--- a/doc-src/Classes/Thy/document/Classes.tex Tue Sep 07 16:49:32 2010 +0200
+++ b/doc-src/Classes/Thy/document/Classes.tex Tue Sep 07 16:58:01 2010 +0200
@@ -1134,65 +1134,64 @@
\noindent%
\hspace*{0pt}module Example where {\char123}\\
\hspace*{0pt}\\
-\hspace*{0pt}data Nat = Zero{\char95}nat | Suc Example.Nat;\\
+\hspace*{0pt}data Nat = Zero{\char95}nat | Suc Nat;\\
\hspace*{0pt}\\
-\hspace*{0pt}nat{\char95}aux ::~Integer -> Example.Nat -> Example.Nat;\\
-\hspace*{0pt}nat{\char95}aux i n =\\
-\hspace*{0pt} ~(if i <= 0 then n else Example.nat{\char95}aux (i - 1) (Example.Suc n));\\
+\hspace*{0pt}nat{\char95}aux ::~Integer -> Nat -> Nat;\\
+\hspace*{0pt}nat{\char95}aux i n = (if i <= 0 then n else nat{\char95}aux (i - 1) (Suc n));\\
\hspace*{0pt}\\
-\hspace*{0pt}nat ::~Integer -> Example.Nat;\\
-\hspace*{0pt}nat i = Example.nat{\char95}aux i Example.Zero{\char95}nat;\\
+\hspace*{0pt}nat ::~Integer -> Nat;\\
+\hspace*{0pt}nat i = nat{\char95}aux i Zero{\char95}nat;\\
\hspace*{0pt}\\
\hspace*{0pt}class Semigroup a where {\char123}\\
\hspace*{0pt} ~mult ::~a -> a -> a;\\
\hspace*{0pt}{\char125};\\
\hspace*{0pt}\\
-\hspace*{0pt}class (Example.Semigroup a) => Monoidl a where {\char123}\\
+\hspace*{0pt}class (Semigroup a) => Monoidl a where {\char123}\\
\hspace*{0pt} ~neutral ::~a;\\
\hspace*{0pt}{\char125};\\
\hspace*{0pt}\\
-\hspace*{0pt}class (Example.Monoidl a) => Monoid a where {\char123}\\
+\hspace*{0pt}class (Monoidl a) => Monoid a where {\char123}\\
+\hspace*{0pt}{\char125};\\
+\hspace*{0pt}\\
+\hspace*{0pt}class (Monoid a) => Group a where {\char123}\\
+\hspace*{0pt} ~inverse ::~a -> a;\\
\hspace*{0pt}{\char125};\\
\hspace*{0pt}\\
-\hspace*{0pt}class (Example.Monoid a) => Group a where {\char123}\\
-\hspace*{0pt} ~inverse ::~a -> a;\\
-\hspace*{0pt}{\char125};\\
+\hspace*{0pt}pow{\char95}nat ::~forall a.~(Monoid a) => Nat -> a -> a;\\
+\hspace*{0pt}pow{\char95}nat Zero{\char95}nat x = neutral;\\
+\hspace*{0pt}pow{\char95}nat (Suc n) x = mult x (pow{\char95}nat n x);\\
+\hspace*{0pt}\\
+\hspace*{0pt}pow{\char95}int ::~forall a.~(Group a) => Integer -> a -> a;\\
+\hspace*{0pt}pow{\char95}int k x =\\
+\hspace*{0pt} ~(if 0 <= k then pow{\char95}nat (nat k) x\\
+\hspace*{0pt} ~~~else inverse (pow{\char95}nat (nat (negate k)) x));\\
\hspace*{0pt}\\
\hspace*{0pt}mult{\char95}int ::~Integer -> Integer -> Integer;\\
\hspace*{0pt}mult{\char95}int i j = i + j;\\
\hspace*{0pt}\\
+\hspace*{0pt}instance Semigroup Integer where {\char123}\\
+\hspace*{0pt} ~mult = mult{\char95}int;\\
+\hspace*{0pt}{\char125};\\
+\hspace*{0pt}\\
\hspace*{0pt}neutral{\char95}int ::~Integer;\\
