--- a/src/HOL/Library/Convex.thy Thu Sep 27 18:58:15 2012 +0200
+++ b/src/HOL/Library/Convex.thy Thu Sep 27 19:35:29 2012 +0200
@@ -11,9 +11,8 @@
subsection {* Convexity. *}
-definition
- convex :: "'a::real_vector set \<Rightarrow> bool" where
- "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
+definition convex :: "'a::real_vector set \<Rightarrow> bool"
+ where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
lemma convex_alt:
"convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"
@@ -21,10 +20,10 @@
proof
assume alt[rule_format]: ?alt
{ fix x y and u v :: real assume mem: "x \<in> s" "y \<in> s"
- assume "0 \<le> u" "0 \<le> v" "u + v = 1"
- moreover hence "u = 1 - v" by auto
+ assume "0 \<le> u" "0 \<le> v"
+ moreover assume "u + v = 1" then have "u = 1 - v" by auto
ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" using alt[OF mem] by auto }
- thus "convex s" unfolding convex_def by auto
+ then show "convex s" unfolding convex_def by auto
qed (auto simp: convex_def)
lemma mem_convex:
@@ -53,13 +52,13 @@
lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
proof -
- have *:"{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
+ have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
show ?thesis unfolding * using convex_halfspace_le[of "-a" "-b"] by auto
qed
lemma convex_hyperplane: "convex {x. inner a x = b}"
-proof-
- have *:"{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
+proof -
+ have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
show ?thesis using convex_halfspace_le convex_halfspace_ge
by (auto intro!: convex_Int simp: *)
qed
@@ -74,78 +73,83 @@
lemma convex_real_interval:
fixes a b :: "real"
shows "convex {a..}" and "convex {..b}"
- and "convex {a<..}" and "convex {..<b}"
- and "convex {a..b}" and "convex {a<..b}"
- and "convex {a..<b}" and "convex {a<..<b}"
+ and "convex {a<..}" and "convex {..<b}"
+ and "convex {a..b}" and "convex {a<..b}"
+ and "convex {a..<b}" and "convex {a<..<b}"
proof -
have "{a..} = {x. a \<le> inner 1 x}" by auto
- thus 1: "convex {a..}" by (simp only: convex_halfspace_ge)
+ then show 1: "convex {a..}" by (simp only: convex_halfspace_ge)
have "{..b} = {x. inner 1 x \<le> b}" by auto
- thus 2: "convex {..b}" by (simp only: convex_halfspace_le)
+ then show 2: "convex {..b}" by (simp only: convex_halfspace_le)
have "{a<..} = {x. a < inner 1 x}" by auto
- thus 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
+ then show 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
have "{..<b} = {x. inner 1 x < b}" by auto
- thus 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
+ then show 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
have "{a..b} = {a..} \<inter> {..b}" by auto
- thus "convex {a..b}" by (simp only: convex_Int 1 2)
+ then show "convex {a..b}" by (simp only: convex_Int 1 2)
have "{a<..b} = {a<..} \<inter> {..b}" by auto
- thus "convex {a<..b}" by (simp only: convex_Int 3 2)
+ then show "convex {a<..b}" by (simp only: convex_Int 3 2)
have "{a..<b} = {a..} \<inter> {..<b}" by auto
- thus "convex {a..<b}" by (simp only: convex_Int 1 4)
+ then show "convex {a..<b}" by (simp only: convex_Int 1 4)
have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
- thus "convex {a<..<b}" by (simp only: convex_Int 3 4)
+ then show "convex {a<..<b}" by (simp only: convex_Int 3 4)
qed
+
subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
lemma convex_setsum:
fixes C :: "'a::real_vector set"
assumes "finite s" and "convex C" and "(\<Sum> i \<in> s. a i) = 1"
- assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0" and "\<And> i. i \<in> s \<Longrightarrow> y i \<in> C"
+ assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C"
-using assms
-proof (induct s arbitrary:a rule:finite_induct)
- case empty thus ?case by auto
+ using assms
+proof (induct s arbitrary:a rule: finite_induct)
+ case empty
+ then show ?case by auto
next
case (insert i s) note asms = this
{ assume "a i = 1"
- hence "(\<Sum> j \<in> s. a j) = 0"
+ then have "(\<Sum> j \<in> s. a j) = 0"
using asms by auto
- hence "\<And> j. j \<in> s \<Longrightarrow> a j = 0"
+ then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0"
using setsum_nonneg_0[where 'b=real] asms by fastforce
- hence ?case using asms by auto }
+ then have ?case using asms by auto }
moreover
{ assume asm: "a i \<noteq> 1"
from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto
have fis: "finite (insert i s)" using asms by auto
- hence ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a 1] asms by simp
- hence "a i < 1" using asm by auto
- hence i0: "1 - a i > 0" by auto
- let "?a j" = "a j / (1 - a i)"
+ then have ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a 1] asms by simp
+ then have "a i < 1" using asm by auto
+ then have i0: "1 - a i > 0" by auto
+ let ?a = "\<lambda>j. a j / (1 - a i)"
{ fix j assume "j \<in> s"
- hence "?a j \<ge> 0"
+ then have "?a j \<ge> 0"
using i0 asms divide_nonneg_pos
- by fastforce } note a_nonneg = this
+ by fastforce
+ } note a_nonneg = this
have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto
- hence "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce
- hence "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto
- hence a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp
- from this asms
- have "(\<Sum>j\<in>s. ?a j *\<^sub>R y j) \<in> C" using a_nonneg by fastforce
- hence "a i *\<^sub>R y i + (1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"
+ then have "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce
+ then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto
+ then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp
+ with asms have "(\<Sum>j\<in>s. ?a j *\<^sub>R y j) \<in> C" using a_nonneg by fastforce
+ then have "a i *\<^sub>R y i + (1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"
using asms[unfolded convex_def, rule_format] yai ai1 by auto
- hence "a i *\<^sub>R y i + (\<Sum> j \<in> s. (1 - a i) *\<^sub>R (?a j *\<^sub>R y j)) \<in> C"
+ then have "a i *\<^sub>R y i + (\<Sum> j \<in> s. (1 - a i) *\<^sub>R (?a j *\<^sub>R y j)) \<in> C"
using scaleR_right.setsum[of "(1 - a i)" "\<lambda> j. ?a j *\<^sub>R y j" s] by auto
- hence "a i *\<^sub>R y i + (\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" using i0 by auto
- hence ?case using setsum.insert asms by auto }
+ then have "a i *\<^sub>R y i + (\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" using i0 by auto
+ then have ?case using setsum.insert asms by auto
+ }
ultimately show ?case by auto
qed
lemma convex:
- shows "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
- \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
+ "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
+ \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
proof safe
- fix k :: nat fix u :: "nat \<Rightarrow> real" fix x
+ fix k :: nat
+ fix u :: "nat \<Rightarrow> real"
+ fix x
assume "convex s"
"\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s"
"setsum u {1..k} = 1"
@@ -154,35 +158,39 @@
next
assume asm: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
\<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s"
- { fix \<mu> :: real fix x y :: 'a assume xy: "x \<in> s" "y \<in> s" assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1"
- let "?u i" = "if (i :: nat) = 1 then \<mu> else 1 - \<mu>"
- let "?x i" = "if (i :: nat) = 1 then x else y"
+ { fix \<mu> :: real
+ fix x y :: 'a
+ assume xy: "x \<in> s" "y \<in> s"
+ assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1"
+ let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>"
+ let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y"
have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}" by auto
- hence card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1" by simp
- hence "setsum ?u {1 .. 2} = 1"
+ then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1" by simp
+ then have "setsum ?u {1 .. 2} = 1"
using setsum_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
by auto
- from this asm[rule_format, of "2" ?u ?x]
- have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
+ with asm[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
using mu xy by auto
have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto
from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this]
have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" by auto
- hence "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" using s by (auto simp:add_commute) }
- thus "convex s" unfolding convex_alt by auto
+ then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" using s by (auto simp:add_commute)
+ }
+ then show "convex s" unfolding convex_alt by auto
qed
lemma convex_explicit:
fixes s :: "'a::real_vector set"
shows "convex s \<longleftrightarrow>
- (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"
+ (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"
proof safe
- fix t fix u :: "'a \<Rightarrow> real"
+ fix t
+ fix u :: "'a \<Rightarrow> real"
assume "convex s" "finite t"
"t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1"
- thus "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
+ then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
using convex_setsum[of t s u "\<lambda> x. x"] by auto
next
assume asm0: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x)
@@ -190,39 +198,42 @@
show "convex s"
unfolding convex_alt
proof safe
- fix x y fix \<mu> :: real
+ fix x y
+ fix \<mu> :: real
assume asm: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1"
{ assume "x \<noteq> y"
- hence "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
+ then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
using asm0[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"]
asm by auto }
moreover
{ assume "x = y"
- hence "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
+ then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
using asm0[rule_format, of "{x, y}" "\<lambda> z. 1"]
asm by (auto simp:field_simps real_vector.scale_left_diff_distrib) }
ultimately show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" by blast
qed
qed
-lemma convex_finite: assumes "finite s"
+lemma convex_finite:
+ assumes "finite s"
shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1
\<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"
unfolding convex_explicit
-proof (safe)
- fix t u assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s"
+proof safe
+ fix t u
+ assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s"
and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"
- have *:"s \<inter> t = t" using as(2) by auto
- have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" by simp
+ have *: "s \<inter> t = t" using as(2) by auto
+ have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)"
+ by simp
show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as *
by (auto simp: assms setsum_cases if_distrib if_distrib_arg)
qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)
-definition
- convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where
- "convex_on s f \<longleftrightarrow>
- (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
+definition convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
+ where "convex_on s f \<longleftrightarrow>
+ (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"
unfolding convex_on_def by auto
@@ -230,21 +241,29 @@
lemma convex_add[intro]:
assumes "convex_on s f" "convex_on s g"
shows "convex_on s (\<lambda>x. f x + g x)"
-proof-
- { fix x y assume "x\<in>s" "y\<in>s" moreover
- fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
- ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
- using assms unfolding convex_on_def by (auto simp add:add_mono)
- hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: field_simps) }
- thus ?thesis unfolding convex_on_def by auto
+proof -
+ { fix x y
+ assume "x\<in>s" "y\<in>s"
+ moreover
+ fix u v :: real
+ assume "0 \<le> u" "0 \<le> v" "u + v = 1"
+ ultimately
+ have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
+ using assms unfolding convex_on_def by (auto simp add: add_mono)
+ then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)"
+ by (simp add: field_simps)
+ }
+ then show ?thesis unfolding convex_on_def by auto
qed
lemma convex_cmul[intro]:
assumes "0 \<le> (c::real)" "convex_on s f"
shows "convex_on s (\<lambda>x. c * f x)"
proof-
- have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: field_simps)
- show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] unfolding convex_on_def and * by auto
+ have *: "\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)"
+ by (simp add: field_simps)
+ show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)]
+ unfolding convex_on_def and * by auto
qed
lemma convex_lower:
@@ -254,7 +273,7 @@
let ?m = "max (f x) (f y)"
have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)"
using assms(4,5) by (auto simp add: mult_left_mono add_mono)
- also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto
+ also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[symmetric] by auto
finally show ?thesis
using assms unfolding convex_on_def by fastforce
qed
@@ -262,24 +281,30 @@
lemma convex_distance[intro]:
fixes s :: "'a::real_normed_vector set"
shows "convex_on s (\<lambda>x. dist a x)"
-proof(auto simp add: convex_on_def dist_norm)
- fix x y assume "x\<in>s" "y\<in>s"
- fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
- have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp
- hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
+proof (auto simp add: convex_on_def dist_norm)
+ fix x y
+ assume "x\<in>s" "y\<in>s"
+ fix u v :: real
+ assume "0 \<le> u" "0 \<le> v" "u + v = 1"
+ have "a = u *\<^sub>R a + v *\<^sub>R a"
+ unfolding scaleR_left_distrib[symmetric] and `u+v=1` by simp
+ then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
by (auto simp add: algebra_simps)
show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"
unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]
using `0 \<le> u` `0 \<le> v` by auto
qed
+
subsection {* Arithmetic operations on sets preserve convexity. *}
+
lemma convex_scaling:
assumes "convex s"
shows"convex ((\<lambda>x. c *\<^sub>R x) ` s)"
-using assms unfolding convex_def image_iff
+ using assms unfolding convex_def image_iff
proof safe
- fix x xa y xb :: "'a::real_vector" fix u v :: real
+ fix x xa y xb :: "'a::real_vector"
+ fix u v :: real
assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"
"xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1"
show "\<exists>x\<in>s. u *\<^sub>R c *\<^sub>R xa + v *\<^sub>R c *\<^sub>R xb = c *\<^sub>R x"
@@ -287,9 +312,10 @@
qed
lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)"
-using assms unfolding convex_def image_iff
+ using assms unfolding convex_def image_iff
proof safe
- fix x xa y xb :: "'a::real_vector" fix u v :: real
+ fix x xa y xb :: "'a::real_vector"
+ fix u v :: real
assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"
"xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1"
show "\<exists>x\<in>s. u *\<^sub>R - xa + v *\<^sub>R - xb = - x"
@@ -299,10 +325,12 @@
lemma convex_sums:
assumes "convex s" "convex t"
shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
-using assms unfolding convex_def image_iff
+ using assms unfolding convex_def image_iff
proof safe
- fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t"
- fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
+ fix xa xb ya yb
+ assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t"
+ fix u v :: real
+ assume uv: "0 \<le> u" "0 \<le> v" "u + v = 1"
show "\<exists>x y. u *\<^sub>R (xa + ya) + v *\<^sub>R (xb + yb) = x + y \<and> x \<in> s \<and> y \<in> t"
using exI[of _ "u *\<^sub>R xa + v *\<^sub>R xb"] exI[of _ "u *\<^sub>R ya + v *\<^sub>R yb"]
assms[unfolded convex_def] uv xy by (auto simp add:scaleR_right_distrib)
@@ -314,105 +342,120 @@
proof -
have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
proof safe
- fix x x' y assume "x' \<in> s" "y \<in> t"
- thus "\<exists>x y'. x' - y = x + y' \<and> x \<in> s \<and> y' \<in> uminus ` t"
+ fix x x' y
+ assume "x' \<in> s" "y \<in> t"
+ then show "\<exists>x y'. x' - y = x + y' \<and> x \<in> s \<and> y' \<in> uminus ` t"
using exI[of _ x'] exI[of _ "-y"] by auto
next
- fix x x' y y' assume "x' \<in> s" "y' \<in> t"
- thus "\<exists>x y. x' + - y' = x - y \<and> x \<in> s \<and> y \<in> t"
+ fix x x' y y'
+ assume "x' \<in> s" "y' \<in> t"
