Lots more new material thanks to Manuel Eberl
authorpaulson <lp15@cam.ac.uk>
Tue, 31 Jan 2023 14:05:16 +0000
changeset 77140 9a60c1759543
parent 77139 da8a0e7bcac8
child 77141 1310df9229bd
child 77166 0fb350e7477b
Lots more new material thanks to Manuel Eberl
src/HOL/Analysis/Complex_Transcendental.thy
src/HOL/Analysis/Derivative.thy
src/HOL/Analysis/Elementary_Metric_Spaces.thy
src/HOL/Analysis/Elementary_Topology.thy
src/HOL/Analysis/Line_Segment.thy
src/HOL/Analysis/Smooth_Paths.thy
src/HOL/BNF_Cardinal_Order_Relation.thy
src/HOL/Complex.thy
src/HOL/Filter.thy
src/HOL/Library/Equipollence.thy
src/HOL/Power.thy
src/HOL/Set.thy
src/HOL/Topological_Spaces.thy
src/HOL/Transcendental.thy
--- a/src/HOL/Analysis/Complex_Transcendental.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Analysis/Complex_Transcendental.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -2193,6 +2193,12 @@
     by (auto simp: Re_exp Im_exp)
 qed
 
+lemma Arg_1 [simp]: "Arg 1 = 0"
+  by (rule Arg_unique[of 1]) auto
+
+lemma Arg_numeral [simp]: "Arg (numeral n) = 0"
+  by (rule Arg_unique[of "numeral n"]) auto
+  
 lemma Arg_times_of_real [simp]:
   assumes "0 < r" shows "Arg (of_real r * z) = Arg z"
   using Arg_def Ln_times_of_real assms by auto
@@ -2207,6 +2213,10 @@
   using Im_Ln_le_pi Im_Ln_pos_le
   by (simp add: Arg_def)
 
+text \<open>converse fails because the argument can equal $\pi$.\<close> 
+lemma Arg_uminus: "Arg z < 0 \<Longrightarrow> Arg (-z) > 0"
+  by (smt (verit) Arg_bounded Arg_minus Complex.Arg_def)
+
 lemma Arg_eq_pi: "Arg z = pi \<longleftrightarrow> Re z < 0 \<and> Im z = 0"
   by (auto simp: Arg_def Im_Ln_eq_pi)
 
@@ -2261,7 +2271,13 @@
   by (metis Arg_cnj_eq_inverse Arg_inverse Reals_0 complex_cnj_zero)
 
 lemma Arg_exp: "-pi < Im z \<Longrightarrow> Im z \<le> pi \<Longrightarrow> Arg(exp z) = Im z"
-  by (rule Arg_unique [of "exp(Re z)"]) (auto simp: exp_eq_polar)
+  by (simp add: Arg_eq_Im_Ln)
+
+lemma Arg_cis: "x \<in> {-pi<..pi} \<Longrightarrow> Arg (cis x) = x"
+  unfolding cis_conv_exp by (subst Arg_exp) auto
+
+lemma Arg_rcis: "x \<in> {-pi<..pi} \<Longrightarrow> r > 0 \<Longrightarrow> Arg (rcis r x) = x"
+  unfolding rcis_def by (subst Arg_times_of_real) (auto simp: Arg_cis)
 
 lemma Ln_Arg: "z\<noteq>0 \<Longrightarrow> Ln(z) = ln(norm z) + \<i> * Arg(z)"
   by (metis Arg_def Re_Ln complex_eq)
@@ -3093,6 +3109,33 @@
     by simp
 qed
 
+lemma csqrt_mult:
+  assumes "Arg z + Arg w \<in> {-pi<..pi}"
+  shows   "csqrt (z * w) = csqrt z * csqrt w"
+proof (cases "z = 0 \<or> w = 0")
+  case False
+  have "csqrt (z * w) = exp ((ln (z * w)) / 2)"
+    using False by (intro csqrt_exp_Ln) auto
+  also have "\<dots> = exp ((Ln z + Ln w) / 2)"
+    using False assms by (subst Ln_times_simple) (auto simp: Arg_eq_Im_Ln)
+  also have "(Ln z + Ln w) / 2 = Ln z / 2 + Ln w / 2"
+    by (simp add: add_divide_distrib)
+  also have "exp \<dots> = csqrt z * csqrt w"
+    using False by (simp add: exp_add csqrt_exp_Ln)
+  finally show ?thesis .
+qed auto
+
+lemma Arg_csqrt [simp]: "Arg (csqrt z) = Arg z / 2"
+proof (cases "z = 0")
+  case False
+  have "Im (Ln z) \<in> {-pi<..pi}"
+    by (simp add: False Im_Ln_le_pi mpi_less_Im_Ln)
+  also have "\<dots> \<subseteq> {-2*pi<..2*pi}"
+    by auto
+  finally show ?thesis
+    using False by (auto simp: csqrt_exp_Ln Arg_exp Arg_eq_Im_Ln)
+qed (auto simp: Arg_zero)
+
 lemma csqrt_inverse:
   "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> csqrt (inverse z) = inverse (csqrt z)"
   by (metis Ln_inverse csqrt_eq_0 csqrt_exp_Ln divide_minus_left exp_minus 
--- a/src/HOL/Analysis/Derivative.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Analysis/Derivative.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -313,9 +313,13 @@
 lemma diff_chain_at[derivative_intros]:
   "(f has_derivative f') (at x) \<Longrightarrow>
     (g has_derivative g') (at (f x)) \<Longrightarrow> ((g \<circ> f) has_derivative (g' \<circ> f')) (at x)"
-  using has_derivative_compose[of f f' x UNIV g g']
-  by (simp add: comp_def)
-
+  by (meson diff_chain_within has_derivative_at_withinI)
+
+lemma has_vector_derivative_shift: "(f has_vector_derivative D x) (at x)
+           \<Longrightarrow> ((+) d \<circ> f has_vector_derivative D x) (at x)"
+  using diff_chain_at [OF _ shift_has_derivative_id]
+  by (simp add: has_derivative_iff_Ex has_vector_derivative_def) 
+  
 lemma has_vector_derivative_within_open:
   "a \<in> S \<Longrightarrow> open S \<Longrightarrow>
     (f has_vector_derivative f') (at a within S) \<longleftrightarrow> (f has_vector_derivative f') (at a)"
@@ -3311,7 +3315,16 @@
 
 lemma C1_differentiable_on_of_real [derivative_intros]: "of_real C1_differentiable_on S"
   unfolding C1_differentiable_on_def
-  by (smt (verit, del_insts) DERIV_ident UNIV_I continuous_on_const has_vector_derivative_of_real has_vector_derivative_transform)
+  using vector_derivative_works by fastforce
+
+lemma C1_differentiable_on_translation:
+  "f C1_differentiable_on U - S \<Longrightarrow> (+) d \<circ> f C1_differentiable_on U - S"
+  by (metis C1_differentiable_on_def has_vector_derivative_shift)
+
+lemma C1_differentiable_on_translation_eq: 
+  fixes d :: "'a::real_normed_vector"
+  shows "(+) d \<circ> f C1_differentiable_on i - S \<longleftrightarrow> f C1_differentiable_on i - S"
+  by (force simp: o_def intro: C1_differentiable_on_translation dest: C1_differentiable_on_translation [of concl: "-d"])
 
 
 definition\<^marker>\<open>tag important\<close> piecewise_C1_differentiable_on
@@ -3330,6 +3343,11 @@
            C1_differentiable_on_def differentiable_def has_vector_derivative_def
            intro: has_derivative_at_withinI)
 
+lemma piecewise_C1_differentiable_on_translation_eq:
+  "((+) d \<circ> f piecewise_C1_differentiable_on i) \<longleftrightarrow> (f piecewise_C1_differentiable_on i)"
+  unfolding piecewise_C1_differentiable_on_def continuous_on_translation_eq
+  by (metis C1_differentiable_on_translation_eq)
+
 lemma piecewise_C1_differentiable_compose [derivative_intros]:
   assumes fg: "f piecewise_C1_differentiable_on S" "g piecewise_C1_differentiable_on (f ` S)" and fin: "\<And>x. finite (S \<inter> f-`{x})"
   shows "(g \<circ> f) piecewise_C1_differentiable_on S"
--- a/src/HOL/Analysis/Elementary_Metric_Spaces.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Analysis/Elementary_Metric_Spaces.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -370,6 +370,20 @@
     by (metis islimpt_approachable closed_limpt [where 'a='a])
 qed
 
+lemma discrete_imp_not_islimpt:
+  assumes e: "0 < e"
+    and d: "\<And>x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> dist y x < e \<Longrightarrow> y = x"
+  shows "\<not> x islimpt S"
+proof
+  assume "x islimpt S"
+  hence "x islimpt S - {x}"
+    by (meson islimpt_punctured)
+  moreover from assms have "closed (S - {x})"
+    by (intro discrete_imp_closed) auto
+  ultimately show False
+    unfolding closed_limpt by blast
+qed
+  
 
 subsection \<open>Interior\<close>
 
--- a/src/HOL/Analysis/Elementary_Topology.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Analysis/Elementary_Topology.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -13,7 +13,6 @@
   Product_Vector
 begin
 
-
 section \<open>Elementary Topology\<close>
 
 
@@ -845,6 +844,22 @@
   apply (auto simp: open_Int)
   done
 
+lemma open_imp_islimpt:
+  fixes x::"'a:: perfect_space"
+  assumes "open S" "x\<in>S"
+  shows "x islimpt S"
+  using assms interior_eq interior_limit_point by auto
+
+lemma islimpt_Int_eventually:
+  assumes "x islimpt A" "eventually (\<lambda>y. y \<in> B) (at x)"
+  shows   "x islimpt A \<inter> B"
+  using assms unfolding islimpt_def eventually_at_filter eventually_nhds
+  by (metis Int_iff UNIV_I open_Int)
+
+lemma islimpt_conv_frequently_at:
+  "x islimpt A \<longleftrightarrow> frequently (\<lambda>y. y \<in> A) (at x)"
+  unfolding islimpt_def eventually_at_filter frequently_def eventually_nhds by blast
+
 lemma interior_closed_Un_empty_interior:
   assumes cS: "closed S"
     and iT: "interior T = {}"
@@ -2435,6 +2450,16 @@
 lemma homeomorphism_sym: "homeomorphism S t f g = homeomorphism t S g f"
   by (force simp: homeomorphism_def)
 
+lemma continuous_on_translation_eq:
+  fixes g :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_vector"
+  shows "continuous_on A ((+) a \<circ> g) = continuous_on A g"
+proof -
+  have g: "g = (\<lambda>x. -a + x) \<circ> ((\<lambda>x. a + x) \<circ> g)"
+    by (rule ext) simp
+  show ?thesis
+    by (metis (no_types, opaque_lifting) g continuous_on_compose homeomorphism_def homeomorphism_translation)
+qed
+
 definition\<^marker>\<open>tag important\<close> homeomorphic :: "'a::topological_space set \<Rightarrow> 'b::topological_space set \<Rightarrow> bool"
     (infixr "homeomorphic" 60)
   where "s homeomorphic t \<equiv> (\<exists>f g. homeomorphism s t f g)"
--- a/src/HOL/Analysis/Line_Segment.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Analysis/Line_Segment.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -914,15 +914,21 @@
   qed
 qed
 
+lemma closed_segment_same_fst:
+  "fst a = fst b \<Longrightarrow> closed_segment a b = {fst a} \<times> closed_segment (snd a) (snd b)"
+  by (auto simp: closed_segment_def scaleR_prod_def)
+
+lemma closed_segment_same_snd:
+  "snd a = snd b \<Longrightarrow> closed_segment a b = closed_segment (fst a) (fst b) \<times> {snd a}"
+  by (auto simp: closed_segment_def scaleR_prod_def)
+
 lemma subset_oc_segment:
   fixes a :: "'a::euclidean_space"
   shows "open_segment a b \<subseteq> closed_segment c d \<longleftrightarrow>
          a = b \<or> a \<in> closed_segment c d \<and> b \<in> closed_segment c d"
-apply (simp add: subset_open_segment [symmetric])
-apply (rule iffI)
- apply (metis closure_closed_segment closure_mono closure_open_segment subset_closed_segment subset_open_segment)
-apply (meson dual_order.trans segment_open_subset_closed)
-done
+  apply (rule iffI)
+   apply (metis closure_closed_segment closure_mono closure_open_segment subset_closed_segment)
+  by (meson dual_order.trans segment_open_subset_closed subset_open_segment)
 
 lemmas subset_segment = subset_closed_segment subset_co_segment subset_oc_segment subset_open_segment
 
--- a/src/HOL/Analysis/Smooth_Paths.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Analysis/Smooth_Paths.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -270,6 +270,9 @@
 lemma closed_valid_path_image: "valid_path g \<Longrightarrow> closed(path_image g)"
   by (metis closed_path_image valid_path_imp_path)
 
+lemma valid_path_translation_eq: "valid_path ((+)d \<circ> p) \<longleftrightarrow> valid_path p"
+  by (simp add: valid_path_def piecewise_C1_differentiable_on_translation_eq)
+ 
 lemma valid_path_compose:
   assumes "valid_path g"
       and der: "\<And>x. x \<in> path_image g \<Longrightarrow> f field_differentiable (at x)"
@@ -312,9 +315,8 @@
   ultimately have "f \<circ> g C1_differentiable_on {0..1} - S"
     using C1_differentiable_on_eq by blast
   moreover have "path (f \<circ> g)"
-    apply (rule path_continuous_image[OF valid_path_imp_path[OF \<open>valid_path g\<close>]])
     using der
-    by (simp add: continuous_at_imp_continuous_on field_differentiable_imp_continuous_at)
+    by (simp add: path_continuous_image[OF valid_path_imp_path[OF \<open>valid_path g\<close>]] continuous_at_imp_continuous_on field_differentiable_imp_continuous_at)
   ultimately show ?thesis unfolding valid_path_def piecewise_C1_differentiable_on_def path_def
     using \<open>finite S\<close> by auto
 qed
--- a/src/HOL/BNF_Cardinal_Order_Relation.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/BNF_Cardinal_Order_Relation.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -411,7 +411,7 @@
     card_of_Field_ordIso[of r] ordLeq_ordIso_trans by blast
 
 lemma card_of_Pow: "|A| <o |Pow A|"
-  using card_of_ordLess2[of "Pow A" A]  Cantors_paradox[of A]
+  using card_of_ordLess2[of "Pow A" A]  Cantors_theorem[of A]
     Pow_not_empty[of A] by auto
 
 corollary Card_order_Pow:
--- a/src/HOL/Complex.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Complex.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -214,8 +214,14 @@
   finally show ?thesis .
 qed
 
+lemma surj_Re: "surj Re"
+  by (metis Re_complex_of_real surj_def)
+
+lemma surj_Im: "surj Im"
+  by (metis complex.sel(2) surj_def)
+
 lemma complex_Im_fact [simp]: "Im (fact n) = 0"
-  by (subst of_nat_fact [symmetric]) (simp only: complex_Im_of_nat)
+  by (metis complex_Im_of_nat of_nat_fact)
 
 lemma Re_prod_Reals: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<real>) \<Longrightarrow> Re (prod f A) = prod (\<lambda>x. Re (f x)) A"
 proof (induction A rule: infinite_finite_induct)
@@ -279,6 +285,9 @@
 lemma i_even_power [simp]: "\<i> ^ (n * 2) = (-1) ^ n"
   by (metis mult.commute power2_i power_mult)
 
+lemma i_even_power' [simp]: "even n \<Longrightarrow> \<i> ^ n = (-1) ^ (n div 2)"
+  by (metis dvd_mult_div_cancel power2_i power_mult)
+
 lemma Re_i_times [simp]: "Re (\<i> * z) = - Im z"
   by simp
 
@@ -1065,6 +1074,12 @@
     using pi_not_less_zero by linarith
 qed auto
 
+lemma cos_Arg: "z \<noteq> 0 \<Longrightarrow> cos (Arg z) = Re z / norm z"
+  by (metis Re_sgn cis.sel(1) cis_Arg)
+
+lemma sin_Arg: "z \<noteq> 0 \<Longrightarrow> sin (Arg z) = Im z / norm z"
+  by (metis Im_sgn cis.sel(2) cis_Arg)
+
 subsection \<open>Complex n-th roots\<close>
 
 lemma bij_betw_roots_unity:
--- a/src/HOL/Filter.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Filter.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -65,6 +65,9 @@
 lemma eventuallyI: "(\<And>x. P x) \<Longrightarrow> eventually P F"
   by (auto intro: always_eventually)
 
+lemma filter_eqI: "(\<And>P. eventually P F \<longleftrightarrow> eventually P G) \<Longrightarrow> F = G"
+  by (auto simp: filter_eq_iff)
+
 lemma eventually_mono:
   "\<lbrakk>eventually P F; \<And>x. P x \<Longrightarrow> Q x\<rbrakk> \<Longrightarrow> eventually Q F"
   unfolding eventually_def
@@ -105,6 +108,11 @@
   shows "eventually (\<lambda>i. R i) F"
   using assms by (auto elim!: eventually_rev_mp)
 
+lemma eventually_cong:
+  assumes "eventually P F" and "\<And>x. P x \<Longrightarrow> Q x \<longleftrightarrow> R x"
+  shows   "eventually Q F \<longleftrightarrow> eventually R F"
+  using assms eventually_elim2 by blast
+
 lemma eventually_ball_finite_distrib:
   "finite A \<Longrightarrow> (eventually (\<lambda>x. \<forall>y\<in>A. P x y) net) \<longleftrightarrow> (\<forall>y\<in>A. eventually (\<lambda>x. P x y) net)"
   by (induction A rule: finite_induct) (auto simp: eventually_conj_iff)
@@ -209,6 +217,12 @@
   "(\<exists>\<^sub>Fx in F. P x \<longrightarrow> Q x) \<longleftrightarrow> (eventually P F \<longrightarrow> frequently Q F)"
   unfolding imp_conv_disj frequently_disj_iff not_eventually[symmetric] ..
 
+lemma frequently_eventually_conj:
+  assumes "\<exists>\<^sub>Fx in F. P x"
+  assumes "\<forall>\<^sub>Fx in F. Q x"
+  shows "\<exists>\<^sub>Fx in F. Q x \<and> P x"
+  using assms eventually_elim2 by (force simp add: frequently_def)
+
 lemma eventually_frequently_const_simps:
   "(\<exists>\<^sub>Fx in F. P x \<and> C) \<longleftrightarrow> (\<exists>\<^sub>Fx in F. P x) \<and> C"
   "(\<exists>\<^sub>Fx in F. C \<and> P x) \<longleftrightarrow> C \<and> (\<exists>\<^sub>Fx in F. P x)"
@@ -557,6 +571,13 @@
   apply (auto elim!: eventually_rev_mp)
   done
 
+lemma eventually_comp_filtermap:
+    "eventually (P \<circ> f) F \<longleftrightarrow> eventually P (filtermap f F)"
+  unfolding comp_def using eventually_filtermap by auto
+
+lemma filtermap_compose: "filtermap (f \<circ> g) F = filtermap f (filtermap g F)"
+  unfolding filter_eq_iff by (simp add: eventually_filtermap)
+
 lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F"
   by (simp add: filter_eq_iff eventually_filtermap)
 
@@ -585,6 +606,16 @@
 lemma filtermap_INF: "filtermap f (\<Sqinter>b\<in>B. F b) \<le> (\<Sqinter>b\<in>B. filtermap f (F b))"
   by (rule INF_greatest, rule filtermap_mono, erule INF_lower)
 
+lemma frequently_cong:
+  assumes ev: "eventually P F" and QR: "\<And>x. P x \<Longrightarrow> Q x \<longleftrightarrow> R x"
+  shows   "frequently Q F \<longleftrightarrow> frequently R F"
+  unfolding frequently_def 
+  using QR by (auto intro!: eventually_cong [OF ev])
+
+lemma frequently_filtermap:
+  "frequently P (filtermap f F) = frequently (\<lambda>x. P (f x)) F"
+  by (simp add: frequently_def eventually_filtermap)
+
 
 subsubsection \<open>Contravariant map function for filters\<close>
 
--- a/src/HOL/Library/Equipollence.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Library/Equipollence.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -186,7 +186,7 @@
 
 lemma lesspoll_Pow_self: "A \<prec> Pow A"
   unfolding lesspoll_def bij_betw_def eqpoll_def
-  by (meson lepoll_Pow_self Cantors_paradox)
+  by (meson lepoll_Pow_self Cantors_theorem)
 
 lemma finite_lesspoll_infinite:
   assumes "infinite A" "finite B" shows "B \<prec> A"
--- a/src/HOL/Power.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Power.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -89,6 +89,9 @@
 lemma power4_eq_xxxx: "x^4 = x * x * x * x"
   by (simp add: mult.assoc power_numeral_even)
 
