--- a/src/HOL/Analysis/Abstract_Metric_Spaces.thy Mon Jul 10 16:56:42 2023 +0200
+++ b/src/HOL/Analysis/Abstract_Metric_Spaces.thy Mon Jul 10 18:48:22 2023 +0100
@@ -49,7 +49,7 @@
definition mcball where "mcball x r \<equiv> {y. x \<in> M \<and> y \<in> M \<and> d x y \<le> r}"
lemma in_mball [simp]: "y \<in> mball x r \<longleftrightarrow> x \<in> M \<and> y \<in> M \<and> d x y < r"
- by (simp add: local.Metric_space_axioms Metric_space.mball_def)
+ by (simp add: mball_def)
lemma centre_in_mball_iff [iff]: "x \<in> mball x r \<longleftrightarrow> x \<in> M \<and> 0 < r"
using in_mball mdist_zero by force
@@ -70,7 +70,7 @@
by auto
lemma in_mcball [simp]: "y \<in> mcball x r \<longleftrightarrow> x \<in> M \<and> y \<in> M \<and> d x y \<le> r"
- by (simp add: local.Metric_space_axioms Metric_space.mcball_def)
+ by (simp add: mcball_def)
lemma centre_in_mcball_iff [iff]: "x \<in> mcball x r \<longleftrightarrow> x \<in> M \<and> 0 \<le> r"
using mdist_zero by force
@@ -181,13 +181,13 @@
lemma openin_mtopology_mcball:
"openin mtopology U \<longleftrightarrow> U \<subseteq> M \<and> (\<forall>x. x \<in> U \<longrightarrow> (\<exists>r. 0 < r \<and> mcball x r \<subseteq> U))"
- using mball_iff_mcball openin_mtopology by presburger
+ by (simp add: mball_iff_mcball openin_mtopology)
lemma metric_derived_set_of:
"mtopology derived_set_of S = {x \<in> M. \<forall>r>0. \<exists>y\<in>S. y\<noteq>x \<and> y \<in> mball x r}" (is "?lhs=?rhs")
proof
show "?lhs \<subseteq> ?rhs"
- unfolding openin_mtopology derived_set_of_def
+ unfolding openin_mtopology derived_set_of_def
by clarsimp (metis in_mball openin_mball openin_mtopology zero)
show "?rhs \<subseteq> ?lhs"
unfolding openin_mtopology derived_set_of_def
@@ -375,10 +375,8 @@
by blast
with \<open>S \<subseteq> M\<close> gt_ex have "S \<subseteq> \<Union>(range (mball a))"
by force
- moreover have "\<forall>U \<in> range (mball a). openin mtopology U"
- by (simp add: openin_mball)
- ultimately obtain \<F> where "finite \<F>" "\<F> \<subseteq> range (mball a)" "S \<subseteq> \<Union>\<F>"
- by (meson com)
+ then obtain \<F> where "finite \<F>" "\<F> \<subseteq> range (mball a)" "S \<subseteq> \<Union>\<F>"
+ by (metis (no_types, opaque_lifting) com imageE openin_mball)
then show ?thesis
using mbounded_Union mbounded_subset by fastforce
qed auto
@@ -451,7 +449,7 @@
end
lemma (in Metric_space) submetric_empty [iff]: "Submetric M d {}"
- by (simp add: Metric_space_axioms Submetric.intro Submetric_axioms_def)
+proof qed auto
subsection \<open>Abstract type of metric spaces\<close>
@@ -486,11 +484,11 @@
lemma (in Metric_space) mspace_metric[simp]:
"mspace (metric (M,d)) = M"
- by (simp add: mspace_def Metric_space_axioms metric_inverse)
+ by (simp add: metric_inverse mspace_def subspace)
lemma (in Metric_space) mdist_metric[simp]:
"mdist (metric (M,d)) = d"
- by (simp add: mdist_def Metric_space_axioms metric_inverse)
+ by (simp add: mdist_def metric_inverse subspace)
lemma metric_collapse [simp]: "metric (mspace m, mdist m) = m"
by (simp add: dest_metric_inverse mdist_def mspace_def)
@@ -849,8 +847,7 @@
lemma metrizable_space_euclidean:
"metrizable_space (euclidean :: 'a::metric_space topology)"
- unfolding metrizable_space_def
- by (metis Met_TC.Metric_space_axioms Met_TC.mtopology_def mopen_eq_open)
+ using Met_TC.metrizable_space_mtopology by auto
lemma (in Metric_space) regular_space_mtopology:
"regular_space mtopology"
@@ -1109,7 +1106,7 @@
then obtain N where "\<And>n. n\<ge>N \<Longrightarrow> \<sigma> n \<in> M \<and> d (\<sigma> n) l < \<epsilon>/2"
by (force simp: eventually_sequentially)
then show "\<exists>N. \<forall>n n'. N \<le> n \<longrightarrow> N \<le> n' \<longrightarrow> d (\<sigma> n) (\<sigma> n') < \<epsilon>"
- by (smt (verit) Metric_space.limitin_mspace Metric_space.mdist_reverse_triangle Metric_space_axioms field_sum_of_halves lim)
+ by (smt (verit) limitin_mspace mdist_reverse_triangle field_sum_of_halves lim)
qed (use assms in blast)
@@ -1233,7 +1230,7 @@
and dynn': "d (y (n div 2)) (y (n' div 2)) < \<epsilon>/2"
using Nx Ny Nxy by blast+
have inM: "x (n div 2) \<in> M" "x (n' div 2) \<in> M""y (n div 2) \<in> M" "y (n' div 2) \<in> M"
- using Metric_space.MCauchy_def Metric_space_axioms R by blast+
+ using MCauchy_def R by blast+
show "d (if even n then x (n div 2) else y (n div 2)) (if even n' then x (n' div 2) else y (n' div 2)) < \<epsilon>"
proof (cases "even n")
case nt: True
@@ -1846,7 +1843,7 @@
then have "j > i" and dxj: "d x (\<sigma> j) < \<epsilon>/4"
by auto
have "(\<sigma> -` mball x (\<epsilon>/4)) \<subseteq> (\<sigma> -` mball y (\<epsilon>/2))" if "d x y < \<epsilon>/4" "y \<in> M" for y
- using that by (simp add: mball_subset Metric_space_axioms vimage_mono)
+ using that by (simp add: mball_subset vimage_mono)
then have infj: "infinite (\<sigma> -` mball (\<sigma> j) (\<epsilon>/2))"
by (meson True \<open>d x (\<sigma> j) < \<epsilon>/4\<close> \<sigma> in_mono infx rangeI finite_subset)
have "\<sigma> i \<in> M" "\<sigma> j \<in> M" "x \<in> M"
@@ -1981,7 +1978,7 @@
shows "Metric_space.mtotally_bounded T d S"
proof -
interpret Submetric M d T
- by (simp add: Metric_space_axioms assms Submetric.intro Submetric_axioms.intro)
+ using \<open>T \<subseteq> M\<close> by unfold_locales
show ?thesis
using assms
unfolding sub.mtotally_bounded_def mtotally_bounded_def
@@ -1994,10 +1991,10 @@
have "mtotally_bounded S" if "S \<subseteq> M" "Metric_space.mtotally_bounded S d S"
proof -
interpret Submetric M d S
- by (simp add: Metric_space_axioms Submetric_axioms.intro Submetric_def \<open>S \<subseteq> M\<close>)
+ using \<open>S \<subseteq> M\<close> by unfold_locales
show ?thesis
using that
- by (metis MCauchy_submetric Metric_space.mtotally_bounded_sequentially Metric_space_axioms subspace)
+ by (meson MCauchy_submetric mtotally_bounded_sequentially sub.mtotally_bounded_sequentially)
qed
moreover have "mtotally_bounded S \<Longrightarrow> Metric_space.mtotally_bounded S d S"
by (simp add: mtotally_bounded_imp_subset mtotally_bounded_submetric)
--- a/src/HOL/Analysis/Urysohn.thy Mon Jul 10 16:56:42 2023 +0200
+++ b/src/HOL/Analysis/Urysohn.thy Mon Jul 10 18:48:22 2023 +0100
@@ -3442,7 +3442,6 @@
qed
-
subsection\<open>Contractions\<close>
lemma (in Metric_space) contraction_imp_unique_fixpoint:
@@ -3452,7 +3451,7 @@
and "\<And>x y. \<lbrakk>x \<in> M; y \<in> M\<rbrakk> \<Longrightarrow> d (f x) (f y) \<le> k * d x y"
and "x \<in> M" "y \<in> M"
shows "x = y"
- by (smt (verit, ccfv_SIG) Metric_space.mdist_pos_less Metric_space_axioms assms mult_le_cancel_right1)
+ by (smt (verit, ccfv_SIG) mdist_pos_less mult_le_cancel_right1 assms)
text \<open>Banach Fixed-Point Theorem (aka, Contraction Mapping Principle)\<close>
lemma (in Metric_space) Banach_fixedpoint_thm: