--- a/src/HOL/Metric_Spaces.thy Tue Mar 26 12:20:56 2013 +0100
+++ b/src/HOL/Metric_Spaces.thy Tue Mar 26 12:20:56 2013 +0100
@@ -6,7 +6,7 @@
header {* Metric Spaces *}
theory Metric_Spaces
-imports RealDef Topological_Spaces
+imports Real Topological_Spaces
begin
--- a/src/HOL/Nitpick_Examples/Manual_Nits.thy Tue Mar 26 12:20:56 2013 +0100
+++ b/src/HOL/Nitpick_Examples/Manual_Nits.thy Tue Mar 26 12:20:56 2013 +0100
@@ -12,7 +12,7 @@
suite. *)
theory Manual_Nits
-imports Main "~~/src/HOL/Library/Quotient_Product" RealDef
+imports Main "~~/src/HOL/Library/Quotient_Product" Real
begin
chapter {* 2. First Steps *}
--- a/src/HOL/Quickcheck_Benchmark/Find_Unused_Assms_Examples.thy Tue Mar 26 12:20:56 2013 +0100
+++ b/src/HOL/Quickcheck_Benchmark/Find_Unused_Assms_Examples.thy Tue Mar 26 12:20:56 2013 +0100
@@ -8,7 +8,7 @@
find_unused_assms Divides
find_unused_assms GCD
-find_unused_assms RealDef
+find_unused_assms Real
section {* Set Theory *}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Real.thy Tue Mar 26 12:20:56 2013 +0100
@@ -0,0 +1,2229 @@
+(* Title: HOL/Real.thy
+ Author: Jacques D. Fleuriot, University of Edinburgh, 1998
+ Author: Larry Paulson, University of Cambridge
+ Author: Jeremy Avigad, Carnegie Mellon University
+ Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen
+ Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
+ Construction of Cauchy Reals by Brian Huffman, 2010
+*)
+
+header {* Development of the Reals using Cauchy Sequences *}
+
+theory Real
+imports Rat Conditional_Complete_Lattices
+begin
+
+text {*
+ This theory contains a formalization of the real numbers as
+ equivalence classes of Cauchy sequences of rationals. See
+ @{file "~~/src/HOL/ex/Dedekind_Real.thy"} for an alternative
+ construction using Dedekind cuts.
+*}
+
+subsection {* Preliminary lemmas *}
+
+lemma add_diff_add:
+ fixes a b c d :: "'a::ab_group_add"
+ shows "(a + c) - (b + d) = (a - b) + (c - d)"
+ by simp
+
+lemma minus_diff_minus:
+ fixes a b :: "'a::ab_group_add"
+ shows "- a - - b = - (a - b)"
+ by simp
+
+lemma mult_diff_mult:
+ fixes x y a b :: "'a::ring"
+ shows "(x * y - a * b) = x * (y - b) + (x - a) * b"
+ by (simp add: algebra_simps)
+
+lemma inverse_diff_inverse:
+ fixes a b :: "'a::division_ring"
+ assumes "a \<noteq> 0" and "b \<noteq> 0"
+ shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
+ using assms by (simp add: algebra_simps)
+
+lemma obtain_pos_sum:
+ fixes r :: rat assumes r: "0 < r"
+ obtains s t where "0 < s" and "0 < t" and "r = s + t"
+proof
+ from r show "0 < r/2" by simp
+ from r show "0 < r/2" by simp
+ show "r = r/2 + r/2" by simp
+qed
+
+subsection {* Sequences that converge to zero *}
+
+definition
+ vanishes :: "(nat \<Rightarrow> rat) \<Rightarrow> bool"
+where
+ "vanishes X = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r)"
+
+lemma vanishesI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r) \<Longrightarrow> vanishes X"
+ unfolding vanishes_def by simp
+
+lemma vanishesD: "\<lbrakk>vanishes X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r"
+ unfolding vanishes_def by simp
+
+lemma vanishes_const [simp]: "vanishes (\<lambda>n. c) \<longleftrightarrow> c = 0"
+ unfolding vanishes_def
+ apply (cases "c = 0", auto)
+ apply (rule exI [where x="\<bar>c\<bar>"], auto)
+ done
+
+lemma vanishes_minus: "vanishes X \<Longrightarrow> vanishes (\<lambda>n. - X n)"
+ unfolding vanishes_def by simp
+
+lemma vanishes_add:
+ assumes X: "vanishes X" and Y: "vanishes Y"
+ shows "vanishes (\<lambda>n. X n + Y n)"
+proof (rule vanishesI)
+ fix r :: rat assume "0 < r"
+ then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
+ by (rule obtain_pos_sum)
+ obtain i where i: "\<forall>n\<ge>i. \<bar>X n\<bar> < s"
+ using vanishesD [OF X s] ..
+ obtain j where j: "\<forall>n\<ge>j. \<bar>Y n\<bar> < t"
+ using vanishesD [OF Y t] ..
+ have "\<forall>n\<ge>max i j. \<bar>X n + Y n\<bar> < r"
+ proof (clarsimp)
+ fix n assume n: "i \<le> n" "j \<le> n"
+ have "\<bar>X n + Y n\<bar> \<le> \<bar>X n\<bar> + \<bar>Y n\<bar>" by (rule abs_triangle_ineq)
+ also have "\<dots> < s + t" by (simp add: add_strict_mono i j n)
+ finally show "\<bar>X n + Y n\<bar> < r" unfolding r .
+ qed
+ thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n + Y n\<bar> < r" ..
+qed
+
+lemma vanishes_diff:
+ assumes X: "vanishes X" and Y: "vanishes Y"
+ shows "vanishes (\<lambda>n. X n - Y n)"
+unfolding diff_minus by (intro vanishes_add vanishes_minus X Y)
+
+lemma vanishes_mult_bounded:
+ assumes X: "\<exists>a>0. \<forall>n. \<bar>X n\<bar> < a"
+ assumes Y: "vanishes (\<lambda>n. Y n)"
+ shows "vanishes (\<lambda>n. X n * Y n)"
+proof (rule vanishesI)
+ fix r :: rat assume r: "0 < r"
+ obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a"
+ using X by fast
+ obtain b where b: "0 < b" "r = a * b"
+ proof
+ show "0 < r / a" using r a by (simp add: divide_pos_pos)
+ show "r = a * (r / a)" using a by simp
+ qed
+ obtain k where k: "\<forall>n\<ge>k. \<bar>Y n\<bar> < b"
+ using vanishesD [OF Y b(1)] ..
+ have "\<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r"
+ by (simp add: b(2) abs_mult mult_strict_mono' a k)
+ thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" ..
+qed
+
+subsection {* Cauchy sequences *}
+
+definition
+ cauchy :: "(nat \<Rightarrow> rat) \<Rightarrow> bool"
+where
+ "cauchy X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r)"
+
+lemma cauchyI:
+ "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r) \<Longrightarrow> cauchy X"
+ unfolding cauchy_def by simp
+
+lemma cauchyD:
+ "\<lbrakk>cauchy X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r"
+ unfolding cauchy_def by simp
+
+lemma cauchy_const [simp]: "cauchy (\<lambda>n. x)"
+ unfolding cauchy_def by simp
+
+lemma cauchy_add [simp]:
+ assumes X: "cauchy X" and Y: "cauchy Y"
+ shows "cauchy (\<lambda>n. X n + Y n)"
+proof (rule cauchyI)
+ fix r :: rat assume "0 < r"
+ then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
+ by (rule obtain_pos_sum)
+ obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"
+ using cauchyD [OF X s] ..
+ obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t"
+ using cauchyD [OF Y t] ..
+ have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r"
+ proof (clarsimp)
+ fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"
+ have "\<bar>(X m + Y m) - (X n + Y n)\<bar> \<le> \<bar>X m - X n\<bar> + \<bar>Y m - Y n\<bar>"
+ unfolding add_diff_add by (rule abs_triangle_ineq)
+ also have "\<dots> < s + t"
+ by (rule add_strict_mono, simp_all add: i j *)
+ finally show "\<bar>(X m + Y m) - (X n + Y n)\<bar> < r" unfolding r .
+ qed
+ thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" ..
+qed
+
+lemma cauchy_minus [simp]:
+ assumes X: "cauchy X"
+ shows "cauchy (\<lambda>n. - X n)"
+using assms unfolding cauchy_def
+unfolding minus_diff_minus abs_minus_cancel .
+
+lemma cauchy_diff [simp]:
+ assumes X: "cauchy X" and Y: "cauchy Y"
+ shows "cauchy (\<lambda>n. X n - Y n)"
+using assms unfolding diff_minus by simp
+
+lemma cauchy_imp_bounded:
+ assumes "cauchy X" shows "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b"
+proof -
+ obtain k where k: "\<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < 1"
+ using cauchyD [OF assms zero_less_one] ..
+ show "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b"
+ proof (intro exI conjI allI)
+ have "0 \<le> \<bar>X 0\<bar>" by simp
+ also have "\<bar>X 0\<bar> \<le> Max (abs ` X ` {..k})" by simp
+ finally have "0 \<le> Max (abs ` X ` {..k})" .
+ thus "0 < Max (abs ` X ` {..k}) + 1" by simp
+ next
+ fix n :: nat
+ show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1"
+ proof (rule linorder_le_cases)
+ assume "n \<le> k"
+ hence "\<bar>X n\<bar> \<le> Max (abs ` X ` {..k})" by simp
+ thus "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" by simp
+ next
+ assume "k \<le> n"
+ have "\<bar>X n\<bar> = \<bar>X k + (X n - X k)\<bar>" by simp
+ also have "\<bar>X k + (X n - X k)\<bar> \<le> \<bar>X k\<bar> + \<bar>X n - X k\<bar>"
+ by (rule abs_triangle_ineq)
+ also have "\<dots> < Max (abs ` X ` {..k}) + 1"
+ by (rule add_le_less_mono, simp, simp add: k `k \<le> n`)
+ finally show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" .
+ qed
+ qed
+qed
+
+lemma cauchy_mult [simp]:
+ assumes X: "cauchy X" and Y: "cauchy Y"
+ shows "cauchy (\<lambda>n. X n * Y n)"
+proof (rule cauchyI)
+ fix r :: rat assume "0 < r"
+ then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v"
+ by (rule obtain_pos_sum)
+ obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a"
+ using cauchy_imp_bounded [OF X] by fast
+ obtain b where b: "0 < b" "\<forall>n. \<bar>Y n\<bar> < b"
+ using cauchy_imp_bounded [OF Y] by fast
+ obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b"
+ proof
+ show "0 < v/b" using v b(1) by (rule divide_pos_pos)
+ show "0 < u/a" using u a(1) by (rule divide_pos_pos)
+ show "r = a * (u/a) + (v/b) * b"
+ using a(1) b(1) `r = u + v` by simp
+ qed
+ obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"
+ using cauchyD [OF X s] ..
+ obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t"
+ using cauchyD [OF Y t] ..
+ have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>X m * Y m - X n * Y n\<bar> < r"
+ proof (clarsimp)
+ fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"
+ have "\<bar>X m * Y m - X n * Y n\<bar> = \<bar>X m * (Y m - Y n) + (X m - X n) * Y n\<bar>"
+ unfolding mult_diff_mult ..
+ also have "\<dots> \<le> \<bar>X m * (Y m - Y n)\<bar> + \<bar>(X m - X n) * Y n\<bar>"
+ by (rule abs_triangle_ineq)
+ also have "\<dots> = \<bar>X m\<bar> * \<bar>Y m - Y n\<bar> + \<bar>X m - X n\<bar> * \<bar>Y n\<bar>"
+ unfolding abs_mult ..
+ also have "\<dots> < a * t + s * b"
+ by (simp_all add: add_strict_mono mult_strict_mono' a b i j *)
+ finally show "\<bar>X m * Y m - X n * Y n\<bar> < r" unfolding r .
+ qed
+ thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m * Y m - X n * Y n\<bar> < r" ..
+qed
+
+lemma cauchy_not_vanishes_cases:
+ assumes X: "cauchy X"
+ assumes nz: "\<not> vanishes X"
+ shows "\<exists>b>0. \<exists>k. (\<forall>n\<ge>k. b < - X n) \<or> (\<forall>n\<ge>k. b < X n)"
+proof -
+ obtain r where "0 < r" and r: "\<forall>k. \<exists>n\<ge>k. r \<le> \<bar>X n\<bar>"
+ using nz unfolding vanishes_def by (auto simp add: not_less)
+ obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t"
+ using `0 < r` by (rule obtain_pos_sum)
+ obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"
+ using cauchyD [OF X s] ..
+ obtain k where "i \<le> k" and "r \<le> \<bar>X k\<bar>"
+ using r by fast
+ have k: "\<forall>n\<ge>k. \<bar>X n - X k\<bar> < s"
+ using i `i \<le> k` by auto
+ have "X k \<le> - r \<or> r \<le> X k"
+ using `r \<le> \<bar>X k\<bar>` by auto
+ hence "(\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)"
+ unfolding `r = s + t` using k by auto
+ hence "\<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" ..
+ thus "\<exists>t>0. \<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)"
+ using t by auto
+qed
+
+lemma cauchy_not_vanishes:
+ assumes X: "cauchy X"
+ assumes nz: "\<not> vanishes X"
+ shows "\<exists>b>0. \<exists>k. \<forall>n\<ge>k. b < \<bar>X n\<bar>"
+using cauchy_not_vanishes_cases [OF assms]
+by clarify (rule exI, erule conjI, rule_tac x=k in exI, auto)
+
+lemma cauchy_inverse [simp]:
+ assumes X: "cauchy X"
+ assumes nz: "\<not> vanishes X"
+ shows "cauchy (\<lambda>n. inverse (X n))"
+proof (rule cauchyI)
+ fix r :: rat assume "0 < r"
+ obtain b i where b: "0 < b" and i: "\<forall>n\<ge>i. b < \<bar>X n\<bar>"
+ using cauchy_not_vanishes [OF X nz] by fast
+ from b i have nz: "\<forall>n\<ge>i. X n \<noteq> 0" by auto
+ obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b"
+ proof
+ show "0 < b * r * b"
+ by (simp add: `0 < r` b mult_pos_pos)
+ show "r = inverse b * (b * r * b) * inverse b"
+ using b by simp
+ qed
+ obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>X m - X n\<bar> < s"
+ using cauchyD [OF X s] ..
+ have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>inverse (X m) - inverse (X n)\<bar> < r"
+ proof (clarsimp)
+ fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"
+ have "\<bar>inverse (X m) - inverse (X n)\<bar> =
+ inverse \<bar>X m\<bar> * \<bar>X m - X n\<bar> * inverse \<bar>X n\<bar>"
+ by (simp add: inverse_diff_inverse nz * abs_mult)
+ also have "\<dots> < inverse b * s * inverse b"
+ by (simp add: mult_strict_mono less_imp_inverse_less
+ mult_pos_pos i j b * s)
+ finally show "\<bar>inverse (X m) - inverse (X n)\<bar> < r" unfolding r .
+ qed
+ thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>inverse (X m) - inverse (X n)\<bar> < r" ..
+qed
+
+lemma vanishes_diff_inverse:
+ assumes X: "cauchy X" "\<not> vanishes X"
+ assumes Y: "cauchy Y" "\<not> vanishes Y"
+ assumes XY: "vanishes (\<lambda>n. X n - Y n)"
+ shows "vanishes (\<lambda>n. inverse (X n) - inverse (Y n))"
+proof (rule vanishesI)
+ fix r :: rat assume r: "0 < r"
+ obtain a i where a: "0 < a" and i: "\<forall>n\<ge>i. a < \<bar>X n\<bar>"
+ using cauchy_not_vanishes [OF X] by fast
+ obtain b j where b: "0 < b" and j: "\<forall>n\<ge>j. b < \<bar>Y n\<bar>"
+ using cauchy_not_vanishes [OF Y] by fast
+ obtain s where s: "0 < s" and "inverse a * s * inverse b = r"
+ proof
+ show "0 < a * r * b"
+ using a r b by (simp add: mult_pos_pos)
+ show "inverse a * (a * r * b) * inverse b = r"
+ using a r b by simp
+ qed
+ obtain k where k: "\<forall>n\<ge>k. \<bar>X n - Y n\<bar> < s"
+ using vanishesD [OF XY s] ..
+ have "\<forall>n\<ge>max (max i j) k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r"
+ proof (clarsimp)
+ fix n assume n: "i \<le> n" "j \<le> n" "k \<le> n"
+ have "X n \<noteq> 0" and "Y n \<noteq> 0"
+ using i j a b n by auto
+ hence "\<bar>inverse (X n) - inverse (Y n)\<bar> =
+ inverse \<bar>X n\<bar> * \<bar>X n - Y n\<bar> * inverse \<bar>Y n\<bar>"
+ by (simp add: inverse_diff_inverse abs_mult)
+ also have "\<dots> < inverse a * s * inverse b"
+ apply (intro mult_strict_mono' less_imp_inverse_less)
+ apply (simp_all add: a b i j k n mult_nonneg_nonneg)
+ done
+ also note `inverse a * s * inverse b = r`
+ finally show "\<bar>inverse (X n) - inverse (Y n)\<bar> < r" .
+ qed
+ thus "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" ..
+qed
+
+subsection {* Equivalence relation on Cauchy sequences *}
+
+definition realrel :: "(nat \<Rightarrow> rat) \<Rightarrow> (nat \<Rightarrow> rat) \<Rightarrow> bool"
+ where "realrel = (\<lambda>X Y. cauchy X \<and> cauchy Y \<and> vanishes (\<lambda>n. X n - Y n))"
+
+lemma realrelI [intro?]:
+ assumes "cauchy X" and "cauchy Y" and "vanishes (\<lambda>n. X n - Y n)"
+ shows "realrel X Y"
+ using assms unfolding realrel_def by simp
+
+lemma realrel_refl: "cauchy X \<Longrightarrow> realrel X X"
+ unfolding realrel_def by simp
+
+lemma symp_realrel: "symp realrel"
+ unfolding realrel_def
+ by (rule sympI, clarify, drule vanishes_minus, simp)
+
+lemma transp_realrel: "transp realrel"
+ unfolding realrel_def
+ apply (rule transpI, clarify)
+ apply (drule (1) vanishes_add)
+ apply (simp add: algebra_simps)
+ done
+
+lemma part_equivp_realrel: "part_equivp realrel"
+ by (fast intro: part_equivpI symp_realrel transp_realrel
+ realrel_refl cauchy_const)
+
+subsection {* The field of real numbers *}
+
+quotient_type real = "nat \<Rightarrow> rat" / partial: realrel
+ morphisms rep_real Real
+ by (rule part_equivp_realrel)
+
+lemma cr_real_eq: "pcr_real = (\<lambda>x y. cauchy x \<and> Real x = y)"
+ unfolding real.pcr_cr_eq cr_real_def realrel_def by auto
+
+lemma Real_induct [induct type: real]: (* TODO: generate automatically *)
+ assumes "\<And>X. cauchy X \<Longrightarrow> P (Real X)" shows "P x"
+proof (induct x)
+ case (1 X)
+ hence "cauchy X" by (simp add: realrel_def)
+ thus "P (Real X)" by (rule assms)
+qed
+
+lemma eq_Real:
+ "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X = Real Y \<longleftrightarrow> vanishes (\<lambda>n. X n - Y n)"
+ using real.rel_eq_transfer
+ unfolding real.pcr_cr_eq cr_real_def fun_rel_def realrel_def by simp
+
+declare real.forall_transfer [transfer_rule del]
+
+lemma forall_real_transfer [transfer_rule]: (* TODO: generate automatically *)
+ "(fun_rel (fun_rel pcr_real op =) op =)
+ (transfer_bforall cauchy) transfer_forall"
+ using real.forall_transfer
+ by (simp add: realrel_def)
+
+instantiation real :: field_inverse_zero
+begin
+
+lift_definition zero_real :: "real" is "\<lambda>n. 0"
+ by (simp add: realrel_refl)
+
+lift_definition one_real :: "real" is "\<lambda>n. 1"
+ by (simp add: realrel_refl)
+
+lift_definition plus_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n + Y n"
+ unfolding realrel_def add_diff_add
+ by (simp only: cauchy_add vanishes_add simp_thms)
+
+lift_definition uminus_real :: "real \<Rightarrow> real" is "\<lambda>X n. - X n"
+ unfolding realrel_def minus_diff_minus
+ by (simp only: cauchy_minus vanishes_minus simp_thms)
+
+lift_definition times_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n * Y n"
+ unfolding realrel_def mult_diff_mult
+ by (subst (4) mult_commute, simp only: cauchy_mult vanishes_add
+ vanishes_mult_bounded cauchy_imp_bounded simp_thms)
+
+lift_definition inverse_real :: "real \<Rightarrow> real"
+ is "\<lambda>X. if vanishes X then (\<lambda>n. 0) else (\<lambda>n. inverse (X n))"
+proof -
+ fix X Y assume "realrel X Y"
+ hence X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\<lambda>n. X n - Y n)"
+ unfolding realrel_def by simp_all
+ have "vanishes X \<longleftrightarrow> vanishes Y"
+ proof
+ assume "vanishes X"
+ from vanishes_diff [OF this XY] show "vanishes Y" by simp
+ next
+ assume "vanishes Y"
+ from vanishes_add [OF this XY] show "vanishes X" by simp
+ qed
+ thus "?thesis X Y"
+ unfolding realrel_def
+ by (simp add: vanishes_diff_inverse X Y XY)
+qed
+
+definition
+ "x - y = (x::real) + - y"
+
+definition
+ "x / y = (x::real) * inverse y"
+
+lemma add_Real:
+ assumes X: "cauchy X" and Y: "cauchy Y"
+ shows "Real X + Real Y = Real (\<lambda>n. X n + Y n)"
+ using assms plus_real.transfer
+ unfolding cr_real_eq fun_rel_def by simp
+
+lemma minus_Real:
+ assumes X: "cauchy X"
+ shows "- Real X = Real (\<lambda>n. - X n)"
+ using assms uminus_real.transfer
+ unfolding cr_real_eq fun_rel_def by simp
+
+lemma diff_Real:
+ assumes X: "cauchy X" and Y: "cauchy Y"
+ shows "Real X - Real Y = Real (\<lambda>n. X n - Y n)"
+ unfolding minus_real_def diff_minus
+ by (simp add: minus_Real add_Real X Y)
+
+lemma mult_Real:
+ assumes X: "cauchy X" and Y: "cauchy Y"
+ shows "Real X * Real Y = Real (\<lambda>n. X n * Y n)"
+ using assms times_real.transfer
+ unfolding cr_real_eq fun_rel_def by simp
+
+lemma inverse_Real:
+ assumes X: "cauchy X"
+ shows "inverse (Real X) =
+ (if vanishes X then 0 else Real (\<lambda>n. inverse (X n)))"
+ using assms inverse_real.transfer zero_real.transfer
+ unfolding cr_real_eq fun_rel_def by (simp split: split_if_asm, metis)
+
+instance proof
+ fix a b c :: real
+ show "a + b = b + a"
+ by transfer (simp add: add_ac realrel_def)
+ show "(a + b) + c = a + (b + c)"
+ by transfer (simp add: add_ac realrel_def)
+ show "0 + a = a"
+ by transfer (simp add: realrel_def)
+ show "- a + a = 0"
+ by transfer (simp add: realrel_def)
+ show "a - b = a + - b"
+ by (rule minus_real_def)
+ show "(a * b) * c = a * (b * c)"
+ by transfer (simp add: mult_ac realrel_def)
+ show "a * b = b * a"
+ by transfer (simp add: mult_ac realrel_def)
+ show "1 * a = a"
+ by transfer (simp add: mult_ac realrel_def)
+ show "(a + b) * c = a * c + b * c"
+ by transfer (simp add: distrib_right realrel_def)
+ show "(0\<Colon>real) \<noteq> (1\<Colon>real)"
+ by transfer (simp add: realrel_def)
+ show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
+ apply transfer
+ apply (simp add: realrel_def)
+ apply (rule vanishesI)
+ apply (frule (1) cauchy_not_vanishes, clarify)
+ apply (rule_tac x=k in exI, clarify)
+ apply (drule_tac x=n in spec, simp)
+ done
+ show "a / b = a * inverse b"
+ by (rule divide_real_def)
+ show "inverse (0::real) = 0"
+ by transfer (simp add: realrel_def)
+qed
+
+end
+
+subsection {* Positive reals *}
+
+lift_definition positive :: "real \<Rightarrow> bool"
+ is "\<lambda>X. \<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n"
+proof -
+ { fix X Y
+ assume "realrel X Y"
+ hence XY: "vanishes (\<lambda>n. X n - Y n)"
+ unfolding realrel_def by simp_all
+ assume "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n"
+ then obtain r i where "0 < r" and i: "\<forall>n\<ge>i. r < X n"
+ by fast
+ obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
+ using `0 < r` by (rule obtain_pos_sum)
+ obtain j where j: "\<forall>n\<ge>j. \<bar>X n - Y n\<bar> < s"
+ using vanishesD [OF XY s] ..