+lemma power_numeral_reduce: "x ^ numeral n = x * x ^ pred_numeral n"
+  by (simp add: numeral_eq_Suc)
+
 lemma funpow_times_power: "(times x ^^ f x) = times (x ^ f x)"
 proof (induct "f x" arbitrary: f)
   case 0
--- a/src/HOL/Set.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Set.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -952,7 +952,7 @@
 lemma image_add_0 [simp]: "(+) (0::'a::comm_monoid_add) ` S = S"
   by auto
 
-theorem Cantors_paradox: "\<nexists>f. f ` A = Pow A"
+theorem Cantors_theorem: "\<nexists>f. f ` A = Pow A"
 proof
   assume "\<exists>f. f ` A = Pow A"
   then obtain f where f: "f ` A = Pow A" ..
@@ -1363,7 +1363,7 @@
 lemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B"
   by blast
 
-lemma subset_UnE: 
+lemma subset_UnE:
   assumes "C \<subseteq> A \<union> B"
   obtains A' B' where "A' \<subseteq> A" "B' \<subseteq> B" "C = A' \<union> B'"
 proof
--- a/src/HOL/Topological_Spaces.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Topological_Spaces.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -720,6 +720,24 @@
   using linordered_field_no_lb[rule_format, of x]
   by (auto simp: eventually_at_left)
 
+lemma filtermap_nhds_eq_imp_filtermap_at_eq: 
+  assumes "filtermap f (nhds z) = nhds (f z)"
+  assumes "eventually (\<lambda>x. f x = f z \<longrightarrow> x = z) (at z)"
+  shows   "filtermap f (at z) = at (f z)"
+proof (rule filter_eqI)
+  fix P :: "'a \<Rightarrow> bool"
+  have "eventually P (filtermap f (at z)) \<longleftrightarrow> (\<forall>\<^sub>F x in nhds z. x \<noteq> z \<longrightarrow> P (f x))"
+    by (simp add: eventually_filtermap eventually_at_filter)
+  also have "\<dots> \<longleftrightarrow> (\<forall>\<^sub>F x in nhds z. f x \<noteq> f z \<longrightarrow> P (f x))"
+    by (rule eventually_cong [OF assms(2)[unfolded eventually_at_filter]]) auto
+  also have "\<dots> \<longleftrightarrow> (\<forall>\<^sub>F x in filtermap f (nhds z). x \<noteq> f z \<longrightarrow> P x)"
+    by (simp add: eventually_filtermap)
+  also have "filtermap f (nhds z) = nhds (f z)"
+    by (rule assms)
+  also have "(\<forall>\<^sub>F x in nhds (f z). x \<noteq> f z \<longrightarrow> P x) \<longleftrightarrow> (\<forall>\<^sub>F x in at (f z). P x)"
+    by (simp add: eventually_at_filter)
+  finally show "eventually P (filtermap f (at z)) = eventually P (at (f z))" .
+qed
 
 subsubsection \<open>Tendsto\<close>
 
@@ -1803,6 +1821,29 @@
     by (metis (no_types) f filterlim_compose filterlim_filtermap g tendsto_at_iff_tendsto_nhds tendsto_compose_filtermap)
 qed
 
+lemma tendsto_nhds_iff: "(f \<longlongrightarrow> (c :: 'a :: t1_space)) (nhds x) \<longleftrightarrow> f \<midarrow>x\<rightarrow> c \<and> f x = c"
+proof safe
+  assume lim: "(f \<longlongrightarrow> c) (nhds x)"
+  show "f x = c"
+  proof (rule ccontr)
+    assume "f x \<noteq> c"
+    hence "c \<noteq> f x"
+      by auto
+    then obtain A where A: "open A" "c \<in> A" "f x \<notin> A"
+      by (subst (asm) separation_t1) auto
+    with lim obtain B where "open B" "x \<in> B" "\<And>x. x \<in> B \<Longrightarrow> f x \<in> A"
+      unfolding tendsto_def eventually_nhds by metis 
+    with \<open>f x \<notin> A\<close> show False
+      by blast
+  qed
+  show "(f \<longlongrightarrow> c) (at x)"
+    using lim by (rule filterlim_mono) (auto simp: at_within_def)
+next
+  assume "f \<midarrow>x\<rightarrow> f x" "c = f x"
+  thus "(f \<longlongrightarrow> f x) (nhds x)"
+    unfolding tendsto_def eventually_at_filter by (fast elim: eventually_mono)
+qed
+
 
 subsubsection \<open>Relation of \<open>LIM\<close> and \<open>LIMSEQ\<close>\<close>
 
