--- a/NEWS Mon Jun 28 15:05:46 2021 +0100
+++ b/NEWS Wed Jun 30 09:11:31 2021 +0200
@@ -133,6 +133,13 @@
operations has been adjusted to match the corresponding precendences on
sets. Rare INCOMPATIBILITY.
+* Theory "HOL-Library.Cardinality": code generator setup based on the
+type classes finite_UNIV and card_UNIV has been moved to
+"HOL-Library.Code_Cardinality", to avoid incompatibilities with
+other code setups for sets in AFP/Containers. Applications relying on
+this code setup should import "HOL-Library.Code_Cardinality". Minor
+INCOMPATIBILITY.
+
* Session "HOL-Analysis" and "HOL-Probability": indexed products of
discrete distributions, negative binomial distribution, Hoeffding's
inequality, Chernoff bounds, Cauchy–Schwarz inequality for nn_integral,
--- a/src/HOL/Codegenerator_Test/Generate_Efficient_Datastructures.thy Mon Jun 28 15:05:46 2021 +0100
+++ b/src/HOL/Codegenerator_Test/Generate_Efficient_Datastructures.thy Wed Jun 30 09:11:31 2021 +0200
@@ -21,10 +21,10 @@
"Sup :: _ Predicate.pred set \<Rightarrow> _"
pred_of_set
Wellfounded.acc
- Cardinality.card'
- Cardinality.finite'
- Cardinality.subset'
- Cardinality.eq_set
+ Code_Cardinality.card'
+ Code_Cardinality.finite'
+ Code_Cardinality.subset'
+ Code_Cardinality.eq_set
Euclidean_Algorithm.Gcd
Euclidean_Algorithm.Lcm
"Gcd :: _ poly set \<Rightarrow> _"
--- a/src/HOL/Library/Cardinality.thy Mon Jun 28 15:05:46 2021 +0100
+++ b/src/HOL/Library/Cardinality.thy Wed Jun 30 09:11:31 2021 +0200
@@ -387,147 +387,4 @@
by intro_classes (simp_all add: UNIV_finite_5 card_UNIV_finite_5_def finite_UNIV_finite_5_def)
end
-subsection \<open>Code setup for sets\<close>
-
-text \<open>
- Implement \<^term>\<open>CARD('a)\<close> via \<^term>\<open>card_UNIV\<close> and provide
- implementations for \<^term>\<open>finite\<close>, \<^term>\<open>card\<close>, \<^term>\<open>(\<subseteq>)\<close>,
- and \<^term>\<open>(=)\<close>if the calling context already provides \<^class>\<open>finite_UNIV\<close>
- and \<^class>\<open>card_UNIV\<close> instances. If we implemented the latter
- always via \<^term>\<open>card_UNIV\<close>, we would require instances of essentially all
- element types, i.e., a lot of instantiation proofs and -- at run time --
- possibly slow dictionary constructions.
-\<close>
-
-context
-begin
-
-qualified definition card_UNIV' :: "'a card_UNIV"
-where [code del]: "card_UNIV' = Phantom('a) CARD('a)"
-
-lemma CARD_code [code_unfold]:
- "CARD('a) = of_phantom (card_UNIV' :: 'a card_UNIV)"
-by(simp add: card_UNIV'_def)
-
-lemma card_UNIV'_code [code]:
- "card_UNIV' = card_UNIV"
-by(simp add: card_UNIV card_UNIV'_def)
-
end
-
-lemma card_Compl:
- "finite A \<Longrightarrow> card (- A) = card (UNIV :: 'a set) - card (A :: 'a set)"
-by (metis Compl_eq_Diff_UNIV card_Diff_subset top_greatest)
-
-context fixes xs :: "'a :: finite_UNIV list"
-begin
-
-qualified definition finite' :: "'a set \<Rightarrow> bool"
-where [simp, code del, code_abbrev]: "finite' = finite"
-
-lemma finite'_code [code]:
- "finite' (set xs) \<longleftrightarrow> True"
- "finite' (List.coset xs) \<longleftrightarrow> of_phantom (finite_UNIV :: 'a finite_UNIV)"
-by(simp_all add: card_gt_0_iff finite_UNIV)
-
-end
-
-context fixes xs :: "'a :: card_UNIV list"
-begin
-
-qualified definition card' :: "'a set \<Rightarrow> nat"
-where [simp, code del, code_abbrev]: "card' = card"
-
-lemma card'_code [code]:
- "card' (set xs) = length (remdups xs)"
- "card' (List.coset xs) = of_phantom (card_UNIV :: 'a card_UNIV) - length (remdups xs)"
-by(simp_all add: List.card_set card_Compl card_UNIV)
-
-
-qualified definition subset' :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
-where [simp, code del, code_abbrev]: "subset' = (\<subseteq>)"
-
-lemma subset'_code [code]:
- "subset' A (List.coset ys) \<longleftrightarrow> (\<forall>y \<in> set ys. y \<notin> A)"
- "subset' (set ys) B \<longleftrightarrow> (\<forall>y \<in> set ys. y \<in> B)"
- "subset' (List.coset xs) (set ys) \<longleftrightarrow> (let n = CARD('a) in n > 0 \<and> card(set (xs @ ys)) = n)"
-by(auto simp add: Let_def card_gt_0_iff dest: card_eq_UNIV_imp_eq_UNIV intro: arg_cong[where f=card])
- (metis finite_compl finite_set rev_finite_subset)
-
-qualified definition eq_set :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
-where [simp, code del, code_abbrev]: "eq_set = (=)"
-
-lemma eq_set_code [code]:
- fixes ys
- defines "rhs \<equiv>
- let n = CARD('a)
- in if n = 0 then False else
- let xs' = remdups xs; ys' = remdups ys
- in length xs' + length ys' = n \<and> (\<forall>x \<in> set xs'. x \<notin> set ys') \<and> (\<forall>y \<in> set ys'. y \<notin> set xs')"
- shows "eq_set (List.coset xs) (set ys) \<longleftrightarrow> rhs"
- and "eq_set (set ys) (List.coset xs) \<longleftrightarrow> rhs"
- and "eq_set (set xs) (set ys) \<longleftrightarrow> (\<forall>x \<in> set xs. x \<in> set ys) \<and> (\<forall>y \<in> set ys. y \<in> set xs)"
- and "eq_set (List.coset xs) (List.coset ys) \<longleftrightarrow> (\<forall>x \<in> set xs. x \<in> set ys) \<and> (\<forall>y \<in> set ys. y \<in> set xs)"
-proof goal_cases
- {
- case 1
- show ?case (is "?lhs \<longleftrightarrow> ?rhs")
- proof
- show ?rhs if ?lhs
- using that
- by (auto simp add: rhs_def Let_def List.card_set[symmetric]
- card_Un_Int[where A="set xs" and B="- set xs"] card_UNIV
- Compl_partition card_gt_0_iff dest: sym)(metis finite_compl finite_set)
- show ?lhs if ?rhs
- proof -
- have "\<lbrakk> \<forall>y\<in>set xs. y \<notin> set ys; \<forall>x\<in>set ys. x \<notin> set xs \<rbrakk> \<Longrightarrow> set xs \<inter> set ys = {}" by blast
- with that show ?thesis
- by (auto simp add: rhs_def Let_def List.card_set[symmetric]
- card_UNIV card_gt_0_iff card_Un_Int[where A="set xs" and B="set ys"]
- dest: card_eq_UNIV_imp_eq_UNIV split: if_split_asm)
- qed
- qed
- }
- moreover
- case 2
- ultimately show ?case unfolding eq_set_def by blast
-next
- case 3
- show ?case unfolding eq_set_def List.coset_def by blast
-next
- case 4
- show ?case unfolding eq_set_def List.coset_def by blast
-qed
-
-end
-
-text \<open>
- Provide more informative exceptions than Match for non-rewritten cases.
- If generated code raises one these exceptions, then a code equation calls
- the mentioned operator for an element type that is not an instance of
- \<^class>\<open>card_UNIV\<close> and is therefore not implemented via \<^term>\<open>card_UNIV\<close>.
- Constrain the element type with sort \<^class>\<open>card_UNIV\<close> to change this.