+ have "\<forall>n\<ge>max i j. t < Y n"
+ proof (clarsimp)
+ fix n assume n: "i \<le> n" "j \<le> n"
+ have "\<bar>X n - Y n\<bar> < s" and "r < X n"
+ using i j n by simp_all
+ thus "t < Y n" unfolding r by simp
+ qed
+ hence "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < Y n" using t by fast
+ } note 1 = this
+ fix X Y assume "realrel X Y"
+ hence "realrel X Y" and "realrel Y X"
+ using symp_realrel unfolding symp_def by auto
+ thus "?thesis X Y"
+ by (safe elim!: 1)
+qed
+
+lemma positive_Real:
+ assumes X: "cauchy X"
+ shows "positive (Real X) \<longleftrightarrow> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)"
+ using assms positive.transfer
+ unfolding cr_real_eq fun_rel_def by simp
+
+lemma positive_zero: "\<not> positive 0"
+ by transfer auto
+
+lemma positive_add:
+ "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)"
+apply transfer
+apply (clarify, rename_tac a b i j)
+apply (rule_tac x="a + b" in exI, simp)
+apply (rule_tac x="max i j" in exI, clarsimp)
+apply (simp add: add_strict_mono)
+done
+
+lemma positive_mult:
+ "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)"
+apply transfer
+apply (clarify, rename_tac a b i j)
+apply (rule_tac x="a * b" in exI, simp add: mult_pos_pos)
+apply (rule_tac x="max i j" in exI, clarsimp)
+apply (rule mult_strict_mono, auto)
+done
+
+lemma positive_minus:
+ "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)"
+apply transfer
+apply (simp add: realrel_def)
+apply (drule (1) cauchy_not_vanishes_cases, safe, fast, fast)
+done
+
+instantiation real :: linordered_field_inverse_zero
+begin
+
+definition
+ "x < y \<longleftrightarrow> positive (y - x)"
+
+definition
+ "x \<le> (y::real) \<longleftrightarrow> x < y \<or> x = y"
+
+definition
+ "abs (a::real) = (if a < 0 then - a else a)"
+
+definition
+ "sgn (a::real) = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
+
+instance proof
+ fix a b c :: real
+ show "\<bar>a\<bar> = (if a < 0 then - a else a)"
+ by (rule abs_real_def)
+ show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"
+ unfolding less_eq_real_def less_real_def
+ by (auto, drule (1) positive_add, simp_all add: positive_zero)
+ show "a \<le> a"
+ unfolding less_eq_real_def by simp
+ show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
+ unfolding less_eq_real_def less_real_def
+ by (auto, drule (1) positive_add, simp add: algebra_simps)
+ show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b"
+ unfolding less_eq_real_def less_real_def
+ by (auto, drule (1) positive_add, simp add: positive_zero)
+ show "a \<le> b \<Longrightarrow> c + a \<le> c + b"
+ unfolding less_eq_real_def less_real_def by (auto simp: diff_minus) (* by auto *)
+ (* FIXME: Procedure int_combine_numerals: c + b - (c + a) \<equiv> b + - a *)
+ (* Should produce c + b - (c + a) \<equiv> b - a *)
+ show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
+ by (rule sgn_real_def)
+ show "a \<le> b \<or> b \<le> a"
+ unfolding less_eq_real_def less_real_def
+ by (auto dest!: positive_minus)
+ show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
+ unfolding less_real_def
+ by (drule (1) positive_mult, simp add: algebra_simps)
+qed
+
+end
+
+instantiation real :: distrib_lattice
+begin
+
+definition
+ "(inf :: real \<Rightarrow> real \<Rightarrow> real) = min"
+
+definition
+ "(sup :: real \<Rightarrow> real \<Rightarrow> real) = max"
+
+instance proof
+qed (auto simp add: inf_real_def sup_real_def min_max.sup_inf_distrib1)
+
+end
+
+lemma of_nat_Real: "of_nat x = Real (\<lambda>n. of_nat x)"
+apply (induct x)
+apply (simp add: zero_real_def)
+apply (simp add: one_real_def add_Real)
+done
+
+lemma of_int_Real: "of_int x = Real (\<lambda>n. of_int x)"
+apply (cases x rule: int_diff_cases)
+apply (simp add: of_nat_Real diff_Real)
+done
+
+lemma of_rat_Real: "of_rat x = Real (\<lambda>n. x)"
+apply (induct x)
+apply (simp add: Fract_of_int_quotient of_rat_divide)
+apply (simp add: of_int_Real divide_inverse)
+apply (simp add: inverse_Real mult_Real)
+done
+
+instance real :: archimedean_field
+proof
+ fix x :: real
+ show "\<exists>z. x \<le> of_int z"
+ apply (induct x)
+ apply (frule cauchy_imp_bounded, clarify)
+ apply (rule_tac x="ceiling b + 1" in exI)
+ apply (rule less_imp_le)
+ apply (simp add: of_int_Real less_real_def diff_Real positive_Real)
+ apply (rule_tac x=1 in exI, simp add: algebra_simps)
+ apply (rule_tac x=0 in exI, clarsimp)
+ apply (rule le_less_trans [OF abs_ge_self])
+ apply (rule less_le_trans [OF _ le_of_int_ceiling])
+ apply simp
+ done
+qed
+
+instantiation real :: floor_ceiling
+begin
+
+definition [code del]:
+ "floor (x::real) = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
+
+instance proof
+ fix x :: real
+ show "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
+ unfolding floor_real_def using floor_exists1 by (rule theI')
+qed
+
+end
+
+subsection {* Completeness *}
+
+lemma not_positive_Real:
+ assumes X: "cauchy X"
+ shows "\<not> positive (Real X) \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> r)"
+unfolding positive_Real [OF X]
+apply (auto, unfold not_less)
+apply (erule obtain_pos_sum)
+apply (drule_tac x=s in spec, simp)
+apply (drule_tac r=t in cauchyD [OF X], clarify)
+apply (drule_tac x=k in spec, clarsimp)
+apply (rule_tac x=n in exI, clarify, rename_tac m)
+apply (drule_tac x=m in spec, simp)
+apply (drule_tac x=n in spec, simp)
+apply (drule spec, drule (1) mp, clarify, rename_tac i)
+apply (rule_tac x="max i k" in exI, simp)
+done
+
+lemma le_Real:
+ assumes X: "cauchy X" and Y: "cauchy Y"
+ shows "Real X \<le> Real Y = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r)"
+unfolding not_less [symmetric, where 'a=real] less_real_def
+apply (simp add: diff_Real not_positive_Real X Y)
+apply (simp add: diff_le_eq add_ac)
+done
+
+lemma le_RealI:
+ assumes Y: "cauchy Y"
+ shows "\<forall>n. x \<le> of_rat (Y n) \<Longrightarrow> x \<le> Real Y"
+proof (induct x)
+ fix X assume X: "cauchy X" and "\<forall>n. Real X \<le> of_rat (Y n)"
+ hence le: "\<And>m r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. X n \<le> Y m + r"
+ by (simp add: of_rat_Real le_Real)
+ {
+ fix r :: rat assume "0 < r"
+ then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
+ by (rule obtain_pos_sum)
+ obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>Y m - Y n\<bar> < s"
+ using cauchyD [OF Y s] ..
+ obtain j where j: "\<forall>n\<ge>j. X n \<le> Y i + t"
+ using le [OF t] ..
+ have "\<forall>n\<ge>max i j. X n \<le> Y n + r"
+ proof (clarsimp)
+ fix n assume n: "i \<le> n" "j \<le> n"
+ have "X n \<le> Y i + t" using n j by simp
+ moreover have "\<bar>Y i - Y n\<bar> < s" using n i by simp
+ ultimately show "X n \<le> Y n + r" unfolding r by simp
+ qed
+ hence "\<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r" ..
+ }
+ thus "Real X \<le> Real Y"
+ by (simp add: of_rat_Real le_Real X Y)
+qed
+
+lemma Real_leI:
+ assumes X: "cauchy X"
+ assumes le: "\<forall>n. of_rat (X n) \<le> y"
+ shows "Real X \<le> y"
+proof -
+ have "- y \<le> - Real X"
+ by (simp add: minus_Real X le_RealI of_rat_minus le)
+ thus ?thesis by simp
+qed
+
+lemma less_RealD:
+ assumes Y: "cauchy Y"
+ shows "x < Real Y \<Longrightarrow> \<exists>n. x < of_rat (Y n)"
+by (erule contrapos_pp, simp add: not_less, erule Real_leI [OF Y])
+
+lemma of_nat_less_two_power:
+ "of_nat n < (2::'a::linordered_idom) ^ n"
+apply (induct n)
+apply simp
+apply (subgoal_tac "(1::'a) \<le> 2 ^ n")
+apply (drule (1) add_le_less_mono, simp)
+apply simp
+done
+
+lemma complete_real:
+ fixes S :: "real set"
+ assumes "\<exists>x. x \<in> S" and "\<exists>z. \<forall>x\<in>S. x \<le> z"
+ shows "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)"
+proof -
+ obtain x where x: "x \<in> S" using assms(1) ..
+ obtain z where z: "\<forall>x\<in>S. x \<le> z" using assms(2) ..
+
+ def P \<equiv> "\<lambda>x. \<forall>y\<in>S. y \<le> of_rat x"
+ obtain a where a: "\<not> P a"
+ proof
+ have "of_int (floor (x - 1)) \<le> x - 1" by (rule of_int_floor_le)
+ also have "x - 1 < x" by simp
+ finally have "of_int (floor (x - 1)) < x" .
+ hence "\<not> x \<le> of_int (floor (x - 1))" by (simp only: not_le)
+ then show "\<not> P (of_int (floor (x - 1)))"
+ unfolding P_def of_rat_of_int_eq using x by fast
+ qed
+ obtain b where b: "P b"
+ proof
+ show "P (of_int (ceiling z))"
+ unfolding P_def of_rat_of_int_eq
+ proof
+ fix y assume "y \<in> S"
+ hence "y \<le> z" using z by simp
+ also have "z \<le> of_int (ceiling z)" by (rule le_of_int_ceiling)
+ finally show "y \<le> of_int (ceiling z)" .
+ qed
+ qed
+
+ def avg \<equiv> "\<lambda>x y :: rat. x/2 + y/2"
+ def bisect \<equiv> "\<lambda>(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y)"
+ def A \<equiv> "\<lambda>n. fst ((bisect ^^ n) (a, b))"
+ def B \<equiv> "\<lambda>n. snd ((bisect ^^ n) (a, b))"
+ def C \<equiv> "\<lambda>n. avg (A n) (B n)"
+ have A_0 [simp]: "A 0 = a" unfolding A_def by simp
+ have B_0 [simp]: "B 0 = b" unfolding B_def by simp
+ have A_Suc [simp]: "\<And>n. A (Suc n) = (if P (C n) then A n else C n)"
+ unfolding A_def B_def C_def bisect_def split_def by simp
+ have B_Suc [simp]: "\<And>n. B (Suc n) = (if P (C n) then C n else B n)"
+ unfolding A_def B_def C_def bisect_def split_def by simp
+
+ have width: "\<And>n. B n - A n = (b - a) / 2^n"
+ apply (simp add: eq_divide_eq)
+ apply (induct_tac n, simp)
+ apply (simp add: C_def avg_def algebra_simps)
+ done
+
+ have twos: "\<And>y r :: rat. 0 < r \<Longrightarrow> \<exists>n. y / 2 ^ n < r"
+ apply (simp add: divide_less_eq)
+ apply (subst mult_commute)
+ apply (frule_tac y=y in ex_less_of_nat_mult)
+ apply clarify
+ apply (rule_tac x=n in exI)
+ apply (erule less_trans)
+ apply (rule mult_strict_right_mono)
+ apply (rule le_less_trans [OF _ of_nat_less_two_power])
+ apply simp
+ apply assumption
+ done
+
+ have PA: "\<And>n. \<not> P (A n)"
+ by (induct_tac n, simp_all add: a)
+ have PB: "\<And>n. P (B n)"
+ by (induct_tac n, simp_all add: b)
+ have ab: "a < b"
+ using a b unfolding P_def
+ apply (clarsimp simp add: not_le)
+ apply (drule (1) bspec)
+ apply (drule (1) less_le_trans)
+ apply (simp add: of_rat_less)
+ done
+ have AB: "\<And>n. A n < B n"
+ by (induct_tac n, simp add: ab, simp add: C_def avg_def)
+ have A_mono: "\<And>i j. i \<le> j \<Longrightarrow> A i \<le> A j"
+ apply (auto simp add: le_less [where 'a=nat])
+ apply (erule less_Suc_induct)
+ apply (clarsimp simp add: C_def avg_def)
+ apply (simp add: add_divide_distrib [symmetric])
+ apply (rule AB [THEN less_imp_le])
+ apply simp
+ done
+ have B_mono: "\<And>i j. i \<le> j \<Longrightarrow> B j \<le> B i"
+ apply (auto simp add: le_less [where 'a=nat])
+ apply (erule less_Suc_induct)
+ apply (clarsimp simp add: C_def avg_def)
+ apply (simp add: add_divide_distrib [symmetric])
+ apply (rule AB [THEN less_imp_le])
+ apply simp
+ done
+ have cauchy_lemma:
+ "\<And>X. \<forall>n. \<forall>i\<ge>n. A n \<le> X i \<and> X i \<le> B n \<Longrightarrow> cauchy X"
+ apply (rule cauchyI)
+ apply (drule twos [where y="b - a"])
+ apply (erule exE)
+ apply (rule_tac x=n in exI, clarify, rename_tac i j)
+ apply (rule_tac y="B n - A n" in le_less_trans) defer
+ apply (simp add: width)
+ apply (drule_tac x=n in spec)
+ apply (frule_tac x=i in spec, drule (1) mp)
+ apply (frule_tac x=j in spec, drule (1) mp)
+ apply (frule A_mono, drule B_mono)
+ apply (frule A_mono, drule B_mono)
+ apply arith
+ done
+ have "cauchy A"
+ apply (rule cauchy_lemma [rule_format])
+ apply (simp add: A_mono)
+ apply (erule order_trans [OF less_imp_le [OF AB] B_mono])
+ done
+ have "cauchy B"
+ apply (rule cauchy_lemma [rule_format])
+ apply (simp add: B_mono)
+ apply (erule order_trans [OF A_mono less_imp_le [OF AB]])
+ done
+ have 1: "\<forall>x\<in>S. x \<le> Real B"
+ proof
+ fix x assume "x \<in> S"
+ then show "x \<le> Real B"
+ using PB [unfolded P_def] `cauchy B`
+ by (simp add: le_RealI)
+ qed
+ have 2: "\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> Real A \<le> z"
+ apply clarify
+ apply (erule contrapos_pp)
+ apply (simp add: not_le)
+ apply (drule less_RealD [OF `cauchy A`], clarify)
+ apply (subgoal_tac "\<not> P (A n)")
+ apply (simp add: P_def not_le, clarify)
+ apply (erule rev_bexI)
+ apply (erule (1) less_trans)
+ apply (simp add: PA)
+ done
+ have "vanishes (\<lambda>n. (b - a) / 2 ^ n)"
+ proof (rule vanishesI)
+ fix r :: rat assume "0 < r"
+ then obtain k where k: "\<bar>b - a\<bar> / 2 ^ k < r"
+ using twos by fast
+ have "\<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r"
+ proof (clarify)
+ fix n assume n: "k \<le> n"
+ have "\<bar>(b - a) / 2 ^ n\<bar> = \<bar>b - a\<bar> / 2 ^ n"
+ by simp
+ also have "\<dots> \<le> \<bar>b - a\<bar> / 2 ^ k"
+ using n by (simp add: divide_left_mono mult_pos_pos)
+ also note k
+ finally show "\<bar>(b - a) / 2 ^ n\<bar> < r" .
+ qed
+ thus "\<exists>k. \<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" ..
+ qed
+ hence 3: "Real B = Real A"
+ by (simp add: eq_Real `cauchy A` `cauchy B` width)
+ show "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)"
+ using 1 2 3 by (rule_tac x="Real B" in exI, simp)
+qed
+
+
+instantiation real :: conditional_complete_linorder
+begin
+
+subsection{*Supremum of a set of reals*}
+
+definition
+ Sup_real_def: "Sup X \<equiv> LEAST z::real. \<forall>x\<in>X. x\<le>z"
+
+definition
+ Inf_real_def: "Inf (X::real set) \<equiv> - Sup (uminus ` X)"
+
+instance
+proof
+ { fix z x :: real and X :: "real set"
+ assume x: "x \<in> X" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
+ then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z"
+ using complete_real[of X] by blast
+ then show "x \<le> Sup X"
+ unfolding Sup_real_def by (rule LeastI2_order) (auto simp: x) }
+ note Sup_upper = this
+
+ { fix z :: real and X :: "real set"
+ assume x: "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
+ then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z"
+ using complete_real[of X] by blast
+ then have "Sup X = s"
+ unfolding Sup_real_def by (best intro: Least_equality)
+ also with s z have "... \<le> z"
+ by blast
+ finally show "Sup X \<le> z" . }
+ note Sup_least = this
+
+ { fix x z :: real and X :: "real set"
+ assume x: "x \<in> X" and z: "\<And>x. x \<in> X \<Longrightarrow> z \<le> x"
+ have "-x \<le> Sup (uminus ` X)"
+ by (rule Sup_upper[of _ _ "- z"]) (auto simp add: image_iff x z)
+ then show "Inf X \<le> x"
+ by (auto simp add: Inf_real_def) }
+
+ { fix z :: real and X :: "real set"
+ assume x: "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> z \<le> x"
+ have "Sup (uminus ` X) \<le> -z"
+ using x z by (force intro: Sup_least)
+ then show "z \<le> Inf X"
+ by (auto simp add: Inf_real_def) }
+qed
+end
+
+text {*
+ \medskip Completeness properties using @{text "isUb"}, @{text "isLub"}:
+*}
+
+lemma reals_complete: "\<exists>X. X \<in> S \<Longrightarrow> \<exists>Y. isUb (UNIV::real set) S Y \<Longrightarrow> \<exists>t. isLub (UNIV :: real set) S t"
+ by (intro exI[of _ "Sup S"] isLub_cSup) (auto simp: setle_def isUb_def intro: cSup_upper)
+
+
+subsection {* Hiding implementation details *}
+
+hide_const (open) vanishes cauchy positive Real
+
+declare Real_induct [induct del]
+declare Abs_real_induct [induct del]
+declare Abs_real_cases [cases del]
+
+lemmas [transfer_rule del] =
+ real.All_transfer real.Ex_transfer real.rel_eq_transfer forall_real_transfer
+ zero_real.transfer one_real.transfer plus_real.transfer uminus_real.transfer
+ times_real.transfer inverse_real.transfer positive.transfer real.right_unique
+ real.right_total
+
+subsection{*More Lemmas*}
+
+text {* BH: These lemmas should not be necessary; they should be
+covered by existing simp rules and simplification procedures. *}
+
+lemma real_mult_left_cancel: "(c::real) \<noteq> 0 ==> (c*a=c*b) = (a=b)"
+by simp (* redundant with mult_cancel_left *)
+
+lemma real_mult_right_cancel: "(c::real) \<noteq> 0 ==> (a*c=b*c) = (a=b)"
+by simp (* redundant with mult_cancel_right *)
+
+lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)"
+by simp (* solved by linordered_ring_less_cancel_factor simproc *)
+
+lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)"
+by simp (* solved by linordered_ring_le_cancel_factor simproc *)
+
+lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)"
+by simp (* solved by linordered_ring_le_cancel_factor simproc *)
+
+
+subsection {* Embedding numbers into the Reals *}
+
+abbreviation
+ real_of_nat :: "nat \<Rightarrow> real"
+where
+ "real_of_nat \<equiv> of_nat"
+
+abbreviation
+ real_of_int :: "int \<Rightarrow> real"
+where
+ "real_of_int \<equiv> of_int"
+
+abbreviation
+ real_of_rat :: "rat \<Rightarrow> real"
+where
+ "real_of_rat \<equiv> of_rat"
+
+consts
+ (*overloaded constant for injecting other types into "real"*)
+ real :: "'a => real"
+
+defs (overloaded)
+ real_of_nat_def [code_unfold]: "real == real_of_nat"
+ real_of_int_def [code_unfold]: "real == real_of_int"
+
+declare [[coercion_enabled]]
+declare [[coercion "real::nat\<Rightarrow>real"]]
+declare [[coercion "real::int\<Rightarrow>real"]]
+declare [[coercion "int"]]
+
+declare [[coercion_map map]]
+declare [[coercion_map "% f g h x. g (h (f x))"]]
+declare [[coercion_map "% f g (x,y) . (f x, g y)"]]
+
+lemma real_eq_of_nat: "real = of_nat"
+ unfolding real_of_nat_def ..
+
+lemma real_eq_of_int: "real = of_int"
+ unfolding real_of_int_def ..