\hspace*{0pt}neutral{\char95}int = 0;\\
\hspace*{0pt}\\
+\hspace*{0pt}instance Monoidl Integer where {\char123}\\
+\hspace*{0pt} ~neutral = neutral{\char95}int;\\
+\hspace*{0pt}{\char125};\\
+\hspace*{0pt}\\
+\hspace*{0pt}instance Monoid Integer where {\char123}\\
+\hspace*{0pt}{\char125};\\
+\hspace*{0pt}\\
\hspace*{0pt}inverse{\char95}int ::~Integer -> Integer;\\
\hspace*{0pt}inverse{\char95}int i = negate i;\\
\hspace*{0pt}\\
-\hspace*{0pt}instance Example.Semigroup Integer where {\char123}\\
-\hspace*{0pt} ~mult = Example.mult{\char95}int;\\
-\hspace*{0pt}{\char125};\\
-\hspace*{0pt}\\
-\hspace*{0pt}instance Example.Monoidl Integer where {\char123}\\
-\hspace*{0pt} ~neutral = Example.neutral{\char95}int;\\
-\hspace*{0pt}{\char125};\\
-\hspace*{0pt}\\
-\hspace*{0pt}instance Example.Monoid Integer where {\char123}\\
+\hspace*{0pt}instance Group Integer where {\char123}\\
+\hspace*{0pt} ~inverse = inverse{\char95}int;\\
\hspace*{0pt}{\char125};\\
\hspace*{0pt}\\
-\hspace*{0pt}instance Example.Group Integer where {\char123}\\
-\hspace*{0pt} ~inverse = Example.inverse{\char95}int;\\
-\hspace*{0pt}{\char125};\\
-\hspace*{0pt}\\
-\hspace*{0pt}pow{\char95}nat ::~forall a.~(Example.Monoid a) => Example.Nat -> a -> a;\\
-\hspace*{0pt}pow{\char95}nat Example.Zero{\char95}nat x = Example.neutral;\\
-\hspace*{0pt}pow{\char95}nat (Example.Suc n) x = Example.mult x (Example.pow{\char95}nat n x);\\
-\hspace*{0pt}\\
-\hspace*{0pt}pow{\char95}int ::~forall a.~(Example.Group a) => Integer -> a -> a;\\
-\hspace*{0pt}pow{\char95}int k x =\\
-\hspace*{0pt} ~(if 0 <= k then Example.pow{\char95}nat (Example.nat k) x\\
-\hspace*{0pt} ~~~else Example.inverse (Example.pow{\char95}nat (Example.nat (negate k)) x));\\
-\hspace*{0pt}\\
\hspace*{0pt}example ::~Integer;\\
-\hspace*{0pt}example = Example.pow{\char95}int 10 (-2);\\
+\hspace*{0pt}example = pow{\char95}int 10 (-2);\\
\hspace*{0pt}\\
\hspace*{0pt}{\char125}%
\end{isamarkuptext}%
--- a/doc-src/Codegen/Thy/document/Foundations.tex Tue Sep 07 16:49:32 2010 +0200
+++ b/doc-src/Codegen/Thy/document/Foundations.tex Tue Sep 07 16:58:01 2010 +0200
@@ -247,11 +247,11 @@
\begin{isamarkuptext}%
\isatypewriter%
\noindent%
-\hspace*{0pt}dequeue ::~forall a.~Example.Queue a -> (Maybe a,~Example.Queue a);\\
-\hspace*{0pt}dequeue (Example.AQueue xs (y :~ys)) = (Just y,~Example.AQueue xs ys);\\
-\hspace*{0pt}dequeue (Example.AQueue xs []) =\\
-\hspace*{0pt} ~(if null xs then (Nothing,~Example.AQueue [] [])\\
-\hspace*{0pt} ~~~else Example.dequeue (Example.AQueue [] (reverse xs)));%
+\hspace*{0pt}dequeue ::~forall a.~Queue a -> (Maybe a,~Queue a);\\
