Adapted to new inductive definition package.
authorberghofe
Wed, 07 Feb 2007 17:28:09 +0100
changeset 22262 96ba62dff413
parent 22261 9e185f78e7d4
child 22263 990a638e6f69
Adapted to new inductive definition package.
src/HOL/Accessible_Part.thy
src/HOL/Finite_Set.thy
src/HOL/List.thy
src/HOL/Nat.thy
src/HOL/Transitive_Closure.thy
--- a/src/HOL/Accessible_Part.thy	Wed Feb 07 17:26:49 2007 +0100
+++ b/src/HOL/Accessible_Part.thy	Wed Feb 07 17:28:09 2007 +0100
@@ -17,22 +17,22 @@
  relation; see also \cite{paulin-tlca}.
 *}
 
-consts
-  acc :: "('a \<times> 'a) set => 'a set"
-inductive "acc r"
-  intros
-    accI: "(!!y. (y, x) \<in> r ==> y \<in> acc r) ==> x \<in> acc r"
+inductive2
+  acc :: "('a => 'a => bool) => 'a => bool"
+  for r :: "'a => 'a => bool"
+  where
+    accI: "(!!y. r y x ==> acc r y) ==> acc r x"
 
 abbreviation
-  termi :: "('a \<times> 'a) set => 'a set" where
-  "termi r == acc (r\<inverse>)"
+  termi :: "('a => 'a => bool) => 'a => bool" where
+  "termi r == acc (r\<inverse>\<inverse>)"
 
 
 subsection {* Induction rules *}
 
 theorem acc_induct:
-  assumes major: "a \<in> acc r"
-  assumes hyp: "!!x. x \<in> acc r ==> \<forall>y. (y, x) \<in> r --> P y ==> P x"
+  assumes major: "acc r a"
+  assumes hyp: "!!x. acc r x ==> \<forall>y. r y x --> P y ==> P x"
   shows "P a"
   apply (rule major [THEN acc.induct])
   apply (rule hyp)
@@ -43,35 +43,55 @@
 
 theorems acc_induct_rule = acc_induct [rule_format, induct set: acc]
 
-theorem acc_downward: "b \<in> acc r ==> (a, b) \<in> r ==> a \<in> acc r"
-  apply (erule acc.elims)
+theorem acc_downward: "acc r b ==> r a b ==> acc r a"
+  apply (erule acc.cases)
   apply fast
   done
 
-lemma acc_downwards_aux: "(b, a) \<in> r\<^sup>* ==> a \<in> acc r --> b \<in> acc r"
-  apply (erule rtrancl_induct)
+lemma not_acc_down:
+  assumes na: "\<not> acc R x"
+  obtains z where "R z x" and "\<not> acc R z"
+proof -
+  assume a: "\<And>z. \<lbrakk>R z x; \<not> acc R z\<rbrakk> \<Longrightarrow> thesis"
+
+  show thesis
+  proof (cases "\<forall>z. R z x \<longrightarrow> acc R z")
+    case True
+    hence "\<And>z. R z x \<Longrightarrow> acc R z" by auto
+    hence "acc R x"
+      by (rule accI)
+    with na show thesis ..
+  next
+    case False then obtain z where "R z x" and "\<not> acc R z"
+      by auto
+    with a show thesis .
+  qed
+qed
+
+lemma acc_downwards_aux: "r\<^sup>*\<^sup>* b a ==> acc r a --> acc r b"
+  apply (erule rtrancl_induct')
    apply blast
   apply (blast dest: acc_downward)
   done
 
-theorem acc_downwards: "a \<in> acc r ==> (b, a) \<in> r\<^sup>* ==> b \<in> acc r"
+theorem acc_downwards: "acc r a ==> r\<^sup>*\<^sup>* b a ==> acc r b"
   apply (blast dest: acc_downwards_aux)
   done
 
-theorem acc_wfI: "\<forall>x. x \<in> acc r ==> wf r"
-  apply (rule wfUNIVI)
+theorem acc_wfI: "\<forall>x. acc r x ==> wfP r"
+  apply (rule wfPUNIVI)
   apply (induct_tac P x rule: acc_induct)
    apply blast
   apply blast
   done
 
-theorem acc_wfD: "wf r ==> x \<in> acc r"
-  apply (erule wf_induct)
+theorem acc_wfD: "wfP r ==> acc r x"
+  apply (erule wfP_induct_rule)
   apply (rule accI)
   apply blast
   done
 
-theorem wf_acc_iff: "wf r = (\<forall>x. x \<in> acc r)"
+theorem wf_acc_iff: "wfP r = (\<forall>x. acc r x)"
   apply (blast intro: acc_wfI dest: acc_wfD)
   done
 
@@ -79,16 +99,16 @@
 text {* Smaller relations have bigger accessible parts: *}
 
 lemma acc_subset:
-  assumes sub: "R1 \<subseteq> R2"
-  shows "acc R2 \<subseteq> acc R1"
+  assumes sub: "R1 \<le> R2"
+  shows "acc R2 \<le> acc R1"
 proof
-  fix x assume "x \<in> acc R2"
-  then show "x \<in> acc R1"
+  fix x assume "acc R2 x"
+  then show "acc R1 x"
   proof (induct x)
     fix x
-    assume ih: "\<And>y. (y, x) \<in> R2 \<Longrightarrow> y \<in> acc R1"
-    with sub show "x \<in> acc R1"
-      by (blast intro:accI)
+    assume ih: "\<And>y. R2 y x \<Longrightarrow> acc R1 y"
+    with sub show "acc R1 x"
+      by (blast intro: accI)
   qed
 qed
 
@@ -97,19 +117,19 @@
   subsets of the accessible part. *}
 
 lemma acc_subset_induct:
-  assumes subset: "D \<subseteq> acc R"
-    and dcl: "\<And>x z. \<lbrakk>x \<in> D; (z, x)\<in>R\<rbrakk> \<Longrightarrow> z \<in> D"
-    and "x \<in> D"
-    and istep: "\<And>x. \<lbrakk>x \<in> D; (\<And>z. (z, x)\<in>R \<Longrightarrow> P z)\<rbrakk> \<Longrightarrow> P x"
+  assumes subset: "D \<le> acc R"
+    and dcl: "\<And>x z. \<lbrakk>D x; R z x\<rbrakk> \<Longrightarrow> D z"
+    and "D x"
+    and istep: "\<And>x. \<lbrakk>D x; (\<And>z. R z x \<Longrightarrow> P z)\<rbrakk> \<Longrightarrow> P x"
   shows "P x"
 proof -
-  from `x \<in> D` and subset 
-  have "x \<in> acc R" ..
-  then show "P x" using `x \<in> D`
+  from subset and `D x`
+  have "acc R x" ..
+  then show "P x" using `D x`
   proof (induct x)
     fix x
-    assume "x \<in> D"
-      and "\<And>y. (y, x) \<in> R \<Longrightarrow> y \<in> D \<Longrightarrow> P y"
+    assume "D x"
+      and "\<And>y. R y x \<Longrightarrow> D y \<Longrightarrow> P y"
     with dcl and istep show "P x" by blast
   qed
 qed
--- a/src/HOL/Finite_Set.thy	Wed Feb 07 17:26:49 2007 +0100
+++ b/src/HOL/Finite_Set.thy	Wed Feb 07 17:28:09 2007 +0100
@@ -12,14 +12,10 @@
 
 subsection {* Definition and basic properties *}
 
-consts Finites :: "'a set set"
-abbreviation
-  "finite A == A : Finites"
-
-inductive Finites
-  intros
-    emptyI [simp, intro!]: "{} : Finites"
-    insertI [simp, intro!]: "A : Finites ==> insert a A : Finites"
+inductive2 finite :: "'a set => bool"
+  where
+    emptyI [simp, intro!]: "finite {}"
+  | insertI [simp, intro!]: "finite A ==> finite (insert a A)"
 
 axclass finite \<subseteq> type
   finite: "finite UNIV"
@@ -32,7 +28,7 @@
   thus ?thesis by blast
 qed
 