+
+lemma real_of_int_zero [simp]: "real (0::int) = 0"
+by (simp add: real_of_int_def)
+
+lemma real_of_one [simp]: "real (1::int) = (1::real)"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_add [simp]: "real(x + y) = real (x::int) + real y"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_minus [simp]: "real(-x) = -real (x::int)"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_diff [simp]: "real(x - y) = real (x::int) - real y"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_mult [simp]: "real(x * y) = real (x::int) * real y"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_power [simp]: "real (x ^ n) = real (x::int) ^ n"
+by (simp add: real_of_int_def of_int_power)
+
+lemmas power_real_of_int = real_of_int_power [symmetric]
+
+lemma real_of_int_setsum [simp]: "real ((SUM x:A. f x)::int) = (SUM x:A. real(f x))"
+ apply (subst real_eq_of_int)+
+ apply (rule of_int_setsum)
+done
+
+lemma real_of_int_setprod [simp]: "real ((PROD x:A. f x)::int) =
+ (PROD x:A. real(f x))"
+ apply (subst real_eq_of_int)+
+ apply (rule of_int_setprod)
+done
+
+lemma real_of_int_zero_cancel [simp, algebra, presburger]: "(real x = 0) = (x = (0::int))"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_inject [iff, algebra, presburger]: "(real (x::int) = real y) = (x = y)"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_less_iff [iff, presburger]: "(real (x::int) < real y) = (x < y)"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_le_iff [simp, presburger]: "(real (x::int) \<le> real y) = (x \<le> y)"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_gt_zero_cancel_iff [simp, presburger]: "(0 < real (n::int)) = (0 < n)"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_ge_zero_cancel_iff [simp, presburger]: "(0 <= real (n::int)) = (0 <= n)"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_lt_zero_cancel_iff [simp, presburger]: "(real (n::int) < 0) = (n < 0)"
+by (simp add: real_of_int_def)
+
+lemma real_of_int_le_zero_cancel_iff [simp, presburger]: "(real (n::int) <= 0) = (n <= 0)"
+by (simp add: real_of_int_def)
+
+lemma one_less_real_of_int_cancel_iff: "1 < real (i :: int) \<longleftrightarrow> 1 < i"
+ unfolding real_of_one[symmetric] real_of_int_less_iff ..
+
+lemma one_le_real_of_int_cancel_iff: "1 \<le> real (i :: int) \<longleftrightarrow> 1 \<le> i"
+ unfolding real_of_one[symmetric] real_of_int_le_iff ..
+
+lemma real_of_int_less_one_cancel_iff: "real (i :: int) < 1 \<longleftrightarrow> i < 1"
+ unfolding real_of_one[symmetric] real_of_int_less_iff ..
+
+lemma real_of_int_le_one_cancel_iff: "real (i :: int) \<le> 1 \<longleftrightarrow> i \<le> 1"
+ unfolding real_of_one[symmetric] real_of_int_le_iff ..
+
+lemma real_of_int_abs [simp]: "real (abs x) = abs(real (x::int))"
+by (auto simp add: abs_if)
+
+lemma int_less_real_le: "((n::int) < m) = (real n + 1 <= real m)"
+ apply (subgoal_tac "real n + 1 = real (n + 1)")
+ apply (simp del: real_of_int_add)
+ apply auto
+done
+
+lemma int_le_real_less: "((n::int) <= m) = (real n < real m + 1)"
+ apply (subgoal_tac "real m + 1 = real (m + 1)")
+ apply (simp del: real_of_int_add)
+ apply simp
+done
+
+lemma real_of_int_div_aux: "(real (x::int)) / (real d) =
+ real (x div d) + (real (x mod d)) / (real d)"
+proof -
+ have "x = (x div d) * d + x mod d"
+ by auto
+ then have "real x = real (x div d) * real d + real(x mod d)"
+ by (simp only: real_of_int_mult [THEN sym] real_of_int_add [THEN sym])
+ then have "real x / real d = ... / real d"
+ by simp
+ then show ?thesis
+ by (auto simp add: add_divide_distrib algebra_simps)
+qed
+
+lemma real_of_int_div: "(d :: int) dvd n ==>
+ real(n div d) = real n / real d"
+ apply (subst real_of_int_div_aux)
+ apply simp
+ apply (simp add: dvd_eq_mod_eq_0)
+done
+
+lemma real_of_int_div2:
+ "0 <= real (n::int) / real (x) - real (n div x)"
+ apply (case_tac "x = 0")
+ apply simp
+ apply (case_tac "0 < x")
+ apply (simp add: algebra_simps)
+ apply (subst real_of_int_div_aux)
+ apply simp
+ apply (subst zero_le_divide_iff)
+ apply auto
+ apply (simp add: algebra_simps)
+ apply (subst real_of_int_div_aux)
+ apply simp
+ apply (subst zero_le_divide_iff)
+ apply auto
+done
+
+lemma real_of_int_div3:
+ "real (n::int) / real (x) - real (n div x) <= 1"
+ apply (simp add: algebra_simps)
+ apply (subst real_of_int_div_aux)
+ apply (auto simp add: divide_le_eq intro: order_less_imp_le)
+done
+
+lemma real_of_int_div4: "real (n div x) <= real (n::int) / real x"
+by (insert real_of_int_div2 [of n x], simp)
+
+lemma Ints_real_of_int [simp]: "real (x::int) \<in> Ints"
+unfolding real_of_int_def by (rule Ints_of_int)
+
+
+subsection{*Embedding the Naturals into the Reals*}
+
+lemma real_of_nat_zero [simp]: "real (0::nat) = 0"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_1 [simp]: "real (1::nat) = 1"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_add [simp]: "real (m + n) = real (m::nat) + real n"
+by (simp add: real_of_nat_def)
+
+(*Not for addsimps: often the LHS is used to represent a positive natural*)
+lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_less_iff [iff]:
+ "(real (n::nat) < real m) = (n < m)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_Suc_gt_zero: "0 < real (Suc n)"
+by (simp add: real_of_nat_def del: of_nat_Suc)
+
+lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n"
+by (simp add: real_of_nat_def of_nat_mult)
+
+lemma real_of_nat_power [simp]: "real (m ^ n) = real (m::nat) ^ n"
+by (simp add: real_of_nat_def of_nat_power)
+
+lemmas power_real_of_nat = real_of_nat_power [symmetric]
+
+lemma real_of_nat_setsum [simp]: "real ((SUM x:A. f x)::nat) =
+ (SUM x:A. real(f x))"
+ apply (subst real_eq_of_nat)+
+ apply (rule of_nat_setsum)
+done
+
+lemma real_of_nat_setprod [simp]: "real ((PROD x:A. f x)::nat) =
+ (PROD x:A. real(f x))"
+ apply (subst real_eq_of_nat)+
+ apply (rule of_nat_setprod)
+done
+
+lemma real_of_card: "real (card A) = setsum (%x.1) A"
+ apply (subst card_eq_setsum)
+ apply (subst real_of_nat_setsum)
+ apply simp
+done
+
+lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_zero_iff [iff]: "(real (n::nat) = 0) = (n = 0)"
+by (simp add: real_of_nat_def)
+
+lemma real_of_nat_diff: "n \<le> m ==> real (m - n) = real (m::nat) - real n"
+by (simp add: add: real_of_nat_def of_nat_diff)
+
+lemma real_of_nat_gt_zero_cancel_iff [simp]: "(0 < real (n::nat)) = (0 < n)"
+by (auto simp: real_of_nat_def)
+
+lemma real_of_nat_le_zero_cancel_iff [simp]: "(real (n::nat) \<le> 0) = (n = 0)"
+by (simp add: add: real_of_nat_def)
+
+lemma not_real_of_nat_less_zero [simp]: "~ real (n::nat) < 0"
+by (simp add: add: real_of_nat_def)
+
+lemma nat_less_real_le: "((n::nat) < m) = (real n + 1 <= real m)"
+ apply (subgoal_tac "real n + 1 = real (Suc n)")
+ apply simp
+ apply (auto simp add: real_of_nat_Suc)
+done
+
+lemma nat_le_real_less: "((n::nat) <= m) = (real n < real m + 1)"
+ apply (subgoal_tac "real m + 1 = real (Suc m)")
+ apply (simp add: less_Suc_eq_le)
+ apply (simp add: real_of_nat_Suc)
+done
+
+lemma real_of_nat_div_aux: "(real (x::nat)) / (real d) =
+ real (x div d) + (real (x mod d)) / (real d)"
+proof -
+ have "x = (x div d) * d + x mod d"
+ by auto
+ then have "real x = real (x div d) * real d + real(x mod d)"
+ by (simp only: real_of_nat_mult [THEN sym] real_of_nat_add [THEN sym])
+ then have "real x / real d = \<dots> / real d"
+ by simp
+ then show ?thesis
+ by (auto simp add: add_divide_distrib algebra_simps)
+qed
+
+lemma real_of_nat_div: "(d :: nat) dvd n ==>
+ real(n div d) = real n / real d"
+ by (subst real_of_nat_div_aux)
+ (auto simp add: dvd_eq_mod_eq_0 [symmetric])
+
+lemma real_of_nat_div2:
+ "0 <= real (n::nat) / real (x) - real (n div x)"
+apply (simp add: algebra_simps)
+apply (subst real_of_nat_div_aux)
+apply simp
+apply (subst zero_le_divide_iff)
+apply simp
+done
+
+lemma real_of_nat_div3:
+ "real (n::nat) / real (x) - real (n div x) <= 1"
+apply(case_tac "x = 0")
+apply (simp)
+apply (simp add: algebra_simps)
+apply (subst real_of_nat_div_aux)
+apply simp
+done
+
+lemma real_of_nat_div4: "real (n div x) <= real (n::nat) / real x"
+by (insert real_of_nat_div2 [of n x], simp)
+
+lemma real_of_int_of_nat_eq [simp]: "real (of_nat n :: int) = real n"
+by (simp add: real_of_int_def real_of_nat_def)
+
+lemma real_nat_eq_real [simp]: "0 <= x ==> real(nat x) = real x"
+ apply (subgoal_tac "real(int(nat x)) = real(nat x)")
+ apply force
+ apply (simp only: real_of_int_of_nat_eq)
+done
+
+lemma Nats_real_of_nat [simp]: "real (n::nat) \<in> Nats"
+unfolding real_of_nat_def by (rule of_nat_in_Nats)
+
+lemma Ints_real_of_nat [simp]: "real (n::nat) \<in> Ints"
+unfolding real_of_nat_def by (rule Ints_of_nat)
+
+subsection {* The Archimedean Property of the Reals *}
+
+theorem reals_Archimedean:
+ assumes x_pos: "0 < x"
+ shows "\<exists>n. inverse (real (Suc n)) < x"
+ unfolding real_of_nat_def using x_pos
+ by (rule ex_inverse_of_nat_Suc_less)
+
+lemma reals_Archimedean2: "\<exists>n. (x::real) < real (n::nat)"
+ unfolding real_of_nat_def by (rule ex_less_of_nat)
+
+lemma reals_Archimedean3:
+ assumes x_greater_zero: "0 < x"
+ shows "\<forall>(y::real). \<exists>(n::nat). y < real n * x"
+ unfolding real_of_nat_def using `0 < x`
+ by (auto intro: ex_less_of_nat_mult)
+
+
+subsection{* Rationals *}
+
+lemma Rats_real_nat[simp]: "real(n::nat) \<in> \<rat>"
+by (simp add: real_eq_of_nat)
+
+
+lemma Rats_eq_int_div_int:
+ "\<rat> = { real(i::int)/real(j::int) |i j. j \<noteq> 0}" (is "_ = ?S")
+proof
+ show "\<rat> \<subseteq> ?S"
+ proof
+ fix x::real assume "x : \<rat>"
+ then obtain r where "x = of_rat r" unfolding Rats_def ..
+ have "of_rat r : ?S"
+ by (cases r)(auto simp add:of_rat_rat real_eq_of_int)
+ thus "x : ?S" using `x = of_rat r` by simp
+ qed
+next
+ show "?S \<subseteq> \<rat>"
+ proof(auto simp:Rats_def)
+ fix i j :: int assume "j \<noteq> 0"
+ hence "real i / real j = of_rat(Fract i j)"
+ by (simp add:of_rat_rat real_eq_of_int)
+ thus "real i / real j \<in> range of_rat" by blast
+ qed
+qed
+
+lemma Rats_eq_int_div_nat:
+ "\<rat> = { real(i::int)/real(n::nat) |i n. n \<noteq> 0}"
+proof(auto simp:Rats_eq_int_div_int)
+ fix i j::int assume "j \<noteq> 0"
+ show "EX (i'::int) (n::nat). real i/real j = real i'/real n \<and> 0<n"
+ proof cases
+ assume "j>0"
+ hence "real i/real j = real i/real(nat j) \<and> 0<nat j"
+ by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat)
+ thus ?thesis by blast
+ next
+ assume "~ j>0"
+ hence "real i/real j = real(-i)/real(nat(-j)) \<and> 0<nat(-j)" using `j\<noteq>0`
+ by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat)
+ thus ?thesis by blast
+ qed
+next
+ fix i::int and n::nat assume "0 < n"
+ hence "real i/real n = real i/real(int n) \<and> int n \<noteq> 0" by simp
+ thus "\<exists>(i'::int) j::int. real i/real n = real i'/real j \<and> j \<noteq> 0" by blast
+qed
+
+lemma Rats_abs_nat_div_natE:
+ assumes "x \<in> \<rat>"
+ obtains m n :: nat
+ where "n \<noteq> 0" and "\<bar>x\<bar> = real m / real n" and "gcd m n = 1"
+proof -
+ from `x \<in> \<rat>` obtain i::int and n::nat where "n \<noteq> 0" and "x = real i / real n"
+ by(auto simp add: Rats_eq_int_div_nat)
+ hence "\<bar>x\<bar> = real(nat(abs i)) / real n" by simp
+ then obtain m :: nat where x_rat: "\<bar>x\<bar> = real m / real n" by blast
+ let ?gcd = "gcd m n"
+ from `n\<noteq>0` have gcd: "?gcd \<noteq> 0" by simp
+ let ?k = "m div ?gcd"
+ let ?l = "n div ?gcd"
+ let ?gcd' = "gcd ?k ?l"
+ have "?gcd dvd m" .. then have gcd_k: "?gcd * ?k = m"
+ by (rule dvd_mult_div_cancel)
+ have "?gcd dvd n" .. then have gcd_l: "?gcd * ?l = n"
+ by (rule dvd_mult_div_cancel)
+ from `n\<noteq>0` and gcd_l have "?l \<noteq> 0" by (auto iff del: neq0_conv)
+ moreover
+ have "\<bar>x\<bar> = real ?k / real ?l"
+ proof -
+ from gcd have "real ?k / real ?l =
+ real (?gcd * ?k) / real (?gcd * ?l)" by simp
+ also from gcd_k and gcd_l have "\<dots> = real m / real n" by simp
+ also from x_rat have "\<dots> = \<bar>x\<bar>" ..
+ finally show ?thesis ..
+ qed
+ moreover
+ have "?gcd' = 1"
+ proof -
+ have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)"
+ by (rule gcd_mult_distrib_nat)
+ with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp
+ with gcd show ?thesis by auto
+ qed
+ ultimately show ?thesis ..
+qed
+
+subsection{*Density of the Rational Reals in the Reals*}
+
+text{* This density proof is due to Stefan Richter and was ported by TN. The
+original source is \emph{Real Analysis} by H.L. Royden.
+It employs the Archimedean property of the reals. *}
+
+lemma Rats_dense_in_real:
+ fixes x :: real
+ assumes "x < y" shows "\<exists>r\<in>\<rat>. x < r \<and> r < y"
+proof -
+ from `x<y` have "0 < y-x" by simp
+ with reals_Archimedean obtain q::nat
+ where q: "inverse (real q) < y-x" and "0 < q" by auto
+ def p \<equiv> "ceiling (y * real q) - 1"
+ def r \<equiv> "of_int p / real q"
+ from q have "x < y - inverse (real q)" by simp
+ also have "y - inverse (real q) \<le> r"
+ unfolding r_def p_def
+ by (simp add: le_divide_eq left_diff_distrib le_of_int_ceiling `0 < q`)
+ finally have "x < r" .
+ moreover have "r < y"
+ unfolding r_def p_def
+ by (simp add: divide_less_eq diff_less_eq `0 < q`
+ less_ceiling_iff [symmetric])
+ moreover from r_def have "r \<in> \<rat>" by simp
+ ultimately show ?thesis by fast
+qed
+
+
+
+subsection{*Numerals and Arithmetic*}
+
+lemma [code_abbrev]:
+ "real_of_int (numeral k) = numeral k"
+ "real_of_int (neg_numeral k) = neg_numeral k"
+ by simp_all
+
+text{*Collapse applications of @{term real} to @{term number_of}*}
+lemma real_numeral [simp]:
+ "real (numeral v :: int) = numeral v"
+ "real (neg_numeral v :: int) = neg_numeral v"
+by (simp_all add: real_of_int_def)
+
+lemma real_of_nat_numeral [simp]:
+ "real (numeral v :: nat) = numeral v"
+by (simp add: real_of_nat_def)
+
+declaration {*
+ K (Lin_Arith.add_inj_thms [@{thm real_of_nat_le_iff} RS iffD2, @{thm real_of_nat_inject} RS iffD2]
+ (* not needed because x < (y::nat) can be rewritten as Suc x <= y: real_of_nat_less_iff RS iffD2 *)
+ #> Lin_Arith.add_inj_thms [@{thm real_of_int_le_iff} RS iffD2, @{thm real_of_int_inject} RS iffD2]
+ (* not needed because x < (y::int) can be rewritten as x + 1 <= y: real_of_int_less_iff RS iffD2 *)
+ #> Lin_Arith.add_simps [@{thm real_of_nat_zero}, @{thm real_of_nat_Suc}, @{thm real_of_nat_add},
+ @{thm real_of_nat_mult}, @{thm real_of_int_zero}, @{thm real_of_one},
+ @{thm real_of_int_add}, @{thm real_of_int_minus}, @{thm real_of_int_diff},
+ @{thm real_of_int_mult}, @{thm real_of_int_of_nat_eq},
+ @{thm real_of_nat_numeral}, @{thm real_numeral(1)}, @{thm real_numeral(2)}]
+ #> Lin_Arith.add_inj_const (@{const_name real}, @{typ "nat \<Rightarrow> real"})
+ #> Lin_Arith.add_inj_const (@{const_name real}, @{typ "int \<Rightarrow> real"}))
+*}
+
+
+subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*}
+
+lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)"
+by arith
+
+text {* FIXME: redundant with @{text add_eq_0_iff} below *}
+lemma real_add_eq_0_iff: "(x+y = (0::real)) = (y = -x)"
+by auto
+
+lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)"
+by auto
+
+lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)"
+by auto
+
+lemma real_add_le_0_iff: "(x+y \<le> (0::real)) = (y \<le> -x)"
+by auto
+
+lemma real_0_le_add_iff: "((0::real) \<le> x+y) = (-x \<le> y)"
+by auto
+
+subsection {* Lemmas about powers *}
+
+text {* FIXME: declare this in Rings.thy or not at all *}
+declare abs_mult_self [simp]
+
+(* used by Import/HOL/real.imp *)
+lemma two_realpow_ge_one: "(1::real) \<le> 2 ^ n"
+by simp
+
+lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n"
+apply (induct "n")
+apply (auto simp add: real_of_nat_Suc)
+apply (subst mult_2)
+apply (erule add_less_le_mono)
+apply (rule two_realpow_ge_one)
+done
+
+text {* TODO: no longer real-specific; rename and move elsewhere *}
+lemma realpow_Suc_le_self:
+ fixes r :: "'a::linordered_semidom"
+ shows "[| 0 \<le> r; r \<le> 1 |] ==> r ^ Suc n \<le> r"
+by (insert power_decreasing [of 1 "Suc n" r], simp)
+
+text {* TODO: no longer real-specific; rename and move elsewhere *}
+lemma realpow_minus_mult:
+ fixes x :: "'a::monoid_mult"
+ shows "0 < n \<Longrightarrow> x ^ (n - 1) * x = x ^ n"
+by (simp add: power_commutes split add: nat_diff_split)
+
+text {* FIXME: declare this [simp] for all types, or not at all *}
+lemma real_two_squares_add_zero_iff [simp]:
+ "(x * x + y * y = 0) = ((x::real) = 0 \<and> y = 0)"
+by (rule sum_squares_eq_zero_iff)
+
+text {* FIXME: declare this [simp] for all types, or not at all *}
+lemma realpow_two_sum_zero_iff [simp]:
+ "(x ^ 2 + y ^ 2 = (0::real)) = (x = 0 & y = 0)"
+by (rule sum_power2_eq_zero_iff)
+
+lemma real_minus_mult_self_le [simp]: "-(u * u) \<le> (x * (x::real))"
+by (rule_tac y = 0 in order_trans, auto)
+
+lemma realpow_square_minus_le [simp]: "-(u ^ 2) \<le> (x::real) ^ 2"
+by (auto simp add: power2_eq_square)
+
+
+lemma numeral_power_le_real_of_nat_cancel_iff[simp]:
+ "(numeral x::real) ^ n \<le> real a \<longleftrightarrow> (numeral x::nat) ^ n \<le> a"
+ unfolding real_of_nat_le_iff[symmetric] by simp
+
+lemma real_of_nat_le_numeral_power_cancel_iff[simp]:
+ "real a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::nat) ^ n"
+ unfolding real_of_nat_le_iff[symmetric] by simp
+
+lemma numeral_power_le_real_of_int_cancel_iff[simp]:
+ "(numeral x::real) ^ n \<le> real a \<longleftrightarrow> (numeral x::int) ^ n \<le> a"
+ unfolding real_of_int_le_iff[symmetric] by simp
+
+lemma real_of_int_le_numeral_power_cancel_iff[simp]:
+ "real a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::int) ^ n"
+ unfolding real_of_int_le_iff[symmetric] by simp
+
+lemma neg_numeral_power_le_real_of_int_cancel_iff[simp]:
+ "(neg_numeral x::real) ^ n \<le> real a \<longleftrightarrow> (neg_numeral x::int) ^ n \<le> a"
+ unfolding real_of_int_le_iff[symmetric] by simp
+
+lemma real_of_int_le_neg_numeral_power_cancel_iff[simp]:
+ "real a \<le> (neg_numeral x::real) ^ n \<longleftrightarrow> a \<le> (neg_numeral x::int) ^ n"
+ unfolding real_of_int_le_iff[symmetric] by simp
+
+subsection{*Density of the Reals*}
+
+lemma real_lbound_gt_zero:
+ "[| (0::real) < d1; 0 < d2 |] ==> \<exists>e. 0 < e & e < d1 & e < d2"
+apply (rule_tac x = " (min d1 d2) /2" in exI)
+apply (simp add: min_def)
+done
+
+
+text{*Similar results are proved in @{text Fields}*}
+lemma real_less_half_sum: "x < y ==> x < (x+y) / (2::real)"
+ by auto
+
+lemma real_gt_half_sum: "x < y ==> (x+y)/(2::real) < y"
+ by auto
+
+lemma real_sum_of_halves: "x/2 + x/2 = (x::real)"
+ by simp
+
+subsection{*Absolute Value Function for the Reals*}
+
+lemma abs_minus_add_cancel: "abs(x + (-y)) = abs (y + (-(x::real)))"
+by (simp add: abs_if)
+