+\hspace*{0pt}dequeue (AQueue xs (y :~ys)) = (Just y,~AQueue xs ys);\\
+\hspace*{0pt}dequeue (AQueue xs []) =\\
+\hspace*{0pt} ~(if null xs then (Nothing,~AQueue [] [])\\
+\hspace*{0pt} ~~~else dequeue (AQueue [] (reverse xs)));%
\end{isamarkuptext}%
\isamarkuptrue%
%
@@ -444,12 +444,12 @@
\begin{isamarkuptext}%
\isatypewriter%
\noindent%
-\hspace*{0pt}strict{\char95}dequeue ::~forall a.~Example.Queue a -> (a,~Example.Queue a);\\
-\hspace*{0pt}strict{\char95}dequeue (Example.AQueue xs []) =\\
+\hspace*{0pt}strict{\char95}dequeue ::~forall a.~Queue a -> (a,~Queue a);\\
+\hspace*{0pt}strict{\char95}dequeue (AQueue xs []) =\\
\hspace*{0pt} ~let {\char123}\\
\hspace*{0pt} ~~~(y :~ys) = reverse xs;\\
-\hspace*{0pt} ~{\char125}~in (y,~Example.AQueue [] ys);\\
-\hspace*{0pt}strict{\char95}dequeue (Example.AQueue xs (y :~ys)) = (y,~Example.AQueue xs ys);%
+\hspace*{0pt} ~{\char125}~in (y,~AQueue [] ys);\\
+\hspace*{0pt}strict{\char95}dequeue (AQueue xs (y :~ys)) = (y,~AQueue xs ys);%
\end{isamarkuptext}%
\isamarkuptrue%
%
@@ -538,11 +538,11 @@
\hspace*{0pt}empty{\char95}queue ::~forall a.~a;\\
\hspace*{0pt}empty{\char95}queue = error {\char34}empty{\char95}queue{\char34};\\
\hspace*{0pt}\\
-\hspace*{0pt}strict{\char95}dequeue ::~forall a.~Example.Queue a -> (a,~Example.Queue a);\\
-\hspace*{0pt}strict{\char95}dequeue (Example.AQueue xs (y :~ys)) = (y,~Example.AQueue xs ys);\\
-\hspace*{0pt}strict{\char95}dequeue (Example.AQueue xs []) =\\
-\hspace*{0pt} ~(if null xs then Example.empty{\char95}queue\\
-\hspace*{0pt} ~~~else Example.strict{\char95}dequeue (Example.AQueue [] (reverse xs)));%
+\hspace*{0pt}strict{\char95}dequeue ::~forall a.~Queue a -> (a,~Queue a);\\
+\hspace*{0pt}strict{\char95}dequeue (AQueue xs (y :~ys)) = (y,~AQueue xs ys);\\
+\hspace*{0pt}strict{\char95}dequeue (AQueue xs []) =\\
+\hspace*{0pt} ~(if null xs then empty{\char95}queue\\
+\hspace*{0pt} ~~~else strict{\char95}dequeue (AQueue [] (reverse xs)));%
\end{isamarkuptext}%
\isamarkuptrue%
%
--- a/doc-src/Codegen/Thy/document/Further.tex Tue Sep 07 16:49:32 2010 +0200
+++ b/doc-src/Codegen/Thy/document/Further.tex Tue Sep 07 16:58:01 2010 +0200
@@ -216,13 +216,13 @@
\begin{isamarkuptext}%
\isatypewriter%
\noindent%
-\hspace*{0pt}funpow ::~forall a.~Example.Nat -> (a -> a) -> a -> a;\\
-\hspace*{0pt}funpow Example.Zero{\char95}nat f = id;\\
-\hspace*{0pt}funpow (Example.Suc n) f = f .~Example.funpow n f;\\
+\hspace*{0pt}funpow ::~forall a.~Nat -> (a -> a) -> a -> a;\\
+\hspace*{0pt}funpow Zero{\char95}nat f = id;\\
+\hspace*{0pt}funpow (Suc n) f = f .~funpow n f;\\