@@ -2289,20 +2330,35 @@
   "isCont g (f x) \<Longrightarrow> continuous (at x within s) f \<Longrightarrow> continuous (at x within s) (\<lambda>x. g (f x))"
   using continuous_at_imp_continuous_at_within continuous_within_compose2 by blast
 
-lemma filtermap_nhds_open_map:
+lemma filtermap_nhds_open_map':
   assumes cont: "isCont f a"
-    and open_map: "\<And>S. open S \<Longrightarrow> open (f`S)"
+    and "open A" "a \<in> A"
+    and open_map: "\<And>S. open S \<Longrightarrow> S \<subseteq> A \<Longrightarrow> open (f ` S)"
   shows "filtermap f (nhds a) = nhds (f a)"
   unfolding filter_eq_iff
 proof safe
   fix P
   assume "eventually P (filtermap f (nhds a))"
-  then obtain S where "open S" "a \<in> S" "\<forall>x\<in>S. P (f x)"
+  then obtain S where S: "open S" "a \<in> S" "\<forall>x\<in>S. P (f x)"
     by (auto simp: eventually_filtermap eventually_nhds)
-  then show "eventually P (nhds (f a))"
-    unfolding eventually_nhds by (intro exI[of _ "f`S"]) (auto intro!: open_map)
+  show "eventually P (nhds (f a))"
+    unfolding eventually_nhds 
+  proof (rule exI [of _ "f ` (A \<inter> S)"], safe)
+    show "open (f ` (A \<inter> S))"
+      using S by (intro open_Int assms) auto
+    show "f a \<in> f ` (A \<inter> S)"
+      using assms S by auto
+    show "P (f x)" if "x \<in> A" "x \<in> S" for x
+      using S that by auto
+  qed
 qed (metis filterlim_iff tendsto_at_iff_tendsto_nhds isCont_def eventually_filtermap cont)
 
+lemma filtermap_nhds_open_map:
+  assumes cont: "isCont f a"
+    and open_map: "\<And>S. open S \<Longrightarrow> open (f`S)"
+  shows "filtermap f (nhds a) = nhds (f a)"
+  using cont filtermap_nhds_open_map' open_map by blast
+
 lemma continuous_at_split:
   "continuous (at x) f \<longleftrightarrow> continuous (at_left x) f \<and> continuous (at_right x) f"
   for x :: "'a::linorder_topology"
--- a/src/HOL/Transcendental.thy	Mon Jan 30 15:24:25 2023 +0000
+++ b/src/HOL/Transcendental.thy	Tue Jan 31 14:05:16 2023 +0000
@@ -1531,6 +1531,28 @@
   qed
 qed simp
 
+lemma exp_power_int:
+  fixes  x :: "'a::{real_normed_field,banach}"
+  shows "exp x powi n = exp (of_int n * x)"
+proof (cases "n \<ge> 0")
+  case True
+  have "exp x powi n = exp x ^ nat n"
+    using True by (simp add: power_int_def)
+  thus ?thesis
+    using True by (subst (asm) exp_of_nat_mult [symmetric]) auto
+next
+  case False
+  have "exp x powi n = inverse (exp x ^ nat (-n))"
+    using False by (simp add: power_int_def field_simps)
+  also have "exp x ^ nat (-n) = exp (of_nat (nat (-n)) * x)"
+    using False by (subst exp_of_nat_mult) auto
+  also have "inverse \<dots> = exp (-(of_nat (nat (-n)) * x))"
+    by (subst exp_minus) (auto simp: field_simps)
+  also have "-(of_nat (nat (-n)) * x) = of_int n * x"
+    using False by simp
+  finally show ?thesis .
+qed
+
 
 subsubsection \<open>Properties of the Exponential Function on Reals\<close>
 
@@ -2493,6 +2515,9 @@
 lemma powr_realpow: "0 < x \<Longrightarrow> x powr (real n) = x^n"
   by (induction n) (simp_all add: ac_simps powr_add)
 
+lemma powr_realpow': "(z :: real) \<ge> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> z powr of_nat n = z ^ n"
+  by (cases "z = 0") (auto simp: powr_realpow)
+
 lemma powr_real_of_int':
   assumes "x \<ge> 0" "x \<noteq> 0 \<or> n > 0"
   shows   "x powr real_of_int n = power_int x n"