-\<close>
-
-lemma card_coset_error [code]:
- "card (List.coset xs) =
- Code.abort (STR ''card (List.coset _) requires type class instance card_UNIV'')
- (\<lambda>_. card (List.coset xs))"
-by(simp)
-
-lemma coset_subseteq_set_code [code]:
- "List.coset xs \<subseteq> set ys \<longleftrightarrow>
- (if xs = [] \<and> ys = [] then False
- else Code.abort
- (STR ''subset_eq (List.coset _) (List.set _) requires type class instance card_UNIV'')
- (\<lambda>_. List.coset xs \<subseteq> set ys))"
-by simp
-
-notepad begin \<comment> \<open>test code setup\<close>
-have "List.coset [True] = set [False] \<and>
- List.coset [] \<subseteq> List.set [True, False] \<and>
- finite (List.coset [True])"
- by eval
-end
-
-end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Code_Cardinality.thy Wed Jun 30 09:11:31 2021 +0200
@@ -0,0 +1,147 @@
+subsection \<open>Code setup for sets with cardinality type information\<close>
+
+theory Code_Cardinality imports Cardinality begin
+
+text \<open>
+ Implement \<^term>\<open>CARD('a)\<close> via \<^term>\<open>card_UNIV\<close> and provide
+ implementations for \<^term>\<open>finite\<close>, \<^term>\<open>card\<close>, \<^term>\<open>(\<subseteq>)\<close>,
+ and \<^term>\<open>(=)\<close>if the calling context already provides \<^class>\<open>finite_UNIV\<close>
+ and \<^class>\<open>card_UNIV\<close> instances. If we implemented the latter
+ always via \<^term>\<open>card_UNIV\<close>, we would require instances of essentially all
+ element types, i.e., a lot of instantiation proofs and -- at run time --
+ possibly slow dictionary constructions.
+\<close>
+
+context
+begin
+
+qualified definition card_UNIV' :: "'a card_UNIV"
+where [code del]: "card_UNIV' = Phantom('a) CARD('a)"
+
+lemma CARD_code [code_unfold]:
+ "CARD('a) = of_phantom (card_UNIV' :: 'a card_UNIV)"
+by(simp add: card_UNIV'_def)
+
+lemma card_UNIV'_code [code]:
+ "card_UNIV' = card_UNIV"
+by(simp add: card_UNIV card_UNIV'_def)
+
+end
+
+lemma card_Compl:
+ "finite A \<Longrightarrow> card (- A) = card (UNIV :: 'a set) - card (A :: 'a set)"
+by (metis Compl_eq_Diff_UNIV card_Diff_subset top_greatest)
+
+context fixes xs :: "'a :: finite_UNIV list"
+begin
+
+qualified definition finite' :: "'a set \<Rightarrow> bool"
+where [simp, code del, code_abbrev]: "finite' = finite"
+
+lemma finite'_code [code]:
+ "finite' (set xs) \<longleftrightarrow> True"
+ "finite' (List.coset xs) \<longleftrightarrow> of_phantom (finite_UNIV :: 'a finite_UNIV)"
+by(simp_all add: card_gt_0_iff finite_UNIV)
+
+end
+
+context fixes xs :: "'a :: card_UNIV list"
+begin
+
+qualified definition card' :: "'a set \<Rightarrow> nat"
+where [simp, code del, code_abbrev]: "card' = card"
+
+lemma card'_code [code]:
+ "card' (set xs) = length (remdups xs)"
+ "card' (List.coset xs) = of_phantom (card_UNIV :: 'a card_UNIV) - length (remdups xs)"
+by(simp_all add: List.card_set card_Compl card_UNIV)
+
+
+qualified definition subset' :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
+where [simp, code del, code_abbrev]: "subset' = (\<subseteq>)"
+
+lemma subset'_code [code]:
+ "subset' A (List.coset ys) \<longleftrightarrow> (\<forall>y \<in> set ys. y \<notin> A)"
+ "subset' (set ys) B \<longleftrightarrow> (\<forall>y \<in> set ys. y \<in> B)"
+ "subset' (List.coset xs) (set ys) \<longleftrightarrow> (let n = CARD('a) in n > 0 \<and> card(set (xs @ ys)) = n)"
