t1 $ t2 =>
-        @{const Pure.conjunction} $ do_term new_Ts old_Ts polar t1
-        $ do_term new_Ts old_Ts polar t2
-      | @{const Trueprop} $ t1 =>
-        @{const Trueprop} $ do_term new_Ts old_Ts polar t1
-      | @{const Not} $ t1 =>
-        @{const Not} $ do_term new_Ts old_Ts (flip_polarity polar) t1
-      | Const (s0 as @{const_name All}, T0) $ Abs (s1, T1, t1) =>
-        do_quantifier new_Ts old_Ts polar s0 T0 s1 T1 t1
-      | Const (s0 as @{const_name Ex}, T0) $ Abs (s1, T1, t1) =>
-        do_quantifier new_Ts old_Ts polar s0 T0 s1 T1 t1
-      | Const (s0 as @{const_name "op ="}, T0) $ t1 $ t2 =>
-        do_equals new_Ts old_Ts s0 T0 t1 t2
-      | @{const "op &"} $ t1 $ t2 =>
-        @{const "op &"} $ do_term new_Ts old_Ts polar t1
-        $ do_term new_Ts old_Ts polar t2
-      | @{const "op |"} $ t1 $ t2 =>
-        @{const "op |"} $ do_term new_Ts old_Ts polar t1
-        $ do_term new_Ts old_Ts polar t2
-      | @{const "op -->"} $ t1 $ t2 =>
-        @{const "op -->"} $ do_term new_Ts old_Ts (flip_polarity polar) t1
-        $ do_term new_Ts old_Ts polar t2
-      | Const (s as @{const_name The}, T) => do_description_operator s T
-      | Const (s as @{const_name Eps}, T) => do_description_operator s T
-      | Const (@{const_name quot_normal}, Type ("fun", [_, T2])) =>
-        let val T' = box_type ext_ctxt InSel T2 in
-          Const (@{const_name quot_normal}, T' --> T')
-        end
-      | Const (s as @{const_name Tha}, T) => do_description_operator s T
-      | Const (x as (s, T)) =>
-        Const (s, if s = @{const_name converse} orelse
-                     s = @{const_name trancl} then
-                    box_relational_operator_type T
-                  else if is_built_in_const fast_descrs x orelse
-                          s = @{const_name Sigma} then
-                    T
-                  else if is_constr_like thy x then
-                    box_type ext_ctxt InConstr T
-                  else if is_sel s
-                       orelse is_rep_fun thy x then
-                    box_type ext_ctxt InSel T
-                  else
-                    box_type ext_ctxt InExpr T)
-      | t1 $ Abs (s, T, t2') =>
-        let
-          val t1 = do_term new_Ts old_Ts Neut t1
-          val T1 = fastype_of1 (new_Ts, t1)
-          val (s1, Ts1) = dest_Type T1
-          val T' = hd (snd (dest_Type (hd Ts1)))
-          val t2 = Abs (s, T', do_term (T' :: new_Ts) (T :: old_Ts) Neut t2')
-          val T2 = fastype_of1 (new_Ts, t2)
-          val t2 = coerce_term new_Ts (hd Ts1) T2 t2
-        in
-          betapply (if s1 = "fun" then
-                      t1
-                    else
-                      select_nth_constr_arg thy
-                          (@{const_name FunBox}, Type ("fun", Ts1) --> T1) t1 0
-                          (Type ("fun", Ts1)), t2)
-        end
-      | t1 $ t2 =>
-        let
-          val t1 = do_term new_Ts old_Ts Neut t1
-          val T1 = fastype_of1 (new_Ts, t1)
-          val (s1, Ts1) = dest_Type T1
-          val t2 = do_term new_Ts old_Ts Neut t2
-          val T2 = fastype_of1 (new_Ts, t2)
-          val t2 = coerce_term new_Ts (hd Ts1) T2 t2
-        in
-          betapply (if s1 = "fun" then
-                      t1
-                    else
-                      select_nth_constr_arg thy
-                          (@{const_name FunBox}, Type ("fun", Ts1) --> T1) t1 0
-                          (Type ("fun", Ts1)), t2)
-        end
-      | Free (s, T) => Free (s, box_type ext_ctxt InExpr T)
-      | Var (z as (x, T)) =>
-        Var (x, if def then box_var_in_def new_Ts old_Ts orig_t z
-                else box_type ext_ctxt InExpr T)
-      | Bound _ => t
-      | Abs (s, T, t') =>
-        Abs (s, T, do_term (T :: new_Ts) (T :: old_Ts) Neut t')
-  in do_term [] [] Pos orig_t end
-
-(* int -> term -> term *)
-fun eval_axiom_for_term j t =
-  Logic.mk_equals (Const (eval_prefix ^ string_of_int j, fastype_of t), t)
-
-(* extended_context -> styp -> bool *)
-fun is_equational_fun_surely_complete ext_ctxt x =
-  case raw_equational_fun_axioms ext_ctxt x of
-    [@{const Trueprop} $ (Const (@{const_name "op ="}, _) $ t1 $ _)] =>
-    strip_comb t1 |> snd |> forall is_Var
-  | _ => false
-
-type special = int list * term list * styp
-
-(* styp -> special -> special -> term *)
-fun special_congruence_axiom (s, T) (js1, ts1, x1) (js2, ts2, x2) =
-  let
-    val (bounds1, bounds2) = pairself (map Var o special_bounds) (ts1, ts2)
-    val Ts = binder_types T
-    val max_j = fold (fold Integer.max) [js1, js2] ~1
-    val (eqs, (args1, args2)) =
-      fold (fn j => case pairself (fn ps => AList.lookup (op =) ps j)
-                                  (js1 ~~ ts1, js2 ~~ ts2) of
-                      (SOME t1, SOME t2) => apfst (cons (t1, t2))
-                    | (SOME t1, NONE) => apsnd (apsnd (cons t1))
-                    | (NONE, SOME t2) => apsnd (apfst (cons t2))
-                    | (NONE, NONE) =>
-                      let val v = Var ((cong_var_prefix ^ nat_subscript j, 0),
-                                       nth Ts j) in
-                        apsnd (pairself (cons v))
-                      end) (max_j downto 0) ([], ([], []))
-  in
-    Logic.list_implies (eqs |> filter_out (op =) |> distinct (op =)
-                            |> map Logic.mk_equals,
-                        Logic.mk_equals (list_comb (Const x1, bounds1 @ args1),
-                                         list_comb (Const x2, bounds2 @ args2)))
-    |> Refute.close_form (* TODO: needed? *)
-  end
-
-(* extended_context -> styp list -> term list *)
-fun special_congruence_axioms (ext_ctxt as {special_funs, ...}) xs =
-  let
-    val groups =
-      !special_funs
-      |> map (fn ((x, js, ts), x') => (x, (js, ts, x')))
-      |> AList.group (op =)
-      |> filter_out (is_equational_fun_surely_complete ext_ctxt o fst)
-      |> map (fn (x, zs) => (x, zs |> member (op =) xs x ? cons ([], [], x)))
-    (* special -> int *)
-    fun generality (js, _, _) = ~(length js)
-    (* special -> special -> bool *)
-    fun is_more_specific (j1, t1, x1) (j2, t2, x2) =
-      x1 <> x2 andalso OrdList.subset (prod_ord int_ord TermOrd.term_ord)
-                                      (j2 ~~ t2, j1 ~~ t1)
-    (* styp -> special list -> special list -> special list -> term list
-       -> term list *)
-    fun do_pass_1 _ [] [_] [_] = I
-      | do_pass_1 x skipped _ [] = do_pass_2 x skipped
-      | do_pass_1 x skipped all (z :: zs) =
-        case filter (is_more_specific z) all
-             |> sort (int_ord o pairself generality) of
-          [] => do_pass_1 x (z :: skipped) all zs
-        | (z' :: _) => cons (special_congruence_axiom x z z')
-                       #> do_pass_1 x skipped all zs
-    (* styp -> special list -> term list -> term list *)
-    and do_pass_2 _ [] = I
-      | do_pass_2 x (z :: zs) =
-        fold (cons o special_congruence_axiom x z) zs #> do_pass_2 x zs
-  in fold (fn (x, zs) => do_pass_1 x [] zs zs) groups [] end
-
-(* term -> bool *)
-val is_trivial_equation = the_default false o try (op aconv o Logic.dest_equals)
-
-(* 'a Symtab.table -> 'a list *)
-fun all_table_entries table = Symtab.fold (append o snd) table []
-(* const_table -> string -> const_table *)
-fun extra_table table s = Symtab.make [(s, all_table_entries table)]
-
-(* extended_context -> term -> (term list * term list) * (bool * bool) *)
-fun axioms_for_term
-        (ext_ctxt as {thy, max_bisim_depth, user_axioms, fast_descrs, evals,
-                      def_table, nondef_table, user_nondefs, ...}) t =
-  let
-    type accumulator = styp list * (term list * term list)
-    (* (term list * term list -> term list)
-       -> ((term list -> term list) -> term list * term list
-           -> term list * term list)
-       -> int -> term -> accumulator -> accumulator *)
-    fun add_axiom get app depth t (accum as (xs, axs)) =
-      let
-        val t = t |> unfold_defs_in_term ext_ctxt
-                  |> skolemize_term_and_more ext_ctxt ~1
-      in
-        if is_trivial_equation t then
-          accum
-        else
-          let val t' = t |> specialize_consts_in_term ext_ctxt depth in
-            if exists (member (op aconv) (get axs)) [t, t'] then accum
-            else add_axioms_for_term (depth + 1) t' (xs, app (cons t') axs)
-          end
-      end
-    (* int -> term -> accumulator -> accumulator *)
-    and add_def_axiom depth = add_axiom fst apfst depth
-    and add_nondef_axiom depth = add_axiom snd apsnd depth
-    and add_maybe_def_axiom depth t =
-      (if head_of t <> @{const "==>"} then add_def_axiom
-       else add_nondef_axiom) depth t
-    and add_eq_axiom depth t =
-      (if is_constr_pattern_formula thy t then add_def_axiom
-       else add_nondef_axiom) depth t
-    (* int -> term -> accumulator -> accumulator *)
-    and add_axioms_for_term depth t (accum as (xs, axs)) =
-      case t of
-        t1 $ t2 => accum |> fold (add_axioms_for_term depth) [t1, t2]
-      | Const (x as (s, T)) =>
-        (if member (op =) xs x orelse is_built_in_const fast_descrs x then
-           accum
-         else
-           let val accum as (xs, _) = (x :: xs, axs) in
-             if depth > axioms_max_depth then
-               raise TOO_LARGE ("Nitpick_HOL.axioms_for_term.\
-                                \add_axioms_for_term",
-                                "too many nested axioms (" ^
-                                string_of_int depth ^ ")")
-             else if Refute.is_const_of_class thy x then
-               let
-                 val class = Logic.class_of_const s
-                 val of_class = Logic.mk_of_class (TVar (("'a", 0), [class]),
-                                                   class)
-                 val ax1 = try (Refute.specialize_type thy x) of_class
-                 val ax2 = Option.map (Refute.specialize_type thy x o snd)
-                                      (Refute.get_classdef thy class)
-               in
-                 fold (add_maybe_def_axiom depth) (map_filter I [ax1, ax2])
-                      accum
-               end
-             else if is_constr thy x then
-               accum
-             else if is_equational_fun ext_ctxt x then
-               fold (add_eq_axiom depth) (equational_fun_axioms ext_ctxt x)
-                    accum
-             else if is_abs_fun thy x then
-               if is_quot_type thy (range_type T) then
-                 raise NOT_SUPPORTED "\"Abs_\" function of quotient type"
-               else
-                 accum |> fold (add_nondef_axiom depth)
-                               (nondef_props_for_const thy false nondef_table x)
-                       |> is_funky_typedef thy (range_type T)
-                          ? fold (add_maybe_def_axiom depth)
-                                 (nondef_props_for_const thy true
-                                                    (extra_table def_table s) x)
-             else if is_rep_fun thy x then
-               if is_quot_type thy (domain_type T) then
-                 raise NOT_SUPPORTED "\"Rep_\" function of quotient type"
-               else
-                 accum |> fold (add_nondef_axiom depth)
-                               (nondef_props_for_const thy false nondef_table x)
-                       |> is_funky_typedef thy (range_type T)
-                          ? fold (add_maybe_def_axiom depth)
-                                 (nondef_props_for_const thy true
-                                                    (extra_table def_table s) x)
-                       |> add_axioms_for_term depth
-                                              (Const (mate_of_rep_fun thy x))
-                       |> fold (add_def_axiom depth)
-                               (inverse_axioms_for_rep_fun thy x)
-             else
-               accum |> user_axioms <> SOME false
-                        ? fold (add_nondef_axiom depth)
-                               (nondef_props_for_const thy false nondef_table x)
-           end)
-        |> add_axioms_for_type depth T
-      | Free (_, T) => add_axioms_for_type depth T accum
-      | Var (_, T) => add_axioms_for_type depth T accum
-      | Bound _ => accum
-      | Abs (_, T, t) => accum |> add_axioms_for_term depth t
-                               |> add_axioms_for_type depth T
-    (* int -> typ -> accumulator -> accumulator *)
-    and add_axioms_for_type depth T =
-      case T of
-        Type ("fun", Ts) => fold (add_axioms_for_type depth) Ts
-      | Type ("*", Ts) => fold (add_axioms_for_type depth) Ts
-      | @{typ prop} => I
-      | @{typ bool} => I
-      | @{typ unit} => I
-      | TFree (_, S) => add_axioms_for_sort depth T S
-      | TVar (_, S) => add_axioms_for_sort depth T S
-      | Type (z as (s, Ts)) =>
-        fold (add_axioms_for_type depth) Ts
-        #> (if is_pure_typedef thy T then
-              fold (add_maybe_def_axiom depth) (optimized_typedef_axioms thy z)
-            else if is_quot_type thy T then
-              fold (add_def_axiom depth) (optimized_quot_type_axioms thy z)
-            else if max_bisim_depth >= 0 andalso is_codatatype thy T then
-              fold (add_maybe_def_axiom depth)
-                   (codatatype_bisim_axioms ext_ctxt T)
-            else
-              I)
-    (* int -> typ -> sort -> accumulator -> accumulator *)
-    and add_axioms_for_sort depth T S =
-      let
-        val supers = Sign.complete_sort thy S
-        val class_axioms =
-          maps (fn class => map prop_of (AxClass.get_info thy class |> #axioms
-                                         handle ERROR _ => [])) supers
-        val monomorphic_class_axioms =
-          map (fn t => case Term.add_tvars t [] of
-                         [] => t
-                       | [(x, S)] =>
-                         Refute.monomorphic_term (Vartab.make [(x, (S, T))]) t
-                       | _ => raise TERM ("Nitpick_HOL.axioms_for_term.\
-                                          \add_axioms_for_sort", [t]))
-              class_axioms
-      in fold (add_nondef_axiom depth) monomorphic_class_axioms end
-    val (mono_user_nondefs, poly_user_nondefs) =
-      List.partition (null o Term.hidden_polymorphism) user_nondefs
-    val eval_axioms = map2 eval_axiom_for_term (index_seq 0 (length evals))
-                           evals
-    val (xs, (defs, nondefs)) =
-      ([], ([], [])) |> add_axioms_for_term 1 t 
-                     |> fold_rev (add_def_axiom 1) eval_axioms
-                     |> user_axioms = SOME true
-                        ? fold (add_nondef_axiom 1) mono_user_nondefs
-    val defs = defs @ special_congruence_axioms ext_ctxt xs
-  in
-    ((defs, nondefs), (user_axioms = SOME true orelse null mono_user_nondefs,
-                       null poly_user_nondefs))
-  end
+(* hol_context -> typ -> typ list *)
+fun ground_types_in_type hol_ctxt T = add_ground_types hol_ctxt T []
+(* hol_context -> term list -> typ list *)
+fun ground_types_in_terms hol_ctxt ts =
+  fold (fold_types (add_ground_types hol_ctxt)) ts []
 
