--- a/src/HOL/Finite_Set.thy Thu Dec 17 21:12:57 2009 +0100
+++ b/src/HOL/Finite_Set.thy Thu Dec 17 13:51:50 2009 -0800
@@ -204,6 +204,9 @@
qed
qed
+lemma rev_finite_subset: "finite B ==> A \<subseteq> B ==> finite A"
+by (rule finite_subset)
+
lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)"
by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI)
@@ -355,6 +358,18 @@
apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton])
done
+lemma finite_vimageD:
+ assumes fin: "finite (h -` F)" and surj: "surj h"
+ shows "finite F"
+proof -
+ have "finite (h ` (h -` F))" using fin by (rule finite_imageI)
+ also have "h ` (h -` F) = F" using surj by (rule surj_image_vimage_eq)
+ finally show "finite F" .
+qed
+
+lemma finite_vimage_iff: "bij h \<Longrightarrow> finite (h -` F) \<longleftrightarrow> finite F"
+ unfolding bij_def by (auto elim: finite_vimageD finite_vimageI)
+
text {* The finite UNION of finite sets *}
--- a/src/HOL/Library/Infinite_Set.thy Thu Dec 17 21:12:57 2009 +0100
+++ b/src/HOL/Library/Infinite_Set.thy Thu Dec 17 13:51:50 2009 -0800
@@ -371,21 +371,38 @@
Inf_many (binder "\<exists>\<^sub>\<infinity>" 10) and
Alm_all (binder "\<forall>\<^sub>\<infinity>" 10)
-lemma INFM_EX:
- "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)"
- unfolding Inf_many_def
-proof (rule ccontr)
- assume inf: "infinite {x. P x}"
- assume "\<not> ?thesis" then have "{x. P x} = {}" by simp
- then have "finite {x. P x}" by simp
- with inf show False by simp
-qed
+lemma INFM_iff_infinite: "(INFM x. P x) \<longleftrightarrow> infinite {x. P x}"
+ unfolding Inf_many_def ..
+
+lemma MOST_iff_cofinite: "(MOST x. P x) \<longleftrightarrow> finite {x. \<not> P x}"
+ unfolding Alm_all_def Inf_many_def by simp
+
+(* legacy name *)
+lemmas MOST_iff_finiteNeg = MOST_iff_cofinite
+
+lemma not_INFM [simp]: "\<not> (INFM x. P x) \<longleftrightarrow> (MOST x. \<not> P x)"
+ unfolding Alm_all_def not_not ..
-lemma MOST_iff_finiteNeg: "(\<forall>\<^sub>\<infinity>x. P x) = finite {x. \<not> P x}"
- by (simp add: Alm_all_def Inf_many_def)
+lemma not_MOST [simp]: "\<not> (MOST x. P x) \<longleftrightarrow> (INFM x. \<not> P x)"
+ unfolding Alm_all_def not_not ..
+
+lemma INFM_const [simp]: "(INFM x::'a. P) \<longleftrightarrow> P \<and> infinite (UNIV::'a set)"
+ unfolding Inf_many_def by simp
+
+lemma MOST_const [simp]: "(MOST x::'a. P) \<longleftrightarrow> P \<or> finite (UNIV::'a set)"
+ unfolding Alm_all_def by simp
+
+lemma INFM_EX: "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)"
+ by (erule contrapos_pp, simp)
lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x"
- by (simp add: MOST_iff_finiteNeg)
+ by simp
+
+lemma INFM_E: assumes "INFM x. P x" obtains x where "P x"
+ using INFM_EX [OF assms] by (rule exE)
+
+lemma MOST_I: assumes "\<And>x. P x" shows "MOST x. P x"
+ using assms by simp
lemma INFM_mono:
assumes inf: "\<exists>\<^sub>\<infinity>x. P x" and q: "\<And>x. P x \<Longrightarrow> Q x"
@@ -404,30 +421,95 @@
"(\<exists>\<^sub>\<infinity>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>\<infinity>x. P x) \<or> (\<exists>\<^sub>\<infinity>x. Q x)"
unfolding Inf_many_def by (simp add: Collect_disj_eq)
