merged
authorhaftmann
Sat, 13 Jun 2009 16:32:38 +0200
changeset 31626 fe35b72b9ef0
parent 31614 ef6d67b1ad10 (diff)
parent 31625 9e4d7d60c3e7 (current diff)
child 31627 bc2de3795756
child 31628 28699098b5f3
merged
NEWS
--- a/Admin/isatest/annomaly.ML	Sat Jun 13 10:01:01 2009 +0200
+++ b/Admin/isatest/annomaly.ML	Sat Jun 13 16:32:38 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      Admin/isatest/annomaly.ML
-    ID:         $Id$
     Author:     Martin von Gagern <martin@von-gagern.net>
 *)
 
--- a/Admin/isatest/isatest-annomaly	Sat Jun 13 10:01:01 2009 +0200
+++ b/Admin/isatest/isatest-annomaly	Sat Jun 13 16:32:38 2009 +0200
@@ -1,7 +1,5 @@
 #!/usr/bin/env bash
 #
-# $Id$
-#
 # Create AnnoMaLy documentation for Isabelle
 #
 # Based on http://martin.von-gagern.net/projects/annomaly/
--- a/Admin/isatest/isatest-check	Sat Jun 13 10:01:01 2009 +0200
+++ b/Admin/isatest/isatest-check	Sat Jun 13 16:32:38 2009 +0200
@@ -1,6 +1,5 @@
 #!/usr/bin/env bash
 #
-# $Id$
 # Author: Gerwin Klein, TU Muenchen
 #
 # DESCRIPTION: sends email for failed tests, checks for error.log,
--- a/Admin/isatest/isatest-doc	Sat Jun 13 10:01:01 2009 +0200
+++ b/Admin/isatest/isatest-doc	Sat Jun 13 16:32:38 2009 +0200
@@ -1,6 +1,5 @@
 #!/usr/bin/env bash
 #
-# $Id$
 # Author: Gerwin Klein, NICTA
 #
 # Run IsaMakefile for every Doc/ subdirectory.
--- a/Admin/isatest/isatest-lint	Sat Jun 13 10:01:01 2009 +0200
+++ b/Admin/isatest/isatest-lint	Sat Jun 13 16:32:38 2009 +0200
@@ -1,6 +1,5 @@
 #!/usr/bin/env perl
 #
-# $Id$
 # Author: Florian Haftmann, TUM
 #
 # Do consistency and quality checks on the isabelle sources
--- a/Admin/isatest/isatest-makeall	Sat Jun 13 10:01:01 2009 +0200
+++ b/Admin/isatest/isatest-makeall	Sat Jun 13 16:32:38 2009 +0200
@@ -1,6 +1,5 @@
 #!/usr/bin/env bash
 #
-# $Id$
 # Author: Gerwin Klein, TU Muenchen
 #
 # DESCRIPTION: Run isabelle makeall from specified distribution and settings.
@@ -71,14 +70,19 @@
         NICE="nice"
         ;;
 
+    macbroy2)
+        MFLAGS=""
+        NICE=""
+        ;;
+
     macbroy5)
         MFLAGS="-j 2"
         NICE=""
         ;;
 
     macbroy23)
-        MFLAGS=""
-        NICE=""
+        MFLAGS="-j 2"
+        NICE="nice"
         ;;
 
     macbroy2[0-9])
--- a/Admin/isatest/isatest-makedist	Sat Jun 13 10:01:01 2009 +0200
+++ b/Admin/isatest/isatest-makedist	Sat Jun 13 16:32:38 2009 +0200
@@ -1,6 +1,5 @@
 #!/usr/bin/env bash
 #
-# $Id$
 # Author: Gerwin Klein, TU Muenchen
 #
 # DESCRIPTION: Build distribution and run isatest-make for lots of platforms.
@@ -14,7 +13,6 @@
 MAKEDIST=$HOME/bin/makedist
 MAKEALL=$HOME/bin/isatest-makeall
 TAR=tar
-CVS2CL="$HOME/bin/cvs2cl --follow-only TRUNK"
 
 SSH="ssh -f"
 
@@ -46,7 +44,6 @@
 rm -f $RUNNING/*.runnning
 
 export DISTPREFIX
-export CVS2CL
 
 DATE=$(date "+%Y-%m-%d")
 DISTLOG=$LOGPREFIX/isatest-makedist-$DATE.log
@@ -109,9 +106,11 @@
 sleep 15
 $SSH atbroy101 "$MAKEALL $HOME/settings/at64-poly"
 sleep 15
+$SSH macbroy2 "$MAKEALL $HOME/settings/at-mac-poly-5.1-para; $MAKEALL $HOME/settings/mac-poly-M8"
+sleep 15
 $SSH macbroy5 "$MAKEALL $HOME/settings/mac-poly"
 sleep 15
-$SSH macbroy6 "/usr/stud/isatest/bin/isatest-makeall $HOME/settings/at-mac-poly-5.1-para"
+$SSH macbroy6 "$MAKEALL $HOME/settings/mac-poly-M4"
 sleep 15
 $SSH atbroy51 "$HOME/admin/isatest/isatest-annomaly"
 
--- a/Admin/isatest/isatest-settings	Sat Jun 13 10:01:01 2009 +0200
+++ b/Admin/isatest/isatest-settings	Sat Jun 13 16:32:38 2009 +0200
@@ -1,5 +1,5 @@
 # -*- shell-script -*- :mode=shellscript:
-# $Id$
+#
 # Author: Gerwin Klein, NICTA
 #
 # DESCRIPTION: common settings for the isatest-* scripts
--- a/Admin/isatest/pmail	Sat Jun 13 10:01:01 2009 +0200
+++ b/Admin/isatest/pmail	Sat Jun 13 16:32:38 2009 +0200
@@ -1,6 +1,5 @@
 #!/usr/bin/env bash
 #
-# $Id$
 # Author: Gerwin Klein, TU Muenchen
 #
 # DESCRIPTION: send email with text attachments.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Admin/isatest/settings/mac-poly-M4	Sat Jun 13 16:32:38 2009 +0200
@@ -0,0 +1,28 @@
+# -*- shell-script -*- :mode=shellscript:
+
+  POLYML_HOME="/home/polyml/polyml-svn"
+  ML_SYSTEM="polyml-experimental"
+  ML_PLATFORM="x86-darwin"
+  ML_HOME="$POLYML_HOME/$ML_PLATFORM"
+  ML_OPTIONS="--mutable 800 --immutable 2000"
+
+
+ISABELLE_HOME_USER=~/isabelle-mac-poly-M4
+
+# Where to look for isabelle tools (multiple dirs separated by ':').
+ISABELLE_TOOLS="$ISABELLE_HOME/lib/Tools"
+
+# Location for temporary files (should be on a local file system).
+ISABELLE_TMP_PREFIX="/tmp/isabelle-$USER"
+
+
+# Heap input locations. ML system identifier is included in lookup.
+ISABELLE_PATH="$ISABELLE_HOME_USER/heaps:$ISABELLE_HOME/heaps"
+
+# Heap output location. ML system identifier is appended automatically later on.
+ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"
+ISABELLE_BROWSER_INFO="$ISABELLE_HOME_USER/browser_info"
+
+ISABELLE_USEDIR_OPTIONS="-i false -d false -M 4"
+
+HOL_USEDIR_OPTIONS="-p 2 -Q false"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Admin/isatest/settings/mac-poly-M8	Sat Jun 13 16:32:38 2009 +0200
@@ -0,0 +1,28 @@
+# -*- shell-script -*- :mode=shellscript:
+
+  POLYML_HOME="/home/polyml/polyml-svn"
+  ML_SYSTEM="polyml-experimental"
+  ML_PLATFORM="x86-darwin"
+  ML_HOME="$POLYML_HOME/$ML_PLATFORM"
+  ML_OPTIONS="--mutable 800 --immutable 2000"
+
+
+ISABELLE_HOME_USER=~/isabelle-mac-poly-M8
+
+# Where to look for isabelle tools (multiple dirs separated by ':').
+ISABELLE_TOOLS="$ISABELLE_HOME/lib/Tools"
+
+# Location for temporary files (should be on a local file system).
+ISABELLE_TMP_PREFIX="/tmp/isabelle-$USER"
+
+
+# Heap input locations. ML system identifier is included in lookup.
+ISABELLE_PATH="$ISABELLE_HOME_USER/heaps:$ISABELLE_HOME/heaps"
+
+# Heap output location. ML system identifier is appended automatically later on.
+ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"
+ISABELLE_BROWSER_INFO="$ISABELLE_HOME_USER/browser_info"
+
+ISABELLE_USEDIR_OPTIONS="-i false -d false -M 8"
+
+HOL_USEDIR_OPTIONS="-p 2 -Q false"
--- a/NEWS	Sat Jun 13 10:01:01 2009 +0200
+++ b/NEWS	Sat Jun 13 16:32:38 2009 +0200
@@ -4,28 +4,38 @@
 New in this Isabelle version
 ----------------------------
 
+*** General ***
+
+* Discontinued old form of "escaped symbols" such as \\<forall>.  Only
+one backslash should be used, even in ML sources.
+
+
 *** Pure ***
 
-* On instantiation of classes, remaining undefined class parameters are
-formally declared.  INCOMPATIBILITY.
+* On instantiation of classes, remaining undefined class parameters
+are formally declared.  INCOMPATIBILITY.
 
