--- a/src/HOL/Library/Euclidean_Space.thy Thu Mar 05 08:23:09 2009 +0100
+++ b/src/HOL/Library/Euclidean_Space.thy Thu Mar 05 08:23:10 2009 +0100
@@ -4396,7 +4396,7 @@
assumes iB: "independent (B:: (real ^'n) set)"
shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)"
proof-
- from maximal_independent_subset_extend[of B "UNIV"] iB
+ from maximal_independent_subset_extend[of B UNIV] iB
obtain C where C: "B \<subseteq> C" "independent C" "\<And>x. x \<in> span C" by auto
from C(2) independent_bound[of C] linear_independent_extend_lemma[of C f]