+(* FIXME: redundant, but used by Integration/RealRandVar.thy in AFP *)
+lemma abs_le_interval_iff: "(abs x \<le> r) = (-r\<le>x & x\<le>(r::real))"
+by (force simp add: abs_le_iff)
+
+lemma abs_add_one_gt_zero: "(0::real) < 1 + abs(x)"
+by (simp add: abs_if)
+
+lemma abs_real_of_nat_cancel [simp]: "abs (real x) = real (x::nat)"
+by (rule abs_of_nonneg [OF real_of_nat_ge_zero])
+
+lemma abs_add_one_not_less_self: "~ abs(x) + (1::real) < x"
+by simp
+
+lemma abs_sum_triangle_ineq: "abs ((x::real) + y + (-l + -m)) \<le> abs(x + -l) + abs(y + -m)"
+by simp
+
+
+subsection{*Floor and Ceiling Functions from the Reals to the Integers*}
+
+(* FIXME: theorems for negative numerals *)
+lemma numeral_less_real_of_int_iff [simp]:
+ "((numeral n) < real (m::int)) = (numeral n < m)"
+apply auto
+apply (rule real_of_int_less_iff [THEN iffD1])
+apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
+done
+
+lemma numeral_less_real_of_int_iff2 [simp]:
+ "(real (m::int) < (numeral n)) = (m < numeral n)"
+apply auto
+apply (rule real_of_int_less_iff [THEN iffD1])
+apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
+done
+
+lemma numeral_le_real_of_int_iff [simp]:
+ "((numeral n) \<le> real (m::int)) = (numeral n \<le> m)"
+by (simp add: linorder_not_less [symmetric])
+
+lemma numeral_le_real_of_int_iff2 [simp]:
+ "(real (m::int) \<le> (numeral n)) = (m \<le> numeral n)"
+by (simp add: linorder_not_less [symmetric])
+
+lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n"
+unfolding real_of_nat_def by simp
+
+lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n"
+unfolding real_of_nat_def by (simp add: floor_minus)
+
+lemma floor_real_of_int [simp]: "floor (real (n::int)) = n"
+unfolding real_of_int_def by simp
+
+lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n"
+unfolding real_of_int_def by (simp add: floor_minus)
+
+lemma real_lb_ub_int: " \<exists>n::int. real n \<le> r & r < real (n+1)"
+unfolding real_of_int_def by (rule floor_exists)
+
+lemma lemma_floor:
+ assumes a1: "real m \<le> r" and a2: "r < real n + 1"
+ shows "m \<le> (n::int)"
+proof -
+ have "real m < real n + 1" using a1 a2 by (rule order_le_less_trans)
+ also have "... = real (n + 1)" by simp
+ finally have "m < n + 1" by (simp only: real_of_int_less_iff)
+ thus ?thesis by arith
+qed
+
+lemma real_of_int_floor_le [simp]: "real (floor r) \<le> r"
+unfolding real_of_int_def by (rule of_int_floor_le)
+
+lemma lemma_floor2: "real n < real (x::int) + 1 ==> n \<le> x"
+by (auto intro: lemma_floor)
+
+lemma real_of_int_floor_cancel [simp]:
+ "(real (floor x) = x) = (\<exists>n::int. x = real n)"
+ using floor_real_of_int by metis
+
+lemma floor_eq: "[| real n < x; x < real n + 1 |] ==> floor x = n"
+ unfolding real_of_int_def using floor_unique [of n x] by simp
+
+lemma floor_eq2: "[| real n \<le> x; x < real n + 1 |] ==> floor x = n"
+ unfolding real_of_int_def by (rule floor_unique)
+
+lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat(floor x) = n"
+apply (rule inj_int [THEN injD])
+apply (simp add: real_of_nat_Suc)
+apply (simp add: real_of_nat_Suc floor_eq floor_eq [where n = "int n"])
+done
+
+lemma floor_eq4: "[| real n \<le> x; x < real (Suc n) |] ==> nat(floor x) = n"
+apply (drule order_le_imp_less_or_eq)
+apply (auto intro: floor_eq3)
+done
+
+lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real(floor r)"
+ unfolding real_of_int_def using floor_correct [of r] by simp
+
+lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real(floor r)"
+ unfolding real_of_int_def using floor_correct [of r] by simp
+
+lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real(floor r) + 1"
+ unfolding real_of_int_def using floor_correct [of r] by simp
+
+lemma real_of_int_floor_add_one_gt [simp]: "r < real(floor r) + 1"
+ unfolding real_of_int_def using floor_correct [of r] by simp
+
+lemma le_floor: "real a <= x ==> a <= floor x"
+ unfolding real_of_int_def by (simp add: le_floor_iff)
+
+lemma real_le_floor: "a <= floor x ==> real a <= x"
+ unfolding real_of_int_def by (simp add: le_floor_iff)
+
+lemma le_floor_eq: "(a <= floor x) = (real a <= x)"
+ unfolding real_of_int_def by (rule le_floor_iff)
+
+lemma floor_less_eq: "(floor x < a) = (x < real a)"
+ unfolding real_of_int_def by (rule floor_less_iff)
+
+lemma less_floor_eq: "(a < floor x) = (real a + 1 <= x)"
+ unfolding real_of_int_def by (rule less_floor_iff)
+
+lemma floor_le_eq: "(floor x <= a) = (x < real a + 1)"
+ unfolding real_of_int_def by (rule floor_le_iff)
+
+lemma floor_add [simp]: "floor (x + real a) = floor x + a"
+ unfolding real_of_int_def by (rule floor_add_of_int)
+
+lemma floor_subtract [simp]: "floor (x - real a) = floor x - a"
+ unfolding real_of_int_def by (rule floor_diff_of_int)
+
+lemma le_mult_floor:
+ assumes "0 \<le> (a :: real)" and "0 \<le> b"
+ shows "floor a * floor b \<le> floor (a * b)"
+proof -
+ have "real (floor a) \<le> a"
+ and "real (floor b) \<le> b" by auto
+ hence "real (floor a * floor b) \<le> a * b"
+ using assms by (auto intro!: mult_mono)
+ also have "a * b < real (floor (a * b) + 1)" by auto
+ finally show ?thesis unfolding real_of_int_less_iff by simp
+qed
+
+lemma floor_divide_eq_div:
+ "floor (real a / real b) = a div b"
+proof cases
+ assume "b \<noteq> 0 \<or> b dvd a"
+ with real_of_int_div3[of a b] show ?thesis
+ by (auto simp: real_of_int_div[symmetric] intro!: floor_eq2 real_of_int_div4 neq_le_trans)
+ (metis add_left_cancel zero_neq_one real_of_int_div_aux real_of_int_inject
+ real_of_int_zero_cancel right_inverse_eq div_self mod_div_trivial)
+qed (auto simp: real_of_int_div)
+
+lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n"
+ unfolding real_of_nat_def by simp
+
+lemma real_of_int_ceiling_ge [simp]: "r \<le> real (ceiling r)"
+ unfolding real_of_int_def by (rule le_of_int_ceiling)
+
+lemma ceiling_real_of_int [simp]: "ceiling (real (n::int)) = n"
+ unfolding real_of_int_def by simp
+
+lemma real_of_int_ceiling_cancel [simp]:
+ "(real (ceiling x) = x) = (\<exists>n::int. x = real n)"
+ using ceiling_real_of_int by metis
+
+lemma ceiling_eq: "[| real n < x; x < real n + 1 |] ==> ceiling x = n + 1"
+ unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp
+
+lemma ceiling_eq2: "[| real n < x; x \<le> real n + 1 |] ==> ceiling x = n + 1"
+ unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp
+
+lemma ceiling_eq3: "[| real n - 1 < x; x \<le> real n |] ==> ceiling x = n"
+ unfolding real_of_int_def using ceiling_unique [of n x] by simp
+
+lemma real_of_int_ceiling_diff_one_le [simp]: "real (ceiling r) - 1 \<le> r"
+ unfolding real_of_int_def using ceiling_correct [of r] by simp
+
+lemma real_of_int_ceiling_le_add_one [simp]: "real (ceiling r) \<le> r + 1"
+ unfolding real_of_int_def using ceiling_correct [of r] by simp
+
+lemma ceiling_le: "x <= real a ==> ceiling x <= a"
+ unfolding real_of_int_def by (simp add: ceiling_le_iff)
+
+lemma ceiling_le_real: "ceiling x <= a ==> x <= real a"
+ unfolding real_of_int_def by (simp add: ceiling_le_iff)
+
+lemma ceiling_le_eq: "(ceiling x <= a) = (x <= real a)"
+ unfolding real_of_int_def by (rule ceiling_le_iff)
+
+lemma less_ceiling_eq: "(a < ceiling x) = (real a < x)"
+ unfolding real_of_int_def by (rule less_ceiling_iff)
+
+lemma ceiling_less_eq: "(ceiling x < a) = (x <= real a - 1)"
+ unfolding real_of_int_def by (rule ceiling_less_iff)
+
+lemma le_ceiling_eq: "(a <= ceiling x) = (real a - 1 < x)"
+ unfolding real_of_int_def by (rule le_ceiling_iff)
+
+lemma ceiling_add [simp]: "ceiling (x + real a) = ceiling x + a"
+ unfolding real_of_int_def by (rule ceiling_add_of_int)
+
+lemma ceiling_subtract [simp]: "ceiling (x - real a) = ceiling x - a"
+ unfolding real_of_int_def by (rule ceiling_diff_of_int)
+
+
+subsubsection {* Versions for the natural numbers *}
+
+definition
+ natfloor :: "real => nat" where
+ "natfloor x = nat(floor x)"
+
+definition
+ natceiling :: "real => nat" where
+ "natceiling x = nat(ceiling x)"
+
+lemma natfloor_zero [simp]: "natfloor 0 = 0"
+ by (unfold natfloor_def, simp)
+
+lemma natfloor_one [simp]: "natfloor 1 = 1"
+ by (unfold natfloor_def, simp)
+
+lemma zero_le_natfloor [simp]: "0 <= natfloor x"
+ by (unfold natfloor_def, simp)
+
+lemma natfloor_numeral_eq [simp]: "natfloor (numeral n) = numeral n"
+ by (unfold natfloor_def, simp)
+
+lemma natfloor_real_of_nat [simp]: "natfloor(real n) = n"
+ by (unfold natfloor_def, simp)
+
+lemma real_natfloor_le: "0 <= x ==> real(natfloor x) <= x"
+ by (unfold natfloor_def, simp)
+
+lemma natfloor_neg: "x <= 0 ==> natfloor x = 0"
+ unfolding natfloor_def by simp
+
+lemma natfloor_mono: "x <= y ==> natfloor x <= natfloor y"
+ unfolding natfloor_def by (intro nat_mono floor_mono)
+
+lemma le_natfloor: "real x <= a ==> x <= natfloor a"
+ apply (unfold natfloor_def)
+ apply (subst nat_int [THEN sym])
+ apply (rule nat_mono)
+ apply (rule le_floor)
+ apply simp
+done
+
+lemma natfloor_less_iff: "0 \<le> x \<Longrightarrow> natfloor x < n \<longleftrightarrow> x < real n"
+ unfolding natfloor_def real_of_nat_def
+ by (simp add: nat_less_iff floor_less_iff)
+
+lemma less_natfloor:
+ assumes "0 \<le> x" and "x < real (n :: nat)"
+ shows "natfloor x < n"
+ using assms by (simp add: natfloor_less_iff)
+
+lemma le_natfloor_eq: "0 <= x ==> (a <= natfloor x) = (real a <= x)"
+ apply (rule iffI)
+ apply (rule order_trans)
+ prefer 2
+ apply (erule real_natfloor_le)
+ apply (subst real_of_nat_le_iff)
+ apply assumption
+ apply (erule le_natfloor)
+done
+
+lemma le_natfloor_eq_numeral [simp]:
+ "~ neg((numeral n)::int) ==> 0 <= x ==>
+ (numeral n <= natfloor x) = (numeral n <= x)"
+ apply (subst le_natfloor_eq, assumption)
+ apply simp
+done
+
+lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)"
+ apply (case_tac "0 <= x")
+ apply (subst le_natfloor_eq, assumption, simp)
+ apply (rule iffI)
+ apply (subgoal_tac "natfloor x <= natfloor 0")
+ apply simp
+ apply (rule natfloor_mono)
+ apply simp
+ apply simp
+done
+
+lemma natfloor_eq: "real n <= x ==> x < real n + 1 ==> natfloor x = n"
+ unfolding natfloor_def by (simp add: floor_eq2 [where n="int n"])
+
+lemma real_natfloor_add_one_gt: "x < real(natfloor x) + 1"
+ apply (case_tac "0 <= x")
+ apply (unfold natfloor_def)
+ apply simp
+ apply simp_all
+done
+
+lemma real_natfloor_gt_diff_one: "x - 1 < real(natfloor x)"
+using real_natfloor_add_one_gt by (simp add: algebra_simps)
+
+lemma ge_natfloor_plus_one_imp_gt: "natfloor z + 1 <= n ==> z < real n"
+ apply (subgoal_tac "z < real(natfloor z) + 1")
+ apply arith
+ apply (rule real_natfloor_add_one_gt)
+done
+
+lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a"
+ unfolding natfloor_def
+ unfolding real_of_int_of_nat_eq [symmetric] floor_add
+ by (simp add: nat_add_distrib)
+
+lemma natfloor_add_numeral [simp]:
+ "~neg ((numeral n)::int) ==> 0 <= x ==>
+ natfloor (x + numeral n) = natfloor x + numeral n"
+ by (simp add: natfloor_add [symmetric])
+
+lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1"
+ by (simp add: natfloor_add [symmetric] del: One_nat_def)
+
+lemma natfloor_subtract [simp]:
+ "natfloor(x - real a) = natfloor x - a"
+ unfolding natfloor_def real_of_int_of_nat_eq [symmetric] floor_subtract
+ by simp
+
+lemma natfloor_div_nat:
+ assumes "1 <= x" and "y > 0"
+ shows "natfloor (x / real y) = natfloor x div y"
+proof (rule natfloor_eq)
+ have "(natfloor x) div y * y \<le> natfloor x"
+ by (rule add_leD1 [where k="natfloor x mod y"], simp)
+ thus "real (natfloor x div y) \<le> x / real y"
+ using assms by (simp add: le_divide_eq le_natfloor_eq)
+ have "natfloor x < (natfloor x) div y * y + y"
+ apply (subst mod_div_equality [symmetric])
+ apply (rule add_strict_left_mono)
+ apply (rule mod_less_divisor)
+ apply fact
+ done
+ thus "x / real y < real (natfloor x div y) + 1"
+ using assms
+ by (simp add: divide_less_eq natfloor_less_iff distrib_right)
+qed
+
+lemma le_mult_natfloor:
+ shows "natfloor a * natfloor b \<le> natfloor (a * b)"
+ by (cases "0 <= a & 0 <= b")
+ (auto simp add: le_natfloor_eq mult_nonneg_nonneg mult_mono' real_natfloor_le natfloor_neg)
+
+lemma natceiling_zero [simp]: "natceiling 0 = 0"
+ by (unfold natceiling_def, simp)
+
+lemma natceiling_one [simp]: "natceiling 1 = 1"
+ by (unfold natceiling_def, simp)
+
+lemma zero_le_natceiling [simp]: "0 <= natceiling x"
+ by (unfold natceiling_def, simp)
+
+lemma natceiling_numeral_eq [simp]: "natceiling (numeral n) = numeral n"
+ by (unfold natceiling_def, simp)
+
+lemma natceiling_real_of_nat [simp]: "natceiling(real n) = n"
+ by (unfold natceiling_def, simp)
+
+lemma real_natceiling_ge: "x <= real(natceiling x)"
+ unfolding natceiling_def by (cases "x < 0", simp_all)
+
+lemma natceiling_neg: "x <= 0 ==> natceiling x = 0"
+ unfolding natceiling_def by simp
+
+lemma natceiling_mono: "x <= y ==> natceiling x <= natceiling y"
+ unfolding natceiling_def by (intro nat_mono ceiling_mono)
+
+lemma natceiling_le: "x <= real a ==> natceiling x <= a"
+ unfolding natceiling_def real_of_nat_def
+ by (simp add: nat_le_iff ceiling_le_iff)
+
+lemma natceiling_le_eq: "(natceiling x <= a) = (x <= real a)"
+ unfolding natceiling_def real_of_nat_def
+ by (simp add: nat_le_iff ceiling_le_iff)
+
+lemma natceiling_le_eq_numeral [simp]:
+ "~ neg((numeral n)::int) ==>
+ (natceiling x <= numeral n) = (x <= numeral n)"
+ by (simp add: natceiling_le_eq)
+
+lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)"
+ unfolding natceiling_def
+ by (simp add: nat_le_iff ceiling_le_iff)
+
+lemma natceiling_eq: "real n < x ==> x <= real n + 1 ==> natceiling x = n + 1"
+ unfolding natceiling_def
+ by (simp add: ceiling_eq2 [where n="int n"])
+
+lemma natceiling_add [simp]: "0 <= x ==>
+ natceiling (x + real a) = natceiling x + a"
+ unfolding natceiling_def
+ unfolding real_of_int_of_nat_eq [symmetric] ceiling_add
+ by (simp add: nat_add_distrib)
+
+lemma natceiling_add_numeral [simp]:
+ "~ neg ((numeral n)::int) ==> 0 <= x ==>
+ natceiling (x + numeral n) = natceiling x + numeral n"
+ by (simp add: natceiling_add [symmetric])
+
+lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1"
+ by (simp add: natceiling_add [symmetric] del: One_nat_def)
+
+lemma natceiling_subtract [simp]: "natceiling(x - real a) = natceiling x - a"
+ unfolding natceiling_def real_of_int_of_nat_eq [symmetric] ceiling_subtract
+ by simp
+
+subsection {* Exponentiation with floor *}
+
+lemma floor_power:
+ assumes "x = real (floor x)"
+ shows "floor (x ^ n) = floor x ^ n"
+proof -
+ have *: "x ^ n = real (floor x ^ n)"
+ using assms by (induct n arbitrary: x) simp_all
+ show ?thesis unfolding real_of_int_inject[symmetric]
+ unfolding * floor_real_of_int ..
+qed
+
+lemma natfloor_power:
+ assumes "x = real (natfloor x)"
+ shows "natfloor (x ^ n) = natfloor x ^ n"
+proof -
+ from assms have "0 \<le> floor x" by auto
+ note assms[unfolded natfloor_def real_nat_eq_real[OF `0 \<le> floor x`]]
+ from floor_power[OF this]
+ show ?thesis unfolding natfloor_def nat_power_eq[OF `0 \<le> floor x`, symmetric]
+ by simp
+qed
+
+
+subsection {* Implementation of rational real numbers *}
+
+text {* Formal constructor *}
+
+definition Ratreal :: "rat \<Rightarrow> real" where
+ [code_abbrev, simp]: "Ratreal = of_rat"
+
+code_datatype Ratreal
+
+
+text {* Numerals *}
+
+lemma [code_abbrev]:
+ "(of_rat (of_int a) :: real) = of_int a"
+ by simp
+
+lemma [code_abbrev]:
+ "(of_rat 0 :: real) = 0"
+ by simp
+
+lemma [code_abbrev]:
+ "(of_rat 1 :: real) = 1"
+ by simp
+
+lemma [code_abbrev]:
+ "(of_rat (numeral k) :: real) = numeral k"
+ by simp
+
+lemma [code_abbrev]:
+ "(of_rat (neg_numeral k) :: real) = neg_numeral k"
+ by simp
+
+lemma [code_post]:
+ "(of_rat (0 / r) :: real) = 0"
+ "(of_rat (r / 0) :: real) = 0"
+ "(of_rat (1 / 1) :: real) = 1"
+ "(of_rat (numeral k / 1) :: real) = numeral k"
+ "(of_rat (neg_numeral k / 1) :: real) = neg_numeral k"
+ "(of_rat (1 / numeral k) :: real) = 1 / numeral k"
+ "(of_rat (1 / neg_numeral k) :: real) = 1 / neg_numeral k"
+ "(of_rat (numeral k / numeral l) :: real) = numeral k / numeral l"
+ "(of_rat (numeral k / neg_numeral l) :: real) = numeral k / neg_numeral l"
+ "(of_rat (neg_numeral k / numeral l) :: real) = neg_numeral k / numeral l"
+ "(of_rat (neg_numeral k / neg_numeral l) :: real) = neg_numeral k / neg_numeral l"
+ by (simp_all add: of_rat_divide)
+
+
+text {* Operations *}
+
+lemma zero_real_code [code]:
+ "0 = Ratreal 0"
+by simp
+
+lemma one_real_code [code]:
+ "1 = Ratreal 1"
+by simp
+
+instantiation real :: equal
+begin
+
+definition "HOL.equal (x\<Colon>real) y \<longleftrightarrow> x - y = 0"
+
+instance proof
+qed (simp add: equal_real_def)
+
+lemma real_equal_code [code]:
+ "HOL.equal (Ratreal x) (Ratreal y) \<longleftrightarrow> HOL.equal x y"
+ by (simp add: equal_real_def equal)
+
+lemma [code nbe]:
+ "HOL.equal (x::real) x \<longleftrightarrow> True"
+ by (rule equal_refl)
+
+end
+
+lemma real_less_eq_code [code]: "Ratreal x \<le> Ratreal y \<longleftrightarrow> x \<le> y"
+ by (simp add: of_rat_less_eq)
+
+lemma real_less_code [code]: "Ratreal x < Ratreal y \<longleftrightarrow> x < y"
+ by (simp add: of_rat_less)
+
+lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)"
+ by (simp add: of_rat_add)
+
+lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)"
+ by (simp add: of_rat_mult)
+
+lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)"
+ by (simp add: of_rat_minus)
+
+lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)"
+ by (simp add: of_rat_diff)
+
+lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)"
+ by (simp add: of_rat_inverse)
+
+lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)"
+ by (simp add: of_rat_divide)
+
+lemma real_floor_code [code]: "floor (Ratreal x) = floor x"
+ by (metis Ratreal_def floor_le_iff floor_unique le_floor_iff of_int_floor_le of_rat_of_int_eq real_less_eq_code)
+
+
+text {* Quickcheck *}
+
+definition (in term_syntax)
+ valterm_ratreal :: "rat \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> real \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
+ [code_unfold]: "valterm_ratreal k = Code_Evaluation.valtermify Ratreal {\<cdot>} k"
+
+notation fcomp (infixl "\<circ>>" 60)
+notation scomp (infixl "\<circ>\<rightarrow>" 60)
+
+instantiation real :: random
+begin
+
+definition
+ "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>r. Pair (valterm_ratreal r))"
+
+instance ..
+
+end
+
+no_notation fcomp (infixl "\<circ>>" 60)
+no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
+
+instantiation real :: exhaustive
+begin
+
+definition
+ "exhaustive_real f d = Quickcheck_Exhaustive.exhaustive (%r. f (Ratreal r)) d"
+
+instance ..
+
+end
+
+instantiation real :: full_exhaustive
+begin
+
+definition
+ "full_exhaustive_real f d = Quickcheck_Exhaustive.full_exhaustive (%r. f (valterm_ratreal r)) d"
+
+instance ..