 
 *** HOL ***
 
-* Class semiring_div requires superclass no_zero_divisors and proof of div_mult_mult1;
-theorems div_mult_mult1, div_mult_mult2, div_mult_mult1_if, div_mult_mult1 and
-div_mult_mult2 have been generalized to class semiring_div, subsuming former
-theorems zdiv_zmult_zmult1, zdiv_zmult_zmult1_if, zdiv_zmult_zmult1 and zdiv_zmult_zmult2.
-div_mult_mult1 is now [simp] by default.  INCOMPATIBILITY.
-
-* Power operations on relations and functions are now one dedicate constant compow with
-infix syntax "^^".  Power operations on multiplicative monoids retains syntax "^"
-and is now defined generic in class power.  INCOMPATIBILITY.
-
-* ML antiquotation @{code_datatype} inserts definition of a datatype generated
-by the code generator; see Predicate.thy for an example.
-
-* New method "linarith" invokes existing linear arithmetic decision procedure only.
+* Class semiring_div requires superclass no_zero_divisors and proof of
+div_mult_mult1; theorems div_mult_mult1, div_mult_mult2,
+div_mult_mult1_if, div_mult_mult1 and div_mult_mult2 have been
+generalized to class semiring_div, subsuming former theorems
+zdiv_zmult_zmult1, zdiv_zmult_zmult1_if, zdiv_zmult_zmult1 and
+zdiv_zmult_zmult2.  div_mult_mult1 is now [simp] by default.
+INCOMPATIBILITY.
+
+* Power operations on relations and functions are now one dedicate
+constant compow with infix syntax "^^".  Power operations on
+multiplicative monoids retains syntax "^" and is now defined generic
+in class power.  INCOMPATIBILITY.
+
+* ML antiquotation @{code_datatype} inserts definition of a datatype
+generated by the code generator; see Predicate.thy for an example.
+
+* New method "linarith" invokes existing linear arithmetic decision
+procedure only.
 
 * Implementation of quickcheck using generic code generator; default generators
 are provided for all suitable HOL types, records and datatypes.
--- a/doc-src/Codegen/Thy/document/Introduction.tex	Sat Jun 13 10:01:01 2009 +0200
+++ b/doc-src/Codegen/Thy/document/Introduction.tex	Sat Jun 13 16:32:38 2009 +0200
@@ -249,9 +249,9 @@
 \hspace*{0pt}dequeue (AQueue [] []) = (Nothing,~AQueue [] []);\\
 \hspace*{0pt}dequeue (AQueue xs (y :~ys)) = (Just y,~AQueue xs ys);\\
 \hspace*{0pt}dequeue (AQueue (v :~va) []) =\\
-\hspace*{0pt} ~let {\char123}\\
+\hspace*{0pt} ~(let {\char123}\\
 \hspace*{0pt} ~~~(y :~ys) = rev (v :~va);\\
-\hspace*{0pt} ~{\char125}~in (Just y,~AQueue [] ys);\\
+\hspace*{0pt} ~{\char125}~in (Just y,~AQueue [] ys) );\\
 \hspace*{0pt}\\
 \hspace*{0pt}enqueue ::~forall a.~a -> Queue a -> Queue a;\\
 \hspace*{0pt}enqueue x (AQueue xs ys) = AQueue (x :~xs) ys;\\
--- a/doc-src/Codegen/Thy/document/Program.tex	Sat Jun 13 10:01:01 2009 +0200
+++ b/doc-src/Codegen/Thy/document/Program.tex	Sat Jun 13 16:32:38 2009 +0200
@@ -346,8 +346,8 @@
 \hspace*{0pt}type 'a semigroup = {\char123}mult :~'a -> 'a -> 'a{\char125};\\
 \hspace*{0pt}fun mult (A{\char95}:'a semigroup) = {\char35}mult A{\char95};\\
 \hspace*{0pt}\\
-\hspace*{0pt}type 'a monoid = {\char123}Program{\char95}{\char95}semigroup{\char95}monoid :~'a semigroup,~neutral :~'a{\char125};\\
-\hspace*{0pt}fun semigroup{\char95}monoid (A{\char95}:'a monoid) = {\char35}Program{\char95}{\char95}semigroup{\char95}monoid A{\char95};\\
+\hspace*{0pt}type 'a monoid = {\char123}semigroup{\char95}monoid :~'a semigroup,~neutral :~'a{\char125};\\
+\hspace*{0pt}fun semigroup{\char95}monoid (A{\char95}:'a monoid) = {\char35}semigroup{\char95}monoid A{\char95};\\
 \hspace*{0pt}fun neutral (A{\char95}:'a monoid) = {\char35}neutral A{\char95};\\
 \hspace*{0pt}\\
 \hspace*{0pt}fun pow A{\char95}~Zero{\char95}nat a = neutral A{\char95}\\
@@ -363,9 +363,8 @@
 \hspace*{0pt}\\
 \hspace*{0pt}val semigroup{\char95}nat = {\char123}mult = mult{\char95}nat{\char125}~:~nat semigroup;\\
 \hspace*{0pt}\\
-\hspace*{0pt}val monoid{\char95}nat =\\
-\hspace*{0pt} ~{\char123}Program{\char95}{\char95}semigroup{\char95}monoid = semigroup{\char95}nat,~neutral = neutral{\char95}nat{\char125}~:\\
-\hspace*{0pt} ~nat monoid;\\
+\hspace*{0pt}val monoid{\char95}nat = {\char123}semigroup{\char95}monoid = semigroup{\char95}nat,~neutral = neutral{\char95}nat{\char125}\\
+\hspace*{0pt} ~:~nat monoid;\\
 \hspace*{0pt}\\
 \hspace*{0pt}fun bexp n = pow monoid{\char95}nat n (Suc (Suc Zero{\char95}nat));\\
 \hspace*{0pt}\\
@@ -967,9 +966,9 @@
 \noindent%
 \hspace*{0pt}strict{\char95}dequeue ::~forall a.~Queue a -> (a,~Queue a);\\
 \hspace*{0pt}strict{\char95}dequeue (AQueue xs []) =\\
-\hspace*{0pt} ~let {\char123}\\
+\hspace*{0pt} ~(let {\char123}\\
 \hspace*{0pt} ~~~(y :~ys) = rev xs;\\
-\hspace*{0pt} ~{\char125}~in (y,~AQueue [] ys);\\
+\hspace*{0pt} ~{\char125}~in (y,~AQueue [] ys) );\\
 \hspace*{0pt}strict{\char95}dequeue (AQueue xs (y :~ys)) = (y,~AQueue xs ys);%
 \end{isamarkuptext}%
 \isamarkuptrue%
--- a/doc-src/Codegen/Thy/examples/Example.hs	Sat Jun 13 10:01:01 2009 +0200
+++ b/doc-src/Codegen/Thy/examples/Example.hs	Sat Jun 13 16:32:38 2009 +0200
@@ -23,9 +23,9 @@
 dequeue (AQueue [] []) = (Nothing, AQueue [] []);
 dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
 dequeue (AQueue (v : va) []) =
-  let {
+  (let {
     (y : ys) = rev (v : va);
-  } in (Just y, AQueue [] ys);
+  } in (Just y, AQueue [] ys) );
 
 enqueue :: forall a. a -> Queue a -> Queue a;
 enqueue x (AQueue xs ys) = AQueue (x : xs) ys;
--- a/doc-src/antiquote_setup.ML	Sat Jun 13 10:01:01 2009 +0200
+++ b/doc-src/antiquote_setup.ML	Sat Jun 13 16:32:38 2009 +0200
@@ -19,16 +19,16 @@
     | "{" => "\\{"
     | "|" => "$\\mid$"
     | "}" => "\\}"
-    | "\\<dash>" => "-"
+    | "\<dash>" => "-"
     | c => c);
 
-fun clean_name "\\<dots>" = "dots"
+fun clean_name "\<dots>" = "dots"
   | clean_name ".." = "ddot"
   | clean_name "." = "dot"
   | clean_name "_" = "underscore"
   | clean_name "{" = "braceleft"
   | clean_name "}" = "braceright"
-  | clean_name s = s |> translate (fn "_" => "-" | "\\<dash>" => "-" | c => c);
+  | clean_name s = s |> translate (fn "_" => "-" | "\<dash>" => "-" | c => c);
 
 
 (* verbatim text *)
--- a/src/HOL/Library/Convex_Euclidean_Space.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/Library/Convex_Euclidean_Space.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -39,10 +39,6 @@
 
 lemma norm_not_0:"(x::real^'n::finite)\<noteq>0 \<Longrightarrow> norm x \<noteq> 0" by auto
 
-lemma vector_unminus_smult[simp]: "(-1::real) *s x = -x"
-  unfolding vector_sneg_minus1 by simp
-  (* TODO: move to Euclidean_Space.thy *)
-
 lemma setsum_delta_notmem: assumes "x\<notin>s"
   shows "setsum (\<lambda>y. if (y = x) then P x else Q y) s = setsum Q s"
         "setsum (\<lambda>y. if (x = y) then P x else Q y) s = setsum Q s"
@@ -51,23 +47,23 @@
   apply(rule_tac [!] setsum_cong2) using assms by auto
 
 lemma setsum_delta'': fixes s::"(real^'n) set" assumes "finite s"
-  shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *s x) = (if y\<in>s then (f y) *s y else 0)"
+  shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *\<^sub>R x) = (if y\<in>s then (f y) *\<^sub>R y else 0)"
 proof-
-  have *:"\<And>x y. (if y = x then f x else (0::real)) *s x = (if x=y then (f x) *s x else 0)" by auto
-  show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *s x"] by auto
+  have *:"\<And>x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)" by auto
+  show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *\<^sub>R x"] by auto
 qed
 
 lemma not_disjointI:"x\<in>A \<Longrightarrow> x\<in>B \<Longrightarrow> A \<inter> B \<noteq> {}" by blast
 
-lemma if_smult:"(if P then x else (y::real)) *s v = (if P then x *s v else y *s v)" by auto
+lemma if_smult:"(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by auto
 
 lemma mem_interval_1: fixes x :: "real^1" shows
  "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b)"
  "(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
 by(simp_all add: Cart_eq vector_less_def vector_less_eq_def dest_vec1_def all_1)
 
-lemma image_smult_interval:"(\<lambda>x. m *s (x::real^'n::finite)) ` {a..b} =
-  (if {a..b} = {} then {} else if 0 \<le> m then {m *s a..m *s b} else {m *s b..m *s a})"
+lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::real^'n::finite)) ` {a..b} =
+  (if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})"
   using image_affinity_interval[of m 0 a b] by auto
 
 lemma dest_vec1_inverval:
@@ -87,9 +83,11 @@
   shows " dest_vec1 (setsum f S) = setsum (\<lambda>x. dest_vec1 (f x)) S"
   using dest_vec1_sum[OF assms] by auto
 
