Quotient_Examples/DList: explicit proof of remdups_eq_member_eq needed for explicit set type.
--- a/src/HOL/Quotient_Examples/DList.thy Wed Aug 17 15:12:34 2011 -0700
+++ b/src/HOL/Quotient_Examples/DList.thy Thu Aug 18 16:52:19 2011 +0900
@@ -48,6 +48,14 @@
by (induct xa ya arbitrary: fx fy rule: list_induct2')
(metis (full_types) remdups_nil_noteq_cons(2) remdups_map_remdups)+
+lemma remdups_eq_member_eq:
+ assumes "remdups xa = remdups ya"
+ shows "List.member xa = List.member ya"
+ using assms
+ unfolding fun_eq_iff List.member_def
+ by (induct xa ya rule: list_induct2')
+ (metis remdups_nil_noteq_cons set_remdups)+
+
text {* Setting up the quotient type *}
definition
@@ -91,7 +99,7 @@
"(op = ===> dlist_eq ===> dlist_eq) map map"
"(op = ===> dlist_eq ===> dlist_eq) filter filter"
by (auto intro!: fun_relI simp add: remdups_filter)
- (metis (full_types) member_set set_remdups remdups_eq_map_eq)+
+ (metis (full_types) set_remdups remdups_eq_map_eq remdups_eq_member_eq)+
quotient_definition empty where "empty :: 'a dlist"
is "Nil"