+
+end
+
+instantiation real :: narrowing
+begin
+
+definition
+ "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons Ratreal) narrowing"
+
+instance ..
+
+end
+
+
+subsection {* Setup for Nitpick *}
+
+declaration {*
+ Nitpick_HOL.register_frac_type @{type_name real}
+ [(@{const_name zero_real_inst.zero_real}, @{const_name Nitpick.zero_frac}),
+ (@{const_name one_real_inst.one_real}, @{const_name Nitpick.one_frac}),
+ (@{const_name plus_real_inst.plus_real}, @{const_name Nitpick.plus_frac}),
+ (@{const_name times_real_inst.times_real}, @{const_name Nitpick.times_frac}),
+ (@{const_name uminus_real_inst.uminus_real}, @{const_name Nitpick.uminus_frac}),
+ (@{const_name inverse_real_inst.inverse_real}, @{const_name Nitpick.inverse_frac}),
+ (@{const_name ord_real_inst.less_real}, @{const_name Nitpick.less_frac}),
+ (@{const_name ord_real_inst.less_eq_real}, @{const_name Nitpick.less_eq_frac})]
+*}
+
+lemmas [nitpick_unfold] = inverse_real_inst.inverse_real one_real_inst.one_real
+ ord_real_inst.less_real ord_real_inst.less_eq_real plus_real_inst.plus_real
+ times_real_inst.times_real uminus_real_inst.uminus_real
+ zero_real_inst.zero_real
+
+ML_file "Tools/SMT/smt_real.ML"
+setup SMT_Real.setup
+
+end
--- a/src/HOL/RealDef.thy Tue Mar 26 12:20:56 2013 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,2229 +0,0 @@
-(* Title: HOL/RealDef.thy
- Author: Jacques D. Fleuriot, University of Edinburgh, 1998
- Author: Larry Paulson, University of Cambridge
- Author: Jeremy Avigad, Carnegie Mellon University
- Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen
- Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
- Construction of Cauchy Reals by Brian Huffman, 2010
-*)
-
-header {* Development of the Reals using Cauchy Sequences *}
-
-theory RealDef
-imports Rat Conditional_Complete_Lattices
-begin
-
-text {*
- This theory contains a formalization of the real numbers as
- equivalence classes of Cauchy sequences of rationals. See
- @{file "~~/src/HOL/ex/Dedekind_Real.thy"} for an alternative
- construction using Dedekind cuts.
-*}
-
-subsection {* Preliminary lemmas *}
-
-lemma add_diff_add:
- fixes a b c d :: "'a::ab_group_add"
- shows "(a + c) - (b + d) = (a - b) + (c - d)"
- by simp
-
-lemma minus_diff_minus:
- fixes a b :: "'a::ab_group_add"
- shows "- a - - b = - (a - b)"
- by simp
-
-lemma mult_diff_mult:
- fixes x y a b :: "'a::ring"
- shows "(x * y - a * b) = x * (y - b) + (x - a) * b"
- by (simp add: algebra_simps)
-
-lemma inverse_diff_inverse:
- fixes a b :: "'a::division_ring"
- assumes "a \<noteq> 0" and "b \<noteq> 0"
- shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
- using assms by (simp add: algebra_simps)
-
-lemma obtain_pos_sum:
- fixes r :: rat assumes r: "0 < r"
- obtains s t where "0 < s" and "0 < t" and "r = s + t"
-proof
- from r show "0 < r/2" by simp
- from r show "0 < r/2" by simp
- show "r = r/2 + r/2" by simp
-qed
-
-subsection {* Sequences that converge to zero *}
-
-definition
- vanishes :: "(nat \<Rightarrow> rat) \<Rightarrow> bool"
-where
- "vanishes X = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r)"
-
-lemma vanishesI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r) \<Longrightarrow> vanishes X"
- unfolding vanishes_def by simp
-
-lemma vanishesD: "\<lbrakk>vanishes X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r"
- unfolding vanishes_def by simp
-
-lemma vanishes_const [simp]: "vanishes (\<lambda>n. c) \<longleftrightarrow> c = 0"
- unfolding vanishes_def
- apply (cases "c = 0", auto)
- apply (rule exI [where x="\<bar>c\<bar>"], auto)
- done
-
-lemma vanishes_minus: "vanishes X \<Longrightarrow> vanishes (\<lambda>n. - X n)"
- unfolding vanishes_def by simp
-
-lemma vanishes_add:
- assumes X: "vanishes X" and Y: "vanishes Y"
- shows "vanishes (\<lambda>n. X n + Y n)"
-proof (rule vanishesI)
- fix r :: rat assume "0 < r"
- then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
- by (rule obtain_pos_sum)
- obtain i where i: "\<forall>n\<ge>i. \<bar>X n\<bar> < s"
- using vanishesD [OF X s] ..
- obtain j where j: "\<forall>n\<ge>j. \<bar>Y n\<bar> < t"
- using vanishesD [OF Y t] ..
- have "\<forall>n\<ge>max i j. \<bar>X n + Y n\<bar> < r"
- proof (clarsimp)
- fix n assume n: "i \<le> n" "j \<le> n"
- have "\<bar>X n + Y n\<bar> \<le> \<bar>X n\<bar> + \<bar>Y n\<bar>" by (rule abs_triangle_ineq)
- also have "\<dots> < s + t" by (simp add: add_strict_mono i j n)
- finally show "\<bar>X n + Y n\<bar> < r" unfolding r .
- qed
- thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n + Y n\<bar> < r" ..
-qed
-
-lemma vanishes_diff:
- assumes X: "vanishes X" and Y: "vanishes Y"
- shows "vanishes (\<lambda>n. X n - Y n)"
-unfolding diff_minus by (intro vanishes_add vanishes_minus X Y)
-
-lemma vanishes_mult_bounded:
- assumes X: "\<exists>a>0. \<forall>n. \<bar>X n\<bar> < a"
- assumes Y: "vanishes (\<lambda>n. Y n)"
- shows "vanishes (\<lambda>n. X n * Y n)"
-proof (rule vanishesI)
- fix r :: rat assume r: "0 < r"
- obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a"
- using X by fast
- obtain b where b: "0 < b" "r = a * b"
- proof
- show "0 < r / a" using r a by (simp add: divide_pos_pos)
- show "r = a * (r / a)" using a by simp
- qed
- obtain k where k: "\<forall>n\<ge>k. \<bar>Y n\<bar> < b"
- using vanishesD [OF Y b(1)] ..
- have "\<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r"
- by (simp add: b(2) abs_mult mult_strict_mono' a k)
- thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" ..
-qed
-
-subsection {* Cauchy sequences *}
-
-definition
- cauchy :: "(nat \<Rightarrow> rat) \<Rightarrow> bool"
-where
- "cauchy X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r)"
-
-lemma cauchyI:
- "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r) \<Longrightarrow> cauchy X"
- unfolding cauchy_def by simp
-
-lemma cauchyD:
- "\<lbrakk>cauchy X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r"
- unfolding cauchy_def by simp
-
-lemma cauchy_const [simp]: "cauchy (\<lambda>n. x)"
- unfolding cauchy_def by simp
-
-lemma cauchy_add [simp]:
- assumes X: "cauchy X" and Y: "cauchy Y"
- shows "cauchy (\<lambda>n. X n + Y n)"
-proof (rule cauchyI)
- fix r :: rat assume "0 < r"
- then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
- by (rule obtain_pos_sum)
- obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"
- using cauchyD [OF X s] ..
- obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t"
- using cauchyD [OF Y t] ..
- have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r"
- proof (clarsimp)
- fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"
- have "\<bar>(X m + Y m) - (X n + Y n)\<bar> \<le> \<bar>X m - X n\<bar> + \<bar>Y m - Y n\<bar>"
- unfolding add_diff_add by (rule abs_triangle_ineq)
- also have "\<dots> < s + t"
- by (rule add_strict_mono, simp_all add: i j *)
- finally show "\<bar>(X m + Y m) - (X n + Y n)\<bar> < r" unfolding r .
- qed
- thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" ..
-qed
-
-lemma cauchy_minus [simp]:
- assumes X: "cauchy X"
- shows "cauchy (\<lambda>n. - X n)"
-using assms unfolding cauchy_def
-unfolding minus_diff_minus abs_minus_cancel .
-
-lemma cauchy_diff [simp]:
- assumes X: "cauchy X" and Y: "cauchy Y"
- shows "cauchy (\<lambda>n. X n - Y n)"
-using assms unfolding diff_minus by simp
-
-lemma cauchy_imp_bounded:
- assumes "cauchy X" shows "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b"
-proof -
- obtain k where k: "\<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < 1"
- using cauchyD [OF assms zero_less_one] ..
- show "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b"
- proof (intro exI conjI allI)
- have "0 \<le> \<bar>X 0\<bar>" by simp
- also have "\<bar>X 0\<bar> \<le> Max (abs ` X ` {..k})" by simp
- finally have "0 \<le> Max (abs ` X ` {..k})" .
- thus "0 < Max (abs ` X ` {..k}) + 1" by simp
- next
- fix n :: nat
- show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1"
- proof (rule linorder_le_cases)
- assume "n \<le> k"
- hence "\<bar>X n\<bar> \<le> Max (abs ` X ` {..k})" by simp
- thus "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" by simp
- next
- assume "k \<le> n"
- have "\<bar>X n\<bar> = \<bar>X k + (X n - X k)\<bar>" by simp
- also have "\<bar>X k + (X n - X k)\<bar> \<le> \<bar>X k\<bar> + \<bar>X n - X k\<bar>"
- by (rule abs_triangle_ineq)
- also have "\<dots> < Max (abs ` X ` {..k}) + 1"
- by (rule add_le_less_mono, simp, simp add: k `k \<le> n`)
- finally show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" .
- qed
- qed
-qed
-
-lemma cauchy_mult [simp]:
- assumes X: "cauchy X" and Y: "cauchy Y"
- shows "cauchy (\<lambda>n. X n * Y n)"
-proof (rule cauchyI)
- fix r :: rat assume "0 < r"
- then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v"
- by (rule obtain_pos_sum)
- obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a"
- using cauchy_imp_bounded [OF X] by fast
- obtain b where b: "0 < b" "\<forall>n. \<bar>Y n\<bar> < b"
- using cauchy_imp_bounded [OF Y] by fast
- obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b"
- proof
- show "0 < v/b" using v b(1) by (rule divide_pos_pos)
- show "0 < u/a" using u a(1) by (rule divide_pos_pos)
- show "r = a * (u/a) + (v/b) * b"
- using a(1) b(1) `r = u + v` by simp
- qed
- obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"
- using cauchyD [OF X s] ..
- obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t"
- using cauchyD [OF Y t] ..
- have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>X m * Y m - X n * Y n\<bar> < r"
- proof (clarsimp)
- fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"
- have "\<bar>X m * Y m - X n * Y n\<bar> = \<bar>X m * (Y m - Y n) + (X m - X n) * Y n\<bar>"
- unfolding mult_diff_mult ..
- also have "\<dots> \<le> \<bar>X m * (Y m - Y n)\<bar> + \<bar>(X m - X n) * Y n\<bar>"
- by (rule abs_triangle_ineq)
- also have "\<dots> = \<bar>X m\<bar> * \<bar>Y m - Y n\<bar> + \<bar>X m - X n\<bar> * \<bar>Y n\<bar>"
- unfolding abs_mult ..
- also have "\<dots> < a * t + s * b"
- by (simp_all add: add_strict_mono mult_strict_mono' a b i j *)
- finally show "\<bar>X m * Y m - X n * Y n\<bar> < r" unfolding r .
- qed
- thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m * Y m - X n * Y n\<bar> < r" ..
-qed
-
-lemma cauchy_not_vanishes_cases:
- assumes X: "cauchy X"
- assumes nz: "\<not> vanishes X"
- shows "\<exists>b>0. \<exists>k. (\<forall>n\<ge>k. b < - X n) \<or> (\<forall>n\<ge>k. b < X n)"
-proof -
- obtain r where "0 < r" and r: "\<forall>k. \<exists>n\<ge>k. r \<le> \<bar>X n\<bar>"
- using nz unfolding vanishes_def by (auto simp add: not_less)
- obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t"
- using `0 < r` by (rule obtain_pos_sum)
- obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"
- using cauchyD [OF X s] ..
- obtain k where "i \<le> k" and "r \<le> \<bar>X k\<bar>"
- using r by fast
- have k: "\<forall>n\<ge>k. \<bar>X n - X k\<bar> < s"
- using i `i \<le> k` by auto
- have "X k \<le> - r \<or> r \<le> X k"
- using `r \<le> \<bar>X k\<bar>` by auto
- hence "(\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)"
- unfolding `r = s + t` using k by auto
- hence "\<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" ..
- thus "\<exists>t>0. \<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)"
- using t by auto
-qed
-
-lemma cauchy_not_vanishes:
- assumes X: "cauchy X"
- assumes nz: "\<not> vanishes X"
- shows "\<exists>b>0. \<exists>k. \<forall>n\<ge>k. b < \<bar>X n\<bar>"
-using cauchy_not_vanishes_cases [OF assms]
-by clarify (rule exI, erule conjI, rule_tac x=k in exI, auto)
-
-lemma cauchy_inverse [simp]:
- assumes X: "cauchy X"
- assumes nz: "\<not> vanishes X"
- shows "cauchy (\<lambda>n. inverse (X n))"
-proof (rule cauchyI)
- fix r :: rat assume "0 < r"
- obtain b i where b: "0 < b" and i: "\<forall>n\<ge>i. b < \<bar>X n\<bar>"
- using cauchy_not_vanishes [OF X nz] by fast
- from b i have nz: "\<forall>n\<ge>i. X n \<noteq> 0" by auto
- obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b"
- proof
- show "0 < b * r * b"
- by (simp add: `0 < r` b mult_pos_pos)
- show "r = inverse b * (b * r * b) * inverse b"
- using b by simp
- qed
- obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>X m - X n\<bar> < s"
- using cauchyD [OF X s] ..
- have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>inverse (X m) - inverse (X n)\<bar> < r"
- proof (clarsimp)
- fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"
- have "\<bar>inverse (X m) - inverse (X n)\<bar> =
- inverse \<bar>X m\<bar> * \<bar>X m - X n\<bar> * inverse \<bar>X n\<bar>"
- by (simp add: inverse_diff_inverse nz * abs_mult)
- also have "\<dots> < inverse b * s * inverse b"
- by (simp add: mult_strict_mono less_imp_inverse_less
- mult_pos_pos i j b * s)
- finally show "\<bar>inverse (X m) - inverse (X n)\<bar> < r" unfolding r .
- qed
- thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>inverse (X m) - inverse (X n)\<bar> < r" ..
-qed
-
-lemma vanishes_diff_inverse:
- assumes X: "cauchy X" "\<not> vanishes X"
- assumes Y: "cauchy Y" "\<not> vanishes Y"
- assumes XY: "vanishes (\<lambda>n. X n - Y n)"
- shows "vanishes (\<lambda>n. inverse (X n) - inverse (Y n))"
-proof (rule vanishesI)
- fix r :: rat assume r: "0 < r"
- obtain a i where a: "0 < a" and i: "\<forall>n\<ge>i. a < \<bar>X n\<bar>"
- using cauchy_not_vanishes [OF X] by fast
- obtain b j where b: "0 < b" and j: "\<forall>n\<ge>j. b < \<bar>Y n\<bar>"
- using cauchy_not_vanishes [OF Y] by fast
- obtain s where s: "0 < s" and "inverse a * s * inverse b = r"
- proof
- show "0 < a * r * b"
- using a r b by (simp add: mult_pos_pos)
- show "inverse a * (a * r * b) * inverse b = r"
- using a r b by simp
- qed
- obtain k where k: "\<forall>n\<ge>k. \<bar>X n - Y n\<bar> < s"
- using vanishesD [OF XY s] ..
- have "\<forall>n\<ge>max (max i j) k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r"
- proof (clarsimp)
- fix n assume n: "i \<le> n" "j \<le> n" "k \<le> n"
- have "X n \<noteq> 0" and "Y n \<noteq> 0"
- using i j a b n by auto
- hence "\<bar>inverse (X n) - inverse (Y n)\<bar> =
- inverse \<bar>X n\<bar> * \<bar>X n - Y n\<bar> * inverse \<bar>Y n\<bar>"
- by (simp add: inverse_diff_inverse abs_mult)
- also have "\<dots> < inverse a * s * inverse b"
- apply (intro mult_strict_mono' less_imp_inverse_less)
- apply (simp_all add: a b i j k n mult_nonneg_nonneg)
- done
- also note `inverse a * s * inverse b = r`
- finally show "\<bar>inverse (X n) - inverse (Y n)\<bar> < r" .
- qed
- thus "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" ..
-qed
-
-subsection {* Equivalence relation on Cauchy sequences *}
-
-definition realrel :: "(nat \<Rightarrow> rat) \<Rightarrow> (nat \<Rightarrow> rat) \<Rightarrow> bool"
- where "realrel = (\<lambda>X Y. cauchy X \<and> cauchy Y \<and> vanishes (\<lambda>n. X n - Y n))"
-
-lemma realrelI [intro?]:
- assumes "cauchy X" and "cauchy Y" and "vanishes (\<lambda>n. X n - Y n)"
- shows "realrel X Y"
- using assms unfolding realrel_def by simp
-
-lemma realrel_refl: "cauchy X \<Longrightarrow> realrel X X"
- unfolding realrel_def by simp
-
-lemma symp_realrel: "symp realrel"
- unfolding realrel_def
- by (rule sympI, clarify, drule vanishes_minus, simp)
-
-lemma transp_realrel: "transp realrel"
- unfolding realrel_def
- apply (rule transpI, clarify)
- apply (drule (1) vanishes_add)
- apply (simp add: algebra_simps)
- done
-
-lemma part_equivp_realrel: "part_equivp realrel"
- by (fast intro: part_equivpI symp_realrel transp_realrel
- realrel_refl cauchy_const)
-
-subsection {* The field of real numbers *}
-
-quotient_type real = "nat \<Rightarrow> rat" / partial: realrel
- morphisms rep_real Real
- by (rule part_equivp_realrel)
-
-lemma cr_real_eq: "pcr_real = (\<lambda>x y. cauchy x \<and> Real x = y)"
- unfolding real.pcr_cr_eq cr_real_def realrel_def by auto
-
-lemma Real_induct [induct type: real]: (* TODO: generate automatically *)
- assumes "\<And>X. cauchy X \<Longrightarrow> P (Real X)" shows "P x"
-proof (induct x)
- case (1 X)
- hence "cauchy X" by (simp add: realrel_def)
- thus "P (Real X)" by (rule assms)
-qed
-
-lemma eq_Real:
- "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X = Real Y \<longleftrightarrow> vanishes (\<lambda>n. X n - Y n)"
- using real.rel_eq_transfer
- unfolding real.pcr_cr_eq cr_real_def fun_rel_def realrel_def by simp
-
-declare real.forall_transfer [transfer_rule del]
-
-lemma forall_real_transfer [transfer_rule]: (* TODO: generate automatically *)
- "(fun_rel (fun_rel pcr_real op =) op =)
- (transfer_bforall cauchy) transfer_forall"
- using real.forall_transfer
- by (simp add: realrel_def)
-
-instantiation real :: field_inverse_zero
-begin
-
-lift_definition zero_real :: "real" is "\<lambda>n. 0"
- by (simp add: realrel_refl)
-
-lift_definition one_real :: "real" is "\<lambda>n. 1"
- by (simp add: realrel_refl)
-
-lift_definition plus_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n + Y n"
- unfolding realrel_def add_diff_add
- by (simp only: cauchy_add vanishes_add simp_thms)
-
-lift_definition uminus_real :: "real \<Rightarrow> real" is "\<lambda>X n. - X n"
- unfolding realrel_def minus_diff_minus
- by (simp only: cauchy_minus vanishes_minus simp_thms)
-
-lift_definition times_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n * Y n"
- unfolding realrel_def mult_diff_mult
- by (subst (4) mult_commute, simp only: cauchy_mult vanishes_add
- vanishes_mult_bounded cauchy_imp_bounded simp_thms)
-
-lift_definition inverse_real :: "real \<Rightarrow> real"
- is "\<lambda>X. if vanishes X then (\<lambda>n. 0) else (\<lambda>n. inverse (X n))"
-proof -
- fix X Y assume "realrel X Y"
- hence X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\<lambda>n. X n - Y n)"
- unfolding realrel_def by simp_all
- have "vanishes X \<longleftrightarrow> vanishes Y"
- proof
- assume "vanishes X"
- from vanishes_diff [OF this XY] show "vanishes Y" by simp
- next
- assume "vanishes Y"
- from vanishes_add [OF this XY] show "vanishes X" by simp
- qed
- thus "?thesis X Y"
- unfolding realrel_def
- by (simp add: vanishes_diff_inverse X Y XY)
-qed
-
-definition
- "x - y = (x::real) + - y"
-
-definition
- "x / y = (x::real) * inverse y"
-
-lemma add_Real:
- assumes X: "cauchy X" and Y: "cauchy Y"
- shows "Real X + Real Y = Real (\<lambda>n. X n + Y n)"
- using assms plus_real.transfer
- unfolding cr_real_eq fun_rel_def by simp
-
-lemma minus_Real:
- assumes X: "cauchy X"
- shows "- Real X = Real (\<lambda>n. - X n)"
- using assms uminus_real.transfer
- unfolding cr_real_eq fun_rel_def by simp
-
-lemma diff_Real:
- assumes X: "cauchy X" and Y: "cauchy Y"
- shows "Real X - Real Y = Real (\<lambda>n. X n - Y n)"
- unfolding minus_real_def diff_minus
- by (simp add: minus_Real add_Real X Y)
-
-lemma mult_Real:
- assumes X: "cauchy X" and Y: "cauchy Y"
- shows "Real X * Real Y = Real (\<lambda>n. X n * Y n)"
- using assms times_real.transfer
- unfolding cr_real_eq fun_rel_def by simp
-
-lemma inverse_Real:
- assumes X: "cauchy X"
- shows "inverse (Real X) =
- (if vanishes X then 0 else Real (\<lambda>n. inverse (X n)))"
- using assms inverse_real.transfer zero_real.transfer
- unfolding cr_real_eq fun_rel_def by (simp split: split_if_asm, metis)
-
-instance proof
- fix a b c :: real
- show "a + b = b + a"
- by transfer (simp add: add_ac realrel_def)
- show "(a + b) + c = a + (b + c)"
- by transfer (simp add: add_ac realrel_def)
- show "0 + a = a"
- by transfer (simp add: realrel_def)
- show "- a + a = 0"
- by transfer (simp add: realrel_def)
- show "a - b = a + - b"
- by (rule minus_real_def)
- show "(a * b) * c = a * (b * c)"
- by transfer (simp add: mult_ac realrel_def)
- show "a * b = b * a"
- by transfer (simp add: mult_ac realrel_def)
- show "1 * a = a"
- by transfer (simp add: mult_ac realrel_def)
- show "(a + b) * c = a * c + b * c"
- by transfer (simp add: distrib_right realrel_def)
- show "(0\<Colon>real) \<noteq> (1\<Colon>real)"
- by transfer (simp add: realrel_def)
- show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
- apply transfer
- apply (simp add: realrel_def)
- apply (rule vanishesI)
- apply (frule (1) cauchy_not_vanishes, clarify)
- apply (rule_tac x=k in exI, clarify)
- apply (drule_tac x=n in spec, simp)
- done
- show "a / b = a * inverse b"
- by (rule divide_real_def)
- show "inverse (0::real) = 0"
- by transfer (simp add: realrel_def)
-qed
-
-end
-
-subsection {* Positive reals *}
-
-lift_definition positive :: "real \<Rightarrow> bool"
- is "\<lambda>X. \<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n"
-proof -
- { fix X Y
- assume "realrel X Y"
- hence XY: "vanishes (\<lambda>n. X n - Y n)"
- unfolding realrel_def by simp_all
- assume "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n"
- then obtain r i where "0 < r" and i: "\<forall>n\<ge>i. r < X n"
- by fast
- obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
- using `0 < r` by (rule obtain_pos_sum)
- obtain j where j: "\<forall>n\<ge>j. \<bar>X n - Y n\<bar> < s"
- using vanishesD [OF XY s] ..