\hspace*{0pt}\\
-\hspace*{0pt}funpows ::~forall a.~[Example.Nat] -> (a -> a) -> a -> a;\\
+\hspace*{0pt}funpows ::~forall a.~[Nat] -> (a -> a) -> a -> a;\\
\hspace*{0pt}funpows [] = id;\\
-\hspace*{0pt}funpows (x :~xs) = Example.funpow x .~Example.funpows xs;%
+\hspace*{0pt}funpows (x :~xs) = funpow x .~funpows xs;%
\end{isamarkuptext}%
\isamarkuptrue%
%
--- a/doc-src/Codegen/Thy/document/Introduction.tex Tue Sep 07 16:49:32 2010 +0200
+++ b/doc-src/Codegen/Thy/document/Introduction.tex Tue Sep 07 16:58:01 2010 +0200
@@ -231,19 +231,19 @@
\hspace*{0pt}\\
\hspace*{0pt}data Queue a = AQueue [a] [a];\\
\hspace*{0pt}\\
-\hspace*{0pt}empty ::~forall a.~Example.Queue a;\\
-\hspace*{0pt}empty = Example.AQueue [] [];\\
+\hspace*{0pt}empty ::~forall a.~Queue a;\\
+\hspace*{0pt}empty = AQueue [] [];\\
\hspace*{0pt}\\
-\hspace*{0pt}dequeue ::~forall a.~Example.Queue a -> (Maybe a,~Example.Queue a);\\
-\hspace*{0pt}dequeue (Example.AQueue [] []) = (Nothing,~Example.AQueue [] []);\\
-\hspace*{0pt}dequeue (Example.AQueue xs (y :~ys)) = (Just y,~Example.AQueue xs ys);\\
-\hspace*{0pt}dequeue (Example.AQueue (v :~va) []) =\\
+\hspace*{0pt}dequeue ::~forall a.~Queue a -> (Maybe a,~Queue a);\\
+\hspace*{0pt}dequeue (AQueue [] []) = (Nothing,~AQueue [] []);\\
+\hspace*{0pt}dequeue (AQueue xs (y :~ys)) = (Just y,~AQueue xs ys);\\
+\hspace*{0pt}dequeue (AQueue (v :~va) []) =\\
\hspace*{0pt} ~let {\char123}\\
\hspace*{0pt} ~~~(y :~ys) = reverse (v :~va);\\
-\hspace*{0pt} ~{\char125}~in (Just y,~Example.AQueue [] ys);\\
+\hspace*{0pt} ~{\char125}~in (Just y,~AQueue [] ys);\\
\hspace*{0pt}\\
-\hspace*{0pt}enqueue ::~forall a.~a -> Example.Queue a -> Example.Queue a;\\
-\hspace*{0pt}enqueue x (Example.AQueue xs ys) = Example.AQueue (x :~xs) ys;\\
+\hspace*{0pt}enqueue ::~forall a.~a -> Queue a -> Queue a;\\
+\hspace*{0pt}enqueue x (AQueue xs ys) = AQueue (x :~xs) ys;\\
\hspace*{0pt}\\
\hspace*{0pt}{\char125}%
\end{isamarkuptext}%
@@ -397,41 +397,41 @@
\noindent%
\hspace*{0pt}module Example where {\char123}\\
\hspace*{0pt}\\
-\hspace*{0pt}data Nat = Zero{\char95}nat | Suc Example.Nat;\\
+\hspace*{0pt}data Nat = Zero{\char95}nat | Suc Nat;\\
\hspace*{0pt}\\
-\hspace*{0pt}plus{\char95}nat ::~Example.Nat -> Example.Nat -> Example.Nat;\\
-\hspace*{0pt}plus{\char95}nat (Example.Suc m) n = Example.plus{\char95}nat m (Example.Suc n);\\
-\hspace*{0pt}plus{\char95}nat Example.Zero{\char95}nat n = n;\\
+\hspace*{0pt}plus{\char95}nat ::~Nat -> Nat -> Nat;\\
+\hspace*{0pt}plus{\char95}nat (Suc m) n = plus{\char95}nat m (Suc n);\\
+\hspace*{0pt}plus{\char95}nat Zero{\char95}nat n = n;\\
\hspace*{0pt}\\
\hspace*{0pt}class Semigroup a where {\char123}\\
\hspace*{0pt} ~mult ::~a -> a -> a;\\
\hspace*{0pt}{\char125};\\
\hspace*{0pt}\\
-\hspace*{0pt}class (Example.Semigroup a) => Monoid a where {\char123}\\
+\hspace*{0pt}class (Semigroup a) => Monoid a where {\char123}\\
\hspace*{0pt} ~neutral ::~a;\\
\hspace*{0pt}{\char125};\\
\hspace*{0pt}\\
-\hspace*{0pt}pow ::~forall a.~(Example.Monoid a) => Example.Nat -> a -> a;\\
-\hspace*{0pt}pow Example.Zero{\char95}nat a = Example.neutral;\\
-\hspace*{0pt}pow (Example.Suc n) a = Example.mult a (Example.pow n a);\\
+\hspace*{0pt}pow ::~forall a.~(Monoid a) => Nat -> a -> a;\\
+\hspace*{0pt}pow Zero{\char95}nat a = neutral;\\
+\hspace*{0pt}pow (Suc n) a = mult a (pow n a);\\
\hspace*{0pt}\\
-\hspace*{0pt}mult{\char95}nat ::~Example.Nat -> Example.Nat -> Example.Nat;\\
-\hspace*{0pt}mult{\char95}nat Example.Zero{\char95}nat n = Example.Zero{\char95}nat;\\
-\hspace*{0pt}mult{\char95}nat (Example.Suc m) n = Example.plus{\char95}nat n (Example.mult{\char95}nat m n);\\
+\hspace*{0pt}mult{\char95}nat ::~Nat -> Nat -> Nat;\\
+\hspace*{0pt}mult{\char95}nat Zero{\char95}nat n = Zero{\char95}nat;\\
+\hspace*{0pt}mult{\char95}nat (Suc m) n = plus{\char95}nat n (mult{\char95}nat m n);\\
\hspace*{0pt}\\
-\hspace*{0pt}neutral{\char95}nat ::~Example.Nat;\\
-\hspace*{0pt}neutral{\char95}nat = Example.Suc Example.Zero{\char95}nat;\\
-\hspace*{0pt}\\
-\hspace*{0pt}instance Example.Semigroup Example.Nat where {\char123}\\
-\hspace*{0pt} ~mult = Example.mult{\char95}nat;\\
+\hspace*{0pt}instance Semigroup Nat where {\char123}\\
+\hspace*{0pt} ~mult = mult{\char95}nat;\\
\hspace*{0pt}{\char125};\\
\hspace*{0pt}\\
-\hspace*{0pt}instance Example.Monoid Example.Nat where {\char123}\\
-\hspace*{0pt} ~neutral = Example.neutral{\char95}nat;\\
+\hspace*{0pt}neutral{\char95}nat ::~Nat;\\
+\hspace*{0pt}neutral{\char95}nat = Suc Zero{\char95}nat;\\
+\hspace*{0pt}\\
+\hspace*{0pt}instance Monoid Nat where {\char123}\\
+\hspace*{0pt} ~neutral = neutral{\char95}nat;\\
\hspace*{0pt}{\char125};\\
\hspace*{0pt}\\
-\hspace*{0pt}bexp ::~Example.Nat -> Example.Nat;\\
-\hspace*{0pt}bexp n = Example.pow n (Example.Suc (Example.Suc Example.Zero{\char95}nat));\\
+\hspace*{0pt}bexp ::~Nat -> Nat;\\
+\hspace*{0pt}bexp n = pow n (Suc (Suc Zero{\char95}nat));\\
\hspace*{0pt}\\
\hspace*{0pt}{\char125}%
\end{isamarkuptext}%
--- a/doc-src/Codegen/Thy/document/Refinement.tex Tue Sep 07 16:49:32 2010 +0200
+++ b/doc-src/Codegen/Thy/document/Refinement.tex Tue Sep 07 16:58:01 2010 +0200
@@ -74,11 +74,10 @@
\begin{isamarkuptext}%
\isatypewriter%
\noindent%