-lemma finite_induct [case_names empty insert, induct set: Finites]:
+lemma finite_induct [case_names empty insert, induct set: finite]:
   "finite F ==>
     P {} ==> (!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F"
   -- {* Discharging @{text "x \<notin> F"} entails extra work. *}
@@ -146,7 +142,7 @@
 
 lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)"
   -- {* The union of two finite sets is finite. *}
-  by (induct set: Finites) simp_all
+  by (induct set: finite) simp_all
 
 lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A"
   -- {* Every subset of a finite set is finite. *}
@@ -244,7 +240,7 @@
 
 lemma finite_imageI[simp]: "finite F ==> finite (h ` F)"
   -- {* The image of a finite set is finite. *}
-  by (induct set: Finites) simp_all
+  by (induct set: finite) simp_all
 
 lemma finite_surj: "finite A ==> B <= f ` A ==> finite B"
   apply (frule finite_imageI)
@@ -286,7 +282,7 @@
 lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)"
   -- {* The inverse image of a finite set under an injective function
          is finite. *}
-  apply (induct set: Finites)
+  apply (induct set: finite)
    apply simp_all
   apply (subst vimage_insert)
   apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton])
@@ -296,7 +292,7 @@
 text {* The finite UNION of finite sets *}
 
 lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)"
-  by (induct set: Finites) simp_all
+  by (induct set: finite) simp_all
 
 text {*
   Strengthen RHS to
@@ -398,7 +394,7 @@
 
 lemma finite_Field: "finite r ==> finite (Field r)"
   -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
-  apply (induct set: Finites)
+  apply (induct set: finite)
    apply (auto simp add: Field_def Domain_insert Range_insert)
   done
 
@@ -427,38 +423,39 @@
 se the definitions of sums and products over finite sets.
 *}
 
-consts
-  foldSet :: "('a => 'a => 'a) => ('b => 'a) => 'a => ('b set \<times> 'a) set"
-
-inductive "foldSet f g z"
-intros
-emptyI [intro]: "({}, z) : foldSet f g z"
-insertI [intro]:
-     "\<lbrakk> x \<notin> A; (A, y) : foldSet f g z \<rbrakk>
-      \<Longrightarrow> (insert x A, f (g x) y) : foldSet f g z"
-
-inductive_cases empty_foldSetE [elim!]: "({}, x) : foldSet f g z"
+inductive2
+  foldSet :: "('a => 'a => 'a) => ('b => 'a) => 'a => 'b set => 'a => bool"
+  for f ::  "'a => 'a => 'a"
+  and g :: "'b => 'a"
+  and z :: 'a
+where
+  emptyI [intro]: "foldSet f g z {} z"
+| insertI [intro]:
+     "\<lbrakk> x \<notin> A; foldSet f g z A y \<rbrakk>
+      \<Longrightarrow> foldSet f g z (insert x A) (f (g x) y)"
+
+inductive_cases2 empty_foldSetE [elim!]: "foldSet f g z {} x"
 
 constdefs
   fold :: "('a => 'a => 'a) => ('b => 'a) => 'a => 'b set => 'a"
-  "fold f g z A == THE x. (A, x) : foldSet f g z"
+  "fold f g z A == THE x. foldSet f g z A x"
 
 text{*A tempting alternative for the definiens is
-@{term "if finite A then THE x. (A, x) : foldSet f g e else e"}.
+@{term "if finite A then THE x. foldSet f g e A x else e"}.
 It allows the removal of finiteness assumptions from the theorems
 @{text fold_commute}, @{text fold_reindex} and @{text fold_distrib}.
 The proofs become ugly, with @{text rule_format}. It is not worth the effort.*}
 
 
 lemma Diff1_foldSet:
-  "(A - {x}, y) : foldSet f g z ==> x: A ==> (A, f (g x) y) : foldSet f g z"
+  "foldSet f g z (A - {x}) y ==> x: A ==> foldSet f g z A (f (g x) y)"
 by (erule insert_Diff [THEN subst], rule foldSet.intros, auto)
 
-lemma foldSet_imp_finite: "(A, x) : foldSet f g z ==> finite A"
+lemma foldSet_imp_finite: "foldSet f g z A x==> finite A"
   by (induct set: foldSet) auto
 
-lemma finite_imp_foldSet: "finite A ==> EX x. (A, x) : foldSet f g z"
-  by (induct set: Finites) auto
+lemma finite_imp_foldSet: "finite A ==> EX x. foldSet f g z A x"
+  by (induct set: finite) auto
 
 
 subsubsection {* Commutative monoids *}
@@ -554,33 +551,31 @@
 
 lemma (in ACf) foldSet_determ_aux:
   "!!A x x' h. \<lbrakk> A = h`{i::nat. i<n}; inj_on h {i. i<n}; 
-                (A,x) : foldSet f g z; (A,x') : foldSet f g z \<rbrakk>
+                foldSet f g z A x; foldSet f g z A x' \<rbrakk>
    \<Longrightarrow> x' = x"
 proof (induct n rule: less_induct)
   case (less n)
     have IH: "!!m h A x x'. 
                \<lbrakk>m<n; A = h ` {i. i<m}; inj_on h {i. i<m}; 
-                (A,x) \<in> foldSet f g z; (A, x') \<in> foldSet f g z\<rbrakk> \<Longrightarrow> x' = x" .
-    have Afoldx: "(A,x) \<in> foldSet f g z" and Afoldx': "(A,x') \<in> foldSet f g z"
+                foldSet f g z A x; foldSet f g z A x'\<rbrakk> \<Longrightarrow> x' = x" .
+    have Afoldx: "foldSet f g z A x" and Afoldx': "foldSet f g z A x'"
      and A: "A = h`{i. i<n}" and injh: "inj_on h {i. i<n}" .
     show ?case
     proof (rule foldSet.cases [OF Afoldx])
-      assume "(A, x) = ({}, z)"
+      assume "A = {}" and "x = z"
       with Afoldx' show "x' = x" by blast
     next
       fix B b u
-      assume "(A,x) = (insert b B, g b \<cdot> u)" and notinB: "b \<notin> B"
-         and Bu: "(B,u) \<in> foldSet f g z"
-      hence AbB: "A = insert b B" and x: "x = g b \<cdot> u" by auto
+      assume AbB: "A = insert b B" and x: "x = g b \<cdot> u"
+         and notinB: "b \<notin> B" and Bu: "foldSet f g z B u"
       show "x'=x" 
       proof (rule foldSet.cases [OF Afoldx'])
-        assume "(A, x') = ({}, z)"
+        assume "A = {}" and "x' = z"
         with AbB show "x' = x" by blast
       next
 	fix C c v
-	assume "(A,x') = (insert c C, g c \<cdot> v)" and notinC: "c \<notin> C"
-	   and Cv: "(C,v) \<in> foldSet f g z"
-	hence AcC: "A = insert c C" and x': "x' = g c \<cdot> v" by auto
+	assume AcC: "A = insert c C" and x': "x' = g c \<cdot> v"
+           and notinC: "c \<notin> C" and Cv: "foldSet f g z C v"
 	from A AbB have Beq: "insert b B = h`{i. i<n}" by simp
         from insert_inj_onE [OF Beq notinB injh]
         obtain hB mB where inj_onB: "inj_on hB {i. i < mB}" 
@@ -604,15 +599,15 @@
 	    using AbB AcC notinB notinC diff by(blast elim!:equalityE)+
 	  have "finite A" by(rule foldSet_imp_finite[OF Afoldx])
 	  with AbB have "finite ?D" by simp
-	  then obtain d where Dfoldd: "(?D,d) \<in> foldSet f g z"
+	  then obtain d where Dfoldd: "foldSet f g z ?D d"
 	    using finite_imp_foldSet by iprover
 	  moreover have cinB: "c \<in> B" using B by auto
-	  ultimately have "(B,g c \<cdot> d) \<in> foldSet f g z"
+	  ultimately have "foldSet f g z B (g c \<cdot> d)"
 	    by(rule Diff1_foldSet)
 	  hence "g c \<cdot> d = u" by (rule IH [OF lessB Beq inj_onB Bu]) 
           moreover have "g b \<cdot> d = v"
 	  proof (rule IH[OF lessC Ceq inj_onC Cv])
-	    show "(C, g b \<cdot> d) \<in> foldSet f g z" using C notinB Dfoldd
+	    show "foldSet f g z C (g b \<cdot> d)" using C notinB Dfoldd
 	      by fastsimp
 	  qed
 	  ultimately show ?thesis using x x' by (auto simp: AC)
@@ -623,12 +618,12 @@
 
 
 lemma (in ACf) foldSet_determ:
-  "(A,x) : foldSet f g z ==> (A,y) : foldSet f g z ==> y = x"
+  "foldSet f g z A x ==> foldSet f g z A y ==> y = x"
 apply (frule foldSet_imp_finite [THEN finite_imp_nat_seg_image_inj_on]) 
 apply (blast intro: foldSet_determ_aux [rule_format])
 done
 
