merged
authorhaftmann
Wed, 15 Sep 2010 08:58:34 +0200
changeset 39381 9717ea8d42b3
parent 39377 9e544eb396dc (current diff)
parent 39380 5a2662c1e44a (diff)
child 39382 c797f3ab2ae1
child 39387 6608c4838ff9
merged
--- a/src/HOL/Library/AssocList.thy	Tue Sep 14 23:38:36 2010 +0200
+++ b/src/HOL/Library/AssocList.thy	Wed Sep 15 08:58:34 2010 +0200
@@ -701,37 +701,13 @@
   "Mapping.bulkload vs = Mapping (map (\<lambda>n. (n, vs ! n)) [0..<length vs])"
   by (rule mapping_eqI) (simp add: map_of_map_restrict fun_eq_iff)
 
-lemma map_of_eqI: (*FIXME move to Map.thy*)
-  assumes set_eq: "set (map fst xs) = set (map fst ys)"
-  assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k"
-  shows "map_of xs = map_of ys"
-proof (rule ext)
-  fix k show "map_of xs k = map_of ys k"
-  proof (cases "map_of xs k")
-    case None then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff)
-    with set_eq have "k \<notin> set (map fst ys)" by simp
-    then have "map_of ys k = None" by (simp add: map_of_eq_None_iff)
-    with None show ?thesis by simp
-  next
-    case (Some v) then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric])
-    with map_eq show ?thesis by auto
-  qed
-qed
-
-lemma map_of_eq_dom: (*FIXME move to Map.thy*)
-  assumes "map_of xs = map_of ys"
-  shows "fst ` set xs = fst ` set ys"
-proof -
-  from assms have "dom (map_of xs) = dom (map_of ys)" by simp
-  then show ?thesis by (simp add: dom_map_of_conv_image_fst)
-qed
-
 lemma equal_Mapping [code]:
   "HOL.equal (Mapping xs) (Mapping ys) \<longleftrightarrow>
     (let ks = map fst xs; ls = map fst ys
     in (\<forall>l\<in>set ls. l \<in> set ks) \<and> (\<forall>k\<in>set ks. k \<in> set ls \<and> map_of xs k = map_of ys k))"
 proof -
-  have aux: "\<And>a b xs. (a, b) \<in> set xs \<Longrightarrow> a \<in> fst ` set xs" by (auto simp add: image_def intro!: bexI)
+  have aux: "\<And>a b xs. (a, b) \<in> set xs \<Longrightarrow> a \<in> fst ` set xs"
+    by (auto simp add: image_def intro!: bexI)
   show ?thesis
     by (auto intro!: map_of_eqI simp add: Let_def equal Mapping_def)
       (auto dest!: map_of_eq_dom intro: aux)
--- a/src/HOL/Library/Dlist.thy	Tue Sep 14 23:38:36 2010 +0200
+++ b/src/HOL/Library/Dlist.thy	Wed Sep 15 08:58:34 2010 +0200
@@ -14,18 +14,20 @@
   show "[] \<in> ?dlist" by simp
 qed
 
-lemma dlist_ext:
-  assumes "list_of_dlist dxs = list_of_dlist dys"
-  shows "dxs = dys"
-  using assms by (simp add: list_of_dlist_inject)
+lemma dlist_eq_iff:
+  "dxs = dys \<longleftrightarrow> list_of_dlist dxs = list_of_dlist dys"
+  by (simp add: list_of_dlist_inject)
 
+lemma dlist_eqI:
+  "list_of_dlist dxs = list_of_dlist dys \<Longrightarrow> dxs = dys"
+  by (simp add: dlist_eq_iff)
 
 text {* Formal, totalized constructor for @{typ "'a dlist"}: *}
 
 definition Dlist :: "'a list \<Rightarrow> 'a dlist" where
   "Dlist xs = Abs_dlist (remdups xs)"
 
-lemma distinct_list_of_dlist [simp]:
+lemma distinct_list_of_dlist [simp, intro]:
   "distinct (list_of_dlist dxs)"
   using list_of_dlist [of dxs] by simp
 
--- a/src/HOL/Library/Fset.thy	Tue Sep 14 23:38:36 2010 +0200
+++ b/src/HOL/Library/Fset.thy	Wed Sep 15 08:58:34 2010 +0200
@@ -20,15 +20,17 @@
   "Fset (member A) = A"
   by (fact member_inverse)
 
