added nat_div_gt_0 [simp]
authornipkow
Wed, 01 Apr 2009 18:41:15 +0200
changeset 30840 98809b3f5e3c
parent 30839 bf99ceb7d015
child 30842 d007dee0c372
child 30843 3419ca741dbf
added nat_div_gt_0 [simp]
src/HOL/Divides.thy
--- a/src/HOL/Divides.thy	Wed Apr 01 16:55:31 2009 +0200
+++ b/src/HOL/Divides.thy	Wed Apr 01 18:41:15 2009 +0200
@@ -827,6 +827,9 @@
 lemma nat_div_eq_0 [simp]: "(n::nat) > 0 ==> ((m div n) = 0) = (m < n)"
 by(auto, subst mod_div_equality [of m n, symmetric], auto)
 
+lemma nat_div_gt_0 [simp]: "(n::nat) > 0 ==> ((m div n) > 0) = (m >= n)"
+by (subst neq0_conv [symmetric], auto)
+
 declare div_less_dividend [simp]
 
 text{*A fact for the mutilated chess board*}