 (* theory -> const_table -> styp -> int list *)
 fun const_format thy def_table (x as (s, T)) =
@@ -3356,10 +2096,10 @@
                  |> map (rev o filter_out (member (op =) js))
                  |> filter_out null |> map length |> rev
 
-(* extended_context -> string * string -> (term option * int list) list
+(* hol_context -> string * string -> (term option * int list) list
    -> styp -> term * typ *)
 fun user_friendly_const ({thy, evals, def_table, skolems, special_funs, ...}
-                         : extended_context) (base_name, step_name) formats =
+                         : hol_context) (base_name, step_name) formats =
   let
     val default_format = the (AList.lookup (op =) formats NONE)
     (* styp -> term * typ *)
@@ -3460,7 +2200,7 @@
            (t, format_term_type thy def_table formats t)
          end)
       |>> map_types unbit_and_unbox_type
-      |>> shorten_names_in_term |>> shorten_abs_vars
+      |>> shorten_names_in_term |>> Term.map_abs_vars shortest_name
   in do_const end
 
 (* styp -> string *)
@@ -3474,84 +2214,4 @@
   else
     "="
 
-val binary_int_threshold = 4
-
-(* term -> bool *)
-fun may_use_binary_ints (t1 $ t2) =
-    may_use_binary_ints t1 andalso may_use_binary_ints t2
-  | may_use_binary_ints (t as Const (s, _)) =
-    t <> @{const Suc} andalso
-    not (member (op =) [@{const_name Abs_Frac}, @{const_name Rep_Frac},
-                        @{const_name nat_gcd}, @{const_name nat_lcm},
-                        @{const_name Frac}, @{const_name norm_frac}] s)
-  | may_use_binary_ints (Abs (_, _, t')) = may_use_binary_ints t'
-  | may_use_binary_ints _ = true
-fun should_use_binary_ints (t1 $ t2) =
-    should_use_binary_ints t1 orelse should_use_binary_ints t2
-  | should_use_binary_ints (Const (s, _)) =
-    member (op =) [@{const_name times_nat_inst.times_nat},
-                   @{const_name div_nat_inst.div_nat},
-                   @{const_name times_int_inst.times_int},
-                   @{const_name div_int_inst.div_int}] s orelse
-    (String.isPrefix numeral_prefix s andalso
-     let val n = the (Int.fromString (unprefix numeral_prefix s)) in
-       n <= ~ binary_int_threshold orelse n >= binary_int_threshold
-     end)
-  | should_use_binary_ints (Abs (_, _, t')) = should_use_binary_ints t'
-  | should_use_binary_ints _ = false
-
-(* typ -> typ *)
-fun binarize_nat_and_int_in_type @{typ nat} = @{typ "unsigned_bit word"}
-  | binarize_nat_and_int_in_type @{typ int} = @{typ "signed_bit word"}
-  | binarize_nat_and_int_in_type (Type (s, Ts)) =
-    Type (s, map binarize_nat_and_int_in_type Ts)
-  | binarize_nat_and_int_in_type T = T
-(* term -> term *)
-val binarize_nat_and_int_in_term = map_types binarize_nat_and_int_in_type
-
-(* extended_context -> term
-   -> ((term list * term list) * (bool * bool)) * term *)
-fun preprocess_term (ext_ctxt as {thy, binary_ints, destroy_constrs, boxes,
-                                  skolemize, uncurry, ...}) t =
-  let
-    val skolem_depth = if skolemize then 4 else ~1
-    val (((def_ts, nondef_ts), (got_all_mono_user_axioms, no_poly_user_axioms)),
-         core_t) = t |> unfold_defs_in_term ext_ctxt
-                     |> Refute.close_form
-                     |> skolemize_term_and_more ext_ctxt skolem_depth
-                     |> specialize_consts_in_term ext_ctxt 0
-                     |> `(axioms_for_term ext_ctxt)
-    val binarize =
-      case binary_ints of
-        SOME false => false
-      | _ =>
-        forall may_use_binary_ints (core_t :: def_ts @ nondef_ts) andalso
-        (binary_ints = SOME true orelse
-         exists should_use_binary_ints (core_t :: def_ts @ nondef_ts))
-    val box = exists (not_equal (SOME false) o snd) boxes
-    val table =
-      Termtab.empty |> uncurry
-        ? fold (add_to_uncurry_table thy) (core_t :: def_ts @ nondef_ts)
-    (* bool -> bool -> term -> term *)
-    fun do_rest def core =
-      binarize ? binarize_nat_and_int_in_term
-      #> uncurry ? uncurry_term table
-      #> box ? box_fun_and_pair_in_term ext_ctxt def
-      #> destroy_constrs ? (pull_out_universal_constrs thy def
-                            #> pull_out_existential_constrs thy
-                            #> destroy_pulled_out_constrs ext_ctxt def)
-      #> curry_assms
-      #> destroy_universal_equalities
-      #> destroy_existential_equalities thy
-      #> simplify_constrs_and_sels thy
-      #> distribute_quantifiers
-      #> push_quantifiers_inward thy
-      #> not core ? Refute.close_form
-      #> shorten_abs_vars
-  in
-    (((map (do_rest true false) def_ts, map (do_rest false false) nondef_ts),
-      (got_all_mono_user_axioms, no_poly_user_axioms)),
-     do_rest false true core_t)
-  end
-
 end;
--- a/src/HOL/Tools/Nitpick/nitpick_kodkod.ML	Thu Feb 04 13:36:52 2010 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_kodkod.ML	Thu Feb 04 16:03:15 2010 +0100
@@ -7,7 +7,7 @@
 
 signature NITPICK_KODKOD =
 sig
-  type extended_context = Nitpick_HOL.extended_context
+  type hol_context = Nitpick_HOL.hol_context
   type dtype_spec = Nitpick_Scope.dtype_spec
   type kodkod_constrs = Nitpick_Peephole.kodkod_constrs
   type nut = Nitpick_Nut.nut
@@ -33,7 +33,7 @@
   val merge_bounds : Kodkod.bound list -> Kodkod.bound list
   val declarative_axiom_for_plain_rel : kodkod_constrs -> nut -> Kodkod.formula
   val declarative_axioms_for_datatypes :
-    extended_context -> int -> int Typtab.table -> kodkod_constrs
+    hol_context -> int -> int Typtab.table -> kodkod_constrs
     -> nut NameTable.table -> dtype_spec list -> Kodkod.formula list
   val kodkod_formula_from_nut :
     int -> int Typtab.table -> bool -> kodkod_constrs -> nut -> Kodkod.formula
@@ -732,12 +732,12 @@
 (* nut NameTable.table -> styp -> KK.rel_expr *)
 fun discr_rel_expr rel_table = #1 o const_triple rel_table o discr_for_constr
 
-(* extended_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec list
+(* hol_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec list
    -> styp -> int -> nfa_transition list *)
-fun nfa_transitions_for_sel ext_ctxt ({kk_project, ...} : kodkod_constrs)
+fun nfa_transitions_for_sel hol_ctxt ({kk_project, ...} : kodkod_constrs)
                             rel_table (dtypes : dtype_spec list) constr_x n =
   let
-    val x as (_, T) = boxed_nth_sel_for_constr ext_ctxt constr_x n
+    val x as (_, T) = boxed_nth_sel_for_constr hol_ctxt constr_x n
     val (r, R, arity) = const_triple rel_table x
     val type_schema = type_schema_of_rep T R
   in
@@ -746,17 +746,17 @@
                    else SOME (kk_project r (map KK.Num [0, j]), T))
                (index_seq 1 (arity - 1) ~~ tl type_schema)
   end
-(* extended_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec list
+(* hol_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec list
    -> styp -> nfa_transition list *)
-fun nfa_transitions_for_constr ext_ctxt kk rel_table dtypes (x as (_, T)) =
-  maps (nfa_transitions_for_sel ext_ctxt kk rel_table dtypes x)
+fun nfa_transitions_for_constr hol_ctxt kk rel_table dtypes (x as (_, T)) =
+  maps (nfa_transitions_for_sel hol_ctxt kk rel_table dtypes x)
        (index_seq 0 (num_sels_for_constr_type T))
-(* extended_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec list
+(* hol_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec list
    -> dtype_spec -> nfa_entry option *)
 fun nfa_entry_for_datatype _ _ _ _ ({co = true, ...} : dtype_spec) = NONE
   | nfa_entry_for_datatype _ _ _ _ {deep = false, ...} = NONE
-  | nfa_entry_for_datatype ext_ctxt kk rel_table dtypes {typ, constrs, ...} =
-    SOME (typ, maps (nfa_transitions_for_constr ext_ctxt kk rel_table dtypes
+  | nfa_entry_for_datatype hol_ctxt kk rel_table dtypes {typ, constrs, ...} =
+    SOME (typ, maps (nfa_transitions_for_constr hol_ctxt kk rel_table dtypes
                      o #const) constrs)
 
 val empty_rel = KK.Product (KK.None, KK.None)
@@ -812,23 +812,23 @@
 fun acyclicity_axiom_for_datatype dtypes kk nfa start =
   #kk_no kk (#kk_intersect kk
                  (loop_path_rel_expr kk nfa (map fst nfa) start) KK.Iden)
-(* extended_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec list
+(* hol_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec list
    -> KK.formula list *)
-fun acyclicity_axioms_for_datatypes ext_ctxt kk rel_table dtypes =
-  map_filter (nfa_entry_for_datatype ext_ctxt kk rel_table dtypes) dtypes
+fun acyclicity_axioms_for_datatypes hol_ctxt kk rel_table dtypes =
+  map_filter (nfa_entry_for_datatype hol_ctxt kk rel_table dtypes) dtypes
   |> strongly_connected_sub_nfas
   |> maps (fn nfa => map (acyclicity_axiom_for_datatype dtypes kk nfa o fst)
                          nfa)
 
-(* extended_context -> int -> kodkod_constrs -> nut NameTable.table
-   -> KK.rel_expr -> constr_spec -> int -> KK.formula *)
-fun sel_axiom_for_sel ext_ctxt j0
+(* hol_context -> int -> kodkod_constrs -> nut NameTable.table -> KK.rel_expr
+   -> constr_spec -> int -> KK.formula *)
+fun sel_axiom_for_sel hol_ctxt j0
         (kk as {kk_all, kk_implies, kk_formula_if, kk_subset, kk_rel_eq, kk_no,
                 kk_join, ...}) rel_table dom_r
         ({const, delta, epsilon, exclusive, explicit_max, ...} : constr_spec)
         n =
   let
-    val x as (_, T) = boxed_nth_sel_for_constr ext_ctxt const n
+    val x as (_, T) = boxed_nth_sel_for_constr hol_ctxt const n
     val (r, R, arity) = const_triple rel_table x
     val R2 = dest_Func R |> snd
     val z = (epsilon - delta, delta + j0)
@@ -842,9 +842,9 @@
                               (kk_n_ary_function kk R2 r') (kk_no r'))
       end
   end
-(* extended_context -> int -> int -> kodkod_constrs -> nut NameTable.table
+(* hol_context -> int -> int -> kodkod_constrs -> nut NameTable.table
    -> constr_spec -> KK.formula list *)
-fun sel_axioms_for_constr ext_ctxt bits j0 kk rel_table
+fun sel_axioms_for_constr hol_ctxt bits j0 kk rel_table
         (constr as {const, delta, epsilon, explicit_max, ...}) =
   let
     val honors_explicit_max =
@@ -866,19 +866,19 @@
                              " too small for \"max\"")
       in
         max_axiom ::
-        map (sel_axiom_for_sel ext_ctxt j0 kk rel_table ran_r constr)
+        map (sel_axiom_for_sel hol_ctxt j0 kk rel_table ran_r constr)
             (index_seq 0 (num_sels_for_constr_type (snd const)))
       end
   end
-(* extended_context -> int -> int -> kodkod_constrs -> nut NameTable.table
+(* hol_context -> int -> int -> kodkod_constrs -> nut NameTable.table
    -> dtype_spec -> KK.formula list *)
-fun sel_axioms_for_datatype ext_ctxt bits j0 kk rel_table
+fun sel_axioms_for_datatype hol_ctxt bits j0 kk rel_table
                             ({constrs, ...} : dtype_spec) =
-  maps (sel_axioms_for_constr ext_ctxt bits j0 kk rel_table) constrs
+  maps (sel_axioms_for_constr hol_ctxt bits j0 kk rel_table) constrs
 
-(* extended_context -> kodkod_constrs -> nut NameTable.table -> constr_spec
+(* hol_context -> kodkod_constrs -> nut NameTable.table -> constr_spec
    -> KK.formula list *)
-fun uniqueness_axiom_for_constr ext_ctxt
+fun uniqueness_axiom_for_constr hol_ctxt
         ({kk_all, kk_implies, kk_and, kk_rel_eq, kk_lone, kk_join, ...}
          : kodkod_constrs) rel_table ({const, ...} : constr_spec) =
   let
@@ -887,7 +887,7 @@
       kk_rel_eq (kk_join (KK.Var (1, 0)) r) (kk_join (KK.Var (1, 1)) r)
     val num_sels = num_sels_for_constr_type (snd const)
     val triples = map (const_triple rel_table
-                       o boxed_nth_sel_for_constr ext_ctxt const)
+                       o boxed_nth_sel_for_constr hol_ctxt const)
                       (~1 upto num_sels - 1)
     val j0 = case triples |> hd |> #2 of
                Func (Atom (_, j0), _) => j0
@@ -903,11 +903,11 @@
                   (fold1 kk_and (map (conjunct_for_sel o #1) (tl triples)))
                   (kk_rel_eq (KK.Var (1, 0)) (KK.Var (1, 1))))
   end
-(* extended_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec
+(* hol_context -> kodkod_constrs -> nut NameTable.table -> dtype_spec
    -> KK.formula list *)
-fun uniqueness_axioms_for_datatype ext_ctxt kk rel_table
+fun uniqueness_axioms_for_datatype hol_ctxt kk rel_table
                                    ({constrs, ...} : dtype_spec) =
-  map (uniqueness_axiom_for_constr ext_ctxt kk rel_table) constrs
+  map (uniqueness_axiom_for_constr hol_ctxt kk rel_table) constrs
 
 (* constr_spec -> int *)
 fun effective_constr_max ({delta, epsilon, ...} : constr_spec) = epsilon - delta
@@ -924,22 +924,22 @@
        kk_disjoint_sets kk rs]
     end
 
-(* extended_context -> int -> int Typtab.table -> kodkod_constrs
+(* hol_context -> int -> int Typtab.table -> kodkod_constrs
    -> nut NameTable.table -> dtype_spec -> KK.formula list *)
 fun other_axioms_for_datatype _ _ _ _ _ {deep = false, ...} = []
-  | other_axioms_for_datatype ext_ctxt bits ofs kk rel_table
+  | other_axioms_for_datatype hol_ctxt bits ofs kk rel_table
                               (dtype as {typ, ...}) =
     let val j0 = offset_of_type ofs typ in
-      sel_axioms_for_datatype ext_ctxt bits j0 kk rel_table dtype @
-      uniqueness_axioms_for_datatype ext_ctxt kk rel_table dtype @
+      sel_axioms_for_datatype hol_ctxt bits j0 kk rel_table dtype @
+      uniqueness_axioms_for_datatype hol_ctxt kk rel_table dtype @
       partition_axioms_for_datatype j0 kk rel_table dtype
     end
 
-(* extended_context -> int -> int Typtab.table -> kodkod_constrs
+(* hol_context -> int -> int Typtab.table -> kodkod_constrs
    -> nut NameTable.table -> dtype_spec list -> KK.formula list *)
-fun declarative_axioms_for_datatypes ext_ctxt bits ofs kk rel_table dtypes =
-  acyclicity_axioms_for_datatypes ext_ctxt kk rel_table dtypes @
-  maps (other_axioms_for_datatype ext_ctxt bits ofs kk rel_table) dtypes
+fun declarative_axioms_for_datatypes hol_ctxt bits ofs kk rel_table dtypes =
+  acyclicity_axioms_for_datatypes hol_ctxt kk rel_table dtypes @
+  maps (other_axioms_for_datatype hol_ctxt bits ofs kk rel_table) dtypes
 