+lemma INFM_imp_distrib:
+ "(INFM x. P x \<longrightarrow> Q x) \<longleftrightarrow> ((MOST x. P x) \<longrightarrow> (INFM x. Q x))"
+ by (simp only: imp_conv_disj INFM_disj_distrib not_MOST)
+
lemma MOST_conj_distrib:
"(\<forall>\<^sub>\<infinity>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>\<^sub>\<infinity>x. P x) \<and> (\<forall>\<^sub>\<infinity>x. Q x)"
unfolding Alm_all_def by (simp add: INFM_disj_distrib del: disj_not1)
+lemma MOST_conjI:
+ "MOST x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> MOST x. P x \<and> Q x"
+ by (simp add: MOST_conj_distrib)
+
+lemma INFM_conjI:
+ "INFM x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> INFM x. P x \<and> Q x"
+ unfolding MOST_iff_cofinite INFM_iff_infinite
+ apply (drule (1) Diff_infinite_finite)
+ apply (simp add: Collect_conj_eq Collect_neg_eq)
+ done
+
lemma MOST_rev_mp:
assumes "\<forall>\<^sub>\<infinity>x. P x" and "\<forall>\<^sub>\<infinity>x. P x \<longrightarrow> Q x"
shows "\<forall>\<^sub>\<infinity>x. Q x"
proof -
have "\<forall>\<^sub>\<infinity>x. P x \<and> (P x \<longrightarrow> Q x)"
- using prems by (simp add: MOST_conj_distrib)
+ using assms by (rule MOST_conjI)
thus ?thesis by (rule MOST_mono) simp
qed
-lemma not_INFM [simp]: "\<not> (INFM x. P x) \<longleftrightarrow> (MOST x. \<not> P x)"
-unfolding Alm_all_def not_not ..
+lemma MOST_imp_iff:
+ assumes "MOST x. P x"
+ shows "(MOST x. P x \<longrightarrow> Q x) \<longleftrightarrow> (MOST x. Q x)"
+proof
+ assume "MOST x. P x \<longrightarrow> Q x"
+ with assms show "MOST x. Q x" by (rule MOST_rev_mp)
+next
+ assume "MOST x. Q x"
+ then show "MOST x. P x \<longrightarrow> Q x" by (rule MOST_mono) simp
+qed
-lemma not_MOST [simp]: "\<not> (MOST x. P x) \<longleftrightarrow> (INFM x. \<not> P x)"
-unfolding Alm_all_def not_not ..
+lemma INFM_MOST_simps [simp]:
+ "\<And>P Q. (INFM x. P x \<and> Q) \<longleftrightarrow> (INFM x. P x) \<and> Q"
+ "\<And>P Q. (INFM x. P \<and> Q x) \<longleftrightarrow> P \<and> (INFM x. Q x)"
+ "\<And>P Q. (MOST x. P x \<or> Q) \<longleftrightarrow> (MOST x. P x) \<or> Q"
+ "\<And>P Q. (MOST x. P \<or> Q x) \<longleftrightarrow> P \<or> (MOST x. Q x)"
+ "\<And>P Q. (MOST x. P x \<longrightarrow> Q) \<longleftrightarrow> ((INFM x. P x) \<longrightarrow> Q)"
+ "\<And>P Q. (MOST x. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (MOST x. Q x))"
+ unfolding Alm_all_def Inf_many_def
+ by (simp_all add: Collect_conj_eq)
+
+text {* Properties of quantifiers with injective functions. *}
+
+lemma INFM_inj:
+ "INFM x. P (f x) \<Longrightarrow> inj f \<Longrightarrow> INFM x. P x"
+ unfolding INFM_iff_infinite
+ by (clarify, drule (1) finite_vimageI, simp)
-lemma INFM_const [simp]: "(INFM x::'a. P) \<longleftrightarrow> P \<and> infinite (UNIV::'a set)"
- unfolding Inf_many_def by simp
+lemma MOST_inj:
+ "MOST x. P x \<Longrightarrow> inj f \<Longrightarrow> MOST x. P (f x)"
+ unfolding MOST_iff_cofinite
+ by (drule (1) finite_vimageI, simp)
+
+text {* Properties of quantifiers with singletons. *}
+
+lemma not_INFM_eq [simp]:
+ "\<not> (INFM x. x = a)"
+ "\<not> (INFM x. a = x)"
+ unfolding INFM_iff_infinite by simp_all
+