-lemma (in ACf) fold_equality: "(A, y) : foldSet f g z ==> fold f g z A = y"
+lemma (in ACf) fold_equality: "foldSet f g z A y ==> fold f g z A = y"
   by (unfold fold_def) (blast intro: foldSet_determ)
 
 text{* The base case for @{text fold}: *}
@@ -637,8 +632,8 @@
   by (unfold fold_def) blast
 
 lemma (in ACf) fold_insert_aux: "x \<notin> A ==>
-    ((insert x A, v) : foldSet f g z) =
-    (EX y. (A, y) : foldSet f g z & v = f (g x) y)"
+    (foldSet f g z (insert x A) v) =
+    (EX y. foldSet f g z A y & v = f (g x) y)"
   apply auto
   apply (rule_tac A1 = A and f1 = f in finite_imp_foldSet [THEN exE])
    apply (fastsimp dest: foldSet_imp_finite)
@@ -700,7 +695,7 @@
 
 lemma (in ACf) fold_commute:
   "finite A ==> (!!z. f x (fold f g z A) = fold f g (f x z) A)"
-  apply (induct set: Finites)
+  apply (induct set: finite)
    apply simp
   apply (simp add: left_commute [of x])
   done
@@ -708,7 +703,7 @@
 lemma (in ACf) fold_nest_Un_Int:
   "finite A ==> finite B
     ==> fold f g (fold f g z B) A = fold f g (fold f g z (A Int B)) (A Un B)"
-  apply (induct set: Finites)
+  apply (induct set: finite)
    apply simp
   apply (simp add: fold_commute Int_insert_left insert_absorb)
   done
@@ -730,7 +725,7 @@
   "finite A ==> finite B ==>
     fold f g e A \<cdot> fold f g e B =
     fold f g e (A Un B) \<cdot> fold f g e (A Int B)"
-  apply (induct set: Finites, simp)
+  apply (induct set: finite, simp)
   apply (simp add: AC insert_absorb Int_insert_left)
   done
 
@@ -744,7 +739,7 @@
      ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {} \<rbrakk>
    \<Longrightarrow> fold f g e (UNION I A) =
        fold f (%i. fold f g e (A i)) e I"
-  apply (induct set: Finites, simp, atomize)
+  apply (induct set: finite, simp, atomize)
   apply (subgoal_tac "ALL i:F. x \<noteq> i")
    prefer 2 apply blast
   apply (subgoal_tac "A x Int UNION F A = {}")
@@ -762,7 +757,7 @@
 	"finite A ==> 
 	 (!!x y. h (g x y) = f x (h y)) ==>
          h (fold g j w A) = fold f j (h w) A"
-  by (induct set: Finites) simp_all
+  by (induct set: finite) simp_all
 
 lemma (in ACf) fold_cong:
   "finite A \<Longrightarrow> (!!x. x:A ==> g x = h x) ==> fold f g z A = fold f h z A"
@@ -954,7 +949,7 @@
 
 lemma setsum_eq_0_iff [simp]:
     "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"
-  by (induct set: Finites) auto
+  by (induct set: finite) auto
 
 lemma setsum_Un_nat: "finite A ==> finite B ==>
     (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"
@@ -1064,7 +1059,7 @@
 lemma setsum_negf:
   "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A"
 proof (cases "finite A")
-  case True thus ?thesis by (induct set: Finites) auto
+  case True thus ?thesis by (induct set: finite) auto
 next
   case False thus ?thesis by (simp add: setsum_def)
 qed
@@ -1398,18 +1393,18 @@
 
 lemma setprod_eq_1_iff [simp]:
     "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))"
-  by (induct set: Finites) auto
+  by (induct set: finite) auto
 
 lemma setprod_zero:
      "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1_cancel) ==> setprod f A = 0"
-  apply (induct set: Finites, force, clarsimp)
+  apply (induct set: finite, force, clarsimp)
   apply (erule disjE, auto)
   done
 
 lemma setprod_nonneg [rule_format]:
      "(ALL x: A. (0::'a::ordered_idom) \<le> f x) --> 0 \<le> setprod f A"
   apply (case_tac "finite A")
-  apply (induct set: Finites, force, clarsimp)
+  apply (induct set: finite, force, clarsimp)
   apply (subgoal_tac "0 * 0 \<le> f x * setprod f F", force)
   apply (rule mult_mono, assumption+)
   apply (auto simp add: setprod_def)
@@ -1418,7 +1413,7 @@
 lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::ordered_idom) < f x)
      --> 0 < setprod f A"
   apply (case_tac "finite A")
-  apply (induct set: Finites, force, clarsimp)
+  apply (induct set: finite, force, clarsimp)
   apply (subgoal_tac "0 * 0 < f x * setprod f F", force)
   apply (rule mult_strict_mono, assumption+)
   apply (auto simp add: setprod_def)
@@ -1546,7 +1541,7 @@
 by (simp add: card_def setsum_mono2)
 
 lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)"
-  apply (induct set: Finites, simp, clarify)
+  apply (induct set: finite, simp, clarify)
   apply (subgoal_tac "finite A & A - {x} <= F")
    prefer 2 apply (blast intro: finite_subset, atomize)
   apply (drule_tac x = "A - {x}" in spec)
@@ -1698,7 +1693,7 @@
   done
 
 lemma card_image_le: "finite A ==> card (f ` A) <= card A"
-  apply (induct set: Finites)
+  apply (induct set: finite)
    apply simp
   apply (simp add: le_SucI finite_imageI card_insert_if)
   done
@@ -1763,7 +1758,7 @@
 subsubsection {* Cardinality of the Powerset *}
 
 lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A"  (* FIXME numeral 2 (!?) *)
-  apply (induct set: Finites)
+  apply (induct set: finite)
    apply (simp_all add: Pow_insert)
   apply (subst card_Un_disjoint, blast)
     apply (blast intro: finite_imageI, blast)
@@ -1783,7 +1778,7 @@
   k dvd card (Union C)"
 apply(frule finite_UnionD)
 apply(rotate_tac -1)
-  apply (induct set: Finites, simp_all, clarify)
+  apply (induct set: finite, simp_all, clarify)
   apply (subst card_Un_disjoint)
   apply (auto simp add: dvd_add disjoint_eq_subset_Compl)
   done
@@ -1793,36 +1788,35 @@
 
 text{* Does not require start value. *}
 
-consts
-  fold1Set :: "('a => 'a => 'a) => ('a set \<times> 'a) set"
-
-inductive "fold1Set f"
-intros
+inductive2
+  fold1Set :: "('a => 'a => 'a) => 'a set => 'a => bool"
+  for f :: "'a => 'a => 'a"
+where
   fold1Set_insertI [intro]:
-   "\<lbrakk> (A,x) \<in> foldSet f id a; a \<notin> A \<rbrakk> \<Longrightarrow> (insert a A, x) \<in> fold1Set f"
+   "\<lbrakk> foldSet f id a A x; a \<notin> A \<rbrakk> \<Longrightarrow> fold1Set f (insert a A) x"
 
 constdefs
   fold1 :: "('a => 'a => 'a) => 'a set => 'a"
-  "fold1 f A == THE x. (A, x) : fold1Set f"
+  "fold1 f A == THE x. fold1Set f A x"
 
 lemma fold1Set_nonempty:
- "(A, x) : fold1Set f \<Longrightarrow> A \<noteq> {}"
+ "fold1Set f A x \<Longrightarrow> A \<noteq> {}"
 by(erule fold1Set.cases, simp_all) 
 
 
-inductive_cases empty_fold1SetE [elim!]: "({}, x) : fold1Set f"
-
-inductive_cases insert_fold1SetE [elim!]: "(insert a X, x) : fold1Set f"
-
-
-lemma fold1Set_sing [iff]: "(({a},b) : fold1Set f) = (a = b)"
+inductive_cases2 empty_fold1SetE [elim!]: "fold1Set f {} x"
+
+inductive_cases2 insert_fold1SetE [elim!]: "fold1Set f (insert a X) x"
+
+
+lemma fold1Set_sing [iff]: "(fold1Set f {a} b) = (a = b)"
   by (blast intro: foldSet.intros elim: foldSet.cases)
 
 lemma fold1_singleton[simp]: "fold1 f {a} = a"
   by (unfold fold1_def) blast
 
 lemma finite_nonempty_imp_fold1Set:
-  "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. (A, x) : fold1Set f"
+  "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. fold1Set f A x"
 apply (induct A rule: finite_induct)
 apply (auto dest: finite_imp_foldSet [of _ f id])  
 done
@@ -1830,26 +1824,26 @@
 text{*First, some lemmas about @{term foldSet}.*}
 