 (* int -> int Typtab.table -> bool -> kodkod_constrs -> nut -> KK.formula *)
 fun kodkod_formula_from_nut bits ofs liberal
--- a/src/HOL/Tools/Nitpick/nitpick_model.ML	Thu Feb 04 13:36:52 2010 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_model.ML	Thu Feb 04 16:03:15 2010 +0100
@@ -251,7 +251,7 @@
    -> nut list -> nut NameTable.table -> KK.raw_bound list -> typ -> typ -> rep
    -> int list list -> term *)
 fun reconstruct_term (maybe_name, base_name, step_name, abs_name)
-        ({ext_ctxt as {thy, ctxt, ...}, card_assigns, bits, datatypes, ofs, ...}
+        ({hol_ctxt as {thy, ctxt, ...}, card_assigns, bits, datatypes, ofs, ...}
          : scope) sel_names rel_table bounds =
   let
     val for_auto = (maybe_name = "")
@@ -400,7 +400,7 @@
                             else NONE)
                         (discr_jsss ~~ constrs) |> the
             val arg_Ts = curried_binder_types constr_T
-            val sel_xs = map (boxed_nth_sel_for_constr ext_ctxt constr_x)
+            val sel_xs = map (boxed_nth_sel_for_constr hol_ctxt constr_x)
                              (index_seq 0 (length arg_Ts))
             val sel_Rs =
               map (fn x => get_first
@@ -586,7 +586,7 @@
   -> nut list -> nut list -> nut NameTable.table -> KK.raw_bound list
   -> Pretty.T * bool *)
 fun reconstruct_hol_model {show_skolems, show_datatypes, show_consts}
-        ({ext_ctxt as {thy, ctxt, max_bisim_depth, boxes, stds, wfs,
+        ({hol_ctxt as {thy, ctxt, max_bisim_depth, boxes, stds, wfs,
                        user_axioms, debug, binary_ints, destroy_constrs,
                        specialize, skolemize, star_linear_preds, uncurry,
                        fast_descrs, tac_timeout, evals, case_names, def_table,
@@ -598,7 +598,7 @@
   let
     val (wacky_names as (_, base_name, step_name, _), ctxt) =
       add_wacky_syntax ctxt
-    val ext_ctxt =
+    val hol_ctxt =
       {thy = thy, ctxt = ctxt, max_bisim_depth = max_bisim_depth, boxes = boxes,
        stds = stds, wfs = wfs, user_axioms = user_axioms, debug = debug,
        binary_ints = binary_ints, destroy_constrs = destroy_constrs,
@@ -612,7 +612,7 @@
        ersatz_table = ersatz_table, skolems = skolems,
        special_funs = special_funs, unrolled_preds = unrolled_preds,
        wf_cache = wf_cache, constr_cache = constr_cache}
-    val scope = {ext_ctxt = ext_ctxt, card_assigns = card_assigns,
+    val scope = {hol_ctxt = hol_ctxt, card_assigns = card_assigns,
                  bits = bits, bisim_depth = bisim_depth, datatypes = datatypes,
                  ofs = ofs}
     (* typ -> typ -> rep -> int list list -> term *)
@@ -644,7 +644,7 @@
             end
           | ConstName (s, T, _) =>
             (assign_operator_for_const (s, T),
-             user_friendly_const ext_ctxt (base_name, step_name) formats (s, T),
+             user_friendly_const hol_ctxt (base_name, step_name) formats (s, T),
              T)
           | _ => raise NUT ("Nitpick_Model.reconstruct_hol_model.\
                             \pretty_for_assign", [name])
@@ -724,7 +724,7 @@
 
 (* scope -> Time.time option -> nut list -> nut list -> nut NameTable.table
    -> KK.raw_bound list -> term -> bool option *)
-fun prove_hol_model (scope as {ext_ctxt as {thy, ctxt, debug, ...},
+fun prove_hol_model (scope as {hol_ctxt as {thy, ctxt, debug, ...},
                                card_assigns, ...})
                     auto_timeout free_names sel_names rel_table bounds prop =
   let
--- a/src/HOL/Tools/Nitpick/nitpick_mono.ML	Thu Feb 04 13:36:52 2010 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_mono.ML	Thu Feb 04 16:03:15 2010 +0100
@@ -8,10 +8,10 @@
 signature NITPICK_MONO =
 sig
   datatype sign = Plus | Minus
-  type extended_context = Nitpick_HOL.extended_context
+  type hol_context = Nitpick_HOL.hol_context
 
   val formulas_monotonic :
-    extended_context -> typ -> sign -> term list -> term list -> term -> bool
+    hol_context -> typ -> sign -> term list -> term list -> term -> bool
 end;
 
 structure Nitpick_Mono : NITPICK_MONO =
@@ -35,7 +35,7 @@
   CRec of string * typ list
 
 type cdata =
-  {ext_ctxt: extended_context,
+  {hol_ctxt: hol_context,
    alpha_T: typ,
    max_fresh: int Unsynchronized.ref,
    datatype_cache: ((string * typ list) * ctype) list Unsynchronized.ref,
@@ -114,9 +114,9 @@
   | flatten_ctype (CType (_, Cs)) = maps flatten_ctype Cs
   | flatten_ctype C = [C]
 
-(* extended_context -> typ -> cdata *)
-fun initial_cdata ext_ctxt alpha_T =
-  ({ext_ctxt = ext_ctxt, alpha_T = alpha_T, max_fresh = Unsynchronized.ref 0,
+(* hol_context -> typ -> cdata *)
+fun initial_cdata hol_ctxt alpha_T =
+  ({hol_ctxt = hol_ctxt, alpha_T = alpha_T, max_fresh = Unsynchronized.ref 0,
     datatype_cache = Unsynchronized.ref [],
     constr_cache = Unsynchronized.ref []} : cdata)
 
@@ -188,7 +188,7 @@
   in List.app repair_one (!constr_cache) end
 
 (* cdata -> typ -> ctype *)
-fun fresh_ctype_for_type ({ext_ctxt as {thy, ...}, alpha_T, max_fresh,
+fun fresh_ctype_for_type ({hol_ctxt as {thy, ...}, alpha_T, max_fresh,
                            datatype_cache, constr_cache, ...} : cdata) =
   let
     (* typ -> typ -> ctype *)
@@ -217,7 +217,7 @@
           | NONE =>
             let
               val _ = Unsynchronized.change datatype_cache (cons (z, CRec z))
-              val xs = datatype_constrs ext_ctxt T
+              val xs = datatype_constrs hol_ctxt T
               val (all_Cs, constr_Cs) =
                 fold_rev (fn (_, T') => fn (all_Cs, constr_Cs) =>
                              let
@@ -264,7 +264,7 @@
   end
 
 (* cdata -> styp -> ctype *)
-fun ctype_for_constr (cdata as {ext_ctxt as {thy, ...}, alpha_T, constr_cache,
+fun ctype_for_constr (cdata as {hol_ctxt as {thy, ...}, alpha_T, constr_cache,
                                 ...}) (x as (_, T)) =
   if could_exist_alpha_sub_ctype thy alpha_T T then
     case AList.lookup (op =) (!constr_cache) x of
@@ -278,8 +278,8 @@
                  AList.lookup (op =) (!constr_cache) x |> the)
   else
     fresh_ctype_for_type cdata T
-fun ctype_for_sel (cdata as {ext_ctxt, ...}) (x as (s, _)) =
-  x |> boxed_constr_for_sel ext_ctxt |> ctype_for_constr cdata
+fun ctype_for_sel (cdata as {hol_ctxt, ...}) (x as (s, _)) =
+  x |> boxed_constr_for_sel hol_ctxt |> ctype_for_constr cdata
     |> sel_ctype_from_constr_ctype s
 
 (* literal list -> ctype -> ctype *)
@@ -549,7 +549,7 @@
   handle List.Empty => initial_gamma
 
 (* cdata -> term -> accumulator -> ctype * accumulator *)
-fun consider_term (cdata as {ext_ctxt as {ctxt, thy, def_table, ...}, alpha_T,
+fun consider_term (cdata as {hol_ctxt as {ctxt, thy, def_table, ...}, alpha_T,
                              max_fresh, ...}) =
   let
     (* typ -> ctype *)
@@ -806,7 +806,7 @@
   in do_term end
 
 (* cdata -> sign -> term -> accumulator -> accumulator *)
-fun consider_general_formula (cdata as {ext_ctxt as {ctxt, ...}, ...}) =
+fun consider_general_formula (cdata as {hol_ctxt as {ctxt, ...}, ...}) =
   let
     (* typ -> ctype *)
     val ctype_for = fresh_ctype_for_type cdata
@@ -895,7 +895,7 @@
   not (is_harmless_axiom t) ? consider_general_formula cdata sn t
 
 (* cdata -> term -> accumulator -> accumulator *)
-fun consider_definitional_axiom (cdata as {ext_ctxt as {thy, ...}, ...}) t =
+fun consider_definitional_axiom (cdata as {hol_ctxt as {thy, ...}, ...}) t =
   if not (is_constr_pattern_formula thy t) then
     consider_nondefinitional_axiom cdata Plus t
   else if is_harmless_axiom t then
@@ -945,13 +945,13 @@
   map (fn (x, C) => string_for_ctype_of_term ctxt lits (Const x) C) consts
   |> cat_lines |> print_g
 
-(* extended_context -> typ -> sign -> term list -> term list -> term -> bool *)
-fun formulas_monotonic (ext_ctxt as {ctxt, ...}) alpha_T sn def_ts nondef_ts
+(* hol_context -> typ -> sign -> term list -> term list -> term -> bool *)
+fun formulas_monotonic (hol_ctxt as {ctxt, ...}) alpha_T sn def_ts nondef_ts
                        core_t =
   let
     val _ = print_g ("****** " ^ string_for_ctype CAlpha ^ " is " ^
                      Syntax.string_of_typ ctxt alpha_T)
-    val cdata as {max_fresh, ...} = initial_cdata ext_ctxt alpha_T
+    val cdata as {max_fresh, ...} = initial_cdata hol_ctxt alpha_T
     val (gamma, cset) =
       (initial_gamma, slack)
       |> fold (consider_definitional_axiom cdata) def_ts
--- a/src/HOL/Tools/Nitpick/nitpick_nut.ML	Thu Feb 04 13:36:52 2010 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_nut.ML	Thu Feb 04 16:03:15 2010 +0100
@@ -8,7 +8,7 @@
 signature NITPICK_NUT =
 sig
   type special_fun = Nitpick_HOL.special_fun
-  type extended_context = Nitpick_HOL.extended_context
+  type hol_context = Nitpick_HOL.hol_context
   type scope = Nitpick_Scope.scope
   type name_pool = Nitpick_Peephole.name_pool
   type rep = Nitpick_Rep.rep
@@ -106,7 +106,7 @@
   val name_ord : (nut * nut) -> order
   val the_name : 'a NameTable.table -> nut -> 'a
   val the_rel : nut NameTable.table -> nut -> Kodkod.n_ary_index
-  val nut_from_term : extended_context -> op2 -> term -> nut
+  val nut_from_term : hol_context -> op2 -> term -> nut
   val choose_reps_for_free_vars :
     scope -> nut list -> rep NameTable.table -> nut list * rep NameTable.table
   val choose_reps_for_consts :
@@ -466,8 +466,8 @@
 fun factorize (z as (Type ("*", _), _)) = maps factorize [mk_fst z, mk_snd z]
   | factorize z = [z]
 
-(* extended_context -> op2 -> term -> nut *)
-fun nut_from_term (ext_ctxt as {thy, fast_descrs, special_funs, ...}) eq =
+(* hol_context -> op2 -> term -> nut *)
+fun nut_from_term (hol_ctxt as {thy, fast_descrs, special_funs, ...}) eq =
   let
     (* string list -> typ list -> term -> nut *)
     fun aux eq ss Ts t =
@@ -597,7 +597,7 @@
           Op2 (Image, nth_range_type 2 T, Any, sub t1, sub t2)
         | (Const (@{const_name Suc}, T), []) => Cst (Suc, T, Any)
         | (Const (@{const_name finite}, T), [t1]) =>
-          (if is_finite_type ext_ctxt (domain_type T) then
+          (if is_finite_type hol_ctxt (domain_type T) then
              Cst (True, bool_T, Any)
            else case t1 of
              Const (@{const_name top}, _) => Cst (False, bool_T, Any)
@@ -712,7 +712,7 @@
   in (v :: vs, NameTable.update (v, R) table) end
 (* scope -> bool -> nut -> nut list * rep NameTable.table
    -> nut list * rep NameTable.table *)
-fun choose_rep_for_const (scope as {ext_ctxt as {thy, ctxt, ...}, datatypes,
+fun choose_rep_for_const (scope as {hol_ctxt as {thy, ctxt, ...}, datatypes,
                                     ofs, ...}) all_exact v (vs, table) =
   let
     val x as (s, T) = (nickname_of v, type_of v)
@@ -747,10 +747,10 @@
 
 (* scope -> styp -> int -> nut list * rep NameTable.table
    -> nut list * rep NameTable.table *)
-fun choose_rep_for_nth_sel_for_constr (scope as {ext_ctxt, ...}) (x as (_, T)) n
+fun choose_rep_for_nth_sel_for_constr (scope as {hol_ctxt, ...}) (x as (_, T)) n
                                       (vs, table) =
   let
-    val (s', T') = boxed_nth_sel_for_constr ext_ctxt x n
+    val (s', T') = boxed_nth_sel_for_constr hol_ctxt x n
     val R' = if n = ~1 orelse is_word_type (body_type T) orelse
                 (is_fun_type (range_type T') andalso
                  is_boolean_type (body_type T')) then
@@ -890,7 +890,7 @@
   | untuple f u = if rep_of u = Unit then [] else [f u]
 