+lemma MOST_neq [simp]:
+ "MOST x. x \<noteq> a"
+ "MOST x. a \<noteq> x"
+ unfolding MOST_iff_cofinite by simp_all
-lemma MOST_const [simp]: "(MOST x::'a. P) \<longleftrightarrow> P \<or> finite (UNIV::'a set)"
- unfolding Alm_all_def by simp
+lemma INFM_neq [simp]:
+ "(INFM x::'a. x \<noteq> a) \<longleftrightarrow> infinite (UNIV::'a set)"
+ "(INFM x::'a. a \<noteq> x) \<longleftrightarrow> infinite (UNIV::'a set)"
+ unfolding INFM_iff_infinite by simp_all
+
+lemma MOST_eq [simp]:
+ "(MOST x::'a. x = a) \<longleftrightarrow> finite (UNIV::'a set)"
+ "(MOST x::'a. a = x) \<longleftrightarrow> finite (UNIV::'a set)"
+ unfolding MOST_iff_cofinite by simp_all
+
+lemma MOST_eq_imp:
+ "MOST x. x = a \<longrightarrow> P x"
+ "MOST x. a = x \<longrightarrow> P x"
+ unfolding MOST_iff_cofinite by simp_all
+
+text {* Properties of quantifiers over the naturals. *}
lemma INFM_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)"
by (simp add: Inf_many_def infinite_nat_iff_unbounded)
--- a/src/HOL/Library/Product_Vector.thy Thu Dec 17 21:12:57 2009 +0100
+++ b/src/HOL/Library/Product_Vector.thy Thu Dec 17 13:51:50 2009 -0800
@@ -102,6 +102,42 @@
by (simp add: closed_vimage_fst closed_vimage_snd closed_Int)
qed
+lemma openI: (* TODO: move *)
+ assumes "\<And>x. x \<in> S \<Longrightarrow> \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S"
+ shows "open S"
+proof -
+ have "open (\<Union>{T. open T \<and> T \<subseteq> S})" by auto
+ moreover have "\<Union>{T. open T \<and> T \<subseteq> S} = S" by (auto dest!: assms)
+ ultimately show "open S" by simp
+qed
+
+lemma subset_fst_imageI: "A \<times> B \<subseteq> S \<Longrightarrow> y \<in> B \<Longrightarrow> A \<subseteq> fst ` S"
+ unfolding image_def subset_eq by force
+
+lemma subset_snd_imageI: "A \<times> B \<subseteq> S \<Longrightarrow> x \<in> A \<Longrightarrow> B \<subseteq> snd ` S"
+ unfolding image_def subset_eq by force
+
+lemma open_image_fst: assumes "open S" shows "open (fst ` S)"
+proof (rule openI)
+ fix x assume "x \<in> fst ` S"
+ then obtain y where "(x, y) \<in> S" by auto
+ then obtain A B where "open A" "open B" "x \<in> A" "y \<in> B" "A \<times> B \<subseteq> S"
+ using `open S` unfolding open_prod_def by auto
+ from `A \<times> B \<subseteq> S` `y \<in> B` have "A \<subseteq> fst ` S" by (rule subset_fst_imageI)
+ with `open A` `x \<in> A` have "open A \<and> x \<in> A \<and> A \<subseteq> fst ` S" by simp
+ then show "\<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> fst ` S" by - (rule exI)
+qed
+
+lemma open_image_snd: assumes "open S" shows "open (snd ` S)"
+proof (rule openI)
+ fix y assume "y \<in> snd ` S"
+ then obtain x where "(x, y) \<in> S" by auto
+ then obtain A B where "open A" "open B" "x \<in> A" "y \<in> B" "A \<times> B \<subseteq> S"
+ using `open S` unfolding open_prod_def by auto
+ from `A \<times> B \<subseteq> S` `x \<in> A` have "B \<subseteq> snd ` S" by (rule subset_snd_imageI)
+ with `open B` `y \<in> B` have "open B \<and> y \<in> B \<and> B \<subseteq> snd ` S" by simp
+ then show "\<exists>T. open T \<and> y \<in> T \<and> T \<subseteq> snd ` S" by - (rule exI)
+qed
subsection {* Product is a metric space *}