tuned theory imports
authortraytel
Wed, 21 Aug 2013 10:58:15 +0200
changeset 53124 9ae9bbaccee1
parent 53123 00d922eba913
child 53125 f4c6f8f6515b
tuned theory imports
src/HOL/BNF/BNF.thy
src/HOL/BNF/More_BNFs.thy
--- a/src/HOL/BNF/BNF.thy	Wed Aug 21 09:25:40 2013 +0200
+++ b/src/HOL/BNF/BNF.thy	Wed Aug 21 10:58:15 2013 +0200
@@ -10,7 +10,7 @@
 header {* Bounded Natural Functors for (Co)datatypes *}
 
 theory BNF
-imports More_BNFs
+imports More_BNFs BNF_LFP BNF_GFP
 begin
 
 hide_const (open) image2 image2p vimage2p Gr Grp collect fsts snds setl setr 
--- a/src/HOL/BNF/More_BNFs.thy	Wed Aug 21 09:25:40 2013 +0200
+++ b/src/HOL/BNF/More_BNFs.thy	Wed Aug 21 10:58:15 2013 +0200
@@ -12,8 +12,7 @@
 
 theory More_BNFs
 imports
-  BNF_LFP
-  BNF_GFP
+  Basic_BNFs
   "~~/src/HOL/Quotient_Examples/Lift_FSet"
   "~~/src/HOL/Library/Multiset"
   Countable_Type
@@ -607,7 +606,7 @@
   apply(rule exI[of _ M]) proof safe
     fix b1 assume b1: "b1 \<in> B1"
     hence f1b1: "f1 b1 \<le> n1" using f1 unfolding bij_betw_def
-    by (metis bij_betwE f1 lessThan_iff less_Suc_eq_le)
+    by (metis image_eqI lessThan_iff less_Suc_eq_le)
     have "(\<Sum>b2\<in>B2. M (u b1 b2)) = (\<Sum>i2<Suc n2. ct (f1 b1) (f2 (e2 i2)))"
     unfolding e2_surj[symmetric] setsum_reindex[OF e2_inj]
     unfolding M_def comp_def apply(intro setsum_cong) apply force
@@ -617,7 +616,7 @@
   next
     fix b2 assume b2: "b2 \<in> B2"
     hence f2b2: "f2 b2 \<le> n2" using f2 unfolding bij_betw_def
-    by (metis bij_betwE f2 lessThan_iff less_Suc_eq_le)
+    by (metis image_eqI lessThan_iff less_Suc_eq_le)
     have "(\<Sum>b1\<in>B1. M (u b1 b2)) = (\<Sum>i1<Suc n1. ct (f1 (e1 i1)) (f2 b2))"
     unfolding e1_surj[symmetric] setsum_reindex[OF e1_inj]
     unfolding M_def comp_def apply(intro setsum_cong) apply force