-lemma dist_triangle_eq:"dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *s (y - z) = norm (y - z) *s (x - y)"
+lemma dist_triangle_eq:
+  fixes x y z :: "real ^ _"
+  shows "dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)"
 proof- have *:"x - y + (y - z) = x - z" by auto
-  show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded *] 
+  show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded smult_conv_scaleR *]
     by(auto simp add:norm_minus_commute) qed
 
 lemma norm_eqI:"x = y \<Longrightarrow> norm x = norm y" by auto 
@@ -108,12 +106,14 @@
 
 subsection {* Affine set and affine hull.*}
 
-definition "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v::real. u + v = 1 \<longrightarrow> (u *s x + v *s y) \<in> s)"
-
-lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *s x + u *s y \<in> s)"
+definition
+  affine :: "(real ^ 'n::finite) set \<Rightarrow> bool" where
+  "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v::real. u + v = 1 \<longrightarrow> (u *\<^sub>R x + v *\<^sub>R y) \<in> s)"
+
+lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)"
 proof- have *:"\<And>u v ::real. u + v = 1 \<longleftrightarrow> v = 1 - u" by auto
   { fix x y assume "x\<in>s" "y\<in>s"
-    hence "(\<forall>u v::real. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> s) \<longleftrightarrow> (\<forall>u::real. (1 - u) *s x + u *s y \<in> s)" apply auto 
+    hence "(\<forall>u v::real. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s) \<longleftrightarrow> (\<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)" apply auto 
       apply(erule_tac[!] x="1 - u" in allE) unfolding * by auto  }
   thus ?thesis unfolding affine_def by auto qed
 
@@ -121,7 +121,7 @@
   unfolding affine_def by auto
 
 lemma affine_sing[intro]: "affine {x}"
-  unfolding affine_alt by (auto simp add: vector_sadd_rdistrib[THEN sym]) 
+  unfolding affine_alt by (auto simp add: scaleR_left_distrib [symmetric])
 
 lemma affine_UNIV[intro]: "affine UNIV"
   unfolding affine_def by auto
@@ -149,30 +149,30 @@
 
 subsection {* Some explicit formulations (from Lars Schewe). *}
 
-lemma affine: fixes V::"(real^'n) set"
-  shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *s x)) s \<in> V)"
+lemma affine: fixes V::"(real^'n::finite) set"
+  shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *\<^sub>R x)) s \<in> V)"
 unfolding affine_def apply rule apply(rule, rule, rule) apply(erule conjE)+ 
 defer apply(rule, rule, rule, rule, rule) proof-
   fix x y u v assume as:"x \<in> V" "y \<in> V" "u + v = (1::real)"
-    "\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *s x) \<in> V"
-  thus "u *s x + v *s y \<in> V" apply(cases "x=y")
+    "\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V"
+  thus "u *\<^sub>R x + v *\<^sub>R y \<in> V" apply(cases "x=y")
     using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>w. if w = x then u else v"]] and as(1-3) 
-    by(auto simp add: vector_sadd_rdistrib[THEN sym])
+    by(auto simp add: scaleR_left_distrib[THEN sym])
 next
-  fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> V"
+  fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V"
     "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = (1::real)"
   def n \<equiv> "card s"
   have "card s = 0 \<or> card s = 1 \<or> card s = 2 \<or> card s > 2" by auto
-  thus "(\<Sum>x\<in>s. u x *s x) \<in> V" proof(auto simp only: disjE)
+  thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" proof(auto simp only: disjE)
     assume "card s = 2" hence "card s = Suc (Suc 0)" by auto
     then obtain a b where "s = {a, b}" unfolding card_Suc_eq by auto
     thus ?thesis using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5)
       by(auto simp add: setsum_clauses(2))
   next assume "card s > 2" thus ?thesis using as and n_def proof(induct n arbitrary: u s)
       case (Suc n) fix s::"(real^'n) set" and u::"real^'n\<Rightarrow> real"
-      assume IA:"\<And>u s.  \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> V; finite s;
-               s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n \<equiv> card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *s x) \<in> V" and
-	as:"Suc n \<equiv> card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> V"
+      assume IA:"\<And>u s.  \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V; finite s;
+               s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n \<equiv> card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" and
+	as:"Suc n \<equiv> card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V"
            "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = 1"
       have "\<exists>x\<in>s. u x \<noteq> 1" proof(rule_tac ccontr)
 	assume " \<not> (\<exists>x\<in>s. u x \<noteq> 1)" hence "setsum u s = real_of_nat (card s)" unfolding card_eq_setsum by auto
@@ -185,7 +185,7 @@
       have **:"setsum u (s - {x}) = 1 - u x"
 	using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[THEN sym] as(7)] by auto
       have ***:"inverse (1 - u x) * setsum u (s - {x}) = 1" unfolding ** using `u x \<noteq> 1` by auto
-      have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *s xa) \<in> V" proof(cases "card (s - {x}) > 2")
+      have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *\<^sub>R xa) \<in> V" proof(cases "card (s - {x}) > 2")
 	case True hence "s - {x} \<noteq> {}" "card (s - {x}) = n" unfolding c and as(1)[symmetric] proof(rule_tac ccontr) 
 	  assume "\<not> s - {x} \<noteq> {}" hence "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp 
 	  thus False using True by auto qed auto
@@ -195,9 +195,9 @@
 	then obtain a b where "(s - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto
 	thus ?thesis using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]]
 	  using *** *(2) and `s \<subseteq> V` unfolding setsum_right_distrib by(auto simp add: setsum_clauses(2)) qed
-      thus "(\<Sum>x\<in>s. u x *s x) \<in> V" unfolding vector_smult_assoc[THEN sym] and setsum_cmul
+      thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric]
  	 apply(subst *) unfolding setsum_clauses(2)[OF *(2)]
-	 using as(3)[THEN bspec[where x=x], THEN bspec[where x="(inverse (1 - u x)) *s (\<Sum>xa\<in>s - {x}. u xa *s xa)"], 
+	 using as(3)[THEN bspec[where x=x], THEN bspec[where x="(inverse (1 - u x)) *\<^sub>R (\<Sum>xa\<in>s - {x}. u xa *\<^sub>R xa)"], 
 	 THEN spec[where x="u x"], THEN spec[where x="1 - u x"]] and rev_subsetD[OF `x\<in>s` `s\<subseteq>V`] and `u x \<noteq> 1` by auto
     qed auto
   next assume "card s = 1" then obtain a where "s={a}" by(auto simp add: card_Suc_eq)
@@ -206,44 +206,44 @@
 qed
 
 lemma affine_hull_explicit:
-  "affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *s v) s = y}"
+  "affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *\<^sub>R v) s = y}"
   apply(rule hull_unique) apply(subst subset_eq) prefer 3 apply rule unfolding mem_Collect_eq and mem_def[of _ affine]
   apply (erule exE)+ apply(erule conjE)+ prefer 2 apply rule proof-
-  fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x"
+  fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
     apply(rule_tac x="{x}" in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
 next
-  fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x" 
+  fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
   thus "x \<in> t" using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]] by auto
 next
-  show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y}" unfolding affine_def
+  show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y}" unfolding affine_def
     apply(rule,rule,rule,rule,rule) unfolding mem_Collect_eq proof-
     fix u v ::real assume uv:"u + v = 1"
-    fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x"
-    then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *s v) = x" by auto
-    fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y"
-    then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *s v) = y" by auto
+    fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
+    then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *\<^sub>R v) = x" by auto
+    fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
+    then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *\<^sub>R v) = y" by auto
     have xy:"finite (sx \<union> sy)" using x(1) y(1) by auto
     have **:"(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto
-    show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *s v) = u *s x + v *s y"
+    show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *\<^sub>R v) = u *\<^sub>R x + v *\<^sub>R y"
       apply(rule_tac x="sx \<union> sy" in exI)
       apply(rule_tac x="\<lambda>a. (if a\<in>sx then u * ux a else 0) + (if a\<in>sy then v * uy a else 0)" in exI)
-      unfolding vector_sadd_rdistrib setsum_addf if_smult vector_smult_lzero  ** setsum_restrict_set[OF xy, THEN sym]
-      unfolding vector_smult_assoc[THEN sym] setsum_cmul and setsum_right_distrib[THEN sym]
+      unfolding scaleR_left_distrib setsum_addf if_smult scaleR_zero_left  ** setsum_restrict_set[OF xy, THEN sym]
+      unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and setsum_right_distrib[THEN sym]
       unfolding x y using x(1-3) y(1-3) uv by simp qed qed
 
 lemma affine_hull_finite:
   assumes "finite s"
-  shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *s v) s = y}"
+  shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
   unfolding affine_hull_explicit and expand_set_eq and mem_Collect_eq apply (rule,rule)
   apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof-
-  fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x"
-  thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = x"
+  fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
+  thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = x"
     apply(rule_tac x=s in exI, rule_tac x=u in exI) using assms by auto
 next
   fix x t u assume "t \<subseteq> s" hence *:"s \<inter> t = t" by auto
-  assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *s v) = x"
-  thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)
-    unfolding if_smult vector_smult_lzero and setsum_restrict_set[OF assms, THEN sym] and * by auto qed
+  assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
+  thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)
+    unfolding if_smult scaleR_zero_left and setsum_restrict_set[OF assms, THEN sym] and * by auto qed
 