 (* scope -> bool -> rep NameTable.table -> bool -> nut -> nut *)
-fun choose_reps_in_nut (scope as {ext_ctxt as {thy, ctxt, ...}, card_assigns,
+fun choose_reps_in_nut (scope as {hol_ctxt as {thy, ctxt, ...}, card_assigns,
                                   bits, datatypes, ofs, ...})
                        liberal table def =
   let
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Nitpick/nitpick_preproc.ML	Thu Feb 04 16:03:15 2010 +0100
@@ -0,0 +1,1431 @@
+(*  Title:      HOL/Tools/Nitpick/nitpick_preproc.ML
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2008, 2009, 2010
+
+Nitpick's HOL preprocessor.
+*)
+
+signature NITPICK_PREPROC =
+sig
+  type hol_context = Nitpick_HOL.hol_context
+  val preprocess_term :
+    hol_context -> term -> ((term list * term list) * (bool * bool)) * term
+end
+
+structure Nitpick_Preproc : NITPICK_PREPROC =
+struct
+
+open Nitpick_Util
+open Nitpick_HOL
+
+(* polarity -> string -> bool *)
+fun is_positive_existential polar quant_s =
+  (polar = Pos andalso quant_s = @{const_name Ex}) orelse
+  (polar = Neg andalso quant_s <> @{const_name Ex})
+
+(** Binary coding of integers **)
+
+(* If a formula contains a numeral whose absolute value is more than this
+   threshold, the unary coding is likely not to work well and we prefer the
+   binary coding. *)
+val binary_int_threshold = 3
+
+(* term -> bool *)
+fun may_use_binary_ints (t1 $ t2) =
+    may_use_binary_ints t1 andalso may_use_binary_ints t2
+  | may_use_binary_ints (t as Const (s, _)) =
+    t <> @{const Suc} andalso
+    not (member (op =) [@{const_name Abs_Frac}, @{const_name Rep_Frac},
+                        @{const_name nat_gcd}, @{const_name nat_lcm},
+                        @{const_name Frac}, @{const_name norm_frac}] s)
+  | may_use_binary_ints (Abs (_, _, t')) = may_use_binary_ints t'
+  | may_use_binary_ints _ = true
+fun should_use_binary_ints (t1 $ t2) =
+    should_use_binary_ints t1 orelse should_use_binary_ints t2
+  | should_use_binary_ints (Const (s, _)) =
+    member (op =) [@{const_name times_nat_inst.times_nat},
+                   @{const_name div_nat_inst.div_nat},
+                   @{const_name times_int_inst.times_int},
+                   @{const_name div_int_inst.div_int}] s orelse
+    (String.isPrefix numeral_prefix s andalso
+     let val n = the (Int.fromString (unprefix numeral_prefix s)) in
+       n < ~ binary_int_threshold orelse n > binary_int_threshold
+     end)
+  | should_use_binary_ints (Abs (_, _, t')) = should_use_binary_ints t'
+  | should_use_binary_ints _ = false
+
+(* typ -> typ *)
+fun binarize_nat_and_int_in_type @{typ nat} = @{typ "unsigned_bit word"}
+  | binarize_nat_and_int_in_type @{typ int} = @{typ "signed_bit word"}
+  | binarize_nat_and_int_in_type (Type (s, Ts)) =
+    Type (s, map binarize_nat_and_int_in_type Ts)
+  | binarize_nat_and_int_in_type T = T
+(* term -> term *)
+val binarize_nat_and_int_in_term = map_types binarize_nat_and_int_in_type
+
+(** Uncurrying **)
+
+(* theory -> term -> int Termtab.tab -> int Termtab.tab *)
+fun add_to_uncurry_table thy t =
+  let
+    (* term -> term list -> int Termtab.tab -> int Termtab.tab *)
+    fun aux (t1 $ t2) args table =
+        let val table = aux t2 [] table in aux t1 (t2 :: args) table end
+      | aux (Abs (_, _, t')) _ table = aux t' [] table
+      | aux (t as Const (x as (s, _))) args table =
+        if is_built_in_const true x orelse is_constr_like thy x orelse
+           is_sel s orelse s = @{const_name Sigma} then
+          table
+        else
+          Termtab.map_default (t, 65536) (curry Int.min (length args)) table
+      | aux _ _ table = table
+  in aux t [] end
+
+(* int -> int -> string *)
+fun uncurry_prefix_for k j =
+  uncurry_prefix ^ string_of_int k ^ "@" ^ string_of_int j ^ name_sep
+
+(* int Termtab.tab term -> term *)
+fun uncurry_term table t =
+  let
+    (* term -> term list -> term *)
+    fun aux (t1 $ t2) args = aux t1 (aux t2 [] :: args)
+      | aux (Abs (s, T, t')) args = betapplys (Abs (s, T, aux t' []), args)
+      | aux (t as Const (s, T)) args =
+        (case Termtab.lookup table t of
+           SOME n =>
+           if n >= 2 then
+             let
+               val (arg_Ts, rest_T) = strip_n_binders n T
+               val j =
+                 if hd arg_Ts = @{typ bisim_iterator} orelse
+                    is_fp_iterator_type (hd arg_Ts) then
+                   1
+                 else case find_index (not_equal bool_T) arg_Ts of
+                   ~1 => n
+                 | j => j
+               val ((before_args, tuple_args), after_args) =
+                 args |> chop n |>> chop j
+               val ((before_arg_Ts, tuple_arg_Ts), rest_T) =
+                 T |> strip_n_binders n |>> chop j
+               val tuple_T = HOLogic.mk_tupleT tuple_arg_Ts
+             in
+               if n - j < 2 then
+                 betapplys (t, args)
+               else
+                 betapplys (Const (uncurry_prefix_for (n - j) j ^ s,
+                                   before_arg_Ts ---> tuple_T --> rest_T),
+                            before_args @ [mk_flat_tuple tuple_T tuple_args] @
+                            after_args)
+             end
+           else
+             betapplys (t, args)
+         | NONE => betapplys (t, args))
+      | aux t args = betapplys (t, args)
+  in aux t [] end
+
+(** Boxing **)
+
+(* hol_context -> typ -> term -> term *)
+fun constr_expand (hol_ctxt as {thy, ...}) T t =
+  (case head_of t of
+     Const x => if is_constr_like thy x then t else raise SAME ()
+   | _ => raise SAME ())
+  handle SAME () =>
+         let
+           val x' as (_, T') =
+             if is_pair_type T then
+               let val (T1, T2) = HOLogic.dest_prodT T in
+                 (@{const_name Pair}, T1 --> T2 --> T)
+               end
+             else
+               datatype_constrs hol_ctxt T |> hd
+           val arg_Ts = binder_types T'
+         in
+           list_comb (Const x', map2 (select_nth_constr_arg thy x' t)
+                                     (index_seq 0 (length arg_Ts)) arg_Ts)
+         end
+
+(* hol_context -> bool -> term -> term *)
+fun box_fun_and_pair_in_term (hol_ctxt as {thy, fast_descrs, ...}) def orig_t =
+  let
+    (* typ -> typ *)
+    fun box_relational_operator_type (Type ("fun", Ts)) =
+        Type ("fun", map box_relational_operator_type Ts)
+      | box_relational_operator_type (Type ("*", Ts)) =
+        Type ("*", map (box_type hol_ctxt InPair) Ts)
+      | box_relational_operator_type T = T
+    (* (term -> term) -> int -> term -> term *)
+    fun coerce_bound_no f j t =
+      case t of
+        t1 $ t2 => coerce_bound_no f j t1 $ coerce_bound_no f j t2
+      | Abs (s, T, t') => Abs (s, T, coerce_bound_no f (j + 1) t')
+      | Bound j' => if j' = j then f t else t
+      | _ => t
+    (* typ -> typ -> term -> term *)
+    fun coerce_bound_0_in_term new_T old_T =
+      old_T <> new_T ? coerce_bound_no (coerce_term [new_T] old_T new_T) 0
+    (* typ list -> typ -> term -> term *)
+    and coerce_term Ts new_T old_T t =
+      if old_T = new_T then
+        t
+      else
+        case (new_T, old_T) of
+          (Type (new_s, new_Ts as [new_T1, new_T2]),
+           Type ("fun", [old_T1, old_T2])) =>
+          (case eta_expand Ts t 1 of
+             Abs (s, _, t') =>
+             Abs (s, new_T1,
+                  t' |> coerce_bound_0_in_term new_T1 old_T1
+                     |> coerce_term (new_T1 :: Ts) new_T2 old_T2)
+             |> Envir.eta_contract
+             |> new_s <> "fun"
+                ? construct_value thy (@{const_name FunBox},
+                                       Type ("fun", new_Ts) --> new_T) o single
+           | t' => raise TERM ("Nitpick_Preproc.box_fun_and_pair_in_term.\
+                               \coerce_term", [t']))
+        | (Type (new_s, new_Ts as [new_T1, new_T2]),
+           Type (old_s, old_Ts as [old_T1, old_T2])) =>
+          if old_s = @{type_name fun_box} orelse
+             old_s = @{type_name pair_box} orelse old_s = "*" then
+            case constr_expand hol_ctxt old_T t of
+              Const (@{const_name FunBox}, _) $ t1 =>
+              if new_s = "fun" then
+                coerce_term Ts new_T (Type ("fun", old_Ts)) t1
+              else
+                construct_value thy
+                    (@{const_name FunBox}, Type ("fun", new_Ts) --> new_T)
+                     [coerce_term Ts (Type ("fun", new_Ts))
+                                  (Type ("fun", old_Ts)) t1]
+            | Const _ $ t1 $ t2 =>
+              construct_value thy
+                  (if new_s = "*" then @{const_name Pair}
+                   else @{const_name PairBox}, new_Ts ---> new_T)
+                  [coerce_term Ts new_T1 old_T1 t1,
+                   coerce_term Ts new_T2 old_T2 t2]
+            | t' => raise TERM ("Nitpick_Preproc.box_fun_and_pair_in_term.\
+                                \coerce_term", [t'])
+          else
+            raise TYPE ("coerce_term", [new_T, old_T], [t])
+        | _ => raise TYPE ("coerce_term", [new_T, old_T], [t])
+    (* indexname * typ -> typ * term -> typ option list -> typ option list *)
+    fun add_boxed_types_for_var (z as (_, T)) (T', t') =
+      case t' of
+        Var z' => z' = z ? insert (op =) T'
+      | Const (@{const_name Pair}, _) $ t1 $ t2 =>
+        (case T' of
+           Type (_, [T1, T2]) =>
+           fold (add_boxed_types_for_var z) [(T1, t1), (T2, t2)]
+         | _ => raise TYPE ("Nitpick_Preproc.box_fun_and_pair_in_term.\
+                            \add_boxed_types_for_var", [T'], []))
+      | _ => exists_subterm (curry (op =) (Var z)) t' ? insert (op =) T
+    (* typ list -> typ list -> term -> indexname * typ -> typ *)
+    fun box_var_in_def new_Ts old_Ts t (z as (_, T)) =
+      case t of
+        @{const Trueprop} $ t1 => box_var_in_def new_Ts old_Ts t1 z
+      | Const (s0, _) $ t1 $ _ =>
+        if s0 = @{const_name "=="} orelse s0 = @{const_name "op ="} then
+          let
+            val (t', args) = strip_comb t1
+            val T' = fastype_of1 (new_Ts, do_term new_Ts old_Ts Neut t')
+          in
+            case fold (add_boxed_types_for_var z)
+                      (fst (strip_n_binders (length args) T') ~~ args) [] of
+              [T''] => T''
+            | _ => T
+          end
+        else
+          T
+      | _ => T
+    (* typ list -> typ list -> polarity -> string -> typ -> string -> typ
+       -> term -> term *)
+    and do_quantifier new_Ts old_Ts polar quant_s quant_T abs_s abs_T t =
+      let
+        val abs_T' =
+          if polar = Neut orelse is_positive_existential polar quant_s then
+            box_type hol_ctxt InFunLHS abs_T
+          else
+            abs_T
+        val body_T = body_type quant_T
+      in
+        Const (quant_s, (abs_T' --> body_T) --> body_T)
+        $ Abs (abs_s, abs_T',
+               t |> do_term (abs_T' :: new_Ts) (abs_T :: old_Ts) polar)
+      end
+    (* typ list -> typ list -> string -> typ -> term -> term -> term *)
+    and do_equals new_Ts old_Ts s0 T0 t1 t2 =
+      let
+        val (t1, t2) = pairself (do_term new_Ts old_Ts Neut) (t1, t2)
+        val (T1, T2) = pairself (curry fastype_of1 new_Ts) (t1, t2)
+        val T = [T1, T2] |> sort TermOrd.typ_ord |> List.last
+      in
+        list_comb (Const (s0, T --> T --> body_type T0),
+                   map2 (coerce_term new_Ts T) [T1, T2] [t1, t2])
+      end
+    (* string -> typ -> term *)
+    and do_description_operator s T =
+      let val T1 = box_type hol_ctxt InFunLHS (range_type T) in
+        Const (s, (T1 --> bool_T) --> T1)
+      end
+    (* typ list -> typ list -> polarity -> term -> term *)
+    and do_term new_Ts old_Ts polar t =
+      case t of
+        Const (s0 as @{const_name all}, T0) $ Abs (s1, T1, t1) =>
+        do_quantifier new_Ts old_Ts polar s0 T0 s1 T1 t1
+      | Const (s0 as @{const_name "=="}, T0) $ t1 $ t2 =>
+        do_equals new_Ts old_Ts s0 T0 t1 t2
+      | @{const "==>"} $ t1 $ t2 =>
+        @{const "==>"} $ do_term new_Ts old_Ts (flip_polarity polar) t1
+        $ do_term new_Ts old_Ts polar t2
+      | @{const Pure.conjunction} $ t1 $ t2 =>
+        @{const Pure.conjunction} $ do_term new_Ts old_Ts polar t1
+        $ do_term new_Ts old_Ts polar t2
+      | @{const Trueprop} $ t1 =>
+        @{const Trueprop} $ do_term new_Ts old_Ts polar t1
+      | @{const Not} $ t1 =>
+        @{const Not} $ do_term new_Ts old_Ts (flip_polarity polar) t1
+      | Const (s0 as @{const_name All}, T0) $ Abs (s1, T1, t1) =>
+        do_quantifier new_Ts old_Ts polar s0 T0 s1 T1 t1
+      | Const (s0 as @{const_name Ex}, T0) $ Abs (s1, T1, t1) =>
+        do_quantifier new_Ts old_Ts polar s0 T0 s1 T1 t1
+      | Const (s0 as @{const_name "op ="}, T0) $ t1 $ t2 =>
+        do_equals new_Ts old_Ts s0 T0 t1 t2
+      | @{const "op &"} $ t1 $ t2 =>
+        @{const "op &"} $ do_term new_Ts old_Ts polar t1
+        $ do_term new_Ts old_Ts polar t2
+      | @{const "op |"} $ t1 $ t2 =>
+        @{const "op |"} $ do_term new_Ts old_Ts polar t1
+        $ do_term new_Ts old_Ts polar t2
+      | @{const "op -->"} $ t1 $ t2 =>
+        @{const "op -->"} $ do_term new_Ts old_Ts (flip_polarity polar) t1
+        $ do_term new_Ts old_Ts polar t2
+      | Const (s as @{const_name The}, T) => do_description_operator s T
+      | Const (s as @{const_name Eps}, T) => do_description_operator s T
+      | Const (@{const_name quot_normal}, Type ("fun", [_, T2])) =>
+        let val T' = box_type hol_ctxt InSel T2 in
+          Const (@{const_name quot_normal}, T' --> T')
+        end
+      | Const (s as @{const_name Tha}, T) => do_description_operator s T
+      | Const (x as (s, T)) =>
+        Const (s, if s = @{const_name converse} orelse
+                     s = @{const_name trancl} then
+                    box_relational_operator_type T
+                  else if is_built_in_const fast_descrs x orelse
+                          s = @{const_name Sigma} then
+                    T
+                  else if is_constr_like thy x then
+                    box_type hol_ctxt InConstr T
+                  else if is_sel s
+                       orelse is_rep_fun thy x then
+                    box_type hol_ctxt InSel T
+                  else
+                    box_type hol_ctxt InExpr T)
+      | t1 $ Abs (s, T, t2') =>
+        let
+          val t1 = do_term new_Ts old_Ts Neut t1
+          val T1 = fastype_of1 (new_Ts, t1)
+          val (s1, Ts1) = dest_Type T1
+          val T' = hd (snd (dest_Type (hd Ts1)))
+          val t2 = Abs (s, T', do_term (T' :: new_Ts) (T :: old_Ts) Neut t2')
+          val T2 = fastype_of1 (new_Ts, t2)
+          val t2 = coerce_term new_Ts (hd Ts1) T2 t2
+        in
+          betapply (if s1 = "fun" then
+                      t1
+                    else
+                      select_nth_constr_arg thy
+                          (@{const_name FunBox}, Type ("fun", Ts1) --> T1) t1 0
+                          (Type ("fun", Ts1)), t2)
+        end
+      | t1 $ t2 =>
+        let
+          val t1 = do_term new_Ts old_Ts Neut t1
+          val T1 = fastype_of1 (new_Ts, t1)
+          val (s1, Ts1) = dest_Type T1
+          val t2 = do_term new_Ts old_Ts Neut t2
+          val T2 = fastype_of1 (new_Ts, t2)
+          val t2 = coerce_term new_Ts (hd Ts1) T2 t2
+        in
+          betapply (if s1 = "fun" then
+                      t1
+                    else
+                      select_nth_constr_arg thy
+                          (@{const_name FunBox}, Type ("fun", Ts1) --> T1) t1 0
+                          (Type ("fun", Ts1)), t2)
+        end
+      | Free (s, T) => Free (s, box_type hol_ctxt InExpr T)
+      | Var (z as (x, T)) =>
+        Var (x, if def then box_var_in_def new_Ts old_Ts orig_t z
+                else box_type hol_ctxt InExpr T)
+      | Bound _ => t
+      | Abs (s, T, t') =>
+        Abs (s, T, do_term (T :: new_Ts) (T :: old_Ts) Neut t')
+  in do_term [] [] Pos orig_t end
+
+(** Destruction of constructors **)
+
+val val_var_prefix = nitpick_prefix ^ "v"
+
+(* typ list -> int -> int -> int -> term -> term *)
+fun fresh_value_var Ts k n j t =
+  Var ((val_var_prefix ^ nat_subscript (n - j), k), fastype_of1 (Ts, t))
+
+(* typ list -> int -> term -> bool *)
+fun has_heavy_bounds_or_vars Ts level t =
+  let
+    (* typ list -> bool *)
+    fun aux [] = false
+      | aux [T] = is_fun_type T orelse is_pair_type T
+      | aux _ = true
+  in aux (map snd (Term.add_vars t []) @ map (nth Ts) (loose_bnos t)) end
+
+(* theory -> typ list -> bool -> int -> int -> term -> term list -> term list
+   -> term * term list *)
+fun pull_out_constr_comb thy Ts relax k level t args seen =
+  let val t_comb = list_comb (t, args) in
+    case t of
+      Const x =>
+      if not relax andalso is_constr thy x andalso
+         not (is_fun_type (fastype_of1 (Ts, t_comb))) andalso
+         has_heavy_bounds_or_vars Ts level t_comb andalso
+         not (loose_bvar (t_comb, level)) then
+        let
+          val (j, seen) = case find_index (curry (op =) t_comb) seen of
+                            ~1 => (0, t_comb :: seen)
+                          | j => (j, seen)
+        in (fresh_value_var Ts k (length seen) j t_comb, seen) end
+      else
+        (t_comb, seen)
+    | _ => (t_comb, seen)
+  end
+
+(* (term -> term) -> typ list -> int -> term list -> term list *)
+fun equations_for_pulled_out_constrs mk_eq Ts k seen =
+  let val n = length seen in
+    map2 (fn j => fn t => mk_eq (fresh_value_var Ts k n j t, t))
+         (index_seq 0 n) seen
+  end
+
+(* theory -> bool -> term -> term *)
+fun pull_out_universal_constrs thy def t =
+  let
+    val k = maxidx_of_term t + 1
+    (* typ list -> bool -> term -> term list -> term list -> term * term list *)
+    fun do_term Ts def t args seen =
+      case t of
+        (t0 as Const (@{const_name "=="}, _)) $ t1 $ t2 =>
+        do_eq_or_imp Ts true def t0 t1 t2 seen
+      | (t0 as @{const "==>"}) $ t1 $ t2 =>
+        if def then (t, []) else do_eq_or_imp Ts false def t0 t1 t2 seen
+      | (t0 as Const (@{const_name "op ="}, _)) $ t1 $ t2 =>
+        do_eq_or_imp Ts true def t0 t1 t2 seen
+      | (t0 as @{const "op -->"}) $ t1 $ t2 =>
+        do_eq_or_imp Ts false def t0 t1 t2 seen
+      | Abs (s, T, t') =>
+        let val (t', seen) = do_term (T :: Ts) def t' [] seen in
+          (list_comb (Abs (s, T, t'), args), seen)
+        end
+      | t1 $ t2 =>
+        let val (t2, seen) = do_term Ts def t2 [] seen in
+          do_term Ts def t1 (t2 :: args) seen
+        end
+      | _ => pull_out_constr_comb thy Ts def k 0 t args seen
+    (* typ list -> bool -> bool -> term -> term -> term -> term list
+       -> term * term list *)
+    and do_eq_or_imp Ts eq def t0 t1 t2 seen =
+      let
+        val (t2, seen) = if eq andalso def then (t2, seen)
+                         else do_term Ts false t2 [] seen
+        val (t1, seen) = do_term Ts false t1 [] seen
+      in (t0 $ t1 $ t2, seen) end
+    val (concl, seen) = do_term [] def t [] []
+  in
+    Logic.list_implies (equations_for_pulled_out_constrs Logic.mk_equals [] k
+                                                         seen, concl)
+  end
+
+(* term -> term -> term *)
+fun mk_exists v t =
+  HOLogic.exists_const (fastype_of v) $ lambda v (incr_boundvars 1 t)
+
+(* theory -> term -> term *)
+fun pull_out_existential_constrs thy t =
+  let
+    val k = maxidx_of_term t + 1
+    (* typ list -> int -> term -> term list -> term list -> term * term list *)
+    fun aux Ts num_exists t args seen =
+      case t of
+        (t0 as Const (@{const_name Ex}, _)) $ Abs (s1, T1, t1) =>
+        let
+          val (t1, seen') = aux (T1 :: Ts) (num_exists + 1) t1 [] []
+          val n = length seen'
+          (* unit -> term list *)
+          fun vars () = map2 (fresh_value_var Ts k n) (index_seq 0 n) seen'
+        in
+          (equations_for_pulled_out_constrs HOLogic.mk_eq Ts k seen'
+           |> List.foldl s_conj t1 |> fold mk_exists (vars ())
+           |> curry3 Abs s1 T1 |> curry (op $) t0, seen)
+        end
+      | t1 $ t2 =>
+        let val (t2, seen) = aux Ts num_exists t2 [] seen in
+          aux Ts num_exists t1 (t2 :: args) seen
+        end
+      | Abs (s, T, t') =>
+        let
+          val (t', seen) = aux (T :: Ts) 0 t' [] (map (incr_boundvars 1) seen)
+        in (list_comb (Abs (s, T, t'), args), map (incr_boundvars ~1) seen) end
+      | _ =>
+        if num_exists > 0 then
+          pull_out_constr_comb thy Ts false k num_exists t args seen
+        else
+          (list_comb (t, args), seen)
+  in aux [] 0 t [] [] |> fst end
+
+(* hol_context -> bool -> term -> term *)
+fun destroy_pulled_out_constrs (hol_ctxt as {thy, ...}) axiom t =
+  let
+    (* styp -> int *)
+    val num_occs_of_var =
+      fold_aterms (fn Var z => (fn f => fn z' => f z' |> z = z' ? Integer.add 1)
+                    | _ => I) t (K 0)
+    (* bool -> term -> term *)
+    fun aux careful ((t0 as Const (@{const_name "=="}, _)) $ t1 $ t2) =
+        aux_eq careful true t0 t1 t2
+      | aux careful ((t0 as @{const "==>"}) $ t1 $ t2) =
+        t0 $ aux false t1 $ aux careful t2
+      | aux careful ((t0 as Const (@{const_name "op ="}, _)) $ t1 $ t2) =
+        aux_eq careful true t0 t1 t2
+      | aux careful ((t0 as @{const "op -->"}) $ t1 $ t2) =
+        t0 $ aux false t1 $ aux careful t2
+      | aux careful (Abs (s, T, t')) = Abs (s, T, aux careful t')
+      | aux careful (t1 $ t2) = aux careful t1 $ aux careful t2
+      | aux _ t = t
+    (* bool -> bool -> term -> term -> term -> term *)
+    and aux_eq careful pass1 t0 t1 t2 =
+      ((if careful then
+          raise SAME ()
+        else if axiom andalso is_Var t2 andalso
+                num_occs_of_var (dest_Var t2) = 1 then
+          @{const True}
+        else case strip_comb t2 of
+          (* The first case is not as general as it could be. *)
+          (Const (@{const_name PairBox}, _),
+                  [Const (@{const_name fst}, _) $ Var z1,
+                   Const (@{const_name snd}, _) $ Var z2]) =>
+          if z1 = z2 andalso num_occs_of_var z1 = 2 then @{const True}
+          else raise SAME ()
+        | (Const (x as (s, T)), args) =>
+          let val arg_Ts = binder_types T in
+            if length arg_Ts = length args andalso
+               (is_constr thy x orelse s = @{const_name Pair} orelse
+                x = (@{const_name Suc}, nat_T --> nat_T)) andalso
+               (not careful orelse not (is_Var t1) orelse
+                String.isPrefix val_var_prefix (fst (fst (dest_Var t1)))) then
+              discriminate_value hol_ctxt x t1 ::
+              map3 (sel_eq x t1) (index_seq 0 (length args)) arg_Ts args
+              |> foldr1 s_conj
+            else
+              raise SAME ()
+          end
+        | _ => raise SAME ())
+       |> body_type (type_of t0) = prop_T ? HOLogic.mk_Trueprop)
+      handle SAME () => if pass1 then aux_eq careful false t0 t2 t1
+                        else t0 $ aux false t2 $ aux false t1
+    (* styp -> term -> int -> typ -> term -> term *)
+    and sel_eq x t n nth_T nth_t =
+      HOLogic.eq_const nth_T $ nth_t $ select_nth_constr_arg thy x t n nth_T
+      |> aux false
+  in aux axiom t end
+
+(** Destruction of universal and existential equalities **)
+
+(* term -> term *)
+fun curry_assms (@{const "==>"} $ (@{const Trueprop}
+                                   $ (@{const "op &"} $ t1 $ t2)) $ t3) =
+    curry_assms (Logic.list_implies ([t1, t2] |> map HOLogic.mk_Trueprop, t3))
+  | curry_assms (@{const "==>"} $ t1 $ t2) =
+    @{const "==>"} $ curry_assms t1 $ curry_assms t2
+  | curry_assms t = t
+
+(* term -> term *)
+val destroy_universal_equalities =
+  let
+    (* term list -> (indexname * typ) list -> term -> term *)
+    fun aux prems zs t =
+      case t of
+        @{const "==>"} $ t1 $ t2 => aux_implies prems zs t1 t2
+      | _ => Logic.list_implies (rev prems, t)
+    (* term list -> (indexname * typ) list -> term -> term -> term *)
+    and aux_implies prems zs t1 t2 =
+      case t1 of
+        Const (@{const_name "=="}, _) $ Var z $ t' => aux_eq prems zs z t' t1 t2
+      | @{const Trueprop} $ (Const (@{const_name "op ="}, _) $ Var z $ t') =>
+        aux_eq prems zs z t' t1 t2
+      | @{const Trueprop} $ (Const (@{const_name "op ="}, _) $ t' $ Var z) =>
+        aux_eq prems zs z t' t1 t2
+      | _ => aux (t1 :: prems) (Term.add_vars t1 zs) t2
+    (* term list -> (indexname * typ) list -> indexname * typ -> term -> term
+       -> term -> term *)
+    and aux_eq prems zs z t' t1 t2 =
+      if not (member (op =) zs z) andalso
+         not (exists_subterm (curry (op =) (Var z)) t') then
+        aux prems zs (subst_free [(Var z, t')] t2)
+      else
+        aux (t1 :: prems) (Term.add_vars t1 zs) t2
+  in aux [] [] end
+
+(* theory -> int -> term list -> term list -> (term * term list) option *)
+fun find_bound_assign _ _ _ [] = NONE
+  | find_bound_assign thy j seen (t :: ts) =
+    let
+      (* bool -> term -> term -> (term * term list) option *)
+      fun aux pass1 t1 t2 =
+        (if loose_bvar1 (t2, j) then
+           if pass1 then aux false t2 t1 else raise SAME ()
+         else case t1 of
+           Bound j' => if j' = j then SOME (t2, ts @ seen) else raise SAME ()
+         | Const (s, Type ("fun", [T1, T2])) $ Bound j' =>
+           if j' = j andalso
+              s = nth_sel_name_for_constr_name @{const_name FunBox} 0 then
+             SOME (construct_value thy (@{const_name FunBox}, T2 --> T1) [t2],
+                   ts @ seen)
+           else
+             raise SAME ()
+         | _ => raise SAME ())
+        handle SAME () => find_bound_assign thy j (t :: seen) ts
+    in
+      case t of
+        Const (@{const_name "op ="}, _) $ t1 $ t2 => aux true t1 t2
+      | _ => find_bound_assign thy j (t :: seen) ts
+    end
+
+(* int -> term -> term -> term *)
+fun subst_one_bound j arg t =
+  let
+    fun aux (Bound i, lev) =
+        if i < lev then raise SAME ()
+        else if i = lev then incr_boundvars (lev - j) arg
+        else Bound (i - 1)
+      | aux (Abs (a, T, body), lev) = Abs (a, T, aux (body, lev + 1))
+      | aux (f $ t, lev) =
+        (aux (f, lev) $ (aux (t, lev) handle SAME () => t)
+         handle SAME () => f $ aux (t, lev))
+      | aux _ = raise SAME ()
+  in aux (t, j) handle SAME () => t end
+
+(* theory -> term -> term *)
+fun destroy_existential_equalities thy =
+  let
+    (* string list -> typ list -> term list -> term *)
+    fun kill [] [] ts = foldr1 s_conj ts
+      | kill (s :: ss) (T :: Ts) ts =
+        (case find_bound_assign thy (length ss) [] ts of
+           SOME (_, []) => @{const True}
+         | SOME (arg_t, ts) =>
+           kill ss Ts (map (subst_one_bound (length ss)
+                                (incr_bv (~1, length ss + 1, arg_t))) ts)
+         | NONE =>
+           Const (@{const_name Ex}, (T --> bool_T) --> bool_T)
+           $ Abs (s, T, kill ss Ts ts))
+      | kill _ _ _ = raise UnequalLengths
+    (* string list -> typ list -> term -> term *)
+    fun gather ss Ts ((t0 as Const (@{const_name Ex}, _)) $ Abs (s1, T1, t1)) =
+        gather (ss @ [s1]) (Ts @ [T1]) t1
+      | gather [] [] (Abs (s, T, t1)) = Abs (s, T, gather [] [] t1)
+      | gather [] [] (t1 $ t2) = gather [] [] t1 $ gather [] [] t2
+      | gather [] [] t = t
+      | gather ss Ts t = kill ss Ts (conjuncts_of (gather [] [] t))
+  in gather [] [] end
+
+(** Skolemization **)
+
+(* int -> int -> string *)
+fun skolem_prefix_for k j =
+  skolem_prefix ^ string_of_int k ^ "@" ^ string_of_int j ^ name_sep
+
+(* hol_context -> int -> term -> term *)
+fun skolemize_term_and_more (hol_ctxt as {thy, def_table, skolems, ...})
+                            skolem_depth =
+  let
+    (* int list -> int list *)
+    val incrs = map (Integer.add 1)
+    (* string list -> typ list -> int list -> int -> polarity -> term -> term *)
+    fun aux ss Ts js depth polar t =
+      let
+        (* string -> typ -> string -> typ -> term -> term *)
+        fun do_quantifier quant_s quant_T abs_s abs_T t =
+          if not (loose_bvar1 (t, 0)) then
+            aux ss Ts js depth polar (incr_boundvars ~1 t)
+          else if depth <= skolem_depth andalso
+                  is_positive_existential polar quant_s then
+            let
+              val j = length (!skolems) + 1
+              val sko_s = skolem_prefix_for (length js) j ^ abs_s
+              val _ = Unsynchronized.change skolems (cons (sko_s, ss))
+              val sko_t = list_comb (Const (sko_s, rev Ts ---> abs_T),
+                                     map Bound (rev js))
+              val abs_t = Abs (abs_s, abs_T, aux ss Ts (incrs js) depth polar t)
+            in
+              if null js then betapply (abs_t, sko_t)
+              else Const (@{const_name Let}, abs_T --> quant_T) $ sko_t $ abs_t
+            end
+          else
+            Const (quant_s, quant_T)
+            $ Abs (abs_s, abs_T,
+                   if is_higher_order_type abs_T then
+                     t
+                   else
+                     aux (abs_s :: ss) (abs_T :: Ts) (0 :: incrs js)
+                         (depth + 1) polar t)
+      in
+        case t of
+          Const (s0 as @{const_name all}, T0) $ Abs (s1, T1, t1) =>
+          do_quantifier s0 T0 s1 T1 t1
+        | @{const "==>"} $ t1 $ t2 =>
+          @{const "==>"} $ aux ss Ts js depth (flip_polarity polar) t1
+          $ aux ss Ts js depth polar t2
+        | @{const Pure.conjunction} $ t1 $ t2 =>
+          @{const Pure.conjunction} $ aux ss Ts js depth polar t1
+          $ aux ss Ts js depth polar t2
+        | @{const Trueprop} $ t1 =>
+          @{const Trueprop} $ aux ss Ts js depth polar t1
+        | @{const Not} $ t1 =>
+          @{const Not} $ aux ss Ts js depth (flip_polarity polar) t1
+        | Const (s0 as @{const_name All}, T0) $ Abs (s1, T1, t1) =>
+          do_quantifier s0 T0 s1 T1 t1
+        | Const (s0 as @{const_name Ex}, T0) $ Abs (s1, T1, t1) =>
+          do_quantifier s0 T0 s1 T1 t1
+        | @{const "op &"} $ t1 $ t2 =>
+          @{const "op &"} $ aux ss Ts js depth polar t1
+          $ aux ss Ts js depth polar t2
+        | @{const "op |"} $ t1 $ t2 =>
+          @{const "op |"} $ aux ss Ts js depth polar t1
+          $ aux ss Ts js depth polar t2
+        | @{const "op -->"} $ t1 $ t2 =>
+          @{const "op -->"} $ aux ss Ts js depth (flip_polarity polar) t1
+          $ aux ss Ts js depth polar t2
+        | (t0 as Const (@{const_name Let}, T0)) $ t1 $ t2 =>
+          t0 $ t1 $ aux ss Ts js depth polar t2
+        | Const (x as (s, T)) =>
+          if is_inductive_pred hol_ctxt x andalso
+             not (is_well_founded_inductive_pred hol_ctxt x) then
+            let
+              val gfp = (fixpoint_kind_of_const thy def_table x = Gfp)
+              val (pref, connective, set_oper) =
+                if gfp then
+                  (lbfp_prefix,
+                   @{const "op |"},
+                   @{const_name upper_semilattice_fun_inst.sup_fun})
+                else
+                  (ubfp_prefix,
+                   @{const "op &"},
+                   @{const_name lower_semilattice_fun_inst.inf_fun})
+              (* unit -> term *)
+              fun pos () = unrolled_inductive_pred_const hol_ctxt gfp x
+                           |> aux ss Ts js depth polar
+              fun neg () = Const (pref ^ s, T)
+            in
+              (case polar |> gfp ? flip_polarity of
+                 Pos => pos ()
+               | Neg => neg ()
+               | Neut =>
+                 if is_fun_type T then
+                   let
+                     val ((trunk_arg_Ts, rump_arg_T), body_T) =
+                       T |> strip_type |>> split_last
+                     val set_T = rump_arg_T --> body_T
+                     (* (unit -> term) -> term *)
+                     fun app f =
+                       list_comb (f (),
+                                  map Bound (length trunk_arg_Ts - 1 downto 0))
+                   in
+                     List.foldr absdummy
+                                (Const (set_oper, set_T --> set_T --> set_T)
+                                        $ app pos $ app neg) trunk_arg_Ts
+                   end
+                 else
