Adapted to changes in Transitive_Closure theory.
--- a/src/HOL/Divides.thy Wed Feb 07 17:26:04 2007 +0100
+++ b/src/HOL/Divides.thy Wed Feb 07 17:26:49 2007 +0100
@@ -32,9 +32,9 @@
mod (infixl "mod" 70)
instance nat :: "Divides.div"
- mod_def: "m mod n == wfrec (trancl pred_nat)
+ mod_def: "m mod n == wfrec (pred_nat^+)
(%f j. if j<n | n=0 then j else f (j-n)) m"
- div_def: "m div n == wfrec (trancl pred_nat)
+ div_def: "m div n == wfrec (pred_nat^+)
(%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m" ..
definition
@@ -61,10 +61,10 @@
standard]
lemma mod_eq: "(%m. m mod n) =
- wfrec (trancl pred_nat) (%f j. if j<n | n=0 then j else f (j-n))"
+ wfrec (pred_nat^+) (%f j. if j<n | n=0 then j else f (j-n))"
by (simp add: mod_def)
-lemma div_eq: "(%m. m div n) = wfrec (trancl pred_nat)
+lemma div_eq: "(%m. m div n) = wfrec (pred_nat^+)
(%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"
by (simp add: div_def)
--- a/src/HOL/Wellfounded_Relations.thy Wed Feb 07 17:26:04 2007 +0100
+++ b/src/HOL/Wellfounded_Relations.thy Wed Feb 07 17:26:49 2007 +0100
@@ -16,7 +16,7 @@
constdefs
less_than :: "(nat*nat)set"
- "less_than == trancl pred_nat"
+ "less_than == pred_nat^+"
measure :: "('a => nat) => ('a * 'a)set"
"measure == inv_image less_than"