+ then show "\<exists>x y. x' + - y' = x - y \<and> x \<in> s \<and> y \<in> t"
using exI[of _ x'] exI[of _ y'] by auto
qed
- thus ?thesis using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
+ then show ?thesis
+ using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
qed
-lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)"
-proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
- thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed
+lemma convex_translation:
+ assumes "convex s"
+ shows "convex ((\<lambda>x. a + x) ` s)"
+proof -
+ have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
+ then show ?thesis
+ using convex_sums[OF convex_singleton[of a] assms] by auto
+qed
-lemma convex_affinity: assumes "convex s" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"
-proof- have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto
- thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed
+lemma convex_affinity:
+ assumes "convex s"
+ shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"
+proof -
+ have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto
+ then show ?thesis
+ using convex_translation[OF convex_scaling[OF assms], of a c] by auto
+qed
lemma convex_linear_image:
assumes c:"convex s" and l:"bounded_linear f"
shows "convex(f ` s)"
-proof(auto simp add: convex_def)
+proof (auto simp add: convex_def)
interpret f: bounded_linear f by fact
- fix x y assume xy:"x \<in> s" "y \<in> s"
- fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
+ fix x y
+ assume xy: "x \<in> s" "y \<in> s"
+ fix u v :: real
+ assume uv: "0 \<le> u" "0 \<le> v" "u + v = 1"
show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff
using bexI[of _ "u *\<^sub>R x + v *\<^sub>R y"] f.add f.scaleR
c[unfolded convex_def] xy uv by auto
qed
-lemma pos_is_convex:
- shows "convex {0 :: real <..}"
-unfolding convex_alt
+lemma pos_is_convex: "convex {0 :: real <..}"
+ unfolding convex_alt
proof safe
fix y x \<mu> :: real
assume asms: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1"
{ assume "\<mu> = 0"
- hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp
- hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }
+ then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp
+ then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }
moreover
{ assume "\<mu> = 1"
- hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }
+ then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp }
moreover
{ assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0"
- hence "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto
- hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms
+ then have "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto
+ then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms
by (auto simp add: add_pos_pos mult_pos_pos) }
ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" using assms by fastforce
qed
lemma convex_on_setsum:
fixes a :: "'a \<Rightarrow> real"
- fixes y :: "'a \<Rightarrow> 'b::real_vector"
- fixes f :: "'b \<Rightarrow> real"
+ and y :: "'a \<Rightarrow> 'b::real_vector"
+ and f :: "'b \<Rightarrow> real"
assumes "finite s" "s \<noteq> {}"
- assumes "convex_on C f"
- assumes "convex C"
- assumes "(\<Sum> i \<in> s. a i) = 1"
- assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0"
- assumes "\<And> i. i \<in> s \<Longrightarrow> y i \<in> C"
+ and "convex_on C f"
+ and "convex C"
+ and "(\<Sum> i \<in> s. a i) = 1"
+ and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0"
+ and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))"
-using assms
-proof (induct s arbitrary:a rule:finite_ne_induct)
+ using assms
+proof (induct s arbitrary: a rule: finite_ne_induct)
case (singleton i)
- hence ai: "a i = 1" by auto
- thus ?case by auto
+ then have ai: "a i = 1" by auto
+ then show ?case by auto
next
case (insert i s) note asms = this
- hence "convex_on C f" by simp
+ then have "convex_on C f" by simp
from this[unfolded convex_on_def, rule_format]
- have conv: "\<And> x y \<mu>. \<lbrakk>x \<in> C; y \<in> C; 0 \<le> \<mu>; \<mu> \<le> 1\<rbrakk>
- \<Longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
+ have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1
+ \<Longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
by simp
{ assume "a i = 1"
- hence "(\<Sum> j \<in> s. a j) = 0"
+ then have "(\<Sum> j \<in> s. a j) = 0"
using asms by auto
- hence "\<And> j. j \<in> s \<Longrightarrow> a j = 0"
+ then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0"
using setsum_nonneg_0[where 'b=real] asms by fastforce
- hence ?case using asms by auto }
+ then have ?case using asms by auto }
moreover
{ assume asm: "a i \<noteq> 1"
from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto
have fis: "finite (insert i s)" using asms by auto
- hence ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp
- hence "a i < 1" using asm by auto
- hence i0: "1 - a i > 0" by auto
- let "?a j" = "a j / (1 - a i)"
+ then have ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp
+ then have "a i < 1" using asm by auto
+ then have i0: "1 - a i > 0" by auto
+ let ?a = "\<lambda>j. a j / (1 - a i)"
{ fix j assume "j \<in> s"
- hence "?a j \<ge> 0"
+ then have "?a j \<ge> 0"
using i0 asms divide_nonneg_pos
- by fastforce } note a_nonneg = this
+ by fastforce }
+ note a_nonneg = this
have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto
- hence "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce
- hence "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto
- hence a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp
+ then have "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce
+ then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto
+ then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp
have "convex C" using asms by auto
- hence asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"
+ then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"
using asms convex_setsum[OF `finite s`
`convex C` a1 a_nonneg] by auto
have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))"
@@ -423,7 +466,8 @@
also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
using i0 by auto
also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)"
- using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] by (auto simp:algebra_simps)
+ using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric]
+ by (auto simp:algebra_simps)
also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)"
by (auto simp: divide_inverse)
also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)"
@@ -448,27 +492,30 @@
(\<forall> x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1
\<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)"
proof safe
- fix x y fix \<mu> :: real
+ fix x y
+ fix \<mu> :: real
assume asms: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1"
from this[unfolded convex_on_def, rule_format]
- have "\<And> u v. \<lbrakk>0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" by auto
+ have "\<And>u v. \<lbrakk>0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" by auto
from this[of "\<mu>" "1 - \<mu>", simplified] asms
- show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y)
- \<le> \<mu> * f x + (1 - \<mu>) * f y" by auto
+ show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" by auto
next
assume asm: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
- {fix x y fix u v :: real
+ { fix x y
+ fix u v :: real
assume lasm: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1"
- hence[simp]: "1 - u = v" by auto
+ then have[simp]: "1 - u = v" by auto
from asm[rule_format, of x y u]
- have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using lasm by auto }
- thus "convex_on C f" unfolding convex_on_def by auto
+ have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using lasm by auto
+ }
+ then show "convex_on C f" unfolding convex_on_def by auto
qed
lemma convex_on_diff:
fixes f :: "real \<Rightarrow> real"
assumes f: "convex_on I f" and I: "x\<in>I" "y\<in>I" and t: "x < t" "t < y"
- shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
+ shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"
+ "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
proof -
def a \<equiv> "(t - y) / (x - y)"