-\hspace*{0pt}fib ::~Example.Nat -> Example.Nat;\\
-\hspace*{0pt}fib Example.Zero{\char95}nat = Example.Zero{\char95}nat;\\
-\hspace*{0pt}fib (Example.Suc Example.Zero{\char95}nat) = Example.Suc Example.Zero{\char95}nat;\\
-\hspace*{0pt}fib (Example.Suc (Example.Suc n)) =\\
-\hspace*{0pt} ~Example.plus{\char95}nat (Example.fib n) (Example.fib (Example.Suc n));%
+\hspace*{0pt}fib ::~Nat -> Nat;\\
+\hspace*{0pt}fib Zero{\char95}nat = Zero{\char95}nat;\\
+\hspace*{0pt}fib (Suc Zero{\char95}nat) = Suc Zero{\char95}nat;\\
+\hspace*{0pt}fib (Suc (Suc n)) = plus{\char95}nat (fib n) (fib (Suc n));%
\end{isamarkuptext}%
\isamarkuptrue%
%
@@ -173,17 +172,15 @@
\begin{isamarkuptext}%
\isatypewriter%
\noindent%
-\hspace*{0pt}fib{\char95}step ::~Example.Nat -> (Example.Nat,~Example.Nat);\\
-\hspace*{0pt}fib{\char95}step (Example.Suc n) =\\
-\hspace*{0pt} ~let {\char123}\\
-\hspace*{0pt} ~~~(m,~q) = Example.fib{\char95}step n;\\
-\hspace*{0pt} ~{\char125}~in (Example.plus{\char95}nat m q,~m);\\
-\hspace*{0pt}fib{\char95}step Example.Zero{\char95}nat =\\
-\hspace*{0pt} ~(Example.Suc Example.Zero{\char95}nat,~Example.Zero{\char95}nat);\\
+\hspace*{0pt}fib{\char95}step ::~Nat -> (Nat,~Nat);\\
+\hspace*{0pt}fib{\char95}step (Suc n) = let {\char123}\\
+\hspace*{0pt} ~~~~~~~~~~~~~~~~~~~~(m,~q) = fib{\char95}step n;\\
+\hspace*{0pt} ~~~~~~~~~~~~~~~~~~{\char125}~in (plus{\char95}nat m q,~m);\\
+\hspace*{0pt}fib{\char95}step Zero{\char95}nat = (Suc Zero{\char95}nat,~Zero{\char95}nat);\\
\hspace*{0pt}\\
-\hspace*{0pt}fib ::~Example.Nat -> Example.Nat;\\
-\hspace*{0pt}fib (Example.Suc n) = fst (Example.fib{\char95}step n);\\
-\hspace*{0pt}fib Example.Zero{\char95}nat = Example.Zero{\char95}nat;%
+\hspace*{0pt}fib ::~Nat -> Nat;\\
+\hspace*{0pt}fib (Suc n) = fst (fib{\char95}step n);\\
+\hspace*{0pt}fib Zero{\char95}nat = Zero{\char95}nat;%
\end{isamarkuptext}%
\isamarkuptrue%
%
@@ -593,30 +590,28 @@
\hspace*{0pt}\\
\hspace*{0pt}newtype Dlist a = Dlist [a];\\
\hspace*{0pt}\\
-\hspace*{0pt}empty ::~forall a.~Example.Dlist a;\\
-\hspace*{0pt}empty = Example.Dlist [];\\
+\hspace*{0pt}empty ::~forall a.~Dlist a;\\
+\hspace*{0pt}empty = Dlist [];\\
\hspace*{0pt}\\
\hspace*{0pt}member ::~forall a.~(Eq a) => [a] -> a -> Bool;\\
\hspace*{0pt}member [] y = False;\\
-\hspace*{0pt}member (x :~xs) y = x == y || Example.member xs y;\\
+\hspace*{0pt}member (x :~xs) y = x == y || member xs y;\\
\hspace*{0pt}\\
-\hspace*{0pt}inserta ::~forall a.~(Eq a) => a -> [a] -> [a];\\
-\hspace*{0pt}inserta x xs = (if Example.member xs x then xs else x :~xs);\\
+\hspace*{0pt}insert ::~forall a.~(Eq a) => a -> [a] -> [a];\\