 lemma (in ACf) foldSet_insert_swap:
-assumes fold: "(A,y) \<in> foldSet f id b"
-shows "b \<notin> A \<Longrightarrow> (insert b A, z \<cdot> y) \<in> foldSet f id z"
+assumes fold: "foldSet f id b A y"
+shows "b \<notin> A \<Longrightarrow> foldSet f id z (insert b A) (z \<cdot> y)"
 using fold
 proof (induct rule: foldSet.induct)
   case emptyI thus ?case by (force simp add: fold_insert_aux commute)
 next
-  case (insertI A x y)
-    have "(insert x (insert b A), x \<cdot> (z \<cdot> y)) \<in> foldSet f (\<lambda>u. u) z"
+  case (insertI x A y)
+    have "foldSet f (\<lambda>u. u) z (insert x (insert b A)) (x \<cdot> (z \<cdot> y))"
       using insertI by force  --{*how does @{term id} get unfolded?*}
     thus ?case by (simp add: insert_commute AC)
 qed
 
 lemma (in ACf) foldSet_permute_diff:
-assumes fold: "(A,x) \<in> foldSet f id b"
-shows "!!a. \<lbrakk>a \<in> A; b \<notin> A\<rbrakk> \<Longrightarrow> (insert b (A-{a}), x) \<in> foldSet f id a"
+assumes fold: "foldSet f id b A x"
+shows "!!a. \<lbrakk>a \<in> A; b \<notin> A\<rbrakk> \<Longrightarrow> foldSet f id a (insert b (A-{a})) x"
 using fold
 proof (induct rule: foldSet.induct)
   case emptyI thus ?case by simp
 next
-  case (insertI A x y)
+  case (insertI x A y)
   have "a = x \<or> a \<in> A" using insertI by simp
   thus ?case
   proof
@@ -1858,7 +1852,7 @@
       by (simp add: id_def [symmetric], blast intro: foldSet_insert_swap) 
   next
     assume ainA: "a \<in> A"
-    hence "(insert x (insert b (A - {a})), x \<cdot> y) \<in> foldSet f id a"
+    hence "foldSet f id a (insert x (insert b (A - {a}))) (x \<cdot> y)"
       using insertI by (force simp: id_def)
     moreover
     have "insert x (insert b (A - {a})) = insert b (insert x A - {a})"
@@ -1875,7 +1869,7 @@
 apply (rule sym, clarify)
 apply (case_tac "Aa=A")
  apply (best intro: the_equality foldSet_determ)  
-apply (subgoal_tac "(A,x) \<in> foldSet f id a") 
+apply (subgoal_tac "foldSet f id a A x")
  apply (best intro: the_equality foldSet_determ)  
 apply (subgoal_tac "insert aa (Aa - {a}) = A") 
  prefer 2 apply (blast elim: equalityE) 
@@ -1943,18 +1937,18 @@
 text{*Not actually used!!*}
 
 lemma (in ACf) foldSet_permute:
-  "[|(insert a A, x) \<in> foldSet f id b; a \<notin> A; b \<notin> A|]
-   ==> (insert b A, x) \<in> foldSet f id a"
+  "[|foldSet f id b (insert a A) x; a \<notin> A; b \<notin> A|]
+   ==> foldSet f id a (insert b A) x"
 apply (case_tac "a=b") 
 apply (auto dest: foldSet_permute_diff) 
 done
 
 lemma (in ACf) fold1Set_determ:
-  "(A, x) \<in> fold1Set f ==> (A, y) \<in> fold1Set f ==> y = x"
+  "fold1Set f A x ==> fold1Set f A y ==> y = x"
 proof (clarify elim!: fold1Set.cases)
   fix A x B y a b
-  assume Ax: "(A, x) \<in> foldSet f id a"
-  assume By: "(B, y) \<in> foldSet f id b"
+  assume Ax: "foldSet f id a A x"
+  assume By: "foldSet f id b B y"
   assume anotA:  "a \<notin> A"
   assume bnotB:  "b \<notin> B"
   assume eq: "insert a A = insert b B"
@@ -1970,16 +1964,16 @@
      and aB: "a \<in> B" and bA: "b \<in> A"
       using eq anotA bnotB diff by (blast elim!:equalityE)+
     with aB bnotB By
-    have "(insert b ?D, y) \<in> foldSet f id a" 
+    have "foldSet f id a (insert b ?D) y" 
       by (auto intro: foldSet_permute simp add: insert_absorb)
     moreover
-    have "(insert b ?D, x) \<in> foldSet f id a"
+    have "foldSet f id a (insert b ?D) x"
       by (simp add: A [symmetric] Ax) 
     ultimately show ?thesis by (blast intro: foldSet_determ) 
   qed
 qed
 
-lemma (in ACf) fold1Set_equality: "(A, y) : fold1Set f ==> fold1 f A = y"
+lemma (in ACf) fold1Set_equality: "fold1Set f A y ==> fold1 f A = y"
   by (unfold fold1_def) (blast intro: fold1Set_determ)
 
 declare
--- a/src/HOL/List.thy	Wed Feb 07 17:26:49 2007 +0100
+++ b/src/HOL/List.thy	Wed Feb 07 17:28:09 2007 +0100
@@ -2200,40 +2200,71 @@
 
 subsubsection {* @{text lists}: the list-forming operator over sets *}
 
-consts lists :: "'a set => 'a list set"
-inductive "lists A"
- intros
-  Nil [intro!]: "[]: lists A"
-  Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A"
-
-inductive_cases listsE [elim!]: "x#l : lists A"
-
-lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B"
-by (unfold lists.defs) (blast intro!: lfp_mono)
-
-lemma lists_IntI:
-  assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l
+inductive2
+  listsp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
+  for A :: "'a \<Rightarrow> bool"
+where
+    Nil [intro!]: "listsp A []"
+  | Cons [intro!]: "[| A a; listsp A l |] ==> listsp A (a # l)"
+
+constdefs
+  lists :: "'a set => 'a list set"
+  "lists A == Collect (listsp (member A))"
+
+lemma listsp_lists_eq [pred_set_conv]: "listsp (member A) = member (lists A)"
+  by (simp add: lists_def)
+
+lemmas lists_intros [intro!] = listsp.intros [to_set]
+
+lemmas lists_induct [consumes 1, case_names Nil Cons, induct set: lists] =
+  listsp.induct [to_set]
+
+inductive_cases2 listspE [elim!]: "listsp A (x # l)"
+
+lemmas listsE [elim!] = listspE [to_set]
+
+lemma listsp_mono [mono2]: "A \<le> B ==> listsp A \<le> listsp B"
+  by (clarify, erule listsp.induct, blast+)
+
+lemmas lists_mono [mono] = listsp_mono [to_set]
+
+lemma listsp_meetI:
+  assumes l: "listsp A l" shows "listsp B l ==> listsp (meet A B) l" using l
   by induct blast+
 
-lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B"
-proof (rule mono_Int [THEN equalityI])
-  show "mono lists" by (simp add: mono_def lists_mono)
-  show "lists A \<inter> lists B \<subseteq> lists (A \<inter> B)" by (blast intro: lists_IntI)
+lemmas lists_IntI = listsp_meetI [to_set]
+
+lemma listsp_meet_eq [simp]: "listsp (meet A B) = meet (listsp A) (listsp B)"
+proof (rule mono_meet [where f=listsp, THEN order_antisym])
+  show "mono listsp" by (simp add: mono_def listsp_mono)
+  show "meet (listsp A) (listsp B) \<le> listsp (meet A B)" by (blast intro: listsp_meetI)
 qed
 
-lemma append_in_lists_conv [iff]:
-     "(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)"
+lemmas listsp_conj_eq [simp] = listsp_meet_eq [simplified meet_fun_eq meet_bool_eq]
+
+lemmas lists_Int_eq [simp] = listsp_meet_eq [to_set]
+
+lemma append_in_listsp_conv [iff]:
+     "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)"
 by (induct xs) auto
 
-lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)"
--- {* eliminate @{text lists} in favour of @{text set} *}
+lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set]
+
+lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)"
+-- {* eliminate @{text listsp} in favour of @{text set} *}
 by (induct xs) auto
 
-lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A"
-by (rule in_lists_conv_set [THEN iffD1])
-
-lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A"
-by (rule in_lists_conv_set [THEN iffD2])
+lemmas in_lists_conv_set = in_listsp_conv_set [to_set]
+
+lemma in_listspD [dest!]: "listsp A xs ==> \<forall>x\<in>set xs. A x"
+by (rule in_listsp_conv_set [THEN iffD1])
+
+lemmas in_listsD [dest!] = in_listspD [to_set]
+
+lemma in_listspI [intro!]: "\<forall>x\<in>set xs. A x ==> listsp A xs"
+by (rule in_listsp_conv_set [THEN iffD2])
+
+lemmas in_listsI [intro!] = in_listspI [to_set]
 
 lemma lists_UNIV [simp]: "lists UNIV = UNIV"
 by auto
@@ -2242,13 +2273,12 @@
 
 subsubsection{* Inductive definition for membership *}
 
-consts ListMem :: "('a \<times> 'a list)set"
-inductive ListMem
-intros
- elem:  "(x,x#xs) \<in> ListMem"
- insert:  "(x,xs) \<in> ListMem \<Longrightarrow> (x,y#xs) \<in> ListMem"
-
-lemma ListMem_iff: "((x,xs) \<in> ListMem) = (x \<in> set xs)"
+inductive2 ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
+where
+    elem:  "ListMem x (x # xs)"
+  | insert:  "ListMem x xs \<Longrightarrow> ListMem x (y # xs)"
+
+lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)"
 apply (rule iffI)
  apply (induct set: ListMem)
   apply auto
@@ -2495,60 +2525,73 @@
 
 subsubsection{*Lifting a Relation on List Elements to the Lists*}
 
-consts  listrel :: "('a * 'a)set => ('a list * 'a list)set"
-
-inductive "listrel(r)"
- intros
-   Nil:  "([],[]) \<in> listrel r"
-   Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r"
-
-inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r"
-inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r"
-inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r"
-inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r"
+inductive2
+  list_all2' :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> bool"
+  for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
+where
+    Nil:  "list_all2' r [] []"
+  | Cons: "[| r x y; list_all2' r xs ys |] ==> list_all2' r (x#xs) (y#ys)"
+
+constdefs
+  listrel :: "('a * 'b) set => ('a list * 'b list) set"
+  "listrel r == Collect2 (list_all2' (member2 r))"
+
+lemma list_all2_listrel_eq [pred_set_conv]:
+  "list_all2' (member2 r) = member2 (listrel r)"
+  by (simp add: listrel_def)
+
+lemmas listrel_induct [consumes 1, case_names Nil Cons, induct set: listrel] =
+  list_all2'.induct [to_set]
+
+lemmas listrel_intros = list_all2'.intros [to_set]
+
+inductive_cases2 listrel_Nil1 [to_set, elim!]: "list_all2' r [] xs"
+inductive_cases2 listrel_Nil2 [to_set, elim!]: "list_all2' r xs []"
+inductive_cases2 listrel_Cons1 [to_set, elim!]: "list_all2' r  (y#ys) xs"
+inductive_cases2 listrel_Cons2 [to_set, elim!]: "list_all2' r xs (y#ys)"
 
 
 lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
 apply clarify  
-apply (erule listrel.induct)
-apply (blast intro: listrel.intros)+
+apply (erule listrel_induct)
+apply (blast intro: listrel_intros)+
 done
 
 lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
 apply clarify 
-apply (erule listrel.induct, auto) 
+apply (erule listrel_induct, auto) 
 done
 
 lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" 
 apply (simp add: refl_def listrel_subset Ball_def)
 apply (rule allI) 
 apply (induct_tac x) 
-apply (auto intro: listrel.intros)
+apply (auto intro: listrel_intros)
 done
 
 lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
 apply (auto simp add: sym_def)
-apply (erule listrel.induct) 
-apply (blast intro: listrel.intros)+
+apply (erule listrel_induct) 
+apply (blast intro: listrel_intros)+
 done
 
 lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
 apply (simp add: trans_def)
 apply (intro allI) 
 apply (rule impI) 
-apply (erule listrel.induct) 
-apply (blast intro: listrel.intros)+
+apply (erule listrel_induct) 
+apply (blast intro: listrel_intros)+
 done
 
 theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
 by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) 
 
 lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
-by (blast intro: listrel.intros)
+by (blast intro: listrel_intros)
 
 lemma listrel_Cons:
      "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
-by (auto simp add: set_Cons_def intro: listrel.intros) 
+by (auto simp add: set_Cons_def intro: listrel_intros) 
 
 
 subsection{*Miscellany*}
--- a/src/HOL/Nat.thy	Wed Feb 07 17:26:49 2007 +0100
+++ b/src/HOL/Nat.thy	Wed Feb 07 17:28:09 2007 +0100
@@ -30,20 +30,18 @@
 
 text {* Type definition *}
 
-consts
-  Nat :: "ind set"
-
-inductive Nat
-intros
-  Zero_RepI: "Zero_Rep : Nat"
-  Suc_RepI: "i : Nat ==> Suc_Rep i : Nat"
+inductive2 Nat :: "ind \<Rightarrow> bool"
+where
+    Zero_RepI: "Nat Zero_Rep"
+  | Suc_RepI: "Nat i ==> Nat (Suc_Rep i)"
 
 global
 
 typedef (open Nat)
-  nat = Nat
+  nat = "Collect Nat"
 proof
-  show "Zero_Rep : Nat" by (rule Nat.Zero_RepI)
+  from Nat.Zero_RepI
+  show "Zero_Rep : Collect Nat" ..
 qed
 
 text {* Abstract constants and syntax *}
@@ -61,22 +59,25 @@
 instance nat :: "{ord, zero, one}"
   Zero_nat_def: "0 == Abs_Nat Zero_Rep"
   One_nat_def [simp]: "1 == Suc 0"
-  less_def: "m < n == (m, n) : trancl pred_nat"
+  less_def: "m < n == (m, n) : pred_nat^+"
   le_def: "m \<le> (n::nat) == ~ (n < m)" ..
 
 text {* Induction *}
 
+lemmas Rep_Nat' = Rep_Nat [simplified mem_Collect_eq]
+lemmas Abs_Nat_inverse' = Abs_Nat_inverse [simplified mem_Collect_eq]
+
 theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n"
   apply (unfold Zero_nat_def Suc_def)
   apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
-  apply (erule Rep_Nat [THEN Nat.induct])
-  apply (iprover elim: Abs_Nat_inverse [THEN subst])
+  apply (erule Rep_Nat' [THEN Nat.induct])
+  apply (iprover elim: Abs_Nat_inverse' [THEN subst])
   done
 
 text {* Distinctness of constructors *}
 
 lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0"
-  by (simp add: Zero_nat_def Suc_def Abs_Nat_inject Rep_Nat Suc_RepI Zero_RepI
+  by (simp add: Zero_nat_def Suc_def Abs_Nat_inject Rep_Nat' Suc_RepI Zero_RepI
                 Suc_Rep_not_Zero_Rep) 
 
 lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m"
@@ -91,7 +92,7 @@
 text {* Injectiveness of @{term Suc} *}
 
 lemma inj_Suc[simp]: "inj_on Suc N"
-  by (simp add: Suc_def inj_on_def Abs_Nat_inject Rep_Nat Suc_RepI 
+  by (simp add: Suc_def inj_on_def Abs_Nat_inject Rep_Nat' Suc_RepI 
                 inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject) 
 
 lemma Suc_inject: "Suc x = Suc y ==> x = y"
--- a/src/HOL/Transitive_Closure.thy	Wed Feb 07 17:26:49 2007 +0100
+++ b/src/HOL/Transitive_Closure.thy	Wed Feb 07 17:28:09 2007 +0100
@@ -7,7 +7,7 @@
 header {* Reflexive and Transitive closure of a relation *}
 
 theory Transitive_Closure
-imports Inductive
+imports Predicate
 uses "~~/src/Provers/trancl.ML"
 begin
 
@@ -20,56 +20,85 @@
   operands to be atomic.
 *}
 
-consts
-  rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
-
-inductive "r^*"
-  intros
-    rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*"
-    rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*"
+inductive2
+  rtrancl :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"   ("(_^**)" [1000] 1000)
+  for r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+where
+    rtrancl_refl [intro!, Pure.intro!, simp]: "r^** a a"
+  | rtrancl_into_rtrancl [Pure.intro]: "r^** a b ==> r b c ==> r^** a c"
 
-consts
-  trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
+inductive2
+  trancl :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  ("(_^++)" [1000] 1000)
+  for r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+where
+    r_into_trancl [intro, Pure.intro]: "r a b ==> r^++ a b"
+  | trancl_into_trancl [Pure.intro]: "r^++ a b ==> r b c ==> r^++ a c"
 