with t have "0 \<le> a" "0 \<le> 1 - a" by (auto simp: field_simps)
@@ -488,46 +535,48 @@
lemma pos_convex_function:
fixes f :: "real \<Rightarrow> real"
assumes "convex C"
- assumes leq: "\<And> x y. \<lbrakk>x \<in> C ; y \<in> C\<rbrakk> \<Longrightarrow> f' x * (y - x) \<le> f y - f x"
+ and leq: "\<And>x y. \<lbrakk>x \<in> C ; y \<in> C\<rbrakk> \<Longrightarrow> f' x * (y - x) \<le> f y - f x"
shows "convex_on C f"
-unfolding convex_on_alt[OF assms(1)]
-using assms
+ unfolding convex_on_alt[OF assms(1)]
+ using assms
proof safe
fix x y \<mu> :: real
let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
assume asm: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1"
- hence "1 - \<mu> \<ge> 0" by auto
- hence xpos: "?x \<in> C" using asm unfolding convex_alt by fastforce
+ then have "1 - \<mu> \<ge> 0" by auto
+ then have xpos: "?x \<in> C" using asm unfolding convex_alt by fastforce
have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x)
\<ge> \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)"
using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\<mu> \<ge> 0`]
mult_left_mono[OF leq[OF xpos asm(3)] `1 - \<mu> \<ge> 0`]] by auto
- hence "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0"
- by (auto simp add:field_simps)
- thus "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
+ then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0"
+ by (auto simp add: field_simps)
+ then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
using convex_on_alt by auto
qed
lemma atMostAtLeast_subset_convex:
fixes C :: "real set"
assumes "convex C"
- assumes "x \<in> C" "y \<in> C" "x < y"
+ and "x \<in> C" "y \<in> C" "x < y"
shows "{x .. y} \<subseteq> C"
proof safe
fix z assume zasm: "z \<in> {x .. y}"
{ assume asm: "x < z" "z < y"
- let "?\<mu>" = "(y - z) / (y - x)"
- have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" using assms asm by (auto simp add:field_simps)
- hence comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C"
- using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] by (simp add:algebra_simps)
+ let ?\<mu> = "(y - z) / (y - x)"
+ have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" using assms asm by (auto simp add: field_simps)
+ then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C"
+ using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>]
+ by (simp add: algebra_simps)
have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y"
- by (auto simp add:field_simps)
+ by (auto simp add: field_simps)
also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)"
- using assms unfolding add_divide_distrib by (auto simp:field_simps)
+ using assms unfolding add_divide_distrib by (auto simp: field_simps)
also have "\<dots> = z"
- using assms by (auto simp:field_simps)
+ using assms by (auto simp: field_simps)
finally have "z \<in> C"
- using comb by auto } note less = this
+ using comb by auto }
+ note less = this
show "z \<in> C" using zasm less assms
unfolding atLeastAtMost_iff le_less by auto
qed
@@ -535,21 +584,22 @@
lemma f''_imp_f':
fixes f :: "real \<Rightarrow> real"
assumes "convex C"
- assumes f': "\<And> x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
- assumes f'': "\<And> x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
- assumes pos: "\<And> x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
- assumes "x \<in> C" "y \<in> C"
+ and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
+ and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
+ and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
+ and "x \<in> C" "y \<in> C"
shows "f' x * (y - x) \<le> f y - f x"
-using assms
+ using assms
proof -
- { fix x y :: real assume asm: "x \<in> C" "y \<in> C" "y > x"
- hence ge: "y - x > 0" "y - x \<ge> 0" by auto
+ { fix x y :: real
+ assume asm: "x \<in> C" "y \<in> C" "y > x"
+ then have ge: "y - x > 0" "y - x \<ge> 0" by auto
from asm have le: "x - y < 0" "x - y \<le> 0" by auto
then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1"
using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `y \<in> C` `x < y`],
THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]]
by auto
- hence "z1 \<in> C" using atMostAtLeast_subset_convex
+ then have "z1 \<in> C" using atMostAtLeast_subset_convex
`convex C` `x \<in> C` `y \<in> C` `x < y` by fastforce
from z1 have z1': "f x - f y = (x - y) * f' z1"
by (simp add:field_simps)
@@ -568,14 +618,14 @@
have A': "y - z1 \<ge> 0" using z1 by auto
have "z3 \<in> C" using z3 asm atMostAtLeast_subset_convex
`convex C` `x \<in> C` `z1 \<in> C` `x < z1` by fastforce
- hence B': "f'' z3 \<ge> 0" using assms by auto
+ then have B': "f'' z3 \<ge> 0" using assms by auto
from A' B' have "(y - z1) * f'' z3 \<ge> 0" using mult_nonneg_nonneg by auto
from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto
from mult_right_mono_neg[OF this le(2)]
have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)"
by (simp add: algebra_simps)
- hence "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto
- hence res: "f' y * (x - y) \<le> f x - f y" by auto
+ then have "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto
+ then have res: "f' y * (x - y) \<le> f x - f y" by auto
have "(f y - f x) / (y - x) - f' x = f' z1 - f' x"
using asm z1 by auto
also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto
@@ -583,30 +633,32 @@
have A: "z1 - x \<ge> 0" using z1 by auto
have "z2 \<in> C" using z2 z1 asm atMostAtLeast_subset_convex
`convex C` `z1 \<in> C` `y \<in> C` `z1 < y` by fastforce
- hence B: "f'' z2 \<ge> 0" using assms by auto
+ then have B: "f'' z2 \<ge> 0" using assms by auto
from A B have "(z1 - x) * f'' z2 \<ge> 0" using mult_nonneg_nonneg by auto
from cool this have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto
from mult_right_mono[OF this ge(2)]
have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)"
by (simp add: algebra_simps)
- hence "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto
- hence "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y"
+ then have "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto
+ then have "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y"
using res by auto } note less_imp = this
- { fix x y :: real assume "x \<in> C" "y \<in> C" "x \<noteq> y"
- hence"f y - f x \<ge> f' x * (y - x)"
+ { fix x y :: real
+ assume "x \<in> C" "y \<in> C" "x \<noteq> y"
+ then have"f y - f x \<ge> f' x * (y - x)"
unfolding neq_iff using less_imp by auto } note neq_imp = this
moreover
- { fix x y :: real assume asm: "x \<in> C" "y \<in> C" "x = y"
- hence "f y - f x \<ge> f' x * (y - x)" by auto }
+ { fix x y :: real
+ assume asm: "x \<in> C" "y \<in> C" "x = y"
+ then have "f y - f x \<ge> f' x * (y - x)" by auto }
ultimately show ?thesis using assms by blast
qed
lemma f''_ge0_imp_convex:
fixes f :: "real \<Rightarrow> real"
assumes conv: "convex C"
- assumes f': "\<And> x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
- assumes f'': "\<And> x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
- assumes pos: "\<And> x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
+ and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
+ and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
+ and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
shows "convex_on C f"
using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function by fastforce
@@ -615,18 +667,19 @@
assumes "b > 1"
shows "convex_on {0 <..} (\<lambda> x. - log b x)"
proof -
- have "\<And> z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto
- hence f': "\<And> z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)"
+ have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto
+ then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)"
using DERIV_minus by auto
- have "\<And> z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))"
+ have "\<And>z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))"
using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto
from this[THEN DERIV_cmult, of _ "- 1 / ln b"]
- have "\<And> z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))"
+ have "\<And>z :: real. z > 0 \<Longrightarrow>
+ DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))"
by auto
- hence f''0: "\<And> z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)"
+ then have f''0: "\<And>z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)"
unfolding inverse_eq_divide by (auto simp add: mult_assoc)
- have f''_ge0: "\<And> z :: real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0"
- using `b > 1` by (auto intro!:less_imp_le simp add:divide_pos_pos[of 1] mult_pos_pos)
+ have f''_ge0: "\<And>z :: real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0"
+ using `b > 1` by (auto intro!:less_imp_le simp add: divide_pos_pos[of 1] mult_pos_pos)
from f''_ge0_imp_convex[OF pos_is_convex,
unfolded greaterThan_iff, OF f' f''0 f''_ge0]
show ?thesis by auto
--- a/src/Pure/General/file.scala Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Pure/General/file.scala Thu Sep 27 19:35:29 2012 +0200
@@ -105,7 +105,7 @@
/* copy */
def eq(file1: JFile, file2: JFile): Boolean =
- file1.getCanonicalPath == file2.getCanonicalPath // FIXME prefer java.nio.file.Files.isSameFile of Java 1.7
+ java.nio.file.Files.isSameFile(file1.toPath, file2.toPath)
def copy(src: JFile, dst: JFile)
{
--- a/src/Pure/PIDE/command.scala Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Pure/PIDE/command.scala Thu Sep 27 19:35:29 2012 +0200
@@ -23,6 +23,9 @@
val results: SortedMap[Long, XML.Tree] = SortedMap.empty,
val markup: Markup_Tree = Markup_Tree.empty)
{
+ def markup_to_XML: XML.Body = markup.to_XML(command.source)
+
+
/* accumulate content */
private def add_status(st: Markup): State = copy(status = st :: status)
--- a/src/Pure/PIDE/markup.scala Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Pure/PIDE/markup.scala Thu Sep 27 19:35:29 2012 +0200
@@ -22,7 +22,6 @@
/* elements */
val Empty = Markup("", Nil)
- val Data = Markup("data", Nil)
val Broken = Markup("broken", Nil)
}
--- a/src/Pure/PIDE/markup_tree.scala Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Pure/PIDE/markup_tree.scala Thu Sep 27 19:35:29 2012 +0200
@@ -12,6 +12,7 @@
import javax.swing.tree.DefaultMutableTreeNode
import scala.collection.immutable.SortedMap
+import scala.collection.mutable
import scala.annotation.tailrec
@@ -65,6 +66,7 @@
/* XML representation */
+ // FIXME decode markup body
@tailrec private def strip_elems(markups: List[Markup], body: XML.Body): (List[Markup], XML.Body) =
body match {
case List(XML.Elem(markup1, body1)) => strip_elems(markup1 :: markups, body1)
@@ -110,7 +112,6 @@
val start = Text.Range(range.start)
val stop = Text.Range(range.stop)
val bs = branches.range(start, stop)
- // FIXME check after Scala 2.8.x
branches.get(stop) match {
case Some(end) if range overlaps end.range => bs + (end.range -> end)
case _ => bs
@@ -132,16 +133,10 @@
new Markup_Tree(Branches.empty, Entry(new_markup, this))
else {
val body = overlapping(new_range)
- if (body.forall(e => new_range.contains(e._1))) {
- val rest = // branches -- body, modulo workarounds for Redblack in Scala 2.8.0 FIXME
- if (body.size > 1)
- (Branches.empty /: branches)((rest, entry) =>
- if (body.isDefinedAt(entry._1)) rest else rest + entry)
- else branches
- new Markup_Tree(rest, Entry(new_markup, new Markup_Tree(body)))
- }
- else { // FIXME split markup!?
- System.err.println("Ignored overlapping markup information: " + new_markup +
+ if (body.forall(e => new_range.contains(e._1)))
+ new Markup_Tree(branches -- body.keys, Entry(new_markup, new Markup_Tree(body)))
+ else {
+ java.lang.System.err.println("Ignored overlapping markup information: " + new_markup +
body.filter(e => !new_range.contains(e._1)).mkString("\n"))
this
}
@@ -149,13 +144,45 @@
}
}
+ def to_XML(root_range: Text.Range, text: CharSequence, filter: XML.Elem => Boolean): XML.Body =
+ {
+ def make_text(start: Text.Offset, stop: Text.Offset): XML.Body =
+ if (start == stop) Nil
+ else List(XML.Text(text.subSequence(start, stop).toString))
+
+ def make_elems(rev_markups: List[XML.Elem], body: XML.Body): XML.Body =
+ (body /: rev_markups) {
+ case (b, elem) => // FIXME encode markup body
+ if (filter(elem)) List(XML.Elem(elem.markup, b)) else b
+ }
+
+ def make_body(elem_range: Text.Range, elem_markup: List[XML.Elem], entries: Branches.T)
+ : XML.Body =
+ {
+ val body = new mutable.ListBuffer[XML.Tree]
+ var last = elem_range.start
+ for ((range, entry) <- entries) {
+ val subrange = range.restrict(elem_range)
+ body ++= make_text(last, subrange.start)
+ body ++= make_body(subrange, entry.rev_markup, entry.subtree.overlapping(subrange))
+ last = subrange.stop
+ }
+ body ++= make_text(last, elem_range.stop)
+ make_elems(elem_markup, body.toList)
+ }
+ make_body(root_range, Nil, overlapping(root_range))
+ }
+
+ def to_XML(text: CharSequence): XML.Body =
+ to_XML(Text.Range(0, text.length), text, (_: XML.Elem) => true)
+
def cumulate[A](root_range: Text.Range, root_info: A, result_elements: Option[Set[String]],
result: PartialFunction[(A, Text.Markup), A]): Stream[Text.Info[A]] =
{
def results(x: A, entry: Entry): Option[A] =
if (result_elements match { case Some(es) => es.exists(entry.elements) case None => true }) {
val (y, changed) =
- (entry.markup :\ (x, false))((info, res) =>
+ ((x, false) /: entry.rev_markup)((res, info) => // FIXME proper order!?
{
val (y, changed) = res
val arg = (y, Text.Info(entry.range, info))
--- a/src/Pure/PIDE/xml.scala Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Pure/PIDE/xml.scala Thu Sep 27 19:35:29 2012 +0200
@@ -7,7 +7,6 @@
package isabelle
-import java.lang.System
import java.util.WeakHashMap
import java.lang.ref.WeakReference
import javax.xml.parsers.DocumentBuilderFactory
@@ -171,35 +170,6 @@
- /** document object model (W3C DOM) **/
-
- def get_data(node: org.w3c.dom.Node): Option[XML.Tree] =
- node.getUserData(Markup.Data.name) match {
- case tree: XML.Tree => Some(tree)
- case _ => None
- }
-
- def document_node(doc: org.w3c.dom.Document, tree: Tree): org.w3c.dom.Node =
- {
- def DOM(tr: Tree): org.w3c.dom.Node = tr match {
- case Elem(Markup.Data, List(data, t)) =>
- val node = DOM(t)
- node.setUserData(Markup.Data.name, data, null)
- node
- case Elem(Markup(name, atts), ts) =>
- if (name == Markup.Data.name)
- error("Malformed data element: " + tr.toString)
- val node = doc.createElement(name)
- for ((name, value) <- atts) node.setAttribute(name, value)
- for (t <- ts) node.appendChild(DOM(t))
- node
- case Text(txt) => doc.createTextNode(txt)
- }
- DOM(tree)
- }
-
-
-
/** XML as data representation language **/
class XML_Atom(s: String) extends Exception(s)
--- a/src/Pure/System/html5_panel.scala Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Pure/System/html5_panel.scala Thu Sep 27 19:35:29 2012 +0200
@@ -6,12 +6,11 @@
package isabelle
-import com.sun.javafx.tk.{FontMetrics, Toolkit}
import javafx.scene.Scene
import javafx.scene.web.{WebView, WebEngine}
import javafx.scene.input.KeyEvent
-import javafx.scene.text.{Font, FontSmoothingType}
+import javafx.scene.text.FontSmoothingType
import javafx.scene.layout.{HBox, VBox, Priority}
import javafx.geometry.{HPos, VPos, Insets}
import javafx.event.EventHandler
@@ -51,30 +50,8 @@
}
-class HTML5_Panel(main_css: String, init_font_family: String, init_font_size: Int)
- extends javafx.embed.swing.JFXPanel
+class HTML5_Panel extends javafx.embed.swing.JFXPanel
{
- /* HTML/CSS template */
-
- def template(font_family: String, font_size: Int): String =
-"""<?xml version="1.0" encoding="utf-8"?>
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
-<html xmlns="http://www.w3.org/1999/xhtml">
-<head>
-<style media="all" type="text/css">
-""" + main_css +
-"body { font-family: " + font_family + "; font-size: " + font_size + "px; }" +
-"""
-</style>
-</head>
-<body/>
-</html>
-"""
-
-
- /* main Web view */
-
private val future =
JFX_Thread.future {
val pane = new Web_View_Workaround
@@ -93,68 +70,9 @@
})
setScene(new Scene(pane))
-
- web_view.getEngine.loadContent(template(init_font_family, init_font_size))
pane
}
def web_view: WebView = future.join.web_view
def web_engine: WebEngine = web_view.getEngine
-
-
- /* internal state -- owned by JFX thread */
-
- private var current_font_metrics: FontMetrics = null
- private var current_font_family = ""
- private var current_font_size: Int = 0
- private var current_margin: Int = 0
- private var current_body: XML.Body = Nil
-
- // FIXME move to pretty.scala (!?)