- have "\<forall>n\<ge>max i j. t < Y n"
- proof (clarsimp)
- fix n assume n: "i \<le> n" "j \<le> n"
- have "\<bar>X n - Y n\<bar> < s" and "r < X n"
- using i j n by simp_all
- thus "t < Y n" unfolding r by simp
- qed
- hence "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < Y n" using t by fast
- } note 1 = this
- fix X Y assume "realrel X Y"
- hence "realrel X Y" and "realrel Y X"
- using symp_realrel unfolding symp_def by auto
- thus "?thesis X Y"
- by (safe elim!: 1)
-qed
-
-lemma positive_Real:
- assumes X: "cauchy X"
- shows "positive (Real X) \<longleftrightarrow> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)"
- using assms positive.transfer
- unfolding cr_real_eq fun_rel_def by simp
-
-lemma positive_zero: "\<not> positive 0"
- by transfer auto
-
-lemma positive_add:
- "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)"
-apply transfer
-apply (clarify, rename_tac a b i j)
-apply (rule_tac x="a + b" in exI, simp)
-apply (rule_tac x="max i j" in exI, clarsimp)
-apply (simp add: add_strict_mono)
-done
-
-lemma positive_mult:
- "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)"
-apply transfer
-apply (clarify, rename_tac a b i j)
-apply (rule_tac x="a * b" in exI, simp add: mult_pos_pos)
-apply (rule_tac x="max i j" in exI, clarsimp)
-apply (rule mult_strict_mono, auto)
-done
-
-lemma positive_minus:
- "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)"
-apply transfer
-apply (simp add: realrel_def)
-apply (drule (1) cauchy_not_vanishes_cases, safe, fast, fast)
-done
-
-instantiation real :: linordered_field_inverse_zero
-begin
-
-definition
- "x < y \<longleftrightarrow> positive (y - x)"
-
-definition
- "x \<le> (y::real) \<longleftrightarrow> x < y \<or> x = y"
-
-definition
- "abs (a::real) = (if a < 0 then - a else a)"
-
-definition
- "sgn (a::real) = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
-
-instance proof
- fix a b c :: real
- show "\<bar>a\<bar> = (if a < 0 then - a else a)"
- by (rule abs_real_def)
- show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"
- unfolding less_eq_real_def less_real_def
- by (auto, drule (1) positive_add, simp_all add: positive_zero)
- show "a \<le> a"
- unfolding less_eq_real_def by simp
- show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
- unfolding less_eq_real_def less_real_def
- by (auto, drule (1) positive_add, simp add: algebra_simps)
- show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b"
- unfolding less_eq_real_def less_real_def
- by (auto, drule (1) positive_add, simp add: positive_zero)
- show "a \<le> b \<Longrightarrow> c + a \<le> c + b"
- unfolding less_eq_real_def less_real_def by (auto simp: diff_minus) (* by auto *)
- (* FIXME: Procedure int_combine_numerals: c + b - (c + a) \<equiv> b + - a *)
- (* Should produce c + b - (c + a) \<equiv> b - a *)
- show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
- by (rule sgn_real_def)
- show "a \<le> b \<or> b \<le> a"
- unfolding less_eq_real_def less_real_def
- by (auto dest!: positive_minus)
- show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
- unfolding less_real_def
- by (drule (1) positive_mult, simp add: algebra_simps)
-qed
-
-end
-
-instantiation real :: distrib_lattice
-begin
-
-definition
- "(inf :: real \<Rightarrow> real \<Rightarrow> real) = min"
-
-definition
- "(sup :: real \<Rightarrow> real \<Rightarrow> real) = max"
-
-instance proof
-qed (auto simp add: inf_real_def sup_real_def min_max.sup_inf_distrib1)
-
-end
-
-lemma of_nat_Real: "of_nat x = Real (\<lambda>n. of_nat x)"
-apply (induct x)
-apply (simp add: zero_real_def)
-apply (simp add: one_real_def add_Real)
-done
-
-lemma of_int_Real: "of_int x = Real (\<lambda>n. of_int x)"
-apply (cases x rule: int_diff_cases)
-apply (simp add: of_nat_Real diff_Real)
-done
-
-lemma of_rat_Real: "of_rat x = Real (\<lambda>n. x)"
-apply (induct x)
-apply (simp add: Fract_of_int_quotient of_rat_divide)
-apply (simp add: of_int_Real divide_inverse)
-apply (simp add: inverse_Real mult_Real)
-done
-
-instance real :: archimedean_field
-proof
- fix x :: real
- show "\<exists>z. x \<le> of_int z"
- apply (induct x)
- apply (frule cauchy_imp_bounded, clarify)
- apply (rule_tac x="ceiling b + 1" in exI)
- apply (rule less_imp_le)
- apply (simp add: of_int_Real less_real_def diff_Real positive_Real)
- apply (rule_tac x=1 in exI, simp add: algebra_simps)
- apply (rule_tac x=0 in exI, clarsimp)
- apply (rule le_less_trans [OF abs_ge_self])
- apply (rule less_le_trans [OF _ le_of_int_ceiling])
- apply simp
- done
-qed
-
-instantiation real :: floor_ceiling
-begin
-
-definition [code del]:
- "floor (x::real) = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
-
-instance proof
- fix x :: real
- show "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
- unfolding floor_real_def using floor_exists1 by (rule theI')
-qed
-
-end
-
-subsection {* Completeness *}
-
-lemma not_positive_Real:
- assumes X: "cauchy X"
- shows "\<not> positive (Real X) \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> r)"
-unfolding positive_Real [OF X]
-apply (auto, unfold not_less)
-apply (erule obtain_pos_sum)
-apply (drule_tac x=s in spec, simp)
-apply (drule_tac r=t in cauchyD [OF X], clarify)
-apply (drule_tac x=k in spec, clarsimp)
-apply (rule_tac x=n in exI, clarify, rename_tac m)
-apply (drule_tac x=m in spec, simp)
-apply (drule_tac x=n in spec, simp)
-apply (drule spec, drule (1) mp, clarify, rename_tac i)
-apply (rule_tac x="max i k" in exI, simp)
-done
-
-lemma le_Real:
- assumes X: "cauchy X" and Y: "cauchy Y"
- shows "Real X \<le> Real Y = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r)"
-unfolding not_less [symmetric, where 'a=real] less_real_def
-apply (simp add: diff_Real not_positive_Real X Y)
-apply (simp add: diff_le_eq add_ac)
-done
-
-lemma le_RealI:
- assumes Y: "cauchy Y"
- shows "\<forall>n. x \<le> of_rat (Y n) \<Longrightarrow> x \<le> Real Y"
-proof (induct x)
- fix X assume X: "cauchy X" and "\<forall>n. Real X \<le> of_rat (Y n)"
- hence le: "\<And>m r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. X n \<le> Y m + r"
- by (simp add: of_rat_Real le_Real)
- {
- fix r :: rat assume "0 < r"
- then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
- by (rule obtain_pos_sum)
- obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>Y m - Y n\<bar> < s"
- using cauchyD [OF Y s] ..
- obtain j where j: "\<forall>n\<ge>j. X n \<le> Y i + t"
- using le [OF t] ..
- have "\<forall>n\<ge>max i j. X n \<le> Y n + r"
- proof (clarsimp)
- fix n assume n: "i \<le> n" "j \<le> n"
- have "X n \<le> Y i + t" using n j by simp
- moreover have "\<bar>Y i - Y n\<bar> < s" using n i by simp
- ultimately show "X n \<le> Y n + r" unfolding r by simp
- qed
- hence "\<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r" ..
- }
- thus "Real X \<le> Real Y"
- by (simp add: of_rat_Real le_Real X Y)
-qed
-
-lemma Real_leI:
- assumes X: "cauchy X"
- assumes le: "\<forall>n. of_rat (X n) \<le> y"
- shows "Real X \<le> y"
-proof -
- have "- y \<le> - Real X"
- by (simp add: minus_Real X le_RealI of_rat_minus le)
- thus ?thesis by simp
-qed
-
-lemma less_RealD:
- assumes Y: "cauchy Y"
- shows "x < Real Y \<Longrightarrow> \<exists>n. x < of_rat (Y n)"
-by (erule contrapos_pp, simp add: not_less, erule Real_leI [OF Y])
-
-lemma of_nat_less_two_power:
- "of_nat n < (2::'a::linordered_idom) ^ n"
-apply (induct n)
-apply simp
-apply (subgoal_tac "(1::'a) \<le> 2 ^ n")
-apply (drule (1) add_le_less_mono, simp)
-apply simp
-done
-
-lemma complete_real:
- fixes S :: "real set"
- assumes "\<exists>x. x \<in> S" and "\<exists>z. \<forall>x\<in>S. x \<le> z"
- shows "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)"
-proof -
- obtain x where x: "x \<in> S" using assms(1) ..
- obtain z where z: "\<forall>x\<in>S. x \<le> z" using assms(2) ..
-
- def P \<equiv> "\<lambda>x. \<forall>y\<in>S. y \<le> of_rat x"
- obtain a where a: "\<not> P a"
- proof
- have "of_int (floor (x - 1)) \<le> x - 1" by (rule of_int_floor_le)
- also have "x - 1 < x" by simp
- finally have "of_int (floor (x - 1)) < x" .
- hence "\<not> x \<le> of_int (floor (x - 1))" by (simp only: not_le)
- then show "\<not> P (of_int (floor (x - 1)))"
- unfolding P_def of_rat_of_int_eq using x by fast
- qed
- obtain b where b: "P b"
- proof
- show "P (of_int (ceiling z))"
- unfolding P_def of_rat_of_int_eq
- proof
- fix y assume "y \<in> S"
- hence "y \<le> z" using z by simp
- also have "z \<le> of_int (ceiling z)" by (rule le_of_int_ceiling)
- finally show "y \<le> of_int (ceiling z)" .
- qed
- qed
-
- def avg \<equiv> "\<lambda>x y :: rat. x/2 + y/2"
- def bisect \<equiv> "\<lambda>(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y)"
- def A \<equiv> "\<lambda>n. fst ((bisect ^^ n) (a, b))"
- def B \<equiv> "\<lambda>n. snd ((bisect ^^ n) (a, b))"
- def C \<equiv> "\<lambda>n. avg (A n) (B n)"
- have A_0 [simp]: "A 0 = a" unfolding A_def by simp
- have B_0 [simp]: "B 0 = b" unfolding B_def by simp
- have A_Suc [simp]: "\<And>n. A (Suc n) = (if P (C n) then A n else C n)"
- unfolding A_def B_def C_def bisect_def split_def by simp
- have B_Suc [simp]: "\<And>n. B (Suc n) = (if P (C n) then C n else B n)"
- unfolding A_def B_def C_def bisect_def split_def by simp
-
- have width: "\<And>n. B n - A n = (b - a) / 2^n"
- apply (simp add: eq_divide_eq)
- apply (induct_tac n, simp)
- apply (simp add: C_def avg_def algebra_simps)
- done
-
- have twos: "\<And>y r :: rat. 0 < r \<Longrightarrow> \<exists>n. y / 2 ^ n < r"
- apply (simp add: divide_less_eq)
- apply (subst mult_commute)
- apply (frule_tac y=y in ex_less_of_nat_mult)
- apply clarify
- apply (rule_tac x=n in exI)
- apply (erule less_trans)
- apply (rule mult_strict_right_mono)
- apply (rule le_less_trans [OF _ of_nat_less_two_power])
- apply simp
- apply assumption
- done
-
- have PA: "\<And>n. \<not> P (A n)"
- by (induct_tac n, simp_all add: a)
- have PB: "\<And>n. P (B n)"
- by (induct_tac n, simp_all add: b)
- have ab: "a < b"
- using a b unfolding P_def
- apply (clarsimp simp add: not_le)
- apply (drule (1) bspec)
- apply (drule (1) less_le_trans)
- apply (simp add: of_rat_less)
- done
- have AB: "\<And>n. A n < B n"
- by (induct_tac n, simp add: ab, simp add: C_def avg_def)
- have A_mono: "\<And>i j. i \<le> j \<Longrightarrow> A i \<le> A j"
- apply (auto simp add: le_less [where 'a=nat])
- apply (erule less_Suc_induct)
- apply (clarsimp simp add: C_def avg_def)
- apply (simp add: add_divide_distrib [symmetric])
- apply (rule AB [THEN less_imp_le])
- apply simp
- done
- have B_mono: "\<And>i j. i \<le> j \<Longrightarrow> B j \<le> B i"
- apply (auto simp add: le_less [where 'a=nat])
- apply (erule less_Suc_induct)
- apply (clarsimp simp add: C_def avg_def)
- apply (simp add: add_divide_distrib [symmetric])
- apply (rule AB [THEN less_imp_le])
- apply simp
- done
- have cauchy_lemma:
- "\<And>X. \<forall>n. \<forall>i\<ge>n. A n \<le> X i \<and> X i \<le> B n \<Longrightarrow> cauchy X"
- apply (rule cauchyI)
- apply (drule twos [where y="b - a"])
- apply (erule exE)
- apply (rule_tac x=n in exI, clarify, rename_tac i j)
- apply (rule_tac y="B n - A n" in le_less_trans) defer
- apply (simp add: width)
- apply (drule_tac x=n in spec)
- apply (frule_tac x=i in spec, drule (1) mp)
- apply (frule_tac x=j in spec, drule (1) mp)
- apply (frule A_mono, drule B_mono)
- apply (frule A_mono, drule B_mono)
- apply arith
- done
- have "cauchy A"
- apply (rule cauchy_lemma [rule_format])
- apply (simp add: A_mono)
- apply (erule order_trans [OF less_imp_le [OF AB] B_mono])
- done
- have "cauchy B"
- apply (rule cauchy_lemma [rule_format])
- apply (simp add: B_mono)
- apply (erule order_trans [OF A_mono less_imp_le [OF AB]])
- done
- have 1: "\<forall>x\<in>S. x \<le> Real B"
- proof
- fix x assume "x \<in> S"
- then show "x \<le> Real B"
- using PB [unfolded P_def] `cauchy B`
- by (simp add: le_RealI)
- qed
- have 2: "\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> Real A \<le> z"
- apply clarify
- apply (erule contrapos_pp)
- apply (simp add: not_le)
- apply (drule less_RealD [OF `cauchy A`], clarify)
- apply (subgoal_tac "\<not> P (A n)")
- apply (simp add: P_def not_le, clarify)
- apply (erule rev_bexI)
- apply (erule (1) less_trans)
- apply (simp add: PA)
- done
- have "vanishes (\<lambda>n. (b - a) / 2 ^ n)"
- proof (rule vanishesI)
- fix r :: rat assume "0 < r"
- then obtain k where k: "\<bar>b - a\<bar> / 2 ^ k < r"
- using twos by fast
- have "\<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r"
- proof (clarify)
- fix n assume n: "k \<le> n"
- have "\<bar>(b - a) / 2 ^ n\<bar> = \<bar>b - a\<bar> / 2 ^ n"
- by simp
- also have "\<dots> \<le> \<bar>b - a\<bar> / 2 ^ k"
- using n by (simp add: divide_left_mono mult_pos_pos)
- also note k
- finally show "\<bar>(b - a) / 2 ^ n\<bar> < r" .
- qed
- thus "\<exists>k. \<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" ..
- qed
- hence 3: "Real B = Real A"
- by (simp add: eq_Real `cauchy A` `cauchy B` width)
- show "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)"
- using 1 2 3 by (rule_tac x="Real B" in exI, simp)
-qed
-
-
-instantiation real :: conditional_complete_linorder
-begin
-
-subsection{*Supremum of a set of reals*}
-
-definition
- Sup_real_def: "Sup X \<equiv> LEAST z::real. \<forall>x\<in>X. x\<le>z"
-
-definition
- Inf_real_def: "Inf (X::real set) \<equiv> - Sup (uminus ` X)"
-
-instance
-proof
- { fix z x :: real and X :: "real set"
- assume x: "x \<in> X" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
- then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z"
- using complete_real[of X] by blast
- then show "x \<le> Sup X"
- unfolding Sup_real_def by (rule LeastI2_order) (auto simp: x) }
- note Sup_upper = this
-
- { fix z :: real and X :: "real set"
- assume x: "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
- then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z"
- using complete_real[of X] by blast
- then have "Sup X = s"
- unfolding Sup_real_def by (best intro: Least_equality)
- also with s z have "... \<le> z"
- by blast
- finally show "Sup X \<le> z" . }
- note Sup_least = this
-
- { fix x z :: real and X :: "real set"
- assume x: "x \<in> X" and z: "\<And>x. x \<in> X \<Longrightarrow> z \<le> x"
- have "-x \<le> Sup (uminus ` X)"
- by (rule Sup_upper[of _ _ "- z"]) (auto simp add: image_iff x z)
- then show "Inf X \<le> x"
- by (auto simp add: Inf_real_def) }
-
- { fix z :: real and X :: "real set"
- assume x: "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> z \<le> x"
- have "Sup (uminus ` X) \<le> -z"
- using x z by (force intro: Sup_least)
- then show "z \<le> Inf X"
- by (auto simp add: Inf_real_def) }
-qed
-end
-
-text {*
- \medskip Completeness properties using @{text "isUb"}, @{text "isLub"}:
-*}
-
-lemma reals_complete: "\<exists>X. X \<in> S \<Longrightarrow> \<exists>Y. isUb (UNIV::real set) S Y \<Longrightarrow> \<exists>t. isLub (UNIV :: real set) S t"
- by (intro exI[of _ "Sup S"] isLub_cSup) (auto simp: setle_def isUb_def intro: cSup_upper)
-
-
-subsection {* Hiding implementation details *}
-
-hide_const (open) vanishes cauchy positive Real
-
-declare Real_induct [induct del]
-declare Abs_real_induct [induct del]
-declare Abs_real_cases [cases del]
-
-lemmas [transfer_rule del] =
- real.All_transfer real.Ex_transfer real.rel_eq_transfer forall_real_transfer
- zero_real.transfer one_real.transfer plus_real.transfer uminus_real.transfer
- times_real.transfer inverse_real.transfer positive.transfer real.right_unique
- real.right_total
-
-subsection{*More Lemmas*}
-
-text {* BH: These lemmas should not be necessary; they should be
-covered by existing simp rules and simplification procedures. *}
-
-lemma real_mult_left_cancel: "(c::real) \<noteq> 0 ==> (c*a=c*b) = (a=b)"
-by simp (* redundant with mult_cancel_left *)
-
-lemma real_mult_right_cancel: "(c::real) \<noteq> 0 ==> (a*c=b*c) = (a=b)"
-by simp (* redundant with mult_cancel_right *)
-
-lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)"
-by simp (* solved by linordered_ring_less_cancel_factor simproc *)
-
-lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)"
-by simp (* solved by linordered_ring_le_cancel_factor simproc *)
-
-lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)"
-by simp (* solved by linordered_ring_le_cancel_factor simproc *)
-
-
-subsection {* Embedding numbers into the Reals *}
-
-abbreviation
- real_of_nat :: "nat \<Rightarrow> real"
-where
- "real_of_nat \<equiv> of_nat"
-
-abbreviation
- real_of_int :: "int \<Rightarrow> real"
-where
- "real_of_int \<equiv> of_int"
-
-abbreviation
- real_of_rat :: "rat \<Rightarrow> real"
-where
- "real_of_rat \<equiv> of_rat"
-
-consts
- (*overloaded constant for injecting other types into "real"*)
- real :: "'a => real"
-
-defs (overloaded)
- real_of_nat_def [code_unfold]: "real == real_of_nat"
- real_of_int_def [code_unfold]: "real == real_of_int"
-
-declare [[coercion_enabled]]
-declare [[coercion "real::nat\<Rightarrow>real"]]
-declare [[coercion "real::int\<Rightarrow>real"]]
-declare [[coercion "int"]]
-
-declare [[coercion_map map]]
-declare [[coercion_map "% f g h x. g (h (f x))"]]
-declare [[coercion_map "% f g (x,y) . (f x, g y)"]]
-
-lemma real_eq_of_nat: "real = of_nat"
- unfolding real_of_nat_def ..
-
-lemma real_eq_of_int: "real = of_int"
- unfolding real_of_int_def ..
-
-lemma real_of_int_zero [simp]: "real (0::int) = 0"
-by (simp add: real_of_int_def)
-
-lemma real_of_one [simp]: "real (1::int) = (1::real)"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_add [simp]: "real(x + y) = real (x::int) + real y"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_minus [simp]: "real(-x) = -real (x::int)"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_diff [simp]: "real(x - y) = real (x::int) - real y"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_mult [simp]: "real(x * y) = real (x::int) * real y"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_power [simp]: "real (x ^ n) = real (x::int) ^ n"
-by (simp add: real_of_int_def of_int_power)
-
-lemmas power_real_of_int = real_of_int_power [symmetric]
-
-lemma real_of_int_setsum [simp]: "real ((SUM x:A. f x)::int) = (SUM x:A. real(f x))"
- apply (subst real_eq_of_int)+
- apply (rule of_int_setsum)
-done
-
-lemma real_of_int_setprod [simp]: "real ((PROD x:A. f x)::int) =
- (PROD x:A. real(f x))"
- apply (subst real_eq_of_int)+
- apply (rule of_int_setprod)
-done
-
-lemma real_of_int_zero_cancel [simp, algebra, presburger]: "(real x = 0) = (x = (0::int))"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_inject [iff, algebra, presburger]: "(real (x::int) = real y) = (x = y)"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_less_iff [iff, presburger]: "(real (x::int) < real y) = (x < y)"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_le_iff [simp, presburger]: "(real (x::int) \<le> real y) = (x \<le> y)"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_gt_zero_cancel_iff [simp, presburger]: "(0 < real (n::int)) = (0 < n)"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_ge_zero_cancel_iff [simp, presburger]: "(0 <= real (n::int)) = (0 <= n)"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_lt_zero_cancel_iff [simp, presburger]: "(real (n::int) < 0) = (n < 0)"
-by (simp add: real_of_int_def)
-
-lemma real_of_int_le_zero_cancel_iff [simp, presburger]: "(real (n::int) <= 0) = (n <= 0)"
-by (simp add: real_of_int_def)
-
-lemma one_less_real_of_int_cancel_iff: "1 < real (i :: int) \<longleftrightarrow> 1 < i"
- unfolding real_of_one[symmetric] real_of_int_less_iff ..
