tuned;
authorwenzelm
Fri, 06 Nov 1998 13:58:59 +0100
changeset 5806 9d30b79832e8
parent 5805 e867bc95a47d
child 5807 bd2d9dd34dfd
tuned;
Admin/page/index.html
--- a/Admin/page/index.html	Fri Nov 06 13:42:13 1998 +0100
+++ b/Admin/page/index.html	Fri Nov 06 13:58:59 1998 +0100
@@ -34,15 +34,14 @@
 Isabelle workshops and courses.
 
 
+<h2>Obtaining Isabelle</h2>
 
-<h2>Obtaining Isabelle</h2>
 The latest version is <strong>Isabelle98-1</strong>, it is available
-from several 
-<a href="dist/">mirror sites</a>.
-
+from several <a href="dist/">mirror sites</a>.
 
 
 <h2>What is  Isabelle?</h2>
+
 Isabelle can be viewed from two main perspectives.  On the one hand it
 may serve as a generic framework for rapid prototyping of deductive
 systems.  On the other hand, major existing logics like
@@ -58,19 +57,20 @@
 
 <dl>
 
-<dt><a href="library/HOL/"><strong>Isabelle/HOL</strong></a><dd>
-is a version of classical higher-order logic resembling that of the
-<A HREF="http://www.cl.cam.ac.uk/Research/HVG/HOL/HOL.html">HOL System</A>.
+<dt><a href="library/HOL/"><strong>Isabelle/HOL</strong></a><dd> is a
+version of classical higher-order logic resembling that of the <A
+HREF="http://www.cl.cam.ac.uk/Research/HVG/HOL/HOL.html">HOL
+System</A>.
 
 <dt><a href="library/HOLCF/"><strong>Isabelle/HOLCF</strong></a><dd>
 adds Scott's Logic for Computable Functions (domain theory) to HOL.
 
 <dt><a href="library/FOL/"><strong>Isabelle/FOL</strong></a><dd>
-provides basic classical and intuitionistic first-order logic.
-It is polymorphic.
+provides basic classical and intuitionistic first-order logic.  It is
+polymorphic.
 
-<dt><a href="library/ZF/"><strong>Isabelle/ZF</strong></a><dd>
-offers a formulation of Zermelo-Fraenkel set theory on top of FOL.
+<dt><a href="library/ZF/"><strong>Isabelle/ZF</strong></a><dd> offers
+a formulation of Zermelo-Fraenkel set theory on top of FOL.
 
 </dl>
 
@@ -81,30 +81,25 @@
 for advanced definitional concepts (like (co-)inductive sets and
 types, well-founded recursion etc.).  The distribution also includes
 some large applications, for example correctness proofs of
-cryptographic protocols (<a
-href="library/HOL/Auth/">HOL/Auth</a>) or communication protocols (<a
-href="library/HOLCF/IOA/">HOLCF/IOA</a>).
+cryptographic protocols (<a href="library/HOL/Auth/">HOL/Auth</a>) or
+communication protocols (<a href="library/HOLCF/IOA/">HOLCF/IOA</a>).
 
 <p>
 
 Isabelle/ZF provides another starting point for applications, with a
-slightly less developed library.  Its definitional packages
-are similar to those of Isabelle/HOL.  Untyped ZF provides more
-advanced constructions for sets than simply-typed HOL.
+slightly less developed library.  Its definitional packages are
+similar to those of Isabelle/HOL.  Untyped ZF provides more advanced
+constructions for sets than simply-typed HOL.
 
 <p>
 
 There are a few minor object logics that may serve as further
-examples: <a
-href="library/CTT/">CTT</a> is an
-extensional version of Martin-L&ouml;f's Type Theory, <a
-href="library/Cube/">Cube</a> is
+examples: <a href="library/CTT/">CTT</a> is an extensional version of
+Martin-L&ouml;f's Type Theory, <a href="library/Cube/">Cube</a> is
 Barendregt's Lambda Cube.  There are also some sequent calculus
-examples under <a
-href="library/Sequents/">Sequents</a>,
-including modal and linear logics.  Again see the <a
-href="library/">Isabelle theory
-library</a> for other examples.
+examples under <a href="library/Sequents/">Sequents</a>, including
+modal and linear logics.  Again see the <a href="library/">Isabelle
+theory library</a> for other examples.
 
 
 <h3>Defining Logics</h3>
@@ -144,12 +139,12 @@
 without breaching system soundness (Isabelle follows the well-known
 <em>LCF system approach</em> to achieve a secure system).
 
- <H2>Mailing list</H2>
- 
- <P>Use the mailing list 
- <A HREF="mailto: isabelle-users@cl.cam.ac.uk">isabelle-users@cl.cam.ac.uk</A> 
- to discuss problems and results.  
+
+<h2>Mailing list</h2>
 
+Use the mailing list <a href="mailto:
+isabelle-users@cl.cam.ac.uk">isabelle-users@cl.cam.ac.uk</a> to
+discuss problems and results.
 
 </body>