+                   connective $ pos () $ neg ())
+            end
+          else
+            Const x
+        | t1 $ t2 =>
+          betapply (aux ss Ts [] (skolem_depth + 1) polar t1,
+                    aux ss Ts [] depth Neut t2)
+        | Abs (s, T, t1) => Abs (s, T, aux ss Ts (incrs js) depth polar t1)
+        | _ => t
+      end
+  in aux [] [] [] 0 Pos end
+
+(** Function specialization **)
+
+(* term -> term list *)
+fun params_in_equation (@{const "==>"} $ _ $ t2) = params_in_equation t2
+  | params_in_equation (@{const Trueprop} $ t1) = params_in_equation t1
+  | params_in_equation (Const (@{const_name "op ="}, _) $ t1 $ _) =
+    snd (strip_comb t1)
+  | params_in_equation _ = []
+
+(* styp -> styp -> int list -> term list -> term list -> term -> term *)
+fun specialize_fun_axiom x x' fixed_js fixed_args extra_args t =
+  let
+    val k = fold Integer.max (map maxidx_of_term (fixed_args @ extra_args)) 0
+            + 1
+    val t = map_aterms (fn Var ((s, i), T) => Var ((s, k + i), T) | t' => t') t
+    val fixed_params = filter_indices fixed_js (params_in_equation t)
+    (* term list -> term -> term *)
+    fun aux args (Abs (s, T, t)) = list_comb (Abs (s, T, aux [] t), args)
+      | aux args (t1 $ t2) = aux (aux [] t2 :: args) t1
+      | aux args t =
+        if t = Const x then
+          list_comb (Const x', extra_args @ filter_out_indices fixed_js args)
+        else
+          let val j = find_index (curry (op =) t) fixed_params in
+            list_comb (if j >= 0 then nth fixed_args j else t, args)
+          end
+  in aux [] t end
+
+(* hol_context -> styp -> (int * term option) list *)
+fun static_args_in_term ({ersatz_table, ...} : hol_context) x t =
+  let
+    (* term -> term list -> term list -> term list list *)
+    fun fun_calls (Abs (_, _, t)) _ = fun_calls t []
+      | fun_calls (t1 $ t2) args = fun_calls t2 [] #> fun_calls t1 (t2 :: args)
+      | fun_calls t args =
+        (case t of
+           Const (x' as (s', T')) =>
+           x = x' orelse (case AList.lookup (op =) ersatz_table s' of
+                            SOME s'' => x = (s'', T')
+                          | NONE => false)
+         | _ => false) ? cons args
+    (* term list list -> term list list -> term list -> term list list *)
+    fun call_sets [] [] vs = [vs]
+      | call_sets [] uss vs = vs :: call_sets uss [] []
+      | call_sets ([] :: _) _ _ = []
+      | call_sets ((t :: ts) :: tss) uss vs =
+        OrdList.insert TermOrd.term_ord t vs |> call_sets tss (ts :: uss)
+    val sets = call_sets (fun_calls t [] []) [] []
+    val indexed_sets = sets ~~ (index_seq 0 (length sets))
+  in
+    fold_rev (fn (set, j) =>
+                 case set of
+                   [Var _] => AList.lookup (op =) indexed_sets set = SOME j
+                              ? cons (j, NONE)
+                 | [t as Const _] => cons (j, SOME t)
+                 | [t as Free _] => cons (j, SOME t)
+                 | _ => I) indexed_sets []
+  end
+(* hol_context -> styp -> term list -> (int * term option) list *)
+fun static_args_in_terms hol_ctxt x =
+  map (static_args_in_term hol_ctxt x)
+  #> fold1 (OrdList.inter (prod_ord int_ord (option_ord TermOrd.term_ord)))
+
+(* (int * term option) list -> (int * term) list -> int list *)
+fun overlapping_indices [] _ = []
+  | overlapping_indices _ [] = []
+  | overlapping_indices (ps1 as (j1, t1) :: ps1') (ps2 as (j2, t2) :: ps2') =
+    if j1 < j2 then overlapping_indices ps1' ps2
+    else if j1 > j2 then overlapping_indices ps1 ps2'
+    else overlapping_indices ps1' ps2' |> the_default t2 t1 = t2 ? cons j1
+
+(* typ list -> term -> bool *)
+fun is_eligible_arg Ts t =
+  let val bad_Ts = map snd (Term.add_vars t []) @ map (nth Ts) (loose_bnos t) in
+    null bad_Ts orelse
+    (is_higher_order_type (fastype_of1 (Ts, t)) andalso
+     forall (not o is_higher_order_type) bad_Ts)
+  end
+
+(* int -> string *)
+fun special_prefix_for j = special_prefix ^ string_of_int j ^ name_sep
+
+(* If a constant's definition is picked up deeper than this threshold, we
+   prevent excessive specialization by not specializing it. *)
+val special_max_depth = 20
+
+val bound_var_prefix = "b"
+
+(* hol_context -> int -> term -> term *)
+fun specialize_consts_in_term (hol_ctxt as {thy, specialize, simp_table,
+                                            special_funs, ...}) depth t =
+  if not specialize orelse depth > special_max_depth then
+    t
+  else
+    let
+      val blacklist = if depth = 0 then []
+                      else case term_under_def t of Const x => [x] | _ => []
+      (* term list -> typ list -> term -> term *)
+      fun aux args Ts (Const (x as (s, T))) =
+          ((if not (member (op =) blacklist x) andalso not (null args) andalso
+               not (String.isPrefix special_prefix s) andalso
+               is_equational_fun hol_ctxt x then
+              let
+                val eligible_args = filter (is_eligible_arg Ts o snd)
+                                           (index_seq 0 (length args) ~~ args)
+                val _ = not (null eligible_args) orelse raise SAME ()
+                val old_axs = equational_fun_axioms hol_ctxt x
+                              |> map (destroy_existential_equalities thy)
+                val static_params = static_args_in_terms hol_ctxt x old_axs
+                val fixed_js = overlapping_indices static_params eligible_args
+                val _ = not (null fixed_js) orelse raise SAME ()
+                val fixed_args = filter_indices fixed_js args
+                val vars = fold Term.add_vars fixed_args []
+                           |> sort (TermOrd.fast_indexname_ord o pairself fst)
+                val bound_js = fold (fn t => fn js => add_loose_bnos (t, 0, js))
+                                    fixed_args []
+                               |> sort int_ord
+                val live_args = filter_out_indices fixed_js args
+                val extra_args = map Var vars @ map Bound bound_js @ live_args
+                val extra_Ts = map snd vars @ filter_indices bound_js Ts
+                val k = maxidx_of_term t + 1
+                (* int -> term *)
+                fun var_for_bound_no j =
+                  Var ((bound_var_prefix ^
+                        nat_subscript (find_index (curry (op =) j) bound_js
+                                       + 1), k),
+                       nth Ts j)
+                val fixed_args_in_axiom =
+                  map (curry subst_bounds
+                             (map var_for_bound_no (index_seq 0 (length Ts))))
+                      fixed_args
+              in
+                case AList.lookup (op =) (!special_funs)
+                                  (x, fixed_js, fixed_args_in_axiom) of
+                  SOME x' => list_comb (Const x', extra_args)
+                | NONE =>
+                  let
+                    val extra_args_in_axiom =
+                      map Var vars @ map var_for_bound_no bound_js
+                    val x' as (s', _) =
+                      (special_prefix_for (length (!special_funs) + 1) ^ s,
+                       extra_Ts @ filter_out_indices fixed_js (binder_types T)
+                       ---> body_type T)
+                    val new_axs =
+                      map (specialize_fun_axiom x x' fixed_js
+                               fixed_args_in_axiom extra_args_in_axiom) old_axs
+                    val _ =
+                      Unsynchronized.change special_funs
+                          (cons ((x, fixed_js, fixed_args_in_axiom), x'))
+                    val _ = add_simps simp_table s' new_axs
+                  in list_comb (Const x', extra_args) end
+              end
+            else
+              raise SAME ())
+           handle SAME () => list_comb (Const x, args))
+        | aux args Ts (Abs (s, T, t)) =
+          list_comb (Abs (s, T, aux [] (T :: Ts) t), args)
+        | aux args Ts (t1 $ t2) = aux (aux [] Ts t2 :: args) Ts t1
+        | aux args _ t = list_comb (t, args)
+    in aux [] [] t end
+
+type special_triple = int list * term list * styp
+
+val cong_var_prefix = "c"
+
+(* styp -> special_triple -> special_triple -> term *)
+fun special_congruence_axiom (s, T) (js1, ts1, x1) (js2, ts2, x2) =
+  let
+    val (bounds1, bounds2) = pairself (map Var o special_bounds) (ts1, ts2)
+    val Ts = binder_types T
+    val max_j = fold (fold Integer.max) [js1, js2] ~1
+    val (eqs, (args1, args2)) =
+      fold (fn j => case pairself (fn ps => AList.lookup (op =) ps j)
+                                  (js1 ~~ ts1, js2 ~~ ts2) of
+                      (SOME t1, SOME t2) => apfst (cons (t1, t2))
+                    | (SOME t1, NONE) => apsnd (apsnd (cons t1))
+                    | (NONE, SOME t2) => apsnd (apfst (cons t2))
+                    | (NONE, NONE) =>
+                      let val v = Var ((cong_var_prefix ^ nat_subscript j, 0),
+                                       nth Ts j) in
+                        apsnd (pairself (cons v))
+                      end) (max_j downto 0) ([], ([], []))
+  in
+    Logic.list_implies (eqs |> filter_out (op =) |> distinct (op =)
+                            |> map Logic.mk_equals,
+                        Logic.mk_equals (list_comb (Const x1, bounds1 @ args1),
+                                         list_comb (Const x2, bounds2 @ args2)))
+    |> Refute.close_form (* TODO: needed? *)
+  end
+
+(* hol_context -> styp list -> term list *)
+fun special_congruence_axioms (hol_ctxt as {special_funs, ...}) xs =
+  let
+    val groups =
+      !special_funs
+      |> map (fn ((x, js, ts), x') => (x, (js, ts, x')))
+      |> AList.group (op =)
+      |> filter_out (is_equational_fun_surely_complete hol_ctxt o fst)
+      |> map (fn (x, zs) => (x, zs |> member (op =) xs x ? cons ([], [], x)))
+    (* special_triple -> int *)
+    fun generality (js, _, _) = ~(length js)
+    (* special_triple -> special_triple -> bool *)
+    fun is_more_specific (j1, t1, x1) (j2, t2, x2) =
+      x1 <> x2 andalso OrdList.subset (prod_ord int_ord TermOrd.term_ord)
+                                      (j2 ~~ t2, j1 ~~ t1)
+    (* styp -> special_triple list -> special_triple list -> special_triple list
+       -> term list -> term list *)
+    fun do_pass_1 _ [] [_] [_] = I
+      | do_pass_1 x skipped _ [] = do_pass_2 x skipped
+      | do_pass_1 x skipped all (z :: zs) =
+        case filter (is_more_specific z) all
+             |> sort (int_ord o pairself generality) of
+          [] => do_pass_1 x (z :: skipped) all zs
+        | (z' :: _) => cons (special_congruence_axiom x z z')
+                       #> do_pass_1 x skipped all zs
+    (* styp -> special_triple list -> term list -> term list *)
+    and do_pass_2 _ [] = I
+      | do_pass_2 x (z :: zs) =
+        fold (cons o special_congruence_axiom x z) zs #> do_pass_2 x zs
+  in fold (fn (x, zs) => do_pass_1 x [] zs zs) groups [] end
+
+(** Axiom selection **)
+
+(* Similar to "Refute.specialize_type" but returns all matches rather than only
+   the first (preorder) match. *)
+(* theory -> styp -> term -> term list *)
+fun multi_specialize_type thy slack (x as (s, T)) t =
+  let
+    (* term -> (typ * term) list -> (typ * term) list *)
+    fun aux (Const (s', T')) ys =
+        if s = s' then
+          ys |> (if AList.defined (op =) ys T' then
+                   I
+                 else
+                  cons (T', Refute.monomorphic_term
+                                (Sign.typ_match thy (T', T) Vartab.empty) t)
+                  handle Type.TYPE_MATCH => I
+                       | Refute.REFUTE _ =>
+                         if slack then
+                           I
+                         else
+                           raise NOT_SUPPORTED ("too much polymorphism in \
+                                                \axiom involving " ^ quote s))
+        else
+          ys
+      | aux _ ys = ys
+  in map snd (fold_aterms aux t []) end
+
+(* theory -> bool -> const_table -> styp -> term list *)
+fun nondef_props_for_const thy slack table (x as (s, _)) =
+  these (Symtab.lookup table s) |> maps (multi_specialize_type thy slack x)
+
+(* 'a Symtab.table -> 'a list *)
+fun all_table_entries table = Symtab.fold (append o snd) table []
+(* const_table -> string -> const_table *)
+fun extra_table table s = Symtab.make [(s, all_table_entries table)]
+
+(* int -> term -> term *)
+fun eval_axiom_for_term j t =
+  Logic.mk_equals (Const (eval_prefix ^ string_of_int j, fastype_of t), t)
+
+(* term -> bool *)
+val is_trivial_equation = the_default false o try (op aconv o Logic.dest_equals)
+
+(* Prevents divergence in case of cyclic or infinite axiom dependencies. *)
+val axioms_max_depth = 255
+
+(* hol_context -> term -> (term list * term list) * (bool * bool) *)
+fun axioms_for_term
+        (hol_ctxt as {thy, max_bisim_depth, user_axioms, fast_descrs, evals,
+                      def_table, nondef_table, user_nondefs, ...}) t =
+  let
+    type accumulator = styp list * (term list * term list)
+    (* (term list * term list -> term list)
+       -> ((term list -> term list) -> term list * term list
+           -> term list * term list)
+       -> int -> term -> accumulator -> accumulator *)
+    fun add_axiom get app depth t (accum as (xs, axs)) =
+      let
+        val t = t |> unfold_defs_in_term hol_ctxt
+                  |> skolemize_term_and_more hol_ctxt ~1
+      in
+        if is_trivial_equation t then
+          accum
+        else
+          let val t' = t |> specialize_consts_in_term hol_ctxt depth in
+            if exists (member (op aconv) (get axs)) [t, t'] then accum
+            else add_axioms_for_term (depth + 1) t' (xs, app (cons t') axs)
+          end
+      end
+    (* int -> term -> accumulator -> accumulator *)
+    and add_def_axiom depth = add_axiom fst apfst depth
+    and add_nondef_axiom depth = add_axiom snd apsnd depth
+    and add_maybe_def_axiom depth t =
+      (if head_of t <> @{const "==>"} then add_def_axiom
+       else add_nondef_axiom) depth t
+    and add_eq_axiom depth t =
+      (if is_constr_pattern_formula thy t then add_def_axiom
+       else add_nondef_axiom) depth t
+    (* int -> term -> accumulator -> accumulator *)
+    and add_axioms_for_term depth t (accum as (xs, axs)) =
+      case t of
+        t1 $ t2 => accum |> fold (add_axioms_for_term depth) [t1, t2]
+      | Const (x as (s, T)) =>
+        (if member (op =) xs x orelse is_built_in_const fast_descrs x then
+           accum
+         else
+           let val accum as (xs, _) = (x :: xs, axs) in
+             if depth > axioms_max_depth then
+               raise TOO_LARGE ("Nitpick_Preproc.axioms_for_term.\
+                                \add_axioms_for_term",
+                                "too many nested axioms (" ^
+                                string_of_int depth ^ ")")
+             else if Refute.is_const_of_class thy x then
+               let
+                 val class = Logic.class_of_const s
+                 val of_class = Logic.mk_of_class (TVar (("'a", 0), [class]),
+                                                   class)
+                 val ax1 = try (Refute.specialize_type thy x) of_class
+                 val ax2 = Option.map (Refute.specialize_type thy x o snd)
+                                      (Refute.get_classdef thy class)
+               in
+                 fold (add_maybe_def_axiom depth) (map_filter I [ax1, ax2])
+                      accum
+               end
+             else if is_constr thy x then
+               accum
+             else if is_equational_fun hol_ctxt x then
+               fold (add_eq_axiom depth) (equational_fun_axioms hol_ctxt x)
+                    accum
+             else if is_abs_fun thy x then
+               if is_quot_type thy (range_type T) then
+                 raise NOT_SUPPORTED "\"Abs_\" function of quotient type"
+               else
+                 accum |> fold (add_nondef_axiom depth)
+                               (nondef_props_for_const thy false nondef_table x)
+                       |> is_funky_typedef thy (range_type T)
+                          ? fold (add_maybe_def_axiom depth)