-
-lemma one_le_real_of_int_cancel_iff: "1 \<le> real (i :: int) \<longleftrightarrow> 1 \<le> i"
- unfolding real_of_one[symmetric] real_of_int_le_iff ..
-
-lemma real_of_int_less_one_cancel_iff: "real (i :: int) < 1 \<longleftrightarrow> i < 1"
- unfolding real_of_one[symmetric] real_of_int_less_iff ..
-
-lemma real_of_int_le_one_cancel_iff: "real (i :: int) \<le> 1 \<longleftrightarrow> i \<le> 1"
- unfolding real_of_one[symmetric] real_of_int_le_iff ..
-
-lemma real_of_int_abs [simp]: "real (abs x) = abs(real (x::int))"
-by (auto simp add: abs_if)
-
-lemma int_less_real_le: "((n::int) < m) = (real n + 1 <= real m)"
- apply (subgoal_tac "real n + 1 = real (n + 1)")
- apply (simp del: real_of_int_add)
- apply auto
-done
-
-lemma int_le_real_less: "((n::int) <= m) = (real n < real m + 1)"
- apply (subgoal_tac "real m + 1 = real (m + 1)")
- apply (simp del: real_of_int_add)
- apply simp
-done
-
-lemma real_of_int_div_aux: "(real (x::int)) / (real d) =
- real (x div d) + (real (x mod d)) / (real d)"
-proof -
- have "x = (x div d) * d + x mod d"
- by auto
- then have "real x = real (x div d) * real d + real(x mod d)"
- by (simp only: real_of_int_mult [THEN sym] real_of_int_add [THEN sym])
- then have "real x / real d = ... / real d"
- by simp
- then show ?thesis
- by (auto simp add: add_divide_distrib algebra_simps)
-qed
-
-lemma real_of_int_div: "(d :: int) dvd n ==>
- real(n div d) = real n / real d"
- apply (subst real_of_int_div_aux)
- apply simp
- apply (simp add: dvd_eq_mod_eq_0)
-done
-
-lemma real_of_int_div2:
- "0 <= real (n::int) / real (x) - real (n div x)"
- apply (case_tac "x = 0")
- apply simp
- apply (case_tac "0 < x")
- apply (simp add: algebra_simps)
- apply (subst real_of_int_div_aux)
- apply simp
- apply (subst zero_le_divide_iff)
- apply auto
- apply (simp add: algebra_simps)
- apply (subst real_of_int_div_aux)
- apply simp
- apply (subst zero_le_divide_iff)
- apply auto
-done
-
-lemma real_of_int_div3:
- "real (n::int) / real (x) - real (n div x) <= 1"
- apply (simp add: algebra_simps)
- apply (subst real_of_int_div_aux)
- apply (auto simp add: divide_le_eq intro: order_less_imp_le)
-done
-
-lemma real_of_int_div4: "real (n div x) <= real (n::int) / real x"
-by (insert real_of_int_div2 [of n x], simp)
-
-lemma Ints_real_of_int [simp]: "real (x::int) \<in> Ints"
-unfolding real_of_int_def by (rule Ints_of_int)
-
-
-subsection{*Embedding the Naturals into the Reals*}
-
-lemma real_of_nat_zero [simp]: "real (0::nat) = 0"
-by (simp add: real_of_nat_def)
-
-lemma real_of_nat_1 [simp]: "real (1::nat) = 1"
-by (simp add: real_of_nat_def)
-
-lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)"
-by (simp add: real_of_nat_def)
-
-lemma real_of_nat_add [simp]: "real (m + n) = real (m::nat) + real n"
-by (simp add: real_of_nat_def)
-
-(*Not for addsimps: often the LHS is used to represent a positive natural*)
-lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)"
-by (simp add: real_of_nat_def)
-
-lemma real_of_nat_less_iff [iff]:
- "(real (n::nat) < real m) = (n < m)"
-by (simp add: real_of_nat_def)
-
-lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)"
-by (simp add: real_of_nat_def)
-
-lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)"
-by (simp add: real_of_nat_def)
-
-lemma real_of_nat_Suc_gt_zero: "0 < real (Suc n)"
-by (simp add: real_of_nat_def del: of_nat_Suc)
-
-lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n"
-by (simp add: real_of_nat_def of_nat_mult)
-
-lemma real_of_nat_power [simp]: "real (m ^ n) = real (m::nat) ^ n"
-by (simp add: real_of_nat_def of_nat_power)
-
-lemmas power_real_of_nat = real_of_nat_power [symmetric]
-
-lemma real_of_nat_setsum [simp]: "real ((SUM x:A. f x)::nat) =
- (SUM x:A. real(f x))"
- apply (subst real_eq_of_nat)+
- apply (rule of_nat_setsum)
-done
-
-lemma real_of_nat_setprod [simp]: "real ((PROD x:A. f x)::nat) =
- (PROD x:A. real(f x))"
- apply (subst real_eq_of_nat)+
- apply (rule of_nat_setprod)
-done
-
-lemma real_of_card: "real (card A) = setsum (%x.1) A"
- apply (subst card_eq_setsum)
- apply (subst real_of_nat_setsum)
- apply simp
-done
-
-lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)"
-by (simp add: real_of_nat_def)
-
-lemma real_of_nat_zero_iff [iff]: "(real (n::nat) = 0) = (n = 0)"
-by (simp add: real_of_nat_def)
-
-lemma real_of_nat_diff: "n \<le> m ==> real (m - n) = real (m::nat) - real n"
-by (simp add: add: real_of_nat_def of_nat_diff)
-
-lemma real_of_nat_gt_zero_cancel_iff [simp]: "(0 < real (n::nat)) = (0 < n)"
-by (auto simp: real_of_nat_def)
-
-lemma real_of_nat_le_zero_cancel_iff [simp]: "(real (n::nat) \<le> 0) = (n = 0)"
-by (simp add: add: real_of_nat_def)
-
-lemma not_real_of_nat_less_zero [simp]: "~ real (n::nat) < 0"
-by (simp add: add: real_of_nat_def)
-
-lemma nat_less_real_le: "((n::nat) < m) = (real n + 1 <= real m)"
- apply (subgoal_tac "real n + 1 = real (Suc n)")
- apply simp
- apply (auto simp add: real_of_nat_Suc)
-done
-
-lemma nat_le_real_less: "((n::nat) <= m) = (real n < real m + 1)"
- apply (subgoal_tac "real m + 1 = real (Suc m)")
- apply (simp add: less_Suc_eq_le)
- apply (simp add: real_of_nat_Suc)
-done
-
-lemma real_of_nat_div_aux: "(real (x::nat)) / (real d) =
- real (x div d) + (real (x mod d)) / (real d)"
-proof -
- have "x = (x div d) * d + x mod d"
- by auto
- then have "real x = real (x div d) * real d + real(x mod d)"
- by (simp only: real_of_nat_mult [THEN sym] real_of_nat_add [THEN sym])
- then have "real x / real d = \<dots> / real d"
- by simp
- then show ?thesis
- by (auto simp add: add_divide_distrib algebra_simps)
-qed
-
-lemma real_of_nat_div: "(d :: nat) dvd n ==>
- real(n div d) = real n / real d"
- by (subst real_of_nat_div_aux)
- (auto simp add: dvd_eq_mod_eq_0 [symmetric])
-
-lemma real_of_nat_div2:
- "0 <= real (n::nat) / real (x) - real (n div x)"
-apply (simp add: algebra_simps)
-apply (subst real_of_nat_div_aux)
-apply simp
-apply (subst zero_le_divide_iff)
-apply simp
-done
-
-lemma real_of_nat_div3:
- "real (n::nat) / real (x) - real (n div x) <= 1"
-apply(case_tac "x = 0")
-apply (simp)
-apply (simp add: algebra_simps)
-apply (subst real_of_nat_div_aux)
-apply simp
-done
-
-lemma real_of_nat_div4: "real (n div x) <= real (n::nat) / real x"
-by (insert real_of_nat_div2 [of n x], simp)
-
-lemma real_of_int_of_nat_eq [simp]: "real (of_nat n :: int) = real n"
-by (simp add: real_of_int_def real_of_nat_def)
-
-lemma real_nat_eq_real [simp]: "0 <= x ==> real(nat x) = real x"
- apply (subgoal_tac "real(int(nat x)) = real(nat x)")
- apply force
- apply (simp only: real_of_int_of_nat_eq)
-done
-
-lemma Nats_real_of_nat [simp]: "real (n::nat) \<in> Nats"
-unfolding real_of_nat_def by (rule of_nat_in_Nats)
-
-lemma Ints_real_of_nat [simp]: "real (n::nat) \<in> Ints"
-unfolding real_of_nat_def by (rule Ints_of_nat)
-
-subsection {* The Archimedean Property of the Reals *}
-
-theorem reals_Archimedean:
- assumes x_pos: "0 < x"
- shows "\<exists>n. inverse (real (Suc n)) < x"
- unfolding real_of_nat_def using x_pos
- by (rule ex_inverse_of_nat_Suc_less)
-
-lemma reals_Archimedean2: "\<exists>n. (x::real) < real (n::nat)"
- unfolding real_of_nat_def by (rule ex_less_of_nat)
-
-lemma reals_Archimedean3:
- assumes x_greater_zero: "0 < x"
- shows "\<forall>(y::real). \<exists>(n::nat). y < real n * x"
- unfolding real_of_nat_def using `0 < x`
- by (auto intro: ex_less_of_nat_mult)
-
-
-subsection{* Rationals *}
-
-lemma Rats_real_nat[simp]: "real(n::nat) \<in> \<rat>"
-by (simp add: real_eq_of_nat)
-
-
-lemma Rats_eq_int_div_int:
- "\<rat> = { real(i::int)/real(j::int) |i j. j \<noteq> 0}" (is "_ = ?S")
-proof
- show "\<rat> \<subseteq> ?S"
- proof
- fix x::real assume "x : \<rat>"
- then obtain r where "x = of_rat r" unfolding Rats_def ..
- have "of_rat r : ?S"
- by (cases r)(auto simp add:of_rat_rat real_eq_of_int)
- thus "x : ?S" using `x = of_rat r` by simp
- qed
-next
- show "?S \<subseteq> \<rat>"
- proof(auto simp:Rats_def)
- fix i j :: int assume "j \<noteq> 0"
- hence "real i / real j = of_rat(Fract i j)"
- by (simp add:of_rat_rat real_eq_of_int)
- thus "real i / real j \<in> range of_rat" by blast
- qed
-qed
-
-lemma Rats_eq_int_div_nat:
- "\<rat> = { real(i::int)/real(n::nat) |i n. n \<noteq> 0}"
-proof(auto simp:Rats_eq_int_div_int)
- fix i j::int assume "j \<noteq> 0"
- show "EX (i'::int) (n::nat). real i/real j = real i'/real n \<and> 0<n"
- proof cases
- assume "j>0"
- hence "real i/real j = real i/real(nat j) \<and> 0<nat j"
- by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat)
- thus ?thesis by blast
- next
- assume "~ j>0"
- hence "real i/real j = real(-i)/real(nat(-j)) \<and> 0<nat(-j)" using `j\<noteq>0`
- by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat)
- thus ?thesis by blast
- qed
-next
- fix i::int and n::nat assume "0 < n"
- hence "real i/real n = real i/real(int n) \<and> int n \<noteq> 0" by simp
- thus "\<exists>(i'::int) j::int. real i/real n = real i'/real j \<and> j \<noteq> 0" by blast
-qed
-
-lemma Rats_abs_nat_div_natE:
- assumes "x \<in> \<rat>"
- obtains m n :: nat
- where "n \<noteq> 0" and "\<bar>x\<bar> = real m / real n" and "gcd m n = 1"
-proof -
- from `x \<in> \<rat>` obtain i::int and n::nat where "n \<noteq> 0" and "x = real i / real n"
- by(auto simp add: Rats_eq_int_div_nat)
- hence "\<bar>x\<bar> = real(nat(abs i)) / real n" by simp
- then obtain m :: nat where x_rat: "\<bar>x\<bar> = real m / real n" by blast
- let ?gcd = "gcd m n"
- from `n\<noteq>0` have gcd: "?gcd \<noteq> 0" by simp
- let ?k = "m div ?gcd"
- let ?l = "n div ?gcd"
- let ?gcd' = "gcd ?k ?l"
- have "?gcd dvd m" .. then have gcd_k: "?gcd * ?k = m"
- by (rule dvd_mult_div_cancel)
- have "?gcd dvd n" .. then have gcd_l: "?gcd * ?l = n"
- by (rule dvd_mult_div_cancel)
- from `n\<noteq>0` and gcd_l have "?l \<noteq> 0" by (auto iff del: neq0_conv)
- moreover
- have "\<bar>x\<bar> = real ?k / real ?l"
- proof -
- from gcd have "real ?k / real ?l =
- real (?gcd * ?k) / real (?gcd * ?l)" by simp
- also from gcd_k and gcd_l have "\<dots> = real m / real n" by simp
- also from x_rat have "\<dots> = \<bar>x\<bar>" ..
- finally show ?thesis ..
- qed
- moreover
- have "?gcd' = 1"
- proof -
- have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)"
- by (rule gcd_mult_distrib_nat)
- with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp
- with gcd show ?thesis by auto
- qed
- ultimately show ?thesis ..
-qed
-
-subsection{*Density of the Rational Reals in the Reals*}
-
-text{* This density proof is due to Stefan Richter and was ported by TN. The
-original source is \emph{Real Analysis} by H.L. Royden.
-It employs the Archimedean property of the reals. *}
-
-lemma Rats_dense_in_real:
- fixes x :: real
- assumes "x < y" shows "\<exists>r\<in>\<rat>. x < r \<and> r < y"
-proof -
- from `x<y` have "0 < y-x" by simp
- with reals_Archimedean obtain q::nat
- where q: "inverse (real q) < y-x" and "0 < q" by auto
- def p \<equiv> "ceiling (y * real q) - 1"
- def r \<equiv> "of_int p / real q"
- from q have "x < y - inverse (real q)" by simp
- also have "y - inverse (real q) \<le> r"
- unfolding r_def p_def
- by (simp add: le_divide_eq left_diff_distrib le_of_int_ceiling `0 < q`)
- finally have "x < r" .
- moreover have "r < y"
- unfolding r_def p_def
- by (simp add: divide_less_eq diff_less_eq `0 < q`
- less_ceiling_iff [symmetric])
- moreover from r_def have "r \<in> \<rat>" by simp
- ultimately show ?thesis by fast
-qed
-
-
-
-subsection{*Numerals and Arithmetic*}
-
-lemma [code_abbrev]:
- "real_of_int (numeral k) = numeral k"
- "real_of_int (neg_numeral k) = neg_numeral k"
- by simp_all
-
-text{*Collapse applications of @{term real} to @{term number_of}*}
-lemma real_numeral [simp]:
- "real (numeral v :: int) = numeral v"
- "real (neg_numeral v :: int) = neg_numeral v"
-by (simp_all add: real_of_int_def)
-
-lemma real_of_nat_numeral [simp]:
- "real (numeral v :: nat) = numeral v"
-by (simp add: real_of_nat_def)
-
-declaration {*
- K (Lin_Arith.add_inj_thms [@{thm real_of_nat_le_iff} RS iffD2, @{thm real_of_nat_inject} RS iffD2]
- (* not needed because x < (y::nat) can be rewritten as Suc x <= y: real_of_nat_less_iff RS iffD2 *)
- #> Lin_Arith.add_inj_thms [@{thm real_of_int_le_iff} RS iffD2, @{thm real_of_int_inject} RS iffD2]
- (* not needed because x < (y::int) can be rewritten as x + 1 <= y: real_of_int_less_iff RS iffD2 *)
- #> Lin_Arith.add_simps [@{thm real_of_nat_zero}, @{thm real_of_nat_Suc}, @{thm real_of_nat_add},
- @{thm real_of_nat_mult}, @{thm real_of_int_zero}, @{thm real_of_one},
- @{thm real_of_int_add}, @{thm real_of_int_minus}, @{thm real_of_int_diff},
- @{thm real_of_int_mult}, @{thm real_of_int_of_nat_eq},
- @{thm real_of_nat_numeral}, @{thm real_numeral(1)}, @{thm real_numeral(2)}]
- #> Lin_Arith.add_inj_const (@{const_name real}, @{typ "nat \<Rightarrow> real"})
- #> Lin_Arith.add_inj_const (@{const_name real}, @{typ "int \<Rightarrow> real"}))
-*}
-
-
-subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*}
-
-lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)"
-by arith
-
-text {* FIXME: redundant with @{text add_eq_0_iff} below *}
-lemma real_add_eq_0_iff: "(x+y = (0::real)) = (y = -x)"
-by auto
-
-lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)"
-by auto
-
-lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)"
-by auto
-
-lemma real_add_le_0_iff: "(x+y \<le> (0::real)) = (y \<le> -x)"
-by auto
-
-lemma real_0_le_add_iff: "((0::real) \<le> x+y) = (-x \<le> y)"
-by auto
-
-subsection {* Lemmas about powers *}
-
-text {* FIXME: declare this in Rings.thy or not at all *}
-declare abs_mult_self [simp]
-
-(* used by Import/HOL/real.imp *)
-lemma two_realpow_ge_one: "(1::real) \<le> 2 ^ n"
-by simp
-
-lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n"
-apply (induct "n")
-apply (auto simp add: real_of_nat_Suc)
-apply (subst mult_2)
-apply (erule add_less_le_mono)
-apply (rule two_realpow_ge_one)
-done
-
-text {* TODO: no longer real-specific; rename and move elsewhere *}
-lemma realpow_Suc_le_self:
- fixes r :: "'a::linordered_semidom"
- shows "[| 0 \<le> r; r \<le> 1 |] ==> r ^ Suc n \<le> r"
-by (insert power_decreasing [of 1 "Suc n" r], simp)
-
-text {* TODO: no longer real-specific; rename and move elsewhere *}
-lemma realpow_minus_mult:
- fixes x :: "'a::monoid_mult"
- shows "0 < n \<Longrightarrow> x ^ (n - 1) * x = x ^ n"
-by (simp add: power_commutes split add: nat_diff_split)
-
-text {* FIXME: declare this [simp] for all types, or not at all *}
-lemma real_two_squares_add_zero_iff [simp]:
- "(x * x + y * y = 0) = ((x::real) = 0 \<and> y = 0)"
-by (rule sum_squares_eq_zero_iff)
-
-text {* FIXME: declare this [simp] for all types, or not at all *}
-lemma realpow_two_sum_zero_iff [simp]:
- "(x ^ 2 + y ^ 2 = (0::real)) = (x = 0 & y = 0)"
-by (rule sum_power2_eq_zero_iff)
-
-lemma real_minus_mult_self_le [simp]: "-(u * u) \<le> (x * (x::real))"
-by (rule_tac y = 0 in order_trans, auto)
-
-lemma realpow_square_minus_le [simp]: "-(u ^ 2) \<le> (x::real) ^ 2"
-by (auto simp add: power2_eq_square)
-
-
-lemma numeral_power_le_real_of_nat_cancel_iff[simp]:
- "(numeral x::real) ^ n \<le> real a \<longleftrightarrow> (numeral x::nat) ^ n \<le> a"
- unfolding real_of_nat_le_iff[symmetric] by simp
-
-lemma real_of_nat_le_numeral_power_cancel_iff[simp]:
- "real a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::nat) ^ n"
- unfolding real_of_nat_le_iff[symmetric] by simp
-
-lemma numeral_power_le_real_of_int_cancel_iff[simp]:
- "(numeral x::real) ^ n \<le> real a \<longleftrightarrow> (numeral x::int) ^ n \<le> a"
- unfolding real_of_int_le_iff[symmetric] by simp
-
-lemma real_of_int_le_numeral_power_cancel_iff[simp]:
- "real a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::int) ^ n"
- unfolding real_of_int_le_iff[symmetric] by simp
-
-lemma neg_numeral_power_le_real_of_int_cancel_iff[simp]:
- "(neg_numeral x::real) ^ n \<le> real a \<longleftrightarrow> (neg_numeral x::int) ^ n \<le> a"
- unfolding real_of_int_le_iff[symmetric] by simp
-
-lemma real_of_int_le_neg_numeral_power_cancel_iff[simp]:
- "real a \<le> (neg_numeral x::real) ^ n \<longleftrightarrow> a \<le> (neg_numeral x::int) ^ n"
- unfolding real_of_int_le_iff[symmetric] by simp
-
-subsection{*Density of the Reals*}
-
-lemma real_lbound_gt_zero:
- "[| (0::real) < d1; 0 < d2 |] ==> \<exists>e. 0 < e & e < d1 & e < d2"
-apply (rule_tac x = " (min d1 d2) /2" in exI)
-apply (simp add: min_def)
-done
-
-
-text{*Similar results are proved in @{text Fields}*}
-lemma real_less_half_sum: "x < y ==> x < (x+y) / (2::real)"
- by auto
-
-lemma real_gt_half_sum: "x < y ==> (x+y)/(2::real) < y"
- by auto
-
-lemma real_sum_of_halves: "x/2 + x/2 = (x::real)"
- by simp
-
-subsection{*Absolute Value Function for the Reals*}
-
-lemma abs_minus_add_cancel: "abs(x + (-y)) = abs (y + (-(x::real)))"
-by (simp add: abs_if)
-
-(* FIXME: redundant, but used by Integration/RealRandVar.thy in AFP *)
-lemma abs_le_interval_iff: "(abs x \<le> r) = (-r\<le>x & x\<le>(r::real))"
-by (force simp add: abs_le_iff)
-
-lemma abs_add_one_gt_zero: "(0::real) < 1 + abs(x)"
-by (simp add: abs_if)
-
-lemma abs_real_of_nat_cancel [simp]: "abs (real x) = real (x::nat)"
-by (rule abs_of_nonneg [OF real_of_nat_ge_zero])
-
-lemma abs_add_one_not_less_self: "~ abs(x) + (1::real) < x"
-by simp
-
-lemma abs_sum_triangle_ineq: "abs ((x::real) + y + (-l + -m)) \<le> abs(x + -l) + abs(y + -m)"
-by simp
-
-
-subsection{*Floor and Ceiling Functions from the Reals to the Integers*}
-
-(* FIXME: theorems for negative numerals *)
-lemma numeral_less_real_of_int_iff [simp]:
- "((numeral n) < real (m::int)) = (numeral n < m)"
-apply auto
-apply (rule real_of_int_less_iff [THEN iffD1])
-apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
-done
-
-lemma numeral_less_real_of_int_iff2 [simp]:
- "(real (m::int) < (numeral n)) = (m < numeral n)"
-apply auto
-apply (rule real_of_int_less_iff [THEN iffD1])
-apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
-done
-
-lemma numeral_le_real_of_int_iff [simp]:
- "((numeral n) \<le> real (m::int)) = (numeral n \<le> m)"
-by (simp add: linorder_not_less [symmetric])
-
-lemma numeral_le_real_of_int_iff2 [simp]:
- "(real (m::int) \<le> (numeral n)) = (m \<le> numeral n)"
-by (simp add: linorder_not_less [symmetric])
-
-lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n"
-unfolding real_of_nat_def by simp
-
-lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n"
-unfolding real_of_nat_def by (simp add: floor_minus)
-
-lemma floor_real_of_int [simp]: "floor (real (n::int)) = n"