- private def pretty_metric(metrics: FontMetrics): String => Double =
- {
- if (metrics == null) ((s: String) => s.length.toDouble)
- else {
- val unit = metrics.computeStringWidth(Pretty.space).toDouble
- ((s: String) => if (s == "\n") 1.0 else metrics.computeStringWidth(s) / unit)
- }
- }
-
- def resize(font_family: String, font_size: Int): Unit = JFX_Thread.later {
- val font = new Font(font_family, font_size)
- val font_metrics = Toolkit.getToolkit().getFontLoader().getFontMetrics(font)
- val margin = // FIXME Swing thread!?
- (getWidth() / (font_metrics.computeStringWidth(Pretty.space) max 1.0f)).toInt max 20
-
- if (current_font_metrics == null ||
- current_font_family != font_family ||
- current_font_size != font_size ||
- current_margin != margin)
- {
- current_font_metrics = font_metrics
- current_font_family = font_family
- current_font_size = font_size
- current_margin = margin
- refresh()
- }
- }
-
- def refresh(): Unit = JFX_Thread.later { render(current_body) }
-
- def render(body: XML.Body): Unit = JFX_Thread.later {
- current_body = body
- val html_body =
- current_body.flatMap(div =>
- Pretty.formatted(List(div), current_margin, pretty_metric(current_font_metrics))
- .map(t =>
- XML.Elem(Markup(HTML.PRE, List((HTML.CLASS, Isabelle_Markup.MESSAGE))),
- HTML.spans(t, false)))) // FIXME user data (!??!)
-
- // FIXME web_engine.loadContent(template(current_font_family, current_font_size))
-
- val document = web_engine.getDocument
- val html_root = document.getLastChild
- html_root.removeChild(html_root.getLastChild)
- html_root.appendChild(XML.document_node(document, XML.elem(HTML.BODY, html_body)))
- }
}
--- a/src/Pure/Thy/html.scala Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Pure/Thy/html.scala Thu Sep 27 19:35:29 2012 +0200
@@ -29,6 +29,8 @@
}
+ /// FIXME unused stuff
+
// common elements and attributes
val BODY = "body"
@@ -55,14 +57,12 @@
def sup(txt: String): XML.Elem = XML.elem("sup", List(XML.Text(txt)))
def bold(txt: String): XML.Elem = span("bold", List(XML.Text(txt)))
- def spans(input: XML.Tree, original_data: Boolean = false): XML.Body =
+ def spans(input: XML.Tree): XML.Body =
{
def html_spans(tree: XML.Tree): XML.Body =
tree match {
case XML.Elem(m @ Markup(name, props), ts) =>
- val html_span = span(name, ts.flatMap(html_spans))
- if (original_data) List(XML.Elem(Markup.Data, List(tree, html_span)))
- else List(html_span)
+ List(span(name, ts.flatMap(html_spans)))
case XML.Text(txt) =>
val ts = new ListBuffer[XML.Tree]
val t = new StringBuilder
--- a/src/Tools/jEdit/etc/isabelle-jedit.css Thu Sep 27 18:58:15 2012 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,17 +0,0 @@
-/* additional style file for Isabelle/jEdit output */
-
-.message { margin-top: 0.3ex; background-color: #F0F0F0; }
-
-.writeln_message { }
-.tracing_message { background-color: #F0F8FF; }
-.warning_message { background-color: #EEE8AA; }
-.error_message { background-color: #FFC1C1; }
-
-.intensify { background-color: #FFCC66; }
-
-.keyword { font-weight: bold; color: #009966; }
-.operator { font-weight: bold; }
-.command { font-weight: bold; color: #006699; }
-
-.sendback { background-color: #DCDCDC; }
-.sendback:hover { background-color: #9DC75D; }
--- a/src/Tools/jEdit/etc/settings Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Tools/jEdit/etc/settings Thu Sep 27 19:35:29 2012 +0200
@@ -10,8 +10,6 @@
-Dcom.apple.mrj.application.apple.menu.about.name=Isabelle/jEdit
-Dscala.repl.no-threads=true"
-JEDIT_STYLE_SHEETS="$ISABELLE_HOME/etc/isabelle.css:$JEDIT_HOME/etc/isabelle-jedit.css:$ISABELLE_HOME_USER/etc/isabelle.css:$ISABELLE_HOME_USER/etc/isabelle-jedit.css"
-
ISABELLE_JEDIT_OPTIONS=""
ISABELLE_TOOLS="$ISABELLE_TOOLS:$JEDIT_HOME/lib/Tools"
--- a/src/Tools/jEdit/lib/Tools/jedit Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Tools/jEdit/lib/Tools/jedit Thu Sep 27 19:35:29 2012 +0200
@@ -24,7 +24,6 @@
"src/jedit_thy_load.scala"
"src/jedit_options.scala"
"src/output_dockable.scala"
- "src/output1_dockable.scala"
"src/plugin.scala"
"src/pretty_text_area.scala"
"src/protocol_dockable.scala"
--- a/src/Tools/jEdit/src/Isabelle.props Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Tools/jEdit/src/Isabelle.props Thu Sep 27 19:35:29 2012 +0200
@@ -40,11 +40,10 @@
#menu actions
plugin.isabelle.jedit.Plugin.menu.label=Isabelle
-plugin.isabelle.jedit.Plugin.menu=isabelle.session-panel isabelle.output-panel isabelle.graphview-panel isabelle.output1-panel isabelle.raw-output-panel isabelle.protocol-panel isabelle.readme-panel isabelle.syslog-panel
+plugin.isabelle.jedit.Plugin.menu=isabelle.session-panel isabelle.output-panel isabelle.graphview-panel isabelle.raw-output-panel isabelle.protocol-panel isabelle.readme-panel isabelle.syslog-panel
isabelle.session-panel.label=Prover Session panel
isabelle.output-panel.label=Output panel
isabelle.graphview-panel.label=Graphview panel
-isabelle.output1-panel.label=Output1 panel
isabelle.raw-output-panel.label=Raw Output panel
isabelle.protocol-panel.label=Protocol panel
isabelle.readme-panel.label=README panel
@@ -54,7 +53,6 @@
isabelle-session.title=Prover Session
isabelle-output.title=Output
isabelle-graphview.title=Graphview
-isabelle-output1.title=Output1
isabelle-raw-output.title=Raw Output
isabelle-protocol.title=Protocol
isabelle-readme.title=README
--- a/src/Tools/jEdit/src/actions.xml Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Tools/jEdit/src/actions.xml Thu Sep 27 19:35:29 2012 +0200
@@ -22,11 +22,6 @@
wm.addDockableWindow("isabelle-output");
</CODE>
</ACTION>
- <ACTION NAME="isabelle.output1-panel">
- <CODE>
- wm.addDockableWindow("isabelle-output1");
- </CODE>
- </ACTION>
<ACTION NAME="isabelle.graphview-panel">
<CODE>
wm.addDockableWindow("isabelle-graphview");
--- a/src/Tools/jEdit/src/dockables.xml Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Tools/jEdit/src/dockables.xml Thu Sep 27 19:35:29 2012 +0200
@@ -17,9 +17,6 @@
<DOCKABLE NAME="isabelle-graphview" MOVABLE="TRUE">
new isabelle.jedit.Graphview_Dockable(view, position);
</DOCKABLE>
- <DOCKABLE NAME="isabelle-output1" MOVABLE="TRUE">
- new isabelle.jedit.Output1_Dockable(view, position);
- </DOCKABLE>
<DOCKABLE NAME="isabelle-raw-output" MOVABLE="TRUE">
new isabelle.jedit.Raw_Output_Dockable(view, position);
</DOCKABLE>
--- a/src/Tools/jEdit/src/html_panel.scala Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Tools/jEdit/src/html_panel.scala Thu Sep 27 19:35:29 2012 +0200
@@ -9,195 +9,28 @@
import isabelle._
-import java.lang.System
import java.io.StringReader