-declare member_inject [simp]
-
 lemma Fset_inject [simp]:
   "Fset A = Fset B \<longleftrightarrow> A = B"
   by (simp add: Fset_inject)
 
+lemma fset_eq_iff:
+  "A = B \<longleftrightarrow> member A = member B"
+  by (simp add: member_inject)
+
 lemma fset_eqI:
   "member A = member B \<Longrightarrow> A = B"
-  by simp
+  by (simp add: fset_eq_iff)
 
 declare mem_def [simp]
 
@@ -116,7 +118,7 @@
   [simp]: "A - B = Fset (member A - member B)"
 
 instance proof
-qed auto
+qed (auto intro: fset_eqI)
 
 end
 
@@ -234,7 +236,7 @@
   "HOL.equal A B \<longleftrightarrow> A \<le> B \<and> B \<le> (A :: 'a fset)"
 
 instance proof
-qed (simp add: equal_fset_def set_eq [symmetric])
+qed (simp add: equal_fset_def set_eq [symmetric] fset_eq_iff)
 
 end
 
--- a/src/HOL/Library/Mapping.thy	Tue Sep 14 23:38:36 2010 +0200
+++ b/src/HOL/Library/Mapping.thy	Wed Sep 15 08:58:34 2010 +0200
@@ -19,16 +19,17 @@
   "Mapping (lookup m) = m"
   by (fact lookup_inverse)
 
-declare lookup_inject [simp]
-
 lemma Mapping_inject [simp]:
   "Mapping f = Mapping g \<longleftrightarrow> f = g"
   by (simp add: Mapping_inject)
 
+lemma mapping_eq_iff:
+  "m = n \<longleftrightarrow> lookup m = lookup n"
+  by (simp add: lookup_inject)
+
 lemma mapping_eqI:
-  assumes "lookup m = lookup n"
-  shows "m = n"
-  using assms by simp
+  "lookup m = lookup n \<Longrightarrow> m = n"
+  by (simp add: mapping_eq_iff)
 
 definition empty :: "('a, 'b) mapping" where
   "empty = Mapping (\<lambda>_. None)"
@@ -287,7 +288,7 @@
   "HOL.equal m n \<longleftrightarrow> lookup m = lookup n"
 
 instance proof
-qed (simp add: equal_mapping_def)
+qed (simp add: equal_mapping_def mapping_eq_iff)
 
 end
 
--- a/src/HOL/Library/RBT.thy	Tue Sep 14 23:38:36 2010 +0200
+++ b/src/HOL/Library/RBT.thy	Wed Sep 15 08:58:34 2010 +0200
@@ -16,15 +16,19 @@
   then show ?thesis ..
 qed
 
+lemma rbt_eq_iff:
+  "t1 = t2 \<longleftrightarrow> impl_of t1 = impl_of t2"
+  by (simp add: impl_of_inject)
+
+lemma rbt_eqI:
+  "impl_of t1 = impl_of t2 \<Longrightarrow> t1 = t2"
+  by (simp add: rbt_eq_iff)
+
 lemma is_rbt_impl_of [simp, intro]:
   "is_rbt (impl_of t)"
   using impl_of [of t] by simp
 
-lemma rbt_eq:
-  "t1 = t2 \<longleftrightarrow> impl_of t1 = impl_of t2"
-  by (simp add: impl_of_inject)
-
-lemma [code abstype]:
+lemma RBT_impl_of [simp, code abstype]:
   "RBT (impl_of t) = t"
   by (simp add: impl_of_inverse)
 