+\hspace*{0pt}insert x xs = (if member xs x then xs else x :~xs);\\
\hspace*{0pt}\\
-\hspace*{0pt}list{\char95}of{\char95}dlist ::~forall a.~Example.Dlist a -> [a];\\
-\hspace*{0pt}list{\char95}of{\char95}dlist (Example.Dlist x) = x;\\
+\hspace*{0pt}list{\char95}of{\char95}dlist ::~forall a.~Dlist a -> [a];\\
+\hspace*{0pt}list{\char95}of{\char95}dlist (Dlist x) = x;\\
\hspace*{0pt}\\
-\hspace*{0pt}insert ::~forall a.~(Eq a) => a -> Example.Dlist a -> Example.Dlist a;\\
-\hspace*{0pt}insert x dxs =\\
-\hspace*{0pt} ~Example.Dlist (Example.inserta x (Example.list{\char95}of{\char95}dlist dxs));\\
+\hspace*{0pt}inserta ::~forall a.~(Eq a) => a -> Dlist a -> Dlist a;\\
+\hspace*{0pt}inserta x dxs = Dlist (insert x (list{\char95}of{\char95}dlist dxs));\\
\hspace*{0pt}\\
\hspace*{0pt}remove1 ::~forall a.~(Eq a) => a -> [a] -> [a];\\
\hspace*{0pt}remove1 x [] = [];\\
-\hspace*{0pt}remove1 x (y :~xs) = (if x == y then xs else y :~Example.remove1 x xs);\\
+\hspace*{0pt}remove1 x (y :~xs) = (if x == y then xs else y :~remove1 x xs);\\
\hspace*{0pt}\\
-\hspace*{0pt}remove ::~forall a.~(Eq a) => a -> Example.Dlist a -> Example.Dlist a;\\
-\hspace*{0pt}remove x dxs =\\
-\hspace*{0pt} ~Example.Dlist (Example.remove1 x (Example.list{\char95}of{\char95}dlist dxs));\\
+\hspace*{0pt}remove ::~forall a.~(Eq a) => a -> Dlist a -> Dlist a;\\
+\hspace*{0pt}remove x dxs = Dlist (remove1 x (list{\char95}of{\char95}dlist dxs));\\
\hspace*{0pt}\\
\hspace*{0pt}{\char125}%
\end{isamarkuptext}%
--- a/doc-src/Codegen/Thy/examples/Example.hs Tue Sep 07 16:49:32 2010 +0200
+++ b/doc-src/Codegen/Thy/examples/Example.hs Tue Sep 07 16:58:01 2010 +0200
@@ -4,18 +4,18 @@
data Queue a = AQueue [a] [a];
-empty :: forall a. Example.Queue a;
-empty = Example.AQueue [] [];
+empty :: forall a. Queue a;
+empty = AQueue [] [];
-dequeue :: forall a. Example.Queue a -> (Maybe a, Example.Queue a);
-dequeue (Example.AQueue [] []) = (Nothing, Example.AQueue [] []);
-dequeue (Example.AQueue xs (y : ys)) = (Just y, Example.AQueue xs ys);
-dequeue (Example.AQueue (v : va) []) =
+dequeue :: forall a. Queue a -> (Maybe a, Queue a);
+dequeue (AQueue [] []) = (Nothing, AQueue [] []);
+dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
+dequeue (AQueue (v : va) []) =
let {
(y : ys) = reverse (v : va);
- } in (Just y, Example.AQueue [] ys);
+ } in (Just y, AQueue [] ys);
-enqueue :: forall a. a -> Example.Queue a -> Example.Queue a;
-enqueue x (Example.AQueue xs ys) = Example.AQueue (x : xs) ys;
+enqueue :: forall a. a -> Queue a -> Queue a;
+enqueue x (AQueue xs ys) = AQueue (x : xs) ys;
}