+by(auto simp add: Let_def card_gt_0_iff dest: card_eq_UNIV_imp_eq_UNIV intro: arg_cong[where f=card])
+ (metis finite_compl finite_set rev_finite_subset)
+
+qualified definition eq_set :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
+where [simp, code del, code_abbrev]: "eq_set = (=)"
+
+lemma eq_set_code [code]:
+ fixes ys
+ defines "rhs \<equiv>
+ let n = CARD('a)
+ in if n = 0 then False else
+ let xs' = remdups xs; ys' = remdups ys
+ in length xs' + length ys' = n \<and> (\<forall>x \<in> set xs'. x \<notin> set ys') \<and> (\<forall>y \<in> set ys'. y \<notin> set xs')"
+ shows "eq_set (List.coset xs) (set ys) \<longleftrightarrow> rhs"
+ and "eq_set (set ys) (List.coset xs) \<longleftrightarrow> rhs"
+ and "eq_set (set xs) (set ys) \<longleftrightarrow> (\<forall>x \<in> set xs. x \<in> set ys) \<and> (\<forall>y \<in> set ys. y \<in> set xs)"
+ and "eq_set (List.coset xs) (List.coset ys) \<longleftrightarrow> (\<forall>x \<in> set xs. x \<in> set ys) \<and> (\<forall>y \<in> set ys. y \<in> set xs)"
+proof goal_cases
+ {
+ case 1
+ show ?case (is "?lhs \<longleftrightarrow> ?rhs")
+ proof
+ show ?rhs if ?lhs
+ using that
+ by (auto simp add: rhs_def Let_def List.card_set[symmetric]
+ card_Un_Int[where A="set xs" and B="- set xs"] card_UNIV
+ Compl_partition card_gt_0_iff dest: sym)(metis finite_compl finite_set)
+ show ?lhs if ?rhs
+ proof -
+ have "\<lbrakk> \<forall>y\<in>set xs. y \<notin> set ys; \<forall>x\<in>set ys. x \<notin> set xs \<rbrakk> \<Longrightarrow> set xs \<inter> set ys = {}" by blast
+ with that show ?thesis
+ by (auto simp add: rhs_def Let_def List.card_set[symmetric]
+ card_UNIV card_gt_0_iff card_Un_Int[where A="set xs" and B="set ys"]
+ dest: card_eq_UNIV_imp_eq_UNIV split: if_split_asm)
+ qed
+ qed
+ }
+ moreover
+ case 2
+ ultimately show ?case unfolding eq_set_def by blast
+next
+ case 3
+ show ?case unfolding eq_set_def List.coset_def by blast
+next
+ case 4
+ show ?case unfolding eq_set_def List.coset_def by blast
+qed
+
+end
+
+text \<open>
+ Provide more informative exceptions than Match for non-rewritten cases.
+ If generated code raises one these exceptions, then a code equation calls
+ the mentioned operator for an element type that is not an instance of
+ \<^class>\<open>card_UNIV\<close> and is therefore not implemented via \<^term>\<open>card_UNIV\<close>.
+ Constrain the element type with sort \<^class>\<open>card_UNIV\<close> to change this.
+\<close>
+
+lemma card_coset_error [code]:
+ "card (List.coset xs) =
+ Code.abort (STR ''card (List.coset _) requires type class instance card_UNIV'')
+ (\<lambda>_. card (List.coset xs))"
+by(simp)
+
+lemma coset_subseteq_set_code [code]:
+ "List.coset xs \<subseteq> set ys \<longleftrightarrow>
+ (if xs = [] \<and> ys = [] then False
+ else Code.abort
+ (STR ''subset_eq (List.coset _) (List.set _) requires type class instance card_UNIV'')
+ (\<lambda>_. List.coset xs \<subseteq> set ys))"
+by simp
+
+notepad begin \<comment> \<open>test code setup\<close>
+have "List.coset [True] = set [False] \<and>
+ List.coset [] \<subseteq> List.set [True, False] \<and>
+ finite (List.coset [True])"
+ by eval
+
+end
+
+end
\ No newline at end of file
--- a/src/HOL/Library/Library.thy Mon Jun 28 15:05:46 2021 +0100
+++ b/src/HOL/Library/Library.thy Wed Jun 30 09:11:31 2021 +0200
@@ -10,6 +10,7 @@
Boolean_Algebra
Bourbaki_Witt_Fixpoint
Char_ord
+ Code_Cardinality
Code_Lazy
Code_Test
Combine_PER