 subsection {* Stepping theorems and hence small special cases. *}
 
@@ -251,14 +251,14 @@
   apply(rule hull_unique) unfolding mem_def by auto
 
 lemma affine_hull_finite_step:
-  shows "(\<exists>u::real^'n=>real. setsum u {} = w \<and> setsum (\<lambda>x. u x *s x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1)
-  "finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *s x) (insert a s) = y) \<longleftrightarrow>
-                (\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *s x) s = y - v *s a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)")
+  shows "(\<exists>u::real^'n=>real. setsum u {} = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1)
+  "finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) \<longleftrightarrow>
+                (\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)")
 proof-
   show ?th1 by simp
   assume ?as 
   { assume ?lhs
-    then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *s x) = y" by auto
+    then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto
     have ?rhs proof(cases "a\<in>s")
       case True hence *:"insert a s = s" by auto
       show ?thesis using u[unfolded *] apply(rule_tac x=0 in exI) by auto
@@ -266,41 +266,41 @@
       case False thus ?thesis apply(rule_tac x="u a" in exI) using u and `?as` by auto 
     qed  } moreover
   { assume ?rhs
-    then obtain v u where vu:"setsum u s = w - v"  "(\<Sum>x\<in>s. u x *s x) = y - v *s a" by auto
-    have *:"\<And>x M. (if x = a then v else M) *s x = (if x = a then v *s x else M *s x)" by auto
+    then obtain v u where vu:"setsum u s = w - v"  "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto
+    have *:"\<And>x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto
     have ?lhs proof(cases "a\<in>s")
       case True thus ?thesis
 	apply(rule_tac x="\<lambda>x. (if x=a then v else 0) + u x" in exI)
 	unfolding setsum_clauses(2)[OF `?as`]  apply simp
-	unfolding vector_sadd_rdistrib and setsum_addf 
-	unfolding vu and * and vector_smult_lzero
+	unfolding scaleR_left_distrib and setsum_addf 
+	unfolding vu and * and scaleR_zero_left
 	by (auto simp add: setsum_delta[OF `?as`])
     next
       case False 
       hence **:"\<And>x. x \<in> s \<Longrightarrow> u x = (if x = a then v else u x)"
-               "\<And>x. x \<in> s \<Longrightarrow> u x *s x = (if x = a then v *s x else u x *s x)" by auto
+               "\<And>x. x \<in> s \<Longrightarrow> u x *\<^sub>R x = (if x = a then v *\<^sub>R x else u x *\<^sub>R x)" by auto
       from False show ?thesis
 	apply(rule_tac x="\<lambda>x. if x=a then v else u x" in exI)
 	unfolding setsum_clauses(2)[OF `?as`] and * using vu
-	using setsum_cong2[of s "\<lambda>x. u x *s x" "\<lambda>x. if x = a then v *s x else u x *s x", OF **(2)]
+	using setsum_cong2[of s "\<lambda>x. u x *\<^sub>R x" "\<lambda>x. if x = a then v *\<^sub>R x else u x *\<^sub>R x", OF **(2)]
 	using setsum_cong2[of s u "\<lambda>x. if x = a then v else u x", OF **(1)] by auto  
     qed }
   ultimately show "?lhs = ?rhs" by blast
 qed
 
-lemma affine_hull_2: "affine hull {a,b::real^'n} = {u *s a + v *s b| u v. (u + v = 1)}" (is "?lhs = ?rhs")
+lemma affine_hull_2:"affine hull {a,b::real^'n::finite} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs")
 proof-
   have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" 
          "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real^'n)" by auto
-  have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *s v) = y}"
+  have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *\<^sub>R v) = y}"
     using affine_hull_finite[of "{a,b}"] by auto
-  also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *s b = y - v *s a}"
+  also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *\<^sub>R b = y - v *\<^sub>R a}"
     by(simp add: affine_hull_finite_step(2)[of "{b}" a]) 
   also have "\<dots> = ?rhs" unfolding * by auto
   finally show ?thesis by auto
 qed
 
-lemma affine_hull_3: "affine hull {a,b,c::real^'n} = { u *s a + v *s b + w *s c| u v w. u + v + w = 1}" (is "?lhs = ?rhs")
+lemma affine_hull_3: "affine hull {a,b,c::real^'n::finite} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" (is "?lhs = ?rhs")
 proof-
   have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" 
          "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real^'n)" by auto
@@ -314,15 +314,20 @@
 
 lemma affine_hull_insert_subset_span:
   "affine hull (insert a s) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> s}}"
-  unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq
+  unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq smult_conv_scaleR
   apply(rule,rule) apply(erule exE)+ apply(erule conjE)+ proof-
-  fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *s v) = x"
+  fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
   have "(\<lambda>x. x - a) ` (t - {a}) \<subseteq> {x - a |x. x \<in> s}" using as(3) by auto
-  thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *s v) = v)"
-    apply(rule_tac x="x - a" in exI) apply rule defer apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI)
-    apply(rule_tac x="\<lambda>x. u (x + a)" in exI) using as(1)
-    apply(simp add: setsum_reindex[unfolded inj_on_def] setsum_subtractf setsum_diff1 setsum_vmul[THEN sym])
-    unfolding as by simp_all qed
+  thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = v)"
+    apply(rule_tac x="x - a" in exI)
+    apply (rule conjI, simp)
+    apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI)
+    apply(rule_tac x="\<lambda>x. u (x + a)" in exI)
+    apply (rule conjI) using as(1) apply simp
+    apply (erule conjI)
+    using as(1)
+    apply (simp add: setsum_reindex[unfolded inj_on_def] scaleR_right_diff_distrib setsum_subtractf scaleR_left.setsum[THEN sym] setsum_diff1 scaleR_left_diff_distrib)
+    unfolding as by simp qed
 
 lemma affine_hull_insert_span:
   assumes "a \<notin> s"
@@ -331,17 +336,17 @@
   apply(rule, rule affine_hull_insert_subset_span) unfolding subset_eq Ball_def
   unfolding affine_hull_explicit and mem_Collect_eq proof(rule,rule,erule exE,erule conjE)
   fix y v assume "y = a + v" "v \<in> span {x - a |x. x \<in> s}"
-  then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *s v) = y" unfolding span_explicit by auto
+  then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *\<^sub>R v) = y" unfolding span_explicit smult_conv_scaleR by auto
   def f \<equiv> "(\<lambda>x. x + a) ` t"
-  have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *s (v - a)) = y - a" unfolding f_def using obt 
+  have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding f_def using obt 
     by(auto simp add: setsum_reindex[unfolded inj_on_def])
   have *:"f \<inter> {a} = {}" "f \<inter> - {a} = f" using f(2) assms by auto
-  show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = y"
+  show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"
     apply(rule_tac x="insert a f" in exI)
     apply(rule_tac x="\<lambda>x. if x=a then 1 - setsum (\<lambda>x. u (x - a)) f else u (x - a)" in exI)
     using assms and f unfolding setsum_clauses(2)[OF f(1)] and if_smult
     unfolding setsum_cases[OF f(1), of "{a}", unfolded singleton_iff] and *
-    by (auto simp add: setsum_subtractf setsum_vmul field_simps) qed
+    by (auto simp add: setsum_subtractf scaleR_left.setsum algebra_simps) qed
 
 lemma affine_hull_span:
   assumes "a \<in> s"
@@ -350,10 +355,10 @@
 
 subsection {* Convexity. *}
 
-definition "convex (s::(real^'n) set) \<longleftrightarrow>
-        (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. (u + v = 1) \<longrightarrow> (u *s x + v *s y) \<in> s)"
-
-lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *s x + u *s y) \<in> s)"
+definition "convex (s::(real^'n::finite) set) \<longleftrightarrow>
+        (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. (u + v = 1) \<longrightarrow> (u *\<^sub>R x + v *\<^sub>R y) \<in> s)"
+
+lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"
 proof- have *:"\<And>u v::real. u + v = 1 \<longleftrightarrow> u = 1 - v" by auto
   show ?thesis unfolding convex_def apply auto
     apply(erule_tac x=x in ballE) apply(erule_tac x=y in ballE) apply(erule_tac x="1 - u" in allE)
@@ -361,14 +366,14 @@
 
 lemma mem_convex:
   assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"
-  shows "((1 - u) *s a + u *s b) \<in> s"
+  shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s"
   using assms unfolding convex_alt by auto
 
 lemma convex_empty[intro]: "convex {}"
   unfolding convex_def by simp
 
 lemma convex_singleton[intro]: "convex {a}"
-  unfolding convex_def by (auto simp add:vector_sadd_rdistrib[THEN sym])
+  unfolding convex_def by (auto simp add:scaleR_left_distrib[THEN sym])
 
 lemma convex_UNIV[intro]: "convex UNIV"
   unfolding convex_def by auto
@@ -379,28 +384,30 @@
 lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"
   unfolding convex_def by auto
 
-lemma convex_halfspace_le: "convex {x. a \<bullet> x \<le> b}"
+lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
   unfolding convex_def apply auto
-  unfolding dot_radd dot_rmult by (metis real_convex_bound_le) 
-
-lemma convex_halfspace_ge: "convex {x. a \<bullet> x \<ge> b}"
-proof- have *:"{x. a \<bullet> x \<ge> b} = {x. -a \<bullet> x \<le> -b}" by auto
+  unfolding inner_add inner_scaleR
+  by (metis real_convex_bound_le)
+
+lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
+proof- have *:"{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
   show ?thesis apply(unfold *) using convex_halfspace_le[of "-a" "-b"] by auto qed
 
-lemma convex_hyperplane: "convex {x. a \<bullet> x = b}"
+lemma convex_hyperplane: "convex {x. inner a x = b}"
 proof-
-  have *:"{x. a \<bullet> x = b} = {x. a \<bullet> x \<le> b} \<inter> {x. a \<bullet> x \<ge> b}" by auto
+  have *:"{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
   show ?thesis unfolding * apply(rule convex_Int)
     using convex_halfspace_le convex_halfspace_ge by auto
 qed
 
-lemma convex_halfspace_lt: "convex {x. a \<bullet> x < b}"
-  unfolding convex_def by(auto simp add: real_convex_bound_lt dot_radd dot_rmult)
-
-lemma convex_halfspace_gt: "convex {x. a \<bullet> x > b}"
-   using convex_halfspace_lt[of "-a" "-b"] by(auto simp add: dot_lneg neg_less_iff_less)
-
-lemma convex_positive_orthant: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
+lemma convex_halfspace_lt: "convex {x. inner a x < b}"
+  unfolding convex_def
+  by(auto simp add: real_convex_bound_lt inner_add)
+
+lemma convex_halfspace_gt: "convex {x. inner a x > b}"
+   using convex_halfspace_lt[of "-a" "-b"] by auto
+
+lemma convex_positive_orthant: "convex {x::real^'n::finite. (\<forall>i. 0 \<le> x$i)}"
   unfolding convex_def apply auto apply(erule_tac x=i in allE)+
   apply(rule add_nonneg_nonneg) by(auto simp add: mult_nonneg_nonneg)
 
@@ -408,18 +415,18 @@
 
 lemma convex: "convex s \<longleftrightarrow>
   (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
-           \<longrightarrow> setsum (\<lambda>i. u i *s x i) {1..k} \<in> s)"
+           \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
   unfolding convex_def apply rule apply(rule allI)+ defer apply(rule ballI)+ apply(rule allI)+ proof(rule,rule,rule,rule)
-  fix x y u v assume as:"\<forall>(k::nat) u x. (\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *s x i) \<in> s"
+  fix x y u v assume as:"\<forall>(k::nat) u x. (\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s"
     "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
-  show "u *s x + v *s y \<in> s" using as(1)[THEN spec[where x=2], THEN spec[where x="\<lambda>n. if n=1 then u else v"], THEN spec[where x="\<lambda>n. if n=1 then x else y"]] and as(2-)
+  show "u *\<^sub>R x + v *\<^sub>R y \<in> s" using as(1)[THEN spec[where x=2], THEN spec[where x="\<lambda>n. if n=1 then u else v"], THEN spec[where x="\<lambda>n. if n=1 then x else y"]] and as(2-)
     by (auto simp add: setsum_head_Suc) 
 next
-  fix k u x assume as:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> s" 
-  show "(\<forall>i::nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *s x i) \<in> s" apply(rule,erule conjE) proof(induct k arbitrary: u)
+  fix k u x assume as:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" 
+  show "(\<forall>i::nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s" apply(rule,erule conjE) proof(induct k arbitrary: u)
   case (Suc k) show ?case proof(cases "u (Suc k) = 1")
-    case True hence "(\<Sum>i = Suc 0..k. u i *s x i) = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
-      fix i assume i:"i \<in> {Suc 0..k}" "u i *s x i \<noteq> 0"
+    case True hence "(\<Sum>i = Suc 0..k. u i *\<^sub>R x i) = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
+      fix i assume i:"i \<in> {Suc 0..k}" "u i *\<^sub>R x i \<noteq> 0"
       hence ui:"u i \<noteq> 0" by auto
       hence "setsum (\<lambda>k. if k=i then u i else 0) {1 .. k} \<le> setsum u {1 .. k}" apply(rule_tac setsum_mono) using Suc(2) by auto
       hence "setsum u {1 .. k} \<ge> u i" using i(1) by(auto simp add: setsum_delta) 
@@ -429,32 +436,32 @@
   next
     have *:"setsum u {1..k} = 1 - u (Suc k)" using Suc(3)[unfolded setsum_cl_ivl_Suc] by auto
     have **:"u (Suc k) \<le> 1" apply(rule ccontr) unfolding not_le using Suc(3) using setsum_nonneg[of "{1..k}" u] using Suc(2) by auto
-    have ***:"\<And>i k. (u i / (1 - u (Suc k))) *s x i = (inverse (1 - u (Suc k))) *s (u i *s x i)" unfolding real_divide_def by auto
+    have ***:"\<And>i k. (u i / (1 - u (Suc k))) *\<^sub>R x i = (inverse (1 - u (Suc k))) *\<^sub>R (u i *\<^sub>R x i)" unfolding real_divide_def by (auto simp add: algebra_simps)
     case False hence nn:"1 - u (Suc k) \<noteq> 0" by auto
-    have "(\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *s x i) \<in> s" apply(rule Suc(1)) unfolding setsum_divide_distrib[THEN sym] and *
+    have "(\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) \<in> s" apply(rule Suc(1)) unfolding setsum_divide_distrib[THEN sym] and *
       apply(rule_tac allI) apply(rule,rule) apply(rule divide_nonneg_pos) using nn Suc(2) ** by auto
-    hence "(1 - u (Suc k)) *s (\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *s x i) + u (Suc k) *s x (Suc k) \<in> s"
+    hence "(1 - u (Suc k)) *\<^sub>R (\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) + u (Suc k) *\<^sub>R x (Suc k) \<in> s"
       apply(rule as[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using Suc(2)[THEN spec[where x="Suc k"]] and ** by auto
-    thus ?thesis unfolding setsum_cl_ivl_Suc and *** and setsum_cmul using nn by auto qed qed auto qed
-
-
-lemma convex_explicit: "convex (s::(real^'n) set) \<longleftrightarrow>
-  (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *s x) t \<in> s)"
+    thus ?thesis unfolding setsum_cl_ivl_Suc and *** and scaleR_right.setsum [symmetric] using nn by auto qed qed auto qed
+
+
+lemma convex_explicit: "convex (s::(real^'n::finite) set) \<longleftrightarrow>
+  (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"
   unfolding convex_def apply(rule,rule,rule) apply(subst imp_conjL,rule) defer apply(rule,rule,rule,rule,rule,rule,rule) proof-
-  fix x y u v assume as:"\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *s x) \<in> s" "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
-  show "u *s x + v *s y \<in> s" proof(cases "x=y")
-    case True show ?thesis unfolding True and vector_sadd_rdistrib[THEN sym] using as(3,6) by auto next
+  fix x y u v assume as:"\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
+  show "u *\<^sub>R x + v *\<^sub>R y \<in> s" proof(cases "x=y")
+    case True show ?thesis unfolding True and scaleR_left_distrib[THEN sym] using as(3,6) by auto next
     case False thus ?thesis using as(1)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>z. if z=x then u else v"]] and as(2-) by auto qed
 next 
-  fix t u assume asm:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> s" "finite (t::(real^'n) set)"
+  fix t u assume asm:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" "finite (t::(real^'n) set)"
   (*"finite t" "t \<subseteq> s" "\<forall>x\<in>t. (0::real) \<le> u x" "setsum u t = 1"*)
-  from this(2) have "\<forall>u. t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *s x) \<in> s" apply(induct_tac t rule:finite_induct)
+  from this(2) have "\<forall>u. t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" apply(induct_tac t rule:finite_induct)
     prefer 3 apply (rule,rule) apply(erule conjE)+ proof-
-    fix x f u assume ind:"\<forall>u. f \<subseteq> s \<and> (\<forall>x\<in>f. 0 \<le> u x) \<and> setsum u f = 1 \<longrightarrow> (\<Sum>x\<in>f. u x *s x) \<in> s"
+    fix x f u assume ind:"\<forall>u. f \<subseteq> s \<and> (\<forall>x\<in>f. 0 \<le> u x) \<and> setsum u f = 1 \<longrightarrow> (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s"
     assume as:"finite f" "x \<notin> f" "insert x f \<subseteq> s" "\<forall>x\<in>insert x f. 0 \<le> u x" "setsum u (insert x f) = (1::real)"
-    show "(\<Sum>x\<in>insert x f. u x *s x) \<in> s" proof(cases "u x = 1")
-      case True hence "setsum (\<lambda>x. u x *s x) f = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
-	fix y assume y:"y \<in> f" "u y *s y \<noteq> 0"
+    show "(\<Sum>x\<in>insert x f. u x *\<^sub>R x) \<in> s" proof(cases "u x = 1")
+      case True hence "setsum (\<lambda>x. u x *\<^sub>R x) f = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
+	fix y assume y:"y \<in> f" "u y *\<^sub>R y \<noteq> 0"
 	hence uy:"u y \<noteq> 0" by auto
 	hence "setsum (\<lambda>k. if k=y then u y else 0) f \<le> setsum u f" apply(rule_tac setsum_mono) using as(4) by auto
 	hence "setsum u f \<ge> u y" using y(1) and as(1) by(auto simp add: setsum_delta) 
@@ -465,28 +472,28 @@
       have *:"setsum u f = setsum u (insert x f) - u x" using as(2) unfolding setsum_clauses(2)[OF as(1)] by auto
       have **:"u x \<le> 1" apply(rule ccontr) unfolding not_le using as(5)[unfolded setsum_clauses(2)[OF as(1)]] and as(2)
 	using setsum_nonneg[of f u] and as(4) by auto
-      case False hence "inverse (1 - u x) *s (\<Sum>x\<in>f. u x *s x) \<in> s" unfolding setsum_cmul[THEN sym] and vector_smult_assoc
+      case False hence "inverse (1 - u x) *\<^sub>R (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s" unfolding scaleR_right.setsum and scaleR_scaleR
 	apply(rule_tac ind[THEN spec, THEN mp]) apply rule defer apply rule apply rule apply(rule mult_nonneg_nonneg)
 	unfolding setsum_right_distrib[THEN sym] and * using as and ** by auto
-      hence "u x *s x + (1 - u x) *s ((inverse (1 - u x)) *s setsum (\<lambda>x. u x *s x) f) \<in>s" 
+      hence "u x *\<^sub>R x + (1 - u x) *\<^sub>R ((inverse (1 - u x)) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) f) \<in>s" 
 	apply(rule_tac asm(1)[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using as and ** False by auto 
       thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2) and False by auto qed
-  qed auto thus "t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *s x) \<in> s" by auto
+  qed auto thus "t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" by auto
 qed
 
 lemma convex_finite: assumes "finite s"
   shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1
-                      \<longrightarrow> setsum (\<lambda>x. u x *s x) s \<in> s)"
+                      \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"
   unfolding convex_explicit apply(rule, rule, rule) defer apply(rule,rule,rule)apply(erule conjE)+ proof-
-  fix t u assume as:"\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *s x) \<in> s" " finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"
+  fix t u assume as:"\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" " finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"
   have *:"s \<inter> t = t" using as(3) by auto
-  show "(\<Sum>x\<in>t. u x *s x) \<in> s" using as(1)[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]]
+  show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" using as(1)[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]]
     unfolding if_smult and setsum_cases[OF assms] and * using as(2-) by auto
 qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)
 
 subsection {* Cones. *}
 
-definition "cone (s::(real^'n) set) \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *s x) \<in> s)"
+definition "cone (s::(real^'n) set) \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)"
 
 lemma cone_empty[intro, simp]: "cone {}"
   unfolding cone_def by auto
@@ -509,43 +516,45 @@
 
 subsection {* Affine dependence and consequential theorems (from Lars Schewe). *}
 