+                                 (nondef_props_for_const thy true
+                                                    (extra_table def_table s) x)
+             else if is_rep_fun thy x then
+               if is_quot_type thy (domain_type T) then
+                 raise NOT_SUPPORTED "\"Rep_\" function of quotient type"
+               else
+                 accum |> fold (add_nondef_axiom depth)
+                               (nondef_props_for_const thy false nondef_table x)
+                       |> is_funky_typedef thy (range_type T)
+                          ? fold (add_maybe_def_axiom depth)
+                                 (nondef_props_for_const thy true
+                                                    (extra_table def_table s) x)
+                       |> add_axioms_for_term depth
+                                              (Const (mate_of_rep_fun thy x))
+                       |> fold (add_def_axiom depth)
+                               (inverse_axioms_for_rep_fun thy x)
+             else
+               accum |> user_axioms <> SOME false
+                        ? fold (add_nondef_axiom depth)
+                               (nondef_props_for_const thy false nondef_table x)
+           end)
+        |> add_axioms_for_type depth T
+      | Free (_, T) => add_axioms_for_type depth T accum
+      | Var (_, T) => add_axioms_for_type depth T accum
+      | Bound _ => accum
+      | Abs (_, T, t) => accum |> add_axioms_for_term depth t
+                               |> add_axioms_for_type depth T
+    (* int -> typ -> accumulator -> accumulator *)
+    and add_axioms_for_type depth T =
+      case T of
+        Type ("fun", Ts) => fold (add_axioms_for_type depth) Ts
+      | Type ("*", Ts) => fold (add_axioms_for_type depth) Ts
+      | @{typ prop} => I
+      | @{typ bool} => I
+      | @{typ unit} => I
+      | TFree (_, S) => add_axioms_for_sort depth T S
+      | TVar (_, S) => add_axioms_for_sort depth T S
+      | Type (z as (s, Ts)) =>
+        fold (add_axioms_for_type depth) Ts
+        #> (if is_pure_typedef thy T then
+              fold (add_maybe_def_axiom depth) (optimized_typedef_axioms thy z)
+            else if is_quot_type thy T then
+              fold (add_def_axiom depth) (optimized_quot_type_axioms thy z)
+            else if max_bisim_depth >= 0 andalso is_codatatype thy T then
+              fold (add_maybe_def_axiom depth)
+                   (codatatype_bisim_axioms hol_ctxt T)
+            else
+              I)
+    (* int -> typ -> sort -> accumulator -> accumulator *)
+    and add_axioms_for_sort depth T S =
+      let
+        val supers = Sign.complete_sort thy S
+        val class_axioms =
+          maps (fn class => map prop_of (AxClass.get_info thy class |> #axioms
+                                         handle ERROR _ => [])) supers
+        val monomorphic_class_axioms =
+          map (fn t => case Term.add_tvars t [] of
+                         [] => t
+                       | [(x, S)] =>
+                         Refute.monomorphic_term (Vartab.make [(x, (S, T))]) t
+                       | _ => raise TERM ("Nitpick_Preproc.axioms_for_term.\
+                                          \add_axioms_for_sort", [t]))
+              class_axioms
+      in fold (add_nondef_axiom depth) monomorphic_class_axioms end
+    val (mono_user_nondefs, poly_user_nondefs) =
+      List.partition (null o Term.hidden_polymorphism) user_nondefs
+    val eval_axioms = map2 eval_axiom_for_term (index_seq 0 (length evals))
+                           evals
+    val (xs, (defs, nondefs)) =
+      ([], ([], [])) |> add_axioms_for_term 1 t 
+                     |> fold_rev (add_def_axiom 1) eval_axioms
+                     |> user_axioms = SOME true
+                        ? fold (add_nondef_axiom 1) mono_user_nondefs
+    val defs = defs @ special_congruence_axioms hol_ctxt xs
+  in
+    ((defs, nondefs), (user_axioms = SOME true orelse null mono_user_nondefs,
+                       null poly_user_nondefs))
+  end
+
+(** Simplification of constructor/selector terms **)
+
+(* theory -> term -> term *)
+fun simplify_constrs_and_sels thy t =
+  let
+    (* term -> int -> term *)
+    fun is_nth_sel_on t' n (Const (s, _) $ t) =
+        (t = t' andalso is_sel_like_and_no_discr s andalso
+         sel_no_from_name s = n)
+      | is_nth_sel_on _ _ _ = false
+    (* term -> term list -> term *)
+    fun do_term (Const (@{const_name Rep_Frac}, _)
+                 $ (Const (@{const_name Abs_Frac}, _) $ t1)) [] = do_term t1 []
+      | do_term (Const (@{const_name Abs_Frac}, _)
+                 $ (Const (@{const_name Rep_Frac}, _) $ t1)) [] = do_term t1 []
+      | do_term (t1 $ t2) args = do_term t1 (do_term t2 [] :: args)
+      | do_term (t as Const (x as (s, T))) (args as _ :: _) =
+        ((if is_constr_like thy x then
+            if length args = num_binder_types T then
+              case hd args of
+                Const (x' as (_, T')) $ t' =>
+                if domain_type T' = body_type T andalso
+                   forall (uncurry (is_nth_sel_on t'))
+                          (index_seq 0 (length args) ~~ args) then
+                  t'
+                else
+                  raise SAME ()
+              | _ => raise SAME ()
+            else
+              raise SAME ()
+          else if is_sel_like_and_no_discr s then
+            case strip_comb (hd args) of
+              (Const (x' as (s', T')), ts') =>
+              if is_constr_like thy x' andalso
+                 constr_name_for_sel_like s = s' andalso
+                 not (exists is_pair_type (binder_types T')) then
+                list_comb (nth ts' (sel_no_from_name s), tl args)
+              else
+                raise SAME ()
+            | _ => raise SAME ()
+          else
+            raise SAME ())
+         handle SAME () => betapplys (t, args))
+      | do_term (Abs (s, T, t')) args =
+        betapplys (Abs (s, T, do_term t' []), args)
+      | do_term t args = betapplys (t, args)
+  in do_term t [] end
+
+(** Quantifier massaging: Distributing quantifiers **)
+
+(* term -> term *)
+fun distribute_quantifiers t =
+  case t of
+    (t0 as Const (@{const_name All}, T0)) $ Abs (s, T1, t1) =>
+    (case t1 of
+       (t10 as @{const "op &"}) $ t11 $ t12 =>
+       t10 $ distribute_quantifiers (t0 $ Abs (s, T1, t11))
+           $ distribute_quantifiers (t0 $ Abs (s, T1, t12))
+     | (t10 as @{const Not}) $ t11 =>
+       t10 $ distribute_quantifiers (Const (@{const_name Ex}, T0)
+                                     $ Abs (s, T1, t11))
+     | t1 =>
+       if not (loose_bvar1 (t1, 0)) then
+         distribute_quantifiers (incr_boundvars ~1 t1)
+       else
+         t0 $ Abs (s, T1, distribute_quantifiers t1))
+  | (t0 as Const (@{const_name Ex}, T0)) $ Abs (s, T1, t1) =>
+    (case distribute_quantifiers t1 of
+       (t10 as @{const "op |"}) $ t11 $ t12 =>
+       t10 $ distribute_quantifiers (t0 $ Abs (s, T1, t11))
+           $ distribute_quantifiers (t0 $ Abs (s, T1, t12))
+     | (t10 as @{const "op -->"}) $ t11 $ t12 =>
+       t10 $ distribute_quantifiers (Const (@{const_name All}, T0)
+                                     $ Abs (s, T1, t11))
+           $ distribute_quantifiers (t0 $ Abs (s, T1, t12))
+     | (t10 as @{const Not}) $ t11 =>
+       t10 $ distribute_quantifiers (Const (@{const_name All}, T0)
+                                     $ Abs (s, T1, t11))
+     | t1 =>
+       if not (loose_bvar1 (t1, 0)) then
+         distribute_quantifiers (incr_boundvars ~1 t1)
+       else
+         t0 $ Abs (s, T1, distribute_quantifiers t1))
+  | t1 $ t2 => distribute_quantifiers t1 $ distribute_quantifiers t2
+  | Abs (s, T, t') => Abs (s, T, distribute_quantifiers t')
+  | _ => t
+
+(** Quantifier massaging: Pushing quantifiers inward **)
+
+(* int -> int -> (int -> int) -> term -> term *)
+fun renumber_bounds j n f t =
+  case t of
+    t1 $ t2 => renumber_bounds j n f t1 $ renumber_bounds j n f t2
+  | Abs (s, T, t') => Abs (s, T, renumber_bounds (j + 1) n f t')
+  | Bound j' =>
+    Bound (if j' >= j andalso j' < j + n then f (j' - j) + j else j')
+  | _ => t
+
+(* Maximum number of quantifiers in a cluster for which the exponential
+   algorithm is used. Larger clusters use a heuristic inspired by Claessen &
+   Sörensson's polynomial binary splitting procedure (p. 5 of their MODEL 2003
+   paper). *)
+val quantifier_cluster_threshold = 7
+
+(* theory -> term -> term *)
+fun push_quantifiers_inward thy =
+  let
+    (* string -> string list -> typ list -> term -> term *)
+    fun aux quant_s ss Ts t =
+      (case t of
+         (t0 as Const (s0, _)) $ Abs (s1, T1, t1 as _ $ _) =>
+         if s0 = quant_s then
+           aux s0 (s1 :: ss) (T1 :: Ts) t1
+         else if quant_s = "" andalso
+                 (s0 = @{const_name All} orelse s0 = @{const_name Ex}) then
+           aux s0 [s1] [T1] t1
+         else
+           raise SAME ()
+       | _ => raise SAME ())
+      handle SAME () =>
+             case t of
+               t1 $ t2 =>
+               if quant_s = "" then
+                 aux "" [] [] t1 $ aux "" [] [] t2
+               else
+                 let
+                   val typical_card = 4
+                   (* ('a -> ''b list) -> 'a list -> ''b list *)
+                   fun big_union proj ps =
+                     fold (fold (insert (op =)) o proj) ps []
+                   val (ts, connective) = strip_any_connective t
+                   val T_costs =
+                     map (bounded_card_of_type 65536 typical_card []) Ts
+                   val t_costs = map size_of_term ts
+                   val num_Ts = length Ts
+                   (* int -> int *)
+                   val flip = curry (op -) (num_Ts - 1)
+                   val t_boundss = map (map flip o loose_bnos) ts
+                   (* (int list * int) list -> int list
+                      -> (int list * int) list *)
+                   fun merge costly_boundss [] = costly_boundss
+                     | merge costly_boundss (j :: js) =
+                       let
+                         val (yeas, nays) =
+                           List.partition (fn (bounds, _) =>
+                                              member (op =) bounds j)
+                                          costly_boundss
+                         val yeas_bounds = big_union fst yeas
+                         val yeas_cost = Integer.sum (map snd yeas)
+                                         * nth T_costs j
+                       in merge ((yeas_bounds, yeas_cost) :: nays) js end
+                   (* (int list * int) list -> int list -> int *)
+                   val cost = Integer.sum o map snd oo merge
+                   (* (int list * int) list -> int list -> int list *)
+                   fun heuristically_best_permutation _ [] = []
+                     | heuristically_best_permutation costly_boundss js =
+                       let
+                         val (costly_boundss, (j, js)) =
+                           js |> map (`(merge costly_boundss o single))
+                              |> sort (int_ord
+                                       o pairself (Integer.sum o map snd o fst))
+                              |> split_list |>> hd ||> pairf hd tl
+                       in
+                         j :: heuristically_best_permutation costly_boundss js
+                       end
+                   val js =
+                     if length Ts <= quantifier_cluster_threshold then
+                       all_permutations (index_seq 0 num_Ts)
+                       |> map (`(cost (t_boundss ~~ t_costs)))
+                       |> sort (int_ord o pairself fst) |> hd |> snd
+                     else
+                       heuristically_best_permutation (t_boundss ~~ t_costs)
+                                                      (index_seq 0 num_Ts)
+                   val back_js = map (fn j => find_index (curry (op =) j) js)
+                                     (index_seq 0 num_Ts)
+                   val ts = map (renumber_bounds 0 num_Ts (nth back_js o flip))
+                                ts
+                   (* (term * int list) list -> term *)
+                   fun mk_connection [] =
+                       raise ARG ("Nitpick_Preproc.push_quantifiers_inward.aux.\
+                                  \mk_connection", "")
+                     | mk_connection ts_cum_bounds =
+                       ts_cum_bounds |> map fst
+                       |> foldr1 (fn (t1, t2) => connective $ t1 $ t2)
+                   (* (term * int list) list -> int list -> term *)
+                   fun build ts_cum_bounds [] = ts_cum_bounds |> mk_connection
+                     | build ts_cum_bounds (j :: js) =
+                       let
+                         val (yeas, nays) =
+                           List.partition (fn (_, bounds) =>
+                                              member (op =) bounds j)
+                                          ts_cum_bounds
+                           ||> map (apfst (incr_boundvars ~1))
+                       in
+                         if null yeas then
+                           build nays js
+                         else
+                           let val T = nth Ts (flip j) in
+                             build ((Const (quant_s, (T --> bool_T) --> bool_T)
+                                     $ Abs (nth ss (flip j), T,
+                                            mk_connection yeas),
+                                      big_union snd yeas) :: nays) js
+                           end
+                       end
+                 in build (ts ~~ t_boundss) js end
+             | Abs (s, T, t') => Abs (s, T, aux "" [] [] t')
+             | _ => t
+  in aux "" [] [] end
+
+(** Preprocessor entry point **)
+
+(* hol_context -> term -> ((term list * term list) * (bool * bool)) * term *)
+fun preprocess_term (hol_ctxt as {thy, binary_ints, destroy_constrs, boxes,
+                                  skolemize, uncurry, ...}) t =
+  let
+    val skolem_depth = if skolemize then 4 else ~1
+    val (((def_ts, nondef_ts), (got_all_mono_user_axioms, no_poly_user_axioms)),
+         core_t) = t |> unfold_defs_in_term hol_ctxt
+                     |> Refute.close_form
+                     |> skolemize_term_and_more hol_ctxt skolem_depth
+                     |> specialize_consts_in_term hol_ctxt 0
+                     |> `(axioms_for_term hol_ctxt)
+    val binarize =
+      case binary_ints of
+        SOME false => false
+      | _ =>
+        forall may_use_binary_ints (core_t :: def_ts @ nondef_ts) andalso
+        (binary_ints = SOME true orelse
+         exists should_use_binary_ints (core_t :: def_ts @ nondef_ts))
+    val box = exists (not_equal (SOME false) o snd) boxes
+    val table =
+      Termtab.empty |> uncurry
+        ? fold (add_to_uncurry_table thy) (core_t :: def_ts @ nondef_ts)
+    (* bool -> bool -> term -> term *)
+    fun do_rest def core =
+      binarize ? binarize_nat_and_int_in_term
+      #> uncurry ? uncurry_term table
+      #> box ? box_fun_and_pair_in_term hol_ctxt def
+      #> destroy_constrs ? (pull_out_universal_constrs thy def
+                            #> pull_out_existential_constrs thy
+                            #> destroy_pulled_out_constrs hol_ctxt def)
+      #> curry_assms
+      #> destroy_universal_equalities
+      #> destroy_existential_equalities thy
+      #> simplify_constrs_and_sels thy
+      #> distribute_quantifiers
+      #> push_quantifiers_inward thy
+      #> not core ? Refute.close_form
+      #> Term.map_abs_vars shortest_name
+  in
+    (((map (do_rest true false) def_ts, map (do_rest false false) nondef_ts),
+      (got_all_mono_user_axioms, no_poly_user_axioms)),
+     do_rest false true core_t)
+  end
+
+end;
--- a/src/HOL/Tools/Nitpick/nitpick_scope.ML	Thu Feb 04 13:36:52 2010 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_scope.ML	Thu Feb 04 16:03:15 2010 +0100
@@ -8,7 +8,7 @@
 signature NITPICK_SCOPE =
 sig
   type styp = Nitpick_Util.styp
-  type extended_context = Nitpick_HOL.extended_context
+  type hol_context = Nitpick_HOL.hol_context
 