-unfolding real_of_int_def by simp
-
-lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n"
-unfolding real_of_int_def by (simp add: floor_minus)
-
-lemma real_lb_ub_int: " \<exists>n::int. real n \<le> r & r < real (n+1)"
-unfolding real_of_int_def by (rule floor_exists)
-
-lemma lemma_floor:
- assumes a1: "real m \<le> r" and a2: "r < real n + 1"
- shows "m \<le> (n::int)"
-proof -
- have "real m < real n + 1" using a1 a2 by (rule order_le_less_trans)
- also have "... = real (n + 1)" by simp
- finally have "m < n + 1" by (simp only: real_of_int_less_iff)
- thus ?thesis by arith
-qed
-
-lemma real_of_int_floor_le [simp]: "real (floor r) \<le> r"
-unfolding real_of_int_def by (rule of_int_floor_le)
-
-lemma lemma_floor2: "real n < real (x::int) + 1 ==> n \<le> x"
-by (auto intro: lemma_floor)
-
-lemma real_of_int_floor_cancel [simp]:
- "(real (floor x) = x) = (\<exists>n::int. x = real n)"
- using floor_real_of_int by metis
-
-lemma floor_eq: "[| real n < x; x < real n + 1 |] ==> floor x = n"
- unfolding real_of_int_def using floor_unique [of n x] by simp
-
-lemma floor_eq2: "[| real n \<le> x; x < real n + 1 |] ==> floor x = n"
- unfolding real_of_int_def by (rule floor_unique)
-
-lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat(floor x) = n"
-apply (rule inj_int [THEN injD])
-apply (simp add: real_of_nat_Suc)
-apply (simp add: real_of_nat_Suc floor_eq floor_eq [where n = "int n"])
-done
-
-lemma floor_eq4: "[| real n \<le> x; x < real (Suc n) |] ==> nat(floor x) = n"
-apply (drule order_le_imp_less_or_eq)
-apply (auto intro: floor_eq3)
-done
-
-lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real(floor r)"
- unfolding real_of_int_def using floor_correct [of r] by simp
-
-lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real(floor r)"
- unfolding real_of_int_def using floor_correct [of r] by simp
-
-lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real(floor r) + 1"
- unfolding real_of_int_def using floor_correct [of r] by simp
-
-lemma real_of_int_floor_add_one_gt [simp]: "r < real(floor r) + 1"
- unfolding real_of_int_def using floor_correct [of r] by simp
-
-lemma le_floor: "real a <= x ==> a <= floor x"
- unfolding real_of_int_def by (simp add: le_floor_iff)
-
-lemma real_le_floor: "a <= floor x ==> real a <= x"
- unfolding real_of_int_def by (simp add: le_floor_iff)
-
-lemma le_floor_eq: "(a <= floor x) = (real a <= x)"
- unfolding real_of_int_def by (rule le_floor_iff)
-
-lemma floor_less_eq: "(floor x < a) = (x < real a)"
- unfolding real_of_int_def by (rule floor_less_iff)
-
-lemma less_floor_eq: "(a < floor x) = (real a + 1 <= x)"
- unfolding real_of_int_def by (rule less_floor_iff)
-
-lemma floor_le_eq: "(floor x <= a) = (x < real a + 1)"
- unfolding real_of_int_def by (rule floor_le_iff)
-
-lemma floor_add [simp]: "floor (x + real a) = floor x + a"
- unfolding real_of_int_def by (rule floor_add_of_int)
-
-lemma floor_subtract [simp]: "floor (x - real a) = floor x - a"
- unfolding real_of_int_def by (rule floor_diff_of_int)
-
-lemma le_mult_floor:
- assumes "0 \<le> (a :: real)" and "0 \<le> b"
- shows "floor a * floor b \<le> floor (a * b)"
-proof -
- have "real (floor a) \<le> a"
- and "real (floor b) \<le> b" by auto
- hence "real (floor a * floor b) \<le> a * b"
- using assms by (auto intro!: mult_mono)
- also have "a * b < real (floor (a * b) + 1)" by auto
- finally show ?thesis unfolding real_of_int_less_iff by simp
-qed
-
-lemma floor_divide_eq_div:
- "floor (real a / real b) = a div b"
-proof cases
- assume "b \<noteq> 0 \<or> b dvd a"
- with real_of_int_div3[of a b] show ?thesis
- by (auto simp: real_of_int_div[symmetric] intro!: floor_eq2 real_of_int_div4 neq_le_trans)
- (metis add_left_cancel zero_neq_one real_of_int_div_aux real_of_int_inject
- real_of_int_zero_cancel right_inverse_eq div_self mod_div_trivial)
-qed (auto simp: real_of_int_div)
-
-lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n"
- unfolding real_of_nat_def by simp
-
-lemma real_of_int_ceiling_ge [simp]: "r \<le> real (ceiling r)"
- unfolding real_of_int_def by (rule le_of_int_ceiling)
-
-lemma ceiling_real_of_int [simp]: "ceiling (real (n::int)) = n"
- unfolding real_of_int_def by simp
-
-lemma real_of_int_ceiling_cancel [simp]:
- "(real (ceiling x) = x) = (\<exists>n::int. x = real n)"
- using ceiling_real_of_int by metis
-
-lemma ceiling_eq: "[| real n < x; x < real n + 1 |] ==> ceiling x = n + 1"
- unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp
-
-lemma ceiling_eq2: "[| real n < x; x \<le> real n + 1 |] ==> ceiling x = n + 1"
- unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp
-
-lemma ceiling_eq3: "[| real n - 1 < x; x \<le> real n |] ==> ceiling x = n"
- unfolding real_of_int_def using ceiling_unique [of n x] by simp
-
-lemma real_of_int_ceiling_diff_one_le [simp]: "real (ceiling r) - 1 \<le> r"
- unfolding real_of_int_def using ceiling_correct [of r] by simp
-
-lemma real_of_int_ceiling_le_add_one [simp]: "real (ceiling r) \<le> r + 1"
- unfolding real_of_int_def using ceiling_correct [of r] by simp
-
-lemma ceiling_le: "x <= real a ==> ceiling x <= a"
- unfolding real_of_int_def by (simp add: ceiling_le_iff)
-
-lemma ceiling_le_real: "ceiling x <= a ==> x <= real a"
- unfolding real_of_int_def by (simp add: ceiling_le_iff)
-
-lemma ceiling_le_eq: "(ceiling x <= a) = (x <= real a)"
- unfolding real_of_int_def by (rule ceiling_le_iff)
-
-lemma less_ceiling_eq: "(a < ceiling x) = (real a < x)"
- unfolding real_of_int_def by (rule less_ceiling_iff)
-
-lemma ceiling_less_eq: "(ceiling x < a) = (x <= real a - 1)"
- unfolding real_of_int_def by (rule ceiling_less_iff)
-
-lemma le_ceiling_eq: "(a <= ceiling x) = (real a - 1 < x)"
- unfolding real_of_int_def by (rule le_ceiling_iff)
-
-lemma ceiling_add [simp]: "ceiling (x + real a) = ceiling x + a"
- unfolding real_of_int_def by (rule ceiling_add_of_int)
-
-lemma ceiling_subtract [simp]: "ceiling (x - real a) = ceiling x - a"
- unfolding real_of_int_def by (rule ceiling_diff_of_int)
-
-
-subsubsection {* Versions for the natural numbers *}
-
-definition
- natfloor :: "real => nat" where
- "natfloor x = nat(floor x)"
-
-definition
- natceiling :: "real => nat" where
- "natceiling x = nat(ceiling x)"
-
-lemma natfloor_zero [simp]: "natfloor 0 = 0"
- by (unfold natfloor_def, simp)
-
-lemma natfloor_one [simp]: "natfloor 1 = 1"
- by (unfold natfloor_def, simp)
-
-lemma zero_le_natfloor [simp]: "0 <= natfloor x"
- by (unfold natfloor_def, simp)
-
-lemma natfloor_numeral_eq [simp]: "natfloor (numeral n) = numeral n"
- by (unfold natfloor_def, simp)
-
-lemma natfloor_real_of_nat [simp]: "natfloor(real n) = n"
- by (unfold natfloor_def, simp)
-
-lemma real_natfloor_le: "0 <= x ==> real(natfloor x) <= x"
- by (unfold natfloor_def, simp)
-
-lemma natfloor_neg: "x <= 0 ==> natfloor x = 0"
- unfolding natfloor_def by simp
-
-lemma natfloor_mono: "x <= y ==> natfloor x <= natfloor y"
- unfolding natfloor_def by (intro nat_mono floor_mono)
-
-lemma le_natfloor: "real x <= a ==> x <= natfloor a"
- apply (unfold natfloor_def)
- apply (subst nat_int [THEN sym])
- apply (rule nat_mono)
- apply (rule le_floor)
- apply simp
-done
-
-lemma natfloor_less_iff: "0 \<le> x \<Longrightarrow> natfloor x < n \<longleftrightarrow> x < real n"
- unfolding natfloor_def real_of_nat_def
- by (simp add: nat_less_iff floor_less_iff)
-
-lemma less_natfloor:
- assumes "0 \<le> x" and "x < real (n :: nat)"
- shows "natfloor x < n"
- using assms by (simp add: natfloor_less_iff)
-
-lemma le_natfloor_eq: "0 <= x ==> (a <= natfloor x) = (real a <= x)"
- apply (rule iffI)
- apply (rule order_trans)
- prefer 2
- apply (erule real_natfloor_le)
- apply (subst real_of_nat_le_iff)
- apply assumption
- apply (erule le_natfloor)
-done
-
-lemma le_natfloor_eq_numeral [simp]:
- "~ neg((numeral n)::int) ==> 0 <= x ==>
- (numeral n <= natfloor x) = (numeral n <= x)"
- apply (subst le_natfloor_eq, assumption)
- apply simp
-done
-
-lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)"
- apply (case_tac "0 <= x")
- apply (subst le_natfloor_eq, assumption, simp)
- apply (rule iffI)
- apply (subgoal_tac "natfloor x <= natfloor 0")
- apply simp
- apply (rule natfloor_mono)
- apply simp
- apply simp
-done
-
-lemma natfloor_eq: "real n <= x ==> x < real n + 1 ==> natfloor x = n"
- unfolding natfloor_def by (simp add: floor_eq2 [where n="int n"])
-
-lemma real_natfloor_add_one_gt: "x < real(natfloor x) + 1"
- apply (case_tac "0 <= x")
- apply (unfold natfloor_def)
- apply simp
- apply simp_all
-done
-
-lemma real_natfloor_gt_diff_one: "x - 1 < real(natfloor x)"
-using real_natfloor_add_one_gt by (simp add: algebra_simps)
-
-lemma ge_natfloor_plus_one_imp_gt: "natfloor z + 1 <= n ==> z < real n"
- apply (subgoal_tac "z < real(natfloor z) + 1")
- apply arith
- apply (rule real_natfloor_add_one_gt)
-done
-
-lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a"
- unfolding natfloor_def
- unfolding real_of_int_of_nat_eq [symmetric] floor_add
- by (simp add: nat_add_distrib)
-
-lemma natfloor_add_numeral [simp]:
- "~neg ((numeral n)::int) ==> 0 <= x ==>
- natfloor (x + numeral n) = natfloor x + numeral n"
- by (simp add: natfloor_add [symmetric])
-
-lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1"
- by (simp add: natfloor_add [symmetric] del: One_nat_def)
-
-lemma natfloor_subtract [simp]:
- "natfloor(x - real a) = natfloor x - a"
- unfolding natfloor_def real_of_int_of_nat_eq [symmetric] floor_subtract
- by simp
-
-lemma natfloor_div_nat:
- assumes "1 <= x" and "y > 0"
- shows "natfloor (x / real y) = natfloor x div y"
-proof (rule natfloor_eq)
- have "(natfloor x) div y * y \<le> natfloor x"
- by (rule add_leD1 [where k="natfloor x mod y"], simp)
- thus "real (natfloor x div y) \<le> x / real y"
- using assms by (simp add: le_divide_eq le_natfloor_eq)
- have "natfloor x < (natfloor x) div y * y + y"
- apply (subst mod_div_equality [symmetric])
- apply (rule add_strict_left_mono)
- apply (rule mod_less_divisor)
- apply fact
- done
- thus "x / real y < real (natfloor x div y) + 1"
- using assms
- by (simp add: divide_less_eq natfloor_less_iff distrib_right)
-qed
-
-lemma le_mult_natfloor:
- shows "natfloor a * natfloor b \<le> natfloor (a * b)"
- by (cases "0 <= a & 0 <= b")
- (auto simp add: le_natfloor_eq mult_nonneg_nonneg mult_mono' real_natfloor_le natfloor_neg)
-
-lemma natceiling_zero [simp]: "natceiling 0 = 0"
- by (unfold natceiling_def, simp)
-
-lemma natceiling_one [simp]: "natceiling 1 = 1"
- by (unfold natceiling_def, simp)
-
-lemma zero_le_natceiling [simp]: "0 <= natceiling x"
- by (unfold natceiling_def, simp)
-
-lemma natceiling_numeral_eq [simp]: "natceiling (numeral n) = numeral n"
- by (unfold natceiling_def, simp)
-
-lemma natceiling_real_of_nat [simp]: "natceiling(real n) = n"
- by (unfold natceiling_def, simp)
-
-lemma real_natceiling_ge: "x <= real(natceiling x)"
- unfolding natceiling_def by (cases "x < 0", simp_all)
-
-lemma natceiling_neg: "x <= 0 ==> natceiling x = 0"
- unfolding natceiling_def by simp
-
-lemma natceiling_mono: "x <= y ==> natceiling x <= natceiling y"
- unfolding natceiling_def by (intro nat_mono ceiling_mono)
-
-lemma natceiling_le: "x <= real a ==> natceiling x <= a"
- unfolding natceiling_def real_of_nat_def
- by (simp add: nat_le_iff ceiling_le_iff)
-
-lemma natceiling_le_eq: "(natceiling x <= a) = (x <= real a)"
- unfolding natceiling_def real_of_nat_def
- by (simp add: nat_le_iff ceiling_le_iff)
-
-lemma natceiling_le_eq_numeral [simp]:
- "~ neg((numeral n)::int) ==>
- (natceiling x <= numeral n) = (x <= numeral n)"
- by (simp add: natceiling_le_eq)
-
-lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)"
- unfolding natceiling_def
- by (simp add: nat_le_iff ceiling_le_iff)
-
-lemma natceiling_eq: "real n < x ==> x <= real n + 1 ==> natceiling x = n + 1"
- unfolding natceiling_def
- by (simp add: ceiling_eq2 [where n="int n"])
-
-lemma natceiling_add [simp]: "0 <= x ==>
- natceiling (x + real a) = natceiling x + a"
- unfolding natceiling_def
- unfolding real_of_int_of_nat_eq [symmetric] ceiling_add
- by (simp add: nat_add_distrib)
-
-lemma natceiling_add_numeral [simp]:
- "~ neg ((numeral n)::int) ==> 0 <= x ==>
- natceiling (x + numeral n) = natceiling x + numeral n"
- by (simp add: natceiling_add [symmetric])
-
-lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1"
- by (simp add: natceiling_add [symmetric] del: One_nat_def)
-
-lemma natceiling_subtract [simp]: "natceiling(x - real a) = natceiling x - a"
- unfolding natceiling_def real_of_int_of_nat_eq [symmetric] ceiling_subtract
- by simp
-
-subsection {* Exponentiation with floor *}
-
-lemma floor_power:
- assumes "x = real (floor x)"
- shows "floor (x ^ n) = floor x ^ n"
-proof -
- have *: "x ^ n = real (floor x ^ n)"
- using assms by (induct n arbitrary: x) simp_all
- show ?thesis unfolding real_of_int_inject[symmetric]
- unfolding * floor_real_of_int ..
-qed
-
-lemma natfloor_power:
- assumes "x = real (natfloor x)"
- shows "natfloor (x ^ n) = natfloor x ^ n"
-proof -
- from assms have "0 \<le> floor x" by auto
- note assms[unfolded natfloor_def real_nat_eq_real[OF `0 \<le> floor x`]]
- from floor_power[OF this]
- show ?thesis unfolding natfloor_def nat_power_eq[OF `0 \<le> floor x`, symmetric]
- by simp
-qed
-
-
-subsection {* Implementation of rational real numbers *}
-
-text {* Formal constructor *}
-
-definition Ratreal :: "rat \<Rightarrow> real" where
- [code_abbrev, simp]: "Ratreal = of_rat"
-
-code_datatype Ratreal
-
-
-text {* Numerals *}
-
-lemma [code_abbrev]:
- "(of_rat (of_int a) :: real) = of_int a"
- by simp
-
-lemma [code_abbrev]:
- "(of_rat 0 :: real) = 0"
- by simp
-
-lemma [code_abbrev]:
- "(of_rat 1 :: real) = 1"
- by simp
-
-lemma [code_abbrev]:
- "(of_rat (numeral k) :: real) = numeral k"
- by simp
-
-lemma [code_abbrev]:
- "(of_rat (neg_numeral k) :: real) = neg_numeral k"
- by simp
-
-lemma [code_post]:
- "(of_rat (0 / r) :: real) = 0"
- "(of_rat (r / 0) :: real) = 0"
- "(of_rat (1 / 1) :: real) = 1"
- "(of_rat (numeral k / 1) :: real) = numeral k"
- "(of_rat (neg_numeral k / 1) :: real) = neg_numeral k"
- "(of_rat (1 / numeral k) :: real) = 1 / numeral k"
- "(of_rat (1 / neg_numeral k) :: real) = 1 / neg_numeral k"
- "(of_rat (numeral k / numeral l) :: real) = numeral k / numeral l"
- "(of_rat (numeral k / neg_numeral l) :: real) = numeral k / neg_numeral l"
- "(of_rat (neg_numeral k / numeral l) :: real) = neg_numeral k / numeral l"
- "(of_rat (neg_numeral k / neg_numeral l) :: real) = neg_numeral k / neg_numeral l"
- by (simp_all add: of_rat_divide)
-
-
-text {* Operations *}
-
-lemma zero_real_code [code]:
- "0 = Ratreal 0"
-by simp
-
-lemma one_real_code [code]:
- "1 = Ratreal 1"
-by simp
-
-instantiation real :: equal
-begin
-
-definition "HOL.equal (x\<Colon>real) y \<longleftrightarrow> x - y = 0"
-
-instance proof
-qed (simp add: equal_real_def)
-
-lemma real_equal_code [code]:
- "HOL.equal (Ratreal x) (Ratreal y) \<longleftrightarrow> HOL.equal x y"
- by (simp add: equal_real_def equal)
-
-lemma [code nbe]:
- "HOL.equal (x::real) x \<longleftrightarrow> True"
- by (rule equal_refl)
-
-end
-
-lemma real_less_eq_code [code]: "Ratreal x \<le> Ratreal y \<longleftrightarrow> x \<le> y"
- by (simp add: of_rat_less_eq)
-
-lemma real_less_code [code]: "Ratreal x < Ratreal y \<longleftrightarrow> x < y"
- by (simp add: of_rat_less)
-
-lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)"
- by (simp add: of_rat_add)
-
-lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)"
- by (simp add: of_rat_mult)
-
-lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)"
- by (simp add: of_rat_minus)
-
-lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)"
- by (simp add: of_rat_diff)
-
-lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)"
- by (simp add: of_rat_inverse)
-
-lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)"
- by (simp add: of_rat_divide)
-
-lemma real_floor_code [code]: "floor (Ratreal x) = floor x"
- by (metis Ratreal_def floor_le_iff floor_unique le_floor_iff of_int_floor_le of_rat_of_int_eq real_less_eq_code)
-
-
-text {* Quickcheck *}
-
-definition (in term_syntax)
- valterm_ratreal :: "rat \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> real \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
- [code_unfold]: "valterm_ratreal k = Code_Evaluation.valtermify Ratreal {\<cdot>} k"
-
-notation fcomp (infixl "\<circ>>" 60)
-notation scomp (infixl "\<circ>\<rightarrow>" 60)
-
-instantiation real :: random
-begin
-
-definition
- "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>r. Pair (valterm_ratreal r))"
-
-instance ..
-
-end
-
-no_notation fcomp (infixl "\<circ>>" 60)
-no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
-
-instantiation real :: exhaustive
-begin
-
-definition
- "exhaustive_real f d = Quickcheck_Exhaustive.exhaustive (%r. f (Ratreal r)) d"
-
-instance ..
-
-end
-
-instantiation real :: full_exhaustive
-begin
-
-definition
- "full_exhaustive_real f d = Quickcheck_Exhaustive.full_exhaustive (%r. f (valterm_ratreal r)) d"
-
-instance ..
-
-end
-
-instantiation real :: narrowing
-begin
-
-definition
- "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons Ratreal) narrowing"
-
-instance ..
-
-end
-
-
-subsection {* Setup for Nitpick *}
-
-declaration {*
- Nitpick_HOL.register_frac_type @{type_name real}
- [(@{const_name zero_real_inst.zero_real}, @{const_name Nitpick.zero_frac}),
- (@{const_name one_real_inst.one_real}, @{const_name Nitpick.one_frac}),
- (@{const_name plus_real_inst.plus_real}, @{const_name Nitpick.plus_frac}),
- (@{const_name times_real_inst.times_real}, @{const_name Nitpick.times_frac}),
- (@{const_name uminus_real_inst.uminus_real}, @{const_name Nitpick.uminus_frac}),
- (@{const_name inverse_real_inst.inverse_real}, @{const_name Nitpick.inverse_frac}),
- (@{const_name ord_real_inst.less_real}, @{const_name Nitpick.less_frac}),
- (@{const_name ord_real_inst.less_eq_real}, @{const_name Nitpick.less_eq_frac})]
-*}
-
-lemmas [nitpick_unfold] = inverse_real_inst.inverse_real one_real_inst.one_real
- ord_real_inst.less_real ord_real_inst.less_eq_real plus_real_inst.plus_real
- times_real_inst.times_real uminus_real_inst.uminus_real
- zero_real_inst.zero_real
-
-ML_file "Tools/SMT/smt_real.ML"
-setup SMT_Real.setup
-
-end
--- a/src/HOL/Tools/hologic.ML Tue Mar 26 12:20:56 2013 +0100
+++ b/src/HOL/Tools/hologic.ML Tue Mar 26 12:20:56 2013 +0100
@@ -572,7 +572,7 @@
(* real *)
-val realT = Type ("RealDef.real", []);
+val realT = Type ("Real.real", []);
(* list *)