-inductive "r^+"
-  intros
-    r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+"
-    trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a,c) : r^+"
+constdefs
+  rtrancl_set :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
+  "r^* == Collect2 (member2 r)^**"
+
+  trancl_set :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
+  "r^+ == Collect2 (member2 r)^++"
 
 abbreviation
-  reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
+  reflcl :: "('a => 'a => bool) => 'a => 'a => bool"  ("(_^==)" [1000] 1000) where
+  "r^== == join r op ="
+
+abbreviation
+  reflcl_set :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
   "r^= == r \<union> Id"
 
 notation (xsymbols)
-  rtrancl  ("(_\<^sup>*)" [1000] 999) and
-  trancl  ("(_\<^sup>+)" [1000] 999) and
-  reflcl  ("(_\<^sup>=)" [1000] 999)
+  rtrancl  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
+  trancl  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
+  reflcl  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
+  rtrancl_set  ("(_\<^sup>*)" [1000] 999) and
+  trancl_set  ("(_\<^sup>+)" [1000] 999) and
+  reflcl_set  ("(_\<^sup>=)" [1000] 999)
 
 notation (HTML output)
-  rtrancl  ("(_\<^sup>*)" [1000] 999) and
-  trancl  ("(_\<^sup>+)" [1000] 999) and
-  reflcl  ("(_\<^sup>=)" [1000] 999)
+  rtrancl  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
+  trancl  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
+  reflcl  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
+  rtrancl_set  ("(_\<^sup>*)" [1000] 999) and
+  trancl_set  ("(_\<^sup>+)" [1000] 999) and
+  reflcl_set  ("(_\<^sup>=)" [1000] 999)
 
 
 subsection {* Reflexive-transitive closure *}
 
+lemma rtrancl_set_eq [pred_set_conv]: "(member2 r)^** = member2 (r^*)"
+  by (simp add: rtrancl_set_def)
+
+lemma reflcl_set_eq [pred_set_conv]: "(join (member2 r) op =) = member2 (r Un Id)"
+  by (simp add: expand_fun_eq)
+
+lemmas rtrancl_refl [intro!, Pure.intro!, simp] = rtrancl_refl [to_set]
+lemmas rtrancl_into_rtrancl [Pure.intro] = rtrancl_into_rtrancl [to_set]
+
 lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"
   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
   apply (simp only: split_tupled_all)
   apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
   done
 
-lemma rtrancl_mono: "r \<subseteq> s ==> r^* \<subseteq> s^*"
+lemma r_into_rtrancl' [intro]: "r x y ==> r^** x y"
+  -- {* @{text rtrancl} of @{text r} contains @{text r} *}
+  by (erule rtrancl.rtrancl_refl [THEN rtrancl.rtrancl_into_rtrancl])
+
+lemma rtrancl_mono': "r \<le> s ==> r^** \<le> s^**"
   -- {* monotonicity of @{text rtrancl} *}
-  apply (rule subsetI)
-  apply (simp only: split_tupled_all)
+  apply (rule predicate2I)
   apply (erule rtrancl.induct)
-   apply (rule_tac [2] rtrancl_into_rtrancl, blast+)
+   apply (rule_tac [2] rtrancl.rtrancl_into_rtrancl, blast+)
   done
 
-theorem rtrancl_induct [consumes 1, induct set: rtrancl]:
-  assumes a: "(a, b) : r^*"
-    and cases: "P a" "!!y z. [| (a, y) : r^*; (y, z) : r; P y |] ==> P z"
+lemmas rtrancl_mono = rtrancl_mono' [to_set]
+
+theorem rtrancl_induct' [consumes 1, induct set: rtrancl]:
+  assumes a: "r^** a b"
+    and cases: "P a" "!!y z. [| r^** a y; r y z; P y |] ==> P z"
   shows "P b"
 proof -
   from a have "a = a --> P b"
@@ -77,6 +106,12 @@
   thus ?thesis by iprover
 qed
 
+lemmas rtrancl_induct [consumes 1, induct set: rtrancl_set] = rtrancl_induct' [to_set]
+
+lemmas rtrancl_induct2' =
+  rtrancl_induct'[of _ "(ax,ay)" "(bx,by)", split_rule,
+                 consumes 1, case_names refl step]
+
 lemmas rtrancl_induct2 =
   rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
                  consumes 1, case_names refl step]
@@ -95,6 +130,12 @@
 
 lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
 
+lemma rtrancl_trans':
+  assumes xy: "r^** x y"
+  and yz: "r^** y z"
+  shows "r^** x z" using yz xy
+  by induct iprover+
+
 lemma rtranclE:
   assumes major: "(a::'a,b) : r^*"
     and cases: "(a = b) ==> P"
@@ -114,21 +155,25 @@
   apply (erule rtrancl_induct, auto) 
   done
 
-lemma converse_rtrancl_into_rtrancl:
-  "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>*"
-  by (rule rtrancl_trans) iprover+
+lemma converse_rtrancl_into_rtrancl':
+  "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c"
+  by (rule rtrancl_trans') iprover+
+
+lemmas converse_rtrancl_into_rtrancl = converse_rtrancl_into_rtrancl' [to_set]
 
 text {*
   \medskip More @{term "r^*"} equations and inclusions.
 *}
 
-lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
-  apply auto
-  apply (erule rtrancl_induct)
-   apply (rule rtrancl_refl)
-  apply (blast intro: rtrancl_trans)
+lemma rtrancl_idemp' [simp]: "(r^**)^** = r^**"
+  apply (auto intro!: order_antisym)
+  apply (erule rtrancl_induct')
+   apply (rule rtrancl.rtrancl_refl)
+  apply (blast intro: rtrancl_trans')
   done
 
+lemmas rtrancl_idemp [simp] = rtrancl_idemp' [to_set]
+
 lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
   apply (rule set_ext)
   apply (simp only: split_tupled_all)
@@ -138,16 +183,22 @@
 lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*"
 by (drule rtrancl_mono, simp)
 
-lemma rtrancl_subset: "R \<subseteq> S ==> S \<subseteq> R^* ==> S^* = R^*"
-  apply (drule rtrancl_mono)
-  apply (drule rtrancl_mono, simp)
+lemma rtrancl_subset': "R \<le> S ==> S \<le> R^** ==> S^** = R^**"
+  apply (drule rtrancl_mono')
+  apply (drule rtrancl_mono', simp)
   done
 
-lemma rtrancl_Un_rtrancl: "(R^* \<union> S^*)^* = (R \<union> S)^*"
-  by (blast intro!: rtrancl_subset intro: r_into_rtrancl rtrancl_mono [THEN subsetD])
+lemmas rtrancl_subset = rtrancl_subset' [to_set]
+
+lemma rtrancl_Un_rtrancl': "(join (R^**) (S^**))^** = (join R S)^**"
+  by (blast intro!: rtrancl_subset' intro: rtrancl_mono' [THEN predicate2D])
 
-lemma rtrancl_reflcl [simp]: "(R^=)^* = R^*"
-  by (blast intro!: rtrancl_subset intro: r_into_rtrancl)
+lemmas rtrancl_Un_rtrancl = rtrancl_Un_rtrancl' [to_set]
+
+lemma rtrancl_reflcl' [simp]: "(R^==)^** = R^**"
+  by (blast intro!: rtrancl_subset')
+
+lemmas rtrancl_reflcl [simp] = rtrancl_reflcl' [to_set]
 
 lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"
   apply (rule sym)
@@ -157,58 +208,75 @@
   apply (blast intro!: r_into_rtrancl)
   done
 
-theorem rtrancl_converseD:
-  assumes r: "(x, y) \<in> (r^-1)^*"
-  shows "(y, x) \<in> r^*"
+lemma rtrancl_r_diff_Id': "(meet r op ~=)^** = r^**"
+  apply (rule sym)
+  apply (rule rtrancl_subset')
+  apply blast+
+  done
+
+theorem rtrancl_converseD':
+  assumes r: "(r^--1)^** x y"
+  shows "r^** y x"
 proof -
   from r show ?thesis
-    by induct (iprover intro: rtrancl_trans dest!: converseD)+
+    by induct (iprover intro: rtrancl_trans' dest!: conversepD)+
 qed
 
-theorem rtrancl_converseI:
-  assumes r: "(y, x) \<in> r^*"
-  shows "(x, y) \<in> (r^-1)^*"
+lemmas rtrancl_converseD = rtrancl_converseD' [to_set]
+
+theorem rtrancl_converseI':
+  assumes r: "r^** y x"
+  shows "(r^--1)^** x y"
 proof -
   from r show ?thesis
-    by induct (iprover intro: rtrancl_trans converseI)+
+    by induct (iprover intro: rtrancl_trans' conversepI)+
 qed
 
+lemmas rtrancl_converseI = rtrancl_converseI' [to_set]
+
 lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"
   by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
 
 lemma sym_rtrancl: "sym r ==> sym (r^*)"
   by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric])
 
-theorem converse_rtrancl_induct[consumes 1]:
-  assumes major: "(a, b) : r^*"
-    and cases: "P b" "!!y z. [| (y, z) : r; (z, b) : r^*; P z |] ==> P y"
+theorem converse_rtrancl_induct'[consumes 1]:
+  assumes major: "r^** a b"
+    and cases: "P b" "!!y z. [| r y z; r^** z b; P z |] ==> P y"
   shows "P a"
 proof -
-  from rtrancl_converseI [OF major]
+  from rtrancl_converseI' [OF major]
   show ?thesis
-    by induct (iprover intro: cases dest!: converseD rtrancl_converseD)+
+    by induct (iprover intro: cases dest!: conversepD rtrancl_converseD')+
 qed
 
+lemmas converse_rtrancl_induct[consumes 1] = converse_rtrancl_induct' [to_set]
+
+lemmas converse_rtrancl_induct2' =
+  converse_rtrancl_induct'[of _ "(ax,ay)" "(bx,by)", split_rule,
+                 consumes 1, case_names refl step]
+
 lemmas converse_rtrancl_induct2 =
   converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
                  consumes 1, case_names refl step]
 
-lemma converse_rtranclE:
-  assumes major: "(x,z):r^*"
+lemma converse_rtranclE':
+  assumes major: "r^** x z"
     and cases: "x=z ==> P"
-      "!!y. [| (x,y):r; (y,z):r^* |] ==> P"
+      "!!y. [| r x y; r^** y z |] ==> P"
   shows P
-  apply (subgoal_tac "x = z | (EX y. (x,y) : r & (y,z) : r^*)")
-   apply (rule_tac [2] major [THEN converse_rtrancl_induct])
+  apply (subgoal_tac "x = z | (EX y. r x y & r^** y z)")
+   apply (rule_tac [2] major [THEN converse_rtrancl_induct'])
     prefer 2 apply iprover
    prefer 2 apply iprover
   apply (erule asm_rl exE disjE conjE cases)+
   done
 
-ML_setup {*
-  bind_thm ("converse_rtranclE2", split_rule
-    (read_instantiate [("x","(xa,xb)"), ("z","(za,zb)")] (thm "converse_rtranclE")));
-*}
+lemmas converse_rtranclE = converse_rtranclE' [to_set]
+
+lemmas converse_rtranclE2' = converse_rtranclE' [of _ "(xa,xb)" "(za,zb)", split_rule]
+
+lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule]
 
 lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"
   by (blast elim: rtranclE converse_rtranclE
@@ -220,8 +288,14 @@
 
 subsection {* Transitive closure *}
 
+lemma trancl_set_eq [pred_set_conv]: "(member2 r)^++ = member2 (r^+)"
+  by (simp add: trancl_set_def)
+
+lemmas r_into_trancl [intro, Pure.intro] = r_into_trancl [to_set]
+lemmas trancl_into_trancl [Pure.intro] = trancl_into_trancl [to_set]
+
 lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+"
-  apply (simp only: split_tupled_all)
+  apply (simp add: split_tupled_all trancl_set_def)
   apply (erule trancl.induct)
   apply (iprover dest: subsetD)+
   done
@@ -233,24 +307,30 @@
   \medskip Conversions between @{text trancl} and @{text rtrancl}.
 *}
 
-lemma trancl_into_rtrancl: "(a, b) \<in> r^+ ==> (a, b) \<in> r^*"
+lemma trancl_into_rtrancl': "r^++ a b ==> r^** a b"
   by (erule trancl.induct) iprover+
 
-lemma rtrancl_into_trancl1: assumes r: "(a, b) \<in> r^*"
-  shows "!!c. (b, c) \<in> r ==> (a, c) \<in> r^+" using r
+lemmas trancl_into_rtrancl = trancl_into_rtrancl' [to_set]
+
+lemma rtrancl_into_trancl1': assumes r: "r^** a b"
+  shows "!!c. r b c ==> r^++ a c" using r
   by induct iprover+
 
-lemma rtrancl_into_trancl2: "[| (a,b) : r;  (b,c) : r^* |]   ==>  (a,c) : r^+"
+lemmas rtrancl_into_trancl1 = rtrancl_into_trancl1' [to_set]
+
+lemma rtrancl_into_trancl2': "[| r a b; r^** b c |] ==> r^++ a c"
   -- {* intro rule from @{text r} and @{text rtrancl} *}
-  apply (erule rtranclE, iprover)
-  apply (rule rtrancl_trans [THEN rtrancl_into_trancl1])
-   apply (assumption | rule r_into_rtrancl)+
+  apply (erule rtrancl.cases, iprover)
+  apply (rule rtrancl_trans' [THEN rtrancl_into_trancl1'])
+   apply (simp | rule r_into_rtrancl')+
   done
 
-lemma trancl_induct [consumes 1, induct set: trancl]:
-  assumes a: "(a,b) : r^+"
-  and cases: "!!y. (a, y) : r ==> P y"
-    "!!y z. (a,y) : r^+ ==> (y, z) : r ==> P y ==> P z"
+lemmas rtrancl_into_trancl2 = rtrancl_into_trancl2' [to_set]
+
+lemma trancl_induct' [consumes 1, induct set: trancl]:
+  assumes a: "r^++ a b"
+  and cases: "!!y. r a y ==> P y"
+    "!!y z. r^++ a y ==> r y z ==> P y ==> P z"
   shows "P b"
   -- {* Nice induction rule for @{text trancl} *}
 proof -
@@ -259,19 +339,32 @@
   thus ?thesis by iprover
 qed
 
+lemmas trancl_induct [consumes 1, induct set: trancl_set] = trancl_induct' [to_set]
+
+lemmas trancl_induct2' =
+  trancl_induct'[of _ "(ax,ay)" "(bx,by)", split_rule,
+                 consumes 1, case_names base step]
+
 lemmas trancl_induct2 =
   trancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
                  consumes 1, case_names base step]
 
-lemma trancl_trans_induct:
-  assumes major: "(x,y) : r^+"
-    and cases: "!!x y. (x,y) : r ==> P x y"
-      "!!x y z. [| (x,y) : r^+; P x y; (y,z) : r^+; P y z |] ==> P x z"
+lemma trancl_trans_induct':
+  assumes major: "r^++ x y"
+    and cases: "!!x y. r x y ==> P x y"
+      "!!x y z. [| r^++ x y; P x y; r^++ y z; P y z |] ==> P x z"
   shows "P x y"
   -- {* Another induction rule for trancl, incorporating transitivity *}
-  by (iprover intro: r_into_trancl major [THEN trancl_induct] cases)
+  by (iprover intro: major [THEN trancl_induct'] cases)
+
+lemmas trancl_trans_induct = trancl_trans_induct' [to_set]
 
-inductive_cases tranclE: "(a, b) : r^+"
+lemma tranclE:
+  assumes H: "(a, b) : r^+"
+  and cases: "(a, b) : r ==> P" "\<And>c. (a, c) : r^+ ==> (c, b) : r ==> P"
+  shows P
+  using H [simplified trancl_set_def, simplified]
+  by cases (auto intro: cases [simplified trancl_set_def, simplified])
 
 lemma trancl_Int_subset: "[| r \<subseteq> s; r O (r^+ \<inter> s) \<subseteq> s|] ==> r^+ \<subseteq> s"
   apply (rule subsetI)
@@ -293,6 +386,12 @@
 
 lemmas trancl_trans = trans_trancl [THEN transD, standard]
 
+lemma trancl_trans':
+  assumes xy: "r^++ x y"
+  and yz: "r^++ y z"
+  shows "r^++ x z" using yz xy
+  by induct iprover+
+
 lemma trancl_id[simp]: "trans r \<Longrightarrow> r^+ = r"
 apply(auto)
 apply(erule trancl_induct)
@@ -301,12 +400,16 @@
 apply(blast)
 done
 
-lemma rtrancl_trancl_trancl: assumes r: "(x, y) \<in> r^*"
-  shows "!!z. (y, z) \<in> r^+ ==> (x, z) \<in> r^+" using r
-  by induct (iprover intro: trancl_trans)+
+lemma rtrancl_trancl_trancl': assumes r: "r^** x y"
+  shows "!!z. r^++ y z ==> r^++ x z" using r
+  by induct (iprover intro: trancl_trans')+
 
-lemma trancl_into_trancl2: "(a, b) \<in> r ==> (b, c) \<in> r^+ ==> (a, c) \<in> r^+"
-  by (erule transD [OF trans_trancl r_into_trancl])
+lemmas rtrancl_trancl_trancl = rtrancl_trancl_trancl' [to_set]
+
+lemma trancl_into_trancl2': "r a b ==> r^++ b c ==> r^++ a c"
+  by (erule trancl_trans' [OF trancl.r_into_trancl])
+
+lemmas trancl_into_trancl2 = trancl_into_trancl2' [to_set]
 
 lemma trancl_insert:
   "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
@@ -321,41 +424,51 @@
     [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)
   done
 