@@ -148,7 +152,7 @@
 
 lemma is_empty_empty [simp]:
   "is_empty t \<longleftrightarrow> t = empty"
-  by (simp add: rbt_eq is_empty_def impl_of_empty split: rbt.split)
+  by (simp add: rbt_eq_iff is_empty_def impl_of_empty split: rbt.split)
 
 lemma RBT_lookup_empty [simp]: (*FIXME*)
   "RBT_Impl.lookup t = Map.empty \<longleftrightarrow> t = RBT_Impl.Empty"
@@ -184,7 +188,7 @@
 
 lemma is_empty_Mapping [code]:
   "Mapping.is_empty (Mapping t) \<longleftrightarrow> is_empty t"
-  by (simp add: rbt_eq Mapping.is_empty_empty Mapping_def)
+  by (simp add: rbt_eq_iff Mapping.is_empty_empty Mapping_def)
 
 lemma insert_Mapping [code]:
   "Mapping.update k v (Mapping t) = Mapping (insert k v t)"
--- a/src/HOL/Map.thy	Tue Sep 14 23:38:36 2010 +0200
+++ b/src/HOL/Map.thy	Wed Sep 15 08:58:34 2010 +0200
@@ -568,6 +568,31 @@
   "set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m"
   by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def)
 
+lemma map_of_eqI:
+  assumes set_eq: "set (map fst xs) = set (map fst ys)"
+  assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k"
+  shows "map_of xs = map_of ys"
+proof (rule ext)
+  fix k show "map_of xs k = map_of ys k"
+  proof (cases "map_of xs k")
+    case None then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff)
+    with set_eq have "k \<notin> set (map fst ys)" by simp
+    then have "map_of ys k = None" by (simp add: map_of_eq_None_iff)
+    with None show ?thesis by simp
+  next
+    case (Some v) then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric])
+    with map_eq show ?thesis by auto
+  qed
+qed
+
+lemma map_of_eq_dom:
+  assumes "map_of xs = map_of ys"
+  shows "fst ` set xs = fst ` set ys"
+proof -
+  from assms have "dom (map_of xs) = dom (map_of ys)" by simp
+  then show ?thesis by (simp add: dom_map_of_conv_image_fst)
+qed
+
 
 subsection {* @{term [source] ran} *}
 
--- a/src/Pure/Isar/class.ML	Tue Sep 14 23:38:36 2010 +0200
+++ b/src/Pure/Isar/class.ML	Wed Sep 15 08:58:34 2010 +0200
@@ -293,7 +293,7 @@
   |> Variable.declare_term
       (Logic.mk_type (TFree (Name.aT, base_sort)))
   |> synchronize_class_syntax sort base_sort
-  |> Overloading.add_improvable_syntax;
+  |> Overloading.activate_improvable_syntax;
 
 fun init class thy =
   thy
@@ -548,7 +548,7 @@
     |> fold (Variable.declare_names o Free o snd) params
     |> (Overloading.map_improvable_syntax o apfst)
          (K ((primary_constraints, []), (((improve, K NONE), false), [])))
-    |> Overloading.add_improvable_syntax
+    |> Overloading.activate_improvable_syntax
     |> Context.proof_map (Syntax.add_term_check 0 "resorting" resort_check)
     |> synchronize_inst_syntax
     |> Local_Theory.init NONE ""
--- a/src/Pure/Isar/overloading.ML	Tue Sep 14 23:38:36 2010 +0200
+++ b/src/Pure/Isar/overloading.ML	Wed Sep 15 08:58:34 2010 +0200
@@ -7,7 +7,7 @@
 signature OVERLOADING =
 sig
   type improvable_syntax
-  val add_improvable_syntax: Proof.context -> Proof.context
+  val activate_improvable_syntax: Proof.context -> Proof.context
   val map_improvable_syntax: (improvable_syntax -> improvable_syntax)
     -> Proof.context -> Proof.context
   val set_primary_constraints: Proof.context -> Proof.context
@@ -104,7 +104,7 @@
     val { primary_constraints, ... } = ImprovableSyntax.get ctxt;
   in fold (ProofContext.add_const_constraint o apsnd SOME) primary_constraints ctxt end;
 
-val add_improvable_syntax =
+val activate_improvable_syntax =
   Context.proof_map
     (Syntax.add_term_check 0 "improvement" improve_term_check
     #> Syntax.add_term_uncheck 0 "improvement" improve_term_uncheck)
@@ -183,7 +183,7 @@
     |> ProofContext.init_global
     |> Data.put overloading
     |> fold (fn ((_, ty), (v, _)) => Variable.declare_names (Free (v, ty))) overloading
-    |> add_improvable_syntax
+    |> activate_improvable_syntax
     |> synchronize_syntax
     |> Local_Theory.init NONE ""
        {define = Generic_Target.define foundation,