-definition "affine_dependent (s::(real^'n) set) \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))"
+definition
+  affine_dependent :: "(real ^ 'n::finite) set \<Rightarrow> bool" where
+  "affine_dependent s \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))"
 
 lemma affine_dependent_explicit:
   "affine_dependent p \<longleftrightarrow>
     (\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and>
-    (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *s v) s = 0)"
+    (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)"
   unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq apply(rule)
   apply(erule bexE,erule exE,erule exE) apply(erule conjE)+ defer apply(erule exE,erule exE) apply(erule conjE)+ apply(erule bexE)
 proof-
-  fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x"
+  fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
   have "x\<notin>s" using as(1,4) by auto
-  show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *s v) = 0"
+  show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0"
     apply(rule_tac x="insert x s" in exI, rule_tac x="\<lambda>v. if v = x then - 1 else u v" in exI)
     unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF `x\<notin>s`] and as using as by auto 
 next
-  fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *s v) = 0" "v \<in> s" "u v \<noteq> 0"
+  fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" "v \<in> s" "u v \<noteq> 0"
   have "s \<noteq> {v}" using as(3,6) by auto
-  thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x" 
+  thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
     apply(rule_tac x=v in bexI, rule_tac x="s - {v}" in exI, rule_tac x="\<lambda>x. - (1 / u v) * u x" in exI)
-    unfolding vector_smult_assoc[THEN sym] and setsum_cmul unfolding setsum_right_distrib[THEN sym] and setsum_diff1_ring[OF as(1,5)] using as by auto
+    unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] unfolding setsum_right_distrib[THEN sym] and setsum_diff1_ring[OF as(1,5)] using as by auto
 qed
 
 lemma affine_dependent_explicit_finite:
-  assumes "finite (s::(real^'n) set)"
-  shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *s v) s = 0)"
+  assumes "finite (s::(real^'n::finite) set)"
+  shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)"
   (is "?lhs = ?rhs")
 proof
-  have *:"\<And>vt u v. (if vt then u v else 0) *s v = (if vt then (u v) *s v else (0::real^'n))" by auto
+  have *:"\<And>vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else (0::real^'n))" by auto
   assume ?lhs
-  then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0"  "(\<Sum>v\<in>t. u v *s v) = 0"
+  then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0"  "(\<Sum>v\<in>t. u v *\<^sub>R v) = 0"
     unfolding affine_dependent_explicit by auto
   thus ?rhs apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)
     apply auto unfolding * and setsum_restrict_set[OF assms, THEN sym]
     unfolding Int_absorb2[OF `t\<subseteq>s`, unfolded Int_commute] by auto
 next
   assume ?rhs
-  then obtain u v where "setsum u s = 0"  "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *s v) = 0" by auto
+  then obtain u v where "setsum u s = 0"  "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" by auto
   thus ?lhs unfolding affine_dependent_explicit using assms by auto
 qed
 
@@ -560,24 +569,24 @@
     hence n:"norm (x1 - x2) > 0" unfolding zero_less_norm_iff using as(3) by auto
 
     { fix x e::real assume as:"0 \<le> x" "x \<le> 1" "0 < e"
-      { fix y have *:"(1 - x) *s x1 + x *s x2 - ((1 - y) *s x1 + y *s x2) = (y - x) *s x1 - (y - x) *s x2"
-	  by(simp add: ring_simps vector_sadd_rdistrib vector_sub_rdistrib)
+      { fix y have *:"(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2) = (y - x) *\<^sub>R x1 - (y - x) *\<^sub>R x2"
+          by (simp add: algebra_simps)
 	assume "\<bar>y - x\<bar> < e / norm (x1 - x2)"
-	hence "norm ((1 - x) *s x1 + x *s x2 - ((1 - y) *s x1 + y *s x2)) < e"
-	  unfolding * and vector_ssub_ldistrib[THEN sym] and norm_mul 
+	hence "norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e"
+	  unfolding * and scaleR_right_diff_distrib[THEN sym]
 	  unfolding less_divide_eq using n by auto  }
-      hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *s x1 + x *s x2 - ((1 - y) *s x1 + y *s x2)) < e"
+      hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e"
 	apply(rule_tac x="e / norm (x1 - x2)" in exI) using as
 	apply auto unfolding zero_less_divide_iff using n by simp  }  note * = this
 
-    have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *s x1 + x *s x2 \<notin> e1 \<and> (1 - x) *s x1 + x *s x2 \<notin> e2"
+    have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2"
       apply(rule connected_real_lemma) apply (simp add: `x1\<in>e1` `x2\<in>e2` dist_commute)+
       using * apply(simp add: dist_norm)
       using as(1,2)[unfolded open_dist] apply simp
       using as(1,2)[unfolded open_dist] apply simp
       using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] using x1 x2
       using as(3) by auto
-    then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *s x1 + x *s x2 \<notin> e1"  "(1 - x) *s x1 + x *s x2 \<notin> e2" by auto
+    then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1"  "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" by auto
     hence False using as(4) 
       using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]]
       using x1(2) x2(2) by auto  }
@@ -592,7 +601,7 @@
 subsection {* Convex functions into the reals. *}
 
 definition "convex_on s (f::real^'n \<Rightarrow> real) = 
-  (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *s x + v *s y) \<le> u * f x + v * f y)"
+  (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
 
 lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"
   unfolding convex_on_def by auto
@@ -603,11 +612,11 @@
 proof-
   { fix x y assume "x\<in>s" "y\<in>s" moreover
     fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
-    ultimately have "f (u *s x + v *s y) + g (u *s x + v *s y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
+    ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
       using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
       using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
       apply - apply(rule add_mono) by auto
-    hence "f (u *s x + v *s y) + g (u *s x + v *s y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: ring_simps)  }
+    hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: ring_simps)  }
   thus ?thesis unfolding convex_on_def by auto 
 qed
 
@@ -621,7 +630,7 @@
 
 lemma convex_lower:
   assumes "convex_on s f"  "x\<in>s"  "y \<in> s"  "0 \<le> u"  "0 \<le> v"  "u + v = 1"
-  shows "f (u *s x + v *s y) \<le> max (f x) (f y)"
+  shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)"
 proof-
   let ?m = "max (f x) (f y)"
   have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" apply(rule add_mono) 
@@ -642,13 +651,13 @@
 
   then obtain u where "0 < u" "u \<le> 1" and u:"u < e / dist x y"
     using real_lbound_gt_zero[of 1 "e / dist x y"] using xy `e>0` and divide_pos_pos[of e "dist x y"] by auto
-  hence "f ((1-u) *s x + u *s y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s`
+  hence "f ((1-u) *\<^sub>R x + u *\<^sub>R y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s`
     using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]] by auto
   moreover
-  have *:"x - ((1 - u) *s x + u *s y) = u *s (x - y)" by (simp add: vector_ssub_ldistrib vector_sub_rdistrib)
-  have "(1 - u) *s x + u *s y \<in> ball x e" unfolding mem_ball dist_norm unfolding * and norm_mul and abs_of_pos[OF `0<u`] unfolding dist_norm[THEN sym]
+  have *:"x - ((1 - u) *\<^sub>R x + u *\<^sub>R y) = u *\<^sub>R (x - y)" by (simp add: algebra_simps)
+  have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> ball x e" unfolding mem_ball dist_norm unfolding * and norm_scaleR and abs_of_pos[OF `0<u`] unfolding dist_norm[THEN sym]
     using u unfolding pos_less_divide_eq[OF xy] by auto
-  hence "f x \<le> f ((1 - u) *s x + u *s y)" using assms(4) by auto
+  hence "f x \<le> f ((1 - u) *\<^sub>R x + u *\<^sub>R y)" using assms(4) by auto
   ultimately show False using mult_strict_left_mono[OF y `u>0`] unfolding left_diff_distrib by auto
 qed
 
@@ -656,31 +665,32 @@
 proof(auto simp add: convex_on_def dist_norm)
   fix x y assume "x\<in>s" "y\<in>s"
   fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
-  have "a = u *s a + v *s a" unfolding vector_sadd_rdistrib[THEN sym] and `u+v=1` by simp
-  hence *:"a - (u *s x + v *s y) = (u *s (a - x)) + (v *s (a - y))" by auto
-  show "norm (a - (u *s x + v *s y)) \<le> u * norm (a - x) + v * norm (a - y)"
-    unfolding * using norm_triangle_ineq[of "u *s (a - x)" "v *s (a - y)"] unfolding norm_mul
+  have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp
+  hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
+    by (auto simp add: algebra_simps)
+  show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"
+    unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]
     using `0 \<le> u` `0 \<le> v` by auto
 qed
 
 subsection {* Arithmetic operations on sets preserve convexity. *}
 
-lemma convex_scaling: "convex s \<Longrightarrow> convex ((\<lambda>x. c *s x) ` s)"
+lemma convex_scaling: "convex s \<Longrightarrow> convex ((\<lambda>x. c *\<^sub>R x) ` s)"
   unfolding convex_def and image_iff apply auto
-  apply (rule_tac x="u *s x+v *s y" in bexI) by (auto simp add: field_simps)
+  apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by (auto simp add: algebra_simps)
 
 lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)"
   unfolding convex_def and image_iff apply auto
-  apply (rule_tac x="u *s x+v *s y" in bexI) by auto
+  apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by auto
 
 lemma convex_sums:
   assumes "convex s" "convex t"
   shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
-proof(auto simp add: convex_def image_iff)
+proof(auto simp add: convex_def image_iff scaleR_right_distrib)
   fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t"
   fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
-  show "\<exists>x y. u *s xa + u *s ya + (v *s xb + v *s yb) = x + y \<and> x \<in> s \<and> y \<in> t"
-    apply(rule_tac x="u *s xa + v *s xb" in exI) apply(rule_tac x="u *s ya + v *s yb" in exI)
+  show "\<exists>x y. u *\<^sub>R xa + u *\<^sub>R ya + (v *\<^sub>R xb + v *\<^sub>R yb) = x + y \<and> x \<in> s \<and> y \<in> t"
+    apply(rule_tac x="u *\<^sub>R xa + v *\<^sub>R xb" in exI) apply(rule_tac x="u *\<^sub>R ya + v *\<^sub>R yb" in exI)
     using assms(1)[unfolded convex_def, THEN bspec[where x=xa], THEN bspec[where x=xb]]
     using assms(2)[unfolded convex_def, THEN bspec[where x=ya], THEN bspec[where x=yb]]
     using uv xy by auto
@@ -700,17 +710,17 @@
 proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
   thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed
 
-lemma convex_affinity: assumes "convex (s::(real^'n) set)" shows "convex ((\<lambda>x. a + c *s x) ` s)"
-proof- have "(\<lambda>x. a + c *s x) ` s = op + a ` op *s c ` s" by auto
+lemma convex_affinity: assumes "convex (s::(real^'n::finite) set)" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"
+proof- have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto
   thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed
 
 lemma convex_linear_image: assumes c:"convex s" and l:"linear f" shows "convex(f ` s)"
 proof(auto simp add: convex_def)
   fix x y assume xy:"x \<in> s" "y \<in> s"
   fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
-  show "u *s f x + v *s f y \<in> f ` s" unfolding image_iff
-    apply(rule_tac x="u *s x + v *s y" in bexI)
-    unfolding linear_add[OF l] linear_cmul[OF l] 
+  show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff
+    apply(rule_tac x="u *\<^sub>R x + v *\<^sub>R y" in bexI)
+    unfolding linear_add[OF l] linear_cmul[OF l, unfolded smult_conv_scaleR] 
     using c[unfolded convex_def] xy uv by auto
 qed
 
@@ -720,18 +730,18 @@
 proof(auto simp add: convex_def)
   fix y z assume yz:"dist x y < e" "dist x z < e"
   fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
-  have "dist x (u *s y + v *s z) \<le> u * dist x y + v * dist x z" using uv yz
+  have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz
     using convex_distance[of "ball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto
-  thus "dist x (u *s y + v *s z) < e" using real_convex_bound_lt[OF yz uv] by auto 
+  thus "dist x (u *\<^sub>R y + v *\<^sub>R z) < e" using real_convex_bound_lt[OF yz uv] by auto 
 qed
 
 lemma convex_cball: "convex(cball x e)"
 proof(auto simp add: convex_def Ball_def mem_cball)
   fix y z assume yz:"dist x y \<le> e" "dist x z \<le> e"
   fix u v ::real assume uv:" 0 \<le> u" "0 \<le> v" "u + v = 1"
-  have "dist x (u *s y + v *s z) \<le> u * dist x y + v * dist x z" using uv yz
+  have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz
     using convex_distance[of "cball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto
-  thus "dist x (u *s y + v *s z) \<le> e" using real_convex_bound_le[OF yz uv] by auto 
+  thus "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> e" using real_convex_bound_le[OF yz uv] by auto 
 qed
 
 lemma connected_ball: "connected(ball (x::real^_) e)" (* FIXME: generalize *)
@@ -770,14 +780,14 @@
 lemma convex_hull_insert:
   assumes "s \<noteq> {}"
   shows "convex hull (insert a s) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and>
-                                    b \<in> (convex hull s) \<and> (x = u *s a + v *s b)}" (is "?xyz = ?hull")
+                                    b \<in> (convex hull s) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}" (is "?xyz = ?hull")
  apply(rule,rule hull_minimal,rule) unfolding mem_def[of _ convex] and insert_iff prefer 3 apply rule proof-
  fix x assume x:"x = a \<or> x \<in> s"
  thus "x\<in>?hull" apply rule unfolding mem_Collect_eq apply(rule_tac x=1 in exI) defer 
    apply(rule_tac x=0 in exI) using assms hull_subset[of s convex] by auto
 next
   fix x assume "x\<in>?hull"
-  then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *s a + v *s b" by auto
+  then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *\<^sub>R a + v *\<^sub>R b" by auto
   have "a\<in>convex hull insert a s" "b\<in>convex hull insert a s"
     using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4) by auto
   thus "x\<in> convex hull insert a s" unfolding obt(5) using convex_convex_hull[of "insert a s", unfolded convex_def]
@@ -785,16 +795,16 @@
 next
   show "convex ?hull" unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof-
     fix x y u v assume as:"(0::real) \<le> u" "0 \<le> v" "u + v = 1" "x\<in>?hull" "y\<in>?hull"
-    from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *s a + v1 *s b1" by auto
-    from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *s a + v2 *s b2" by auto
-    have *:"\<And>x s1 s2. x - s1 *s x - s2 *s x = ((1::real) - (s1 + s2)) *s x" by auto
-    have "\<exists>b \<in> convex hull s. u *s x + v *s y = (u * u1) *s a + (v * u2) *s a + (b - (u * u1) *s b - (v * u2) *s b)"
+    from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *\<^sub>R a + v1 *\<^sub>R b1" by auto
+    from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *\<^sub>R a + v2 *\<^sub>R b2" by auto
+    have *:"\<And>(x::real^_) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps)
+    have "\<exists>b \<in> convex hull s. u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)"
     proof(cases "u * v1 + v * v2 = 0")
-      have *:"\<And>x s1 s2. x - s1 *s x - s2 *s x = ((1::real) - (s1 + s2)) *s x" by auto
+      have *:"\<And>(x::real^_) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps)
       case True hence **:"u * v1 = 0" "v * v2 = 0" apply- apply(rule_tac [!] ccontr)
 	using mult_nonneg_nonneg[OF `u\<ge>0` `v1\<ge>0`] mult_nonneg_nonneg[OF `v\<ge>0` `v2\<ge>0`] by auto
       hence "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto
-      thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: **) 
+      thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: ** scaleR_right_distrib)
     next
       have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps)
       also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) 
@@ -803,9 +813,10 @@
 	apply(rule add_nonneg_nonneg) prefer 4 apply(rule add_nonneg_nonneg) apply(rule_tac [!] mult_nonneg_nonneg)
 	using as(1,2) obt1(1,2) obt2(1,2) by auto 
       thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False
-	apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *s b1 + ((v * v2) / (u * v1 + v * v2)) *s b2" in bexI) defer
+	apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2" in bexI) defer
 	apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4)
-	unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff by auto
+	unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff
+        by (auto simp add: scaleR_left_distrib scaleR_right_distrib)
     qed note * = this
     have u1:"u1 \<le> 1" apply(rule ccontr) unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto
     have u2:"u2 \<le> 1" apply(rule ccontr) unfolding obt2(3)[THEN sym] and not_le using obt2(2) by auto
@@ -813,9 +824,9 @@
       apply(rule_tac [!] mult_right_mono) using as(1,2) obt1(1,2) obt2(1,2) by auto
     also have "\<dots> \<le> 1" unfolding mult.add_right[THEN sym] and as(3) using u1 u2 by auto
     finally 
-    show "u *s x + v *s y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI)
+    show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI)
       apply(rule conjI) defer apply(rule_tac x="1 - u * u1 - v * u2" in exI) unfolding Bex_def
-      using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add:field_simps)
+      using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add: algebra_simps)
   qed
 qed
 
@@ -825,7 +836,7 @@
 lemma convex_hull_indexed:
   "convex hull s = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> s) \<and>
                             (setsum u {1..k} = 1) \<and>
-                            (setsum (\<lambda>i. u i *s x i) {1..k} = y)}" (is "?xyz = ?hull")
+                            (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} = y)}" (is "?xyz = ?hull")
   apply(rule hull_unique) unfolding mem_def[of _ convex] apply(rule) defer
   apply(subst convex_def) apply(rule,rule,rule,rule,rule,rule,rule)
 proof-
@@ -834,22 +845,22 @@
 next
   fix t assume as:"s \<subseteq> t" "convex t"
   show "?hull \<subseteq> t" apply(rule) unfolding mem_Collect_eq apply(erule exE | erule conjE)+ proof-
-    fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *s y i) = x"
+    fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
     show "x\<in>t" unfolding assm(3)[THEN sym] apply(rule as(2)[unfolded convex, rule_format])
       using assm(1,2) as(1) by auto qed
 next
   fix x y u v assume uv:"0\<le>u" "0\<le>v" "u+v=(1::real)" and xy:"x\<in>?hull" "y\<in>?hull"
-  from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *s x1 i) = x" by auto
-  from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *s x2 i) = y" by auto
-  have *:"\<And>P x1 x2 s1 s2 i.(if P i then s1 else s2) *s (if P i then x1 else x2) = (if P i then s1 *s x1 else s2 *s x2)"
+  from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x" by auto
+  from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y" by auto
+  have *:"\<And>P x1 x2 s1 s2 i.(if P i then s1 else s2) *\<^sub>R (if P i then x1 else x2) = (if P i then s1 *\<^sub>R x1 else s2 *\<^sub>R x2)"
     "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}"
     prefer 3 apply(rule,rule) unfolding image_iff apply(rule_tac x="x - k1" in bexI) by(auto simp add: not_le)
   have inj:"inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto  
-  show "u *s x + v *s y \<in> ?hull" apply(rule)
+  show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" apply(rule)
     apply(rule_tac x="k1 + k2" in exI, rule_tac x="\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" in exI)
     apply(rule_tac x="\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" in exI) apply(rule,rule) defer apply(rule)
     unfolding * and setsum_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and setsum_reindex[OF inj] and o_def
-    unfolding vector_smult_assoc[THEN sym] setsum_cmul setsum_right_distrib[THEN sym] proof-
+    unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] setsum_right_distrib[THEN sym] proof-
     fix i assume i:"i \<in> {1..k1+k2}"
     show "0 \<le> (if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)) \<and> (if i \<in> {1..k1} then x1 i else x2 (i - k1)) \<in> s"
     proof(cases "i\<in>{1..k1}")
@@ -862,11 +873,11 @@
 qed
 
 lemma convex_hull_finite:
-  assumes "finite (s::(real^'n)set)"
+  assumes "finite (s::(real^'n::finite)set)"
   shows "convex hull s = {y. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and>
-         setsum u s = 1 \<and> setsum (\<lambda>x. u x *s x) s = y}" (is "?HULL = ?set")
+         setsum u s = 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y}" (is "?HULL = ?set")
 proof(rule hull_unique, auto simp add: mem_def[of _ convex] convex_def[of ?set])
-  fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *s x) = x" 
+  fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *\<^sub>R x) = x" 
     apply(rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) apply auto
     unfolding setsum_delta'[OF assms] and setsum_delta''[OF assms] by auto 
 next
@@ -878,14 +889,14 @@
       by (auto, metis add_nonneg_nonneg mult_nonneg_nonneg uv(1) uv(2))  }
   moreover have "(\<Sum>x\<in>s. u * ux x + v * uy x) = 1"
     unfolding setsum_addf and setsum_right_distrib[THEN sym] and ux(2) uy(2) using uv(3) by auto
-  moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *s x) = u *s (\<Sum>x\<in>s. ux x *s x) + v *s (\<Sum>x\<in>s. uy x *s x)"
-    unfolding vector_sadd_rdistrib and setsum_addf and vector_smult_assoc[THEN sym] and setsum_cmul by auto
-  ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *s x) = u *s (\<Sum>x\<in>s. ux x *s x) + v *s (\<Sum>x\<in>s. uy x *s x)"
+  moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)"
+    unfolding scaleR_left_distrib and setsum_addf and scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] by auto
+  ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)"
     apply(rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI) by auto 
 next
   fix t assume t:"s \<subseteq> t" "convex t" 
   fix u assume u:"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = (1::real)"
-  thus "(\<Sum>x\<in>s. u x *s x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]]
+  thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]]
     using assms and t(1) by auto
 qed
 
@@ -893,10 +904,10 @@
 
 lemma convex_hull_explicit:
   "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and>
-             (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *s v) s = y}" (is "?lhs = ?rhs")
+             (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" (is "?lhs = ?rhs")
 proof-
   { fix x assume "x\<in>?lhs"
-    then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *s y i) = x"
+    then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
       unfolding convex_hull_indexed by auto
 
     have fin:"finite {1..k}" by auto
@@ -908,16 +919,16 @@
     moreover
     have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v}) = 1"  
       unfolding setsum_image_gen[OF fin, THEN sym] using obt(2) by auto
-    moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *s v) = x"
-      using setsum_image_gen[OF fin, of "\<lambda>i. u i *s y i" y, THEN sym]
-      unfolding setsum_vmul[OF fin']  using obt(3) by auto
-    ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x"
+    moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *\<^sub>R v) = x"
+      using setsum_image_gen[OF fin, of "\<lambda>i. u i *\<^sub>R y i" y, THEN sym]
+      unfolding scaleR_left.setsum using obt(3) by auto
+    ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
       apply(rule_tac x="y ` {1..k}" in exI)
       apply(rule_tac x="\<lambda>v. setsum u {i\<in>{1..k}. y i = v}" in exI) by auto
     hence "x\<in>?rhs" by auto  }
   moreover
   { fix y assume "y\<in>?rhs"
-    then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = y" by auto
+    then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto
 
     obtain f where f:"inj_on f {1..card s}" "f ` {1..card s} = s" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
     
@@ -929,14 +940,14 @@
       then obtain i where "i\<in>{1..card s}" "f i = y" using f using image_iff[of y f "{1..card s}"] by auto
       hence "{x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = {i}" apply auto using f(1)[unfolded inj_on_def] apply(erule_tac x=x in ballE) by auto
       hence "card {x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = 1" by auto
-      hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y" "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *s f x) = u y *s y" by auto   }
-
-    hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *s f i) = y"
-      unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *s f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f] 
-      unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *s f x)" "\<lambda>v. u v *s v"]
+      hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y" "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y" by auto   }
+
+    hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *\<^sub>R f i) = y"
+      unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *\<^sub>R f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f] 
+      unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x)" "\<lambda>v. u v *\<^sub>R v"]
       using setsum_cong2 [of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto
     
-    ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *s x i) = y"
+    ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y"
       apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp
     hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto  }
   ultimately show ?thesis unfolding expand_set_eq by blast
@@ -946,24 +957,24 @@
 
 lemma convex_hull_finite_step:
   assumes "finite (s::(real^'n) set)"
-  shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *s x) (insert a s) = y)
-     \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *s x) s = y - v *s a)" (is "?lhs = ?rhs")
+  shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y)
+     \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?lhs = ?rhs")
 proof(rule, case_tac[!] "a\<in>s")
   assume "a\<in>s" hence *:"insert a s = s" by auto
   assume ?lhs thus ?rhs unfolding * apply(rule_tac x=0 in exI) by auto
 next
-  assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *s x) = y" by auto
+  assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto
   assume "a\<notin>s" thus ?rhs apply(rule_tac x="u a" in exI) using u(1)[THEN bspec[where x=a]] apply simp
     apply(rule_tac x=u in exI) using u[unfolded setsum_clauses(2)[OF assms]] and `a\<notin>s` by auto
 next
   assume "a\<in>s" hence *:"insert a s = s" by auto
   have fin:"finite (insert a s)" using assms by auto
-  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *s x) = y - v *s a" by auto
-  show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding vector_sadd_rdistrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin]
+  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto
+  show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding scaleR_left_distrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin]
     unfolding setsum_clauses(2)[OF assms] using uv and uv(2)[THEN bspec[where x=a]] and `a\<in>s` by auto
 next
-  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *s x) = y - v *s a" by auto
-  moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *s x) = (\<Sum>x\<in>s. u x *s x)"
+  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto
+  moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *\<^sub>R x) = (\<Sum>x\<in>s. u x *\<^sub>R x)"
     apply(rule_tac setsum_cong2) defer apply(rule_tac setsum_cong2) using `a\<notin>s` by auto
   ultimately show ?lhs apply(rule_tac x="\<lambda>x. if a = x then v else u x" in exI)  unfolding setsum_clauses(2)[OF assms] by auto
 qed
@@ -971,20 +982,20 @@
 subsection {* Hence some special cases. *}
 
 lemma convex_hull_2:
-  "convex hull {a,b} = {u *s a + v *s b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
+  "convex hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
 proof- have *:"\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b" by auto have **:"finite {b}" by auto
 show ?thesis apply(simp add: convex_hull_finite) unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc]
   apply auto apply(rule_tac x=v in exI) apply(rule_tac x="1 - v" in exI) apply simp
   apply(rule_tac x=u in exI) apply simp apply(rule_tac x="\<lambda>x. v" in exI) by simp qed
 
-lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *s (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
+lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
   unfolding convex_hull_2 unfolding Collect_def 
 proof(rule ext) have *:"\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto
-  fix x show "(\<exists>v u. x = v *s a + u *s b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *s (b - a) \<and> 0 \<le> u \<and> u \<le> 1)"
-    unfolding * apply auto apply(rule_tac[!] x=u in exI) by auto qed
+  fix x show "(\<exists>v u. x = v *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *\<^sub>R (b - a) \<and> 0 \<le> u \<and> u \<le> 1)"
+    unfolding * apply auto apply(rule_tac[!] x=u in exI) by (auto simp add: algebra_simps) qed
 
 lemma convex_hull_3:
-  "convex hull {a::real^'n,b,c} = { u *s a + v *s b + w *s c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
+  "convex hull {a::real^'n::finite,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
 proof-
   have fin:"finite {a,b,c}" "finite {b,c}" "finite {c}" by auto
   have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z"
@@ -995,15 +1006,15 @@
     apply(rule_tac x="1 - v - w" in exI) apply simp apply(rule_tac x=v in exI) apply simp apply(rule_tac x="\<lambda>x. w" in exI) by simp qed
 
 lemma convex_hull_3_alt:
-  "convex hull {a,b,c} = {a + u *s (b - a) + v *s (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
+  "convex hull {a,b,c} = {a + u *\<^sub>R (b - a) + v *\<^sub>R (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
 proof- have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto
-  show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply simp
-    apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by simp qed
+  show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply (simp add: algebra_simps)
+    apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by (simp add: algebra_simps) qed
 
 subsection {* Relations among closure notions and corresponding hulls. *}
 
 lemma subspace_imp_affine: "subspace s \<Longrightarrow> affine s"
-  unfolding subspace_def affine_def by auto
+  unfolding subspace_def affine_def smult_conv_scaleR by auto
 
 lemma affine_imp_convex: "affine s \<Longrightarrow> convex s"
   unfolding affine_def convex_def by auto
@@ -1031,8 +1042,8 @@
   assumes "dependent {x - a| x . x \<in> s}" "a \<notin> s"
   shows "affine_dependent (insert a s)"
 proof-
-  from assms(1)[unfolded dependent_explicit] obtain S u v 
-    where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *s v) = 0" by auto
+  from assms(1)[unfolded dependent_explicit smult_conv_scaleR] obtain S u v 
+    where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by auto
   def t \<equiv> "(\<lambda>x. x + a) ` S"
 
   have inj:"inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto
@@ -1046,24 +1057,24 @@
     unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` apply auto unfolding * by auto
   moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0"
     apply(rule_tac x="v + a" in bexI) using obt(3,4) and `0\<notin>S` unfolding t_def by auto
-  moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *s x) = (\<Sum>x\<in>t. Q x *s x)"
+  moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *\<^sub>R x) = (\<Sum>x\<in>t. Q x *\<^sub>R x)"
     apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto
-  have "(\<Sum>x\<in>t. u (x - a)) *s a = (\<Sum>v\<in>t. u (v - a) *s v)" 
-    unfolding setsum_vmul[OF fin(1)] unfolding t_def and setsum_reindex[OF inj] and o_def
-    using obt(5) by (auto simp add: setsum_addf)
-  hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *s v) = 0"
+  have "(\<Sum>x\<in>t. u (x - a)) *\<^sub>R a = (\<Sum>v\<in>t. u (v - a) *\<^sub>R v)" 
+    unfolding scaleR_left.setsum unfolding t_def and setsum_reindex[OF inj] and o_def
+    using obt(5) by (auto simp add: setsum_addf scaleR_right_distrib)
+  hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0"
     unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` by (auto simp add: *  vector_smult_lneg) 
   ultimately show ?thesis unfolding affine_dependent_explicit
     apply(rule_tac x="insert a t" in exI) by auto 
 qed
 
 lemma convex_cone:
-  "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *s x) \<in> s)" (is "?lhs = ?rhs")
+  "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" (is "?lhs = ?rhs")
 proof-
   { fix x y assume "x\<in>s" "y\<in>s" and ?lhs
-    hence "2 *s x \<in>s" "2 *s y \<in> s" unfolding cone_def by auto
+    hence "2 *\<^sub>R x \<in>s" "2 *\<^sub>R y \<in> s" unfolding cone_def by auto
     hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1]
-      apply(erule_tac x="2*s x" in ballE) apply(erule_tac x="2*s y" in ballE)
+      apply(erule_tac x="2*\<^sub>R x" in ballE) apply(erule_tac x="2*\<^sub>R y" in ballE)
       apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto  }
   thus ?thesis unfolding convex_def cone_def by blast
 qed
@@ -1104,20 +1115,20 @@