   type constr_spec = {
     const: styp,
@@ -28,7 +28,7 @@
     constrs: constr_spec list}
 
   type scope = {
-    ext_ctxt: extended_context,
+    hol_ctxt: hol_context,
     card_assigns: (typ * int) list,
     bits: int,
     bisim_depth: int,
@@ -47,7 +47,7 @@
   val scopes_equivalent : scope -> scope -> bool
   val scope_less_eq : scope -> scope -> bool
   val all_scopes :
-    extended_context -> int -> (typ option * int list) list
+    hol_context -> int -> (typ option * int list) list
     -> (styp option * int list) list -> (styp option * int list) list
     -> int list -> int list -> typ list -> typ list -> typ list
     -> int * scope list
@@ -77,7 +77,7 @@
   constrs: constr_spec list}
 
 type scope = {
-  ext_ctxt: extended_context,
+  hol_ctxt: hol_context,
   card_assigns: (typ * int) list,
   bits: int,
   bisim_depth: int,
@@ -131,7 +131,7 @@
 
 (* (string -> string) -> scope
    -> string list * string list * string list * string list * string list *)
-fun quintuple_for_scope quote ({ext_ctxt as {thy, ctxt, ...}, card_assigns,
+fun quintuple_for_scope quote ({hol_ctxt as {thy, ctxt, ...}, card_assigns,
                                 bits, bisim_depth, datatypes, ...} : scope) =
   let
     val boring_Ts = [@{typ unsigned_bit}, @{typ signed_bit}, @{typ \<xi>},
@@ -240,10 +240,9 @@
 
 val max_bits = 31 (* Kodkod limit *)
 
-(* extended_context -> (typ option * int list) list
-   -> (styp option * int list) list -> (styp option * int list) list -> int list
-   -> int list -> typ -> block *)
-fun block_for_type (ext_ctxt as {thy, ...}) cards_assigns maxes_assigns
+(* hol_context -> (typ option * int list) list -> (styp option * int list) list
+   -> (styp option * int list) list -> int list -> int list -> typ -> block *)
+fun block_for_type (hol_ctxt as {thy, ...}) cards_assigns maxes_assigns
                    iters_assigns bitss bisim_depths T =
   if T = @{typ unsigned_bit} then
     [(Card T, map (Integer.min max_bits o Integer.max 1) bitss)]
@@ -261,18 +260,18 @@
                                             (const_for_iterator_type T)))]
   else
     (Card T, lookup_type_ints_assign thy cards_assigns T) ::
-    (case datatype_constrs ext_ctxt T of
+    (case datatype_constrs hol_ctxt T of
        [_] => []
      | constrs => map_filter (row_for_constr thy maxes_assigns) constrs)
 
-(* extended_context -> (typ option * int list) list
-   -> (styp option * int list) list -> (styp option * int list) list -> int list
-   -> int list -> typ list -> typ list -> block list *)
-fun blocks_for_types ext_ctxt cards_assigns maxes_assigns iters_assigns bitss
+(* hol_context -> (typ option * int list) list -> (styp option * int list) list
+   -> (styp option * int list) list -> int list -> int list -> typ list
+   -> typ list -> block list *)
+fun blocks_for_types hol_ctxt cards_assigns maxes_assigns iters_assigns bitss
                      bisim_depths mono_Ts nonmono_Ts =
   let
     (* typ -> block *)
-    val block_for = block_for_type ext_ctxt cards_assigns maxes_assigns
+    val block_for = block_for_type hol_ctxt cards_assigns maxes_assigns
                                    iters_assigns bitss bisim_depths
     val mono_block = maps block_for mono_Ts
     val nonmono_blocks = map block_for nonmono_Ts
@@ -313,10 +312,10 @@
 
 type scope_desc = (typ * int) list * (styp * int) list
 
-(* extended_context -> scope_desc -> typ * int -> bool *)
-fun is_surely_inconsistent_card_assign ext_ctxt (card_assigns, max_assigns)
+(* hol_context -> scope_desc -> typ * int -> bool *)
+fun is_surely_inconsistent_card_assign hol_ctxt (card_assigns, max_assigns)
                                        (T, k) =
-  case datatype_constrs ext_ctxt T of
+  case datatype_constrs hol_ctxt T of
     [] => false
   | xs =>
     let
@@ -329,20 +328,20 @@
         | effective_max card max = Int.min (card, max)
       val max = map2 effective_max dom_cards maxes |> Integer.sum
     in max < k end
-(* extended_context -> (typ * int) list -> (typ * int) list
-   -> (styp * int) list -> bool *)
-fun is_surely_inconsistent_scope_description ext_ctxt seen rest max_assigns =
-  exists (is_surely_inconsistent_card_assign ext_ctxt
+(* hol_context -> (typ * int) list -> (typ * int) list -> (styp * int) list
+   -> bool *)
+fun is_surely_inconsistent_scope_description hol_ctxt seen rest max_assigns =
+  exists (is_surely_inconsistent_card_assign hol_ctxt
                                              (seen @ rest, max_assigns)) seen
 
-(* extended_context -> scope_desc -> (typ * int) list option *)
-fun repair_card_assigns ext_ctxt (card_assigns, max_assigns) =
+(* hol_context -> scope_desc -> (typ * int) list option *)
+fun repair_card_assigns hol_ctxt (card_assigns, max_assigns) =
   let
     (* (typ * int) list -> (typ * int) list -> (typ * int) list option *)
     fun aux seen [] = SOME seen
       | aux seen ((T, 0) :: _) = NONE
       | aux seen ((T, k) :: rest) =
-        (if is_surely_inconsistent_scope_description ext_ctxt ((T, k) :: seen)
+        (if is_surely_inconsistent_scope_description hol_ctxt ((T, k) :: seen)
                                                      rest max_assigns then
            raise SAME ()
          else
@@ -374,12 +373,12 @@
 (* block -> scope_desc *)
 fun scope_descriptor_from_block block =
   fold_rev add_row_to_scope_descriptor block ([], [])
-(* extended_context -> block list -> int list -> scope_desc option *)
-fun scope_descriptor_from_combination (ext_ctxt as {thy, ...}) blocks columns =
+(* hol_context -> block list -> int list -> scope_desc option *)
+fun scope_descriptor_from_combination (hol_ctxt as {thy, ...}) blocks columns =
   let
     val (card_assigns, max_assigns) =
       maps project_block (columns ~~ blocks) |> scope_descriptor_from_block
-    val card_assigns = repair_card_assigns ext_ctxt (card_assigns, max_assigns)
+    val card_assigns = repair_card_assigns hol_ctxt (card_assigns, max_assigns)
                        |> the
   in
     SOME (map (repair_iterator_assign thy card_assigns) card_assigns,
@@ -449,25 +448,25 @@
      explicit_max = max, total = total} :: constrs
   end
 
-(* extended_context -> (typ * int) list -> typ -> bool *)
-fun has_exact_card ext_ctxt card_assigns T =
+(* hol_context -> (typ * int) list -> typ -> bool *)
+fun has_exact_card hol_ctxt card_assigns T =
   let val card = card_of_type card_assigns T in
-    card = bounded_exact_card_of_type ext_ctxt (card + 1) 0 card_assigns T
+    card = bounded_exact_card_of_type hol_ctxt (card + 1) 0 card_assigns T
   end
 
-(* extended_context -> typ list -> scope_desc -> typ * int -> dtype_spec *)
-fun datatype_spec_from_scope_descriptor (ext_ctxt as {thy, ...}) deep_dataTs
+(* hol_context -> typ list -> scope_desc -> typ * int -> dtype_spec *)
+fun datatype_spec_from_scope_descriptor (hol_ctxt as {thy, ...}) deep_dataTs
                                         (desc as (card_assigns, _)) (T, card) =
   let
     val deep = member (op =) deep_dataTs T
     val co = is_codatatype thy T
-    val xs = boxed_datatype_constrs ext_ctxt T
+    val xs = boxed_datatype_constrs hol_ctxt T
     val self_recs = map (is_self_recursive_constr_type o snd) xs
     val (num_self_recs, num_non_self_recs) =
       List.partition I self_recs |> pairself length
-    val complete = has_exact_card ext_ctxt card_assigns T
+    val complete = has_exact_card hol_ctxt card_assigns T
     val concrete = xs |> maps (binder_types o snd) |> maps binder_types
-                      |> forall (has_exact_card ext_ctxt card_assigns)
+                      |> forall (has_exact_card hol_ctxt card_assigns)
     (* int -> int *)
     fun sum_dom_cards max =
       map (domain_card max card_assigns o snd) xs |> Integer.sum
@@ -487,12 +486,12 @@
     min_bits_for_nat_value (fold Integer.max
         (map snd card_assigns @ map snd max_assigns) 0)
 
-(* extended_context -> int -> typ list -> scope_desc -> scope *)
-fun scope_from_descriptor (ext_ctxt as {thy, ...}) sym_break deep_dataTs
+(* hol_context -> int -> typ list -> scope_desc -> scope *)
+fun scope_from_descriptor (hol_ctxt as {thy, ...}) sym_break deep_dataTs
                           (desc as (card_assigns, _)) =
   let
     val datatypes =
-      map (datatype_spec_from_scope_descriptor ext_ctxt deep_dataTs desc)
+      map (datatype_spec_from_scope_descriptor hol_ctxt deep_dataTs desc)
           (filter (is_datatype thy o fst) card_assigns)
     val bits = card_of_type card_assigns @{typ signed_bit} - 1
                handle TYPE ("Nitpick_HOL.card_of_type", _, _) =>
@@ -500,7 +499,7 @@
                       handle TYPE ("Nitpick_HOL.card_of_type", _, _) => 0
     val bisim_depth = card_of_type card_assigns @{typ bisim_iterator} - 1
   in
-    {ext_ctxt = ext_ctxt, card_assigns = card_assigns, datatypes = datatypes,
+    {hol_ctxt = hol_ctxt, card_assigns = card_assigns, datatypes = datatypes,
      bits = bits, bisim_depth = bisim_depth,
      ofs = if sym_break <= 0 then Typtab.empty
            else offset_table_for_card_assigns thy card_assigns datatypes}
@@ -521,26 +520,26 @@
 val max_scopes = 4096
 val distinct_threshold = 512
 
-(* extended_context -> int -> (typ option * int list) list
+(* hol_context -> int -> (typ option * int list) list
    -> (styp option * int list) list -> (styp option * int list) list -> int list
    -> typ list -> typ list -> typ list -> int * scope list *)
-fun all_scopes (ext_ctxt as {thy, ...}) sym_break cards_assigns maxes_assigns
+fun all_scopes (hol_ctxt as {thy, ...}) sym_break cards_assigns maxes_assigns
                iters_assigns bitss bisim_depths mono_Ts nonmono_Ts deep_dataTs =
   let
     val cards_assigns = repair_cards_assigns_wrt_boxing thy mono_Ts
                                                         cards_assigns
-    val blocks = blocks_for_types ext_ctxt cards_assigns maxes_assigns
+    val blocks = blocks_for_types hol_ctxt cards_assigns maxes_assigns
                                   iters_assigns bitss bisim_depths mono_Ts
                                   nonmono_Ts
     val ranks = map rank_of_block blocks
     val all = all_combinations_ordered_smartly (map (rpair 0) ranks)
     val head = take max_scopes all
-    val descs = map_filter (scope_descriptor_from_combination ext_ctxt blocks)
+    val descs = map_filter (scope_descriptor_from_combination hol_ctxt blocks)
                            head
   in
     (length all - length head,
      descs |> length descs <= distinct_threshold ? distinct (op =)
-           |> map (scope_from_descriptor ext_ctxt sym_break deep_dataTs))
+           |> map (scope_from_descriptor hol_ctxt sym_break deep_dataTs))
   end
 
 end;