-import java.awt.{Font, BorderLayout, Dimension, GraphicsEnvironment, Toolkit, FontMetrics}
-import java.awt.event.MouseEvent
import java.util.logging.{Logger, Level}
-import org.w3c.dom.html2.HTMLElement
-
import org.lobobrowser.html.parser.{DocumentBuilderImpl, InputSourceImpl}
import org.lobobrowser.html.gui.HtmlPanel
-import org.lobobrowser.html.domimpl.{HTMLDocumentImpl, HTMLStyleElementImpl, NodeImpl}
import org.lobobrowser.html.test.{SimpleHtmlRendererContext, SimpleUserAgentContext}
-import scala.actors.Actor._
-
-
-object HTML_Panel
-{
- sealed abstract class Event { val element: HTMLElement; val mouse: MouseEvent }
- case class Context_Menu(val element: HTMLElement, mouse: MouseEvent) extends Event
- case class Mouse_Click(val element: HTMLElement, mouse: MouseEvent) extends Event
- case class Double_Click(val element: HTMLElement, mouse: MouseEvent) extends Event
- case class Mouse_Over(val element: HTMLElement, mouse: MouseEvent) extends Event
- case class Mouse_Out(val element: HTMLElement, mouse: MouseEvent) extends Event
-}
-
-class HTML_Panel(initial_font_family: String, initial_font_size: Int) extends HtmlPanel
+class HTML_Panel extends HtmlPanel
{
- /** Lobo setup **/
-
- /* global logging */
+ Swing_Thread.require()
Logger.getLogger("org.lobobrowser").setLevel(Level.WARNING)
-
- /* pixel size -- cf. org.lobobrowser.html.style.HtmlValues.getFontSize */
-
- val screen_resolution =
- if (GraphicsEnvironment.isHeadless()) 72
- else Toolkit.getDefaultToolkit().getScreenResolution()
-
- def lobo_px(raw_px: Int): Int = raw_px * 96 / screen_resolution
- def raw_px(lobo_px: Int): Int = (lobo_px * screen_resolution + 95) / 96
-
-
- /* contexts and event handling */
-
- protected val handler: PartialFunction[HTML_Panel.Event, Unit] = Map.empty
-
private val ucontext = new SimpleUserAgentContext
private val rcontext = new SimpleHtmlRendererContext(this, ucontext)
- {
- private def handle(event: HTML_Panel.Event): Boolean =
- if (handler.isDefinedAt(event)) { handler(event); false }
- else true
-
- override def onContextMenu(elem: HTMLElement, event: MouseEvent): Boolean =
- handle(HTML_Panel.Context_Menu(elem, event))
- override def onMouseClick(elem: HTMLElement, event: MouseEvent): Boolean =
- handle(HTML_Panel.Mouse_Click(elem, event))
- override def onDoubleClick(elem: HTMLElement, event: MouseEvent): Boolean =
- handle(HTML_Panel.Double_Click(elem, event))
- override def onMouseOver(elem: HTMLElement, event: MouseEvent)
- { handle(HTML_Panel.Mouse_Over(elem, event)) }
- override def onMouseOut(elem: HTMLElement, event: MouseEvent)
- { handle(HTML_Panel.Mouse_Out(elem, event)) }
- }
-
private val builder = new DocumentBuilderImpl(ucontext, rcontext)
-
- /* document template with style sheets */
-
- private val template_head =
- """<?xml version="1.0" encoding="utf-8"?>
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
-<html xmlns="http://www.w3.org/1999/xhtml">
-<head>
-<style media="all" type="text/css">
-""" +
- File.try_read(Path.split(Isabelle_System.getenv_strict("JEDIT_STYLE_SHEETS")))
-
- private val template_tail =
-"""
-</style>
-</head>
-<body/>
-</html>
-"""
-
- private def template(font_family: String, font_size: Int): String =
- template_head +
- "body { font-family: " + font_family + "; font-size: " + raw_px(font_size) + "px; }" +
- template_tail
-
-
- /** main actor **/
-
- /* internal messages */
-
- private case class Resize(font_family: String, font_size: Int)
- private case class Render_Document(url: String, text: String)
- private case class Render(body: XML.Body)
- private case class Render_Sync(body: XML.Body)
- private case object Refresh
-
- private val main_actor = actor {
-
- /* internal state */
-
- var current_font_metrics: FontMetrics = null
- var current_font_family = ""
- var current_font_size: Int = 0
- var current_margin: Int = 0
- var current_body: XML.Body = Nil
-
- def resize(font_family: String, font_size: Int)
- {
- val font = new Font(font_family, Font.PLAIN, lobo_px(raw_px(font_size)))
- val (font_metrics, margin) =
- Swing_Thread.now {
- val metrics = getFontMetrics(font)
- (metrics, (getWidth() / (metrics.charWidth(Pretty.spc) max 1) - 4) max 20)
- }
- if (current_font_metrics == null ||
- current_font_family != font_family ||
- current_font_size != font_size ||
- current_margin != margin)
- {
- current_font_metrics = font_metrics
- current_font_family = font_family
- current_font_size = font_size
- current_margin = margin
- refresh()
- }
- }
-
- def refresh() { render(current_body) }
-
- def render_document(url: String, text: String)
- {
- val doc = builder.parse(new InputSourceImpl(new StringReader(text), url))
- Swing_Thread.later { setDocument(doc, rcontext) }
- }
-
- def render(body: XML.Body)
- {
- current_body = body
- val html_body =
- current_body.flatMap(div =>
- Pretty.formatted(List(div), current_margin, Pretty.font_metric(current_font_metrics))
- .map(t =>
- XML.Elem(Markup(HTML.PRE, List((HTML.CLASS, Isabelle_Markup.MESSAGE))),
- HTML.spans(t, true))))
- val doc =
- builder.parse(
- new InputSourceImpl(
- new StringReader(template(current_font_family, current_font_size)), "http://localhost"))
- doc.removeChild(doc.getLastChild())
- doc.appendChild(XML.document_node(doc, XML.elem(HTML.BODY, html_body)))
- Swing_Thread.later { setDocument(doc, rcontext) }
- }
-
-
- /* main loop */
-
- resize(initial_font_family, initial_font_size)
-
- loop {
- react {
- case Resize(font_family, font_size) => resize(font_family, font_size)
- case Refresh => refresh()
- case Render_Document(url, text) => render_document(url, text)
- case Render(body) => render(body)
- case Render_Sync(body) => render(body); reply(())
- case bad => System.err.println("main_actor: ignoring bad message " + bad)
- }
- }
+ def render_document(url: String, html_text: String)
+ {
+ val doc = builder.parse(new InputSourceImpl(new StringReader(html_text), url))
+ Swing_Thread.later { setDocument(doc, rcontext) }
}
-
-
- /* external methods */
-
- def resize(font_family: String, font_size: Int) { main_actor ! Resize(font_family, font_size) }
- def refresh() { main_actor ! Refresh }
- def render_document(url: String, text: String) { main_actor ! Render_Document(url, text) }
- def render(body: XML.Body) { main_actor ! Render(body) }
- def render_sync(body: XML.Body) { main_actor !? Render_Sync(body) }
}
--- a/src/Tools/jEdit/src/output1_dockable.scala Thu Sep 27 18:58:15 2012 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,188 +0,0 @@
-/* Title: Tools/jEdit/src/output1_dockable.scala
- Author: Makarius
-
-Dockable window with result message output.