-lemma trancl_converseI: "(x, y) \<in> (r^+)^-1 ==> (x, y) \<in> (r^-1)^+"
-  apply (drule converseD)
-  apply (erule trancl.induct)
-  apply (iprover intro: converseI trancl_trans)+
+lemma trancl_converseI': "(r^++)^--1 x y ==> (r^--1)^++ x y"
+  apply (drule conversepD)
+  apply (erule trancl_induct')
+  apply (iprover intro: conversepI trancl_trans')+
   done
 
-lemma trancl_converseD: "(x, y) \<in> (r^-1)^+ ==> (x, y) \<in> (r^+)^-1"
-  apply (rule converseI)
-  apply (erule trancl.induct)
-  apply (iprover dest: converseD intro: trancl_trans)+
+lemmas trancl_converseI = trancl_converseI' [to_set]
+
+lemma trancl_converseD': "(r^--1)^++ x y ==> (r^++)^--1 x y"
+  apply (rule conversepI)
+  apply (erule trancl_induct')
+  apply (iprover dest: conversepD intro: trancl_trans')+
   done
 
-lemma trancl_converse: "(r^-1)^+ = (r^+)^-1"
-  by (fastsimp simp add: split_tupled_all
-    intro!: trancl_converseI trancl_converseD)
+lemmas trancl_converseD = trancl_converseD' [to_set]
+
+lemma trancl_converse': "(r^--1)^++ = (r^++)^--1"
+  by (fastsimp simp add: expand_fun_eq
+    intro!: trancl_converseI' dest!: trancl_converseD')
+
+lemmas trancl_converse = trancl_converse' [to_set]
 
 lemma sym_trancl: "sym r ==> sym (r^+)"
   by (simp only: sym_conv_converse_eq trancl_converse [symmetric])
 
-lemma converse_trancl_induct:
-  assumes major: "(a,b) : r^+"
-    and cases: "!!y. (y,b) : r ==> P(y)"
-      "!!y z.[| (y,z) : r;  (z,b) : r^+;  P(z) |] ==> P(y)"
+lemma converse_trancl_induct':
+  assumes major: "r^++ a b"
+    and cases: "!!y. r y b ==> P(y)"
+      "!!y z.[| r y z;  r^++ z b;  P(z) |] ==> P(y)"
   shows "P a"
-  apply (rule major [THEN converseI, THEN trancl_converseI [THEN trancl_induct]])
+  apply (rule trancl_induct' [OF trancl_converseI', OF conversepI, OF major])
    apply (rule cases)
-   apply (erule converseD)
-  apply (blast intro: prems dest!: trancl_converseD)
+   apply (erule conversepD)
+  apply (blast intro: prems dest!: trancl_converseD' conversepD)
   done
 
-lemma tranclD: "(x, y) \<in> R^+ ==> EX z. (x, z) \<in> R \<and> (z, y) \<in> R^*"
-  apply (erule converse_trancl_induct, auto)
-  apply (blast intro: rtrancl_trans)
+lemmas converse_trancl_induct = converse_trancl_induct' [to_set]
+
+lemma tranclD': "R^++ x y ==> EX z. R x z \<and> R^** z y"
+  apply (erule converse_trancl_induct', auto)
+  apply (blast intro: rtrancl_trans')
   done
 
+lemmas tranclD = tranclD' [to_set]
+
 lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
   by (blast elim: tranclE dest: trancl_into_rtrancl)
 
@@ -373,12 +486,14 @@
   apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
   done
 
-lemma reflcl_trancl [simp]: "(r^+)^= = r^*"
-  apply safe
-   apply (erule trancl_into_rtrancl)
-  apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
+lemma reflcl_trancl' [simp]: "(r^++)^== = r^**"
+  apply (safe intro!: order_antisym)
+   apply (erule trancl_into_rtrancl')
+  apply (blast elim: rtrancl.cases dest: rtrancl_into_trancl1')
   done
 
+lemmas reflcl_trancl [simp] = reflcl_trancl' [to_set]
+
 lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"
   apply safe
    apply (drule trancl_into_rtrancl, simp)
@@ -394,8 +509,10 @@
 lemma rtrancl_empty [simp]: "{}^* = Id"
   by (rule subst [OF reflcl_trancl]) simp
 
-lemma rtranclD: "(a, b) \<in> R^* ==> a = b \<or> a \<noteq> b \<and> (a, b) \<in> R^+"
-  by (force simp add: reflcl_trancl [symmetric] simp del: reflcl_trancl)
+lemma rtranclD': "R^** a b ==> a = b \<or> a \<noteq> b \<and> R^++ a b"
+  by (force simp add: reflcl_trancl' [symmetric] simp del: reflcl_trancl')
+
+lemmas rtranclD = rtranclD' [to_set]
 
 lemma rtrancl_eq_or_trancl:
   "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)"
@@ -450,24 +567,32 @@
   apply (fast intro: r_r_into_trancl trancl_trans)
   done
 
-lemma trancl_rtrancl_trancl:
-    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r\<^sup>* ==> (a, c) \<in> r\<^sup>+"
-  apply (drule tranclD)
+lemma trancl_rtrancl_trancl':
+    "r\<^sup>+\<^sup>+ a b ==> r\<^sup>*\<^sup>* b c ==> r\<^sup>+\<^sup>+ a c"
+  apply (drule tranclD')
   apply (erule exE, erule conjE)
-  apply (drule rtrancl_trans, assumption)
-  apply (drule rtrancl_into_trancl2, assumption, assumption)
+  apply (drule rtrancl_trans', assumption)
+  apply (drule rtrancl_into_trancl2', assumption, assumption)
   done
 
+lemmas trancl_rtrancl_trancl = trancl_rtrancl_trancl' [to_set]
+
 lemmas transitive_closure_trans [trans] =
   r_r_into_trancl trancl_trans rtrancl_trans
   trancl_into_trancl trancl_into_trancl2
   rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
   rtrancl_trancl_trancl trancl_rtrancl_trancl
 
+lemmas transitive_closure_trans' [trans] =
+  trancl_trans' rtrancl_trans'
+  trancl.trancl_into_trancl trancl_into_trancl2'
+  rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl'
+  rtrancl_trancl_trancl' trancl_rtrancl_trancl'
+
 declare trancl_into_rtrancl [elim]
 
-declare rtranclE [cases set: rtrancl]
-declare tranclE [cases set: trancl]
+declare rtranclE [cases set: rtrancl_set]
+declare tranclE [cases set: trancl_set]
 
 
 
@@ -490,8 +615,8 @@
 
   fun decomp (Trueprop $ t) =
     let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
-        let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
-              | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
+        let fun decr (Const ("Transitive_Closure.rtrancl_set", _ ) $ r) = (r,"r*")
+              | decr (Const ("Transitive_Closure.trancl_set", _ ) $ r)  = (r,"r+")
               | decr r = (r,"r");
             val (rel,r) = decr rel;
         in SOME (a,b,rel,r) end
@@ -500,9 +625,34 @@
 
   end);
 
+structure Tranclp_Tac = Trancl_Tac_Fun (
+  struct
+    val r_into_trancl = thm "trancl.r_into_trancl";
+    val trancl_trans  = thm "trancl_trans'";
+    val rtrancl_refl = thm "rtrancl.rtrancl_refl";
+    val r_into_rtrancl = thm "r_into_rtrancl'";
+    val trancl_into_rtrancl = thm "trancl_into_rtrancl'";
+    val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl'";
+    val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl'";
+    val rtrancl_trans = thm "rtrancl_trans'";
+
+  fun decomp (Trueprop $ t) =
+    let fun dec (rel $ a $ b) =
+        let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
+              | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
+              | decr r = (r,"r");
+            val (rel,r) = decr rel;
+        in SOME (a, b, Envir.beta_eta_contract rel, r) end
+      | dec _ =  NONE
+    in dec t end;
+
+  end);
+
 change_simpset (fn ss => ss
   addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac))
-  addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac)));
+  addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac))
+  addSolver (mk_solver "Tranclp" (fn _ => Tranclp_Tac.trancl_tac))
+  addSolver (mk_solver "Rtranclp" (fn _ => Tranclp_Tac.rtrancl_tac)));
 
 *}
 
@@ -514,5 +664,11 @@
 method_setup rtrancl =
   {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.rtrancl_tac) *}
   {* simple transitivity reasoner *}
+method_setup tranclp =
+  {* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.trancl_tac) *}
+  {* simple transitivity reasoner (predicate version) *}
+method_setup rtranclp =
+  {* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.rtrancl_tac) *}
+  {* simple transitivity reasoner (predicate version) *}
 
 end