-*/
-
-package isabelle.jedit
-
-
-import isabelle._
-
-import scala.actors.Actor._
-
-import scala.swing.{FlowPanel, Button, CheckBox}
-import scala.swing.event.ButtonClicked
-
-import java.lang.System
-import java.awt.BorderLayout
-import java.awt.event.{ComponentEvent, ComponentAdapter}
-
-import org.gjt.sp.jedit.View
-
-
-class Output1_Dockable(view: View, position: String) extends Dockable(view, position)
-{
- Swing_Thread.require()
-
-
- /* component state -- owned by Swing thread */
-
- private var zoom_factor = 100
- private var show_tracing = false
- private var do_update = true
- private var current_state = Command.empty.init_state
- private var current_body: XML.Body = Nil
-
-
- /* HTML panel */
-
- private val html_panel =
- new HTML_Panel(Isabelle.font_family(), scala.math.round(Isabelle.font_size()))
- {
- override val handler: PartialFunction[HTML_Panel.Event, Unit] =
- {
- case HTML_Panel.Mouse_Click(elem, event)
- if Protocol.Sendback.unapply(elem.getUserData(Markup.Data.name)).isDefined =>
- val sendback = Protocol.Sendback.unapply(elem.getUserData(Markup.Data.name)).get
- Document_View(view.getTextArea) match {
- case Some(doc_view) =>
- doc_view.rich_text_area.robust_body() {
- val cmd = current_state.command
- val model = doc_view.model
- val buffer = model.buffer
- val snapshot = model.snapshot()
- snapshot.node.command_start(cmd) match {
- case Some(start) if !snapshot.is_outdated =>
- val text = Pretty.string_of(sendback)
- try {
- buffer.beginCompoundEdit()
- buffer.remove(start, cmd.proper_range.length)
- buffer.insert(start, text)
- }
- finally { buffer.endCompoundEdit() }
- case _ =>
- }
- }
- case None =>
- }
- }
- }
-
- set_content(html_panel)
-
-
- private def handle_resize()
- {
- Swing_Thread.require()
-
- html_panel.resize(Isabelle.font_family(),
- scala.math.round(Isabelle.font_size() * zoom_factor / 100))
- }
-
- private def handle_update(follow: Boolean, restriction: Option[Set[Command]])
- {
- Swing_Thread.require()
-
- val new_state =
- if (follow) {
- Document_View(view.getTextArea) match {
- case Some(doc_view) =>
- val snapshot = doc_view.model.snapshot()
- snapshot.node.command_at(doc_view.text_area.getCaretPosition).map(_._1) match {
- case Some(cmd) => snapshot.state.command_state(snapshot.version, cmd)
- case None => Command.empty.init_state
- }
- case None => Command.empty.init_state
- }
- }
- else current_state
-
- val new_body =
- if (!restriction.isDefined || restriction.get.contains(new_state.command))
- new_state.results.iterator.map(_._2)
- .filter(msg => !Protocol.is_tracing(msg) || show_tracing).toList // FIXME not scalable
- else current_body
-
- if (new_body != current_body) html_panel.render(new_body)
-
- current_state = new_state
- current_body = new_body
- }
-
-
- /* main actor */
-
- private val main_actor = actor {
- loop {
- react {
- case Session.Global_Options =>
- Swing_Thread.later { handle_resize() }
- case changed: Session.Commands_Changed =>
- Swing_Thread.later { handle_update(do_update, Some(changed.commands)) }
- case Session.Caret_Focus =>
- Swing_Thread.later { handle_update(do_update, None) }
- case bad => System.err.println("Output_Dockable: ignoring bad message " + bad)
- }
- }
- }
-
- override def init()
- {
- Swing_Thread.require()
-
- Isabelle.session.global_options += main_actor
- Isabelle.session.commands_changed += main_actor
- Isabelle.session.caret_focus += main_actor
- handle_update(true, None)
- }
-
- override def exit()
- {
- Swing_Thread.require()
-
- Isabelle.session.global_options -= main_actor
- Isabelle.session.commands_changed -= main_actor
- Isabelle.session.caret_focus -= main_actor
- delay_resize.revoke()
- }
-
-
- /* resize */
-
- private val delay_resize =
- Swing_Thread.delay_first(
- Time.seconds(Isabelle.options.real("editor_update_delay"))) { handle_resize() }
-
- addComponentListener(new ComponentAdapter {
- override def componentResized(e: ComponentEvent) { delay_resize.invoke() }
- })
-
-
- /* controls */
-
- private val zoom = new Library.Zoom_Box(factor => { zoom_factor = factor; handle_resize() })
- zoom.tooltip = "Zoom factor for basic font size"
-
- private val tracing = new CheckBox("Tracing") {
- reactions += {
- case ButtonClicked(_) => show_tracing = this.selected; handle_update(do_update, None) }
- }
- tracing.selected = show_tracing
- tracing.tooltip = "Indicate output of tracing messages"
-
- private val auto_update = new CheckBox("Auto update") {
- reactions += {
- case ButtonClicked(_) => do_update = this.selected; handle_update(do_update, None) }
- }
- auto_update.selected = do_update
- auto_update.tooltip = "Indicate automatic update following cursor movement"
-
- private val update = new Button("Update") {
- reactions += { case ButtonClicked(_) => handle_update(true, None) }
- }
- update.tooltip = "Update display according to the command at cursor position"
-
- private val controls = new FlowPanel(FlowPanel.Alignment.Right)(zoom, tracing, auto_update, update)
- add(controls.peer, BorderLayout.NORTH)
-}
--- a/src/Tools/jEdit/src/readme_dockable.scala Thu Sep 27 18:58:15 2012 +0200
+++ b/src/Tools/jEdit/src/readme_dockable.scala Thu Sep 27 19:35:29 2012 +0200
@@ -14,10 +14,11 @@
class README_Dockable(view: View, position: String) extends Dockable(view, position)
{
- private val readme = new HTML_Panel("SansSerif", 14)
+ Swing_Thread.require()
+
+ private val readme = new HTML_Panel
private val readme_path = Path.explode("$JEDIT_HOME/README.html")
- readme.render_document(
- Isabelle_System.platform_file_url(readme_path), File.try_read(List(readme_path)))
+ readme.render_document(Isabelle_System.platform_file_url(readme_path), File.read(readme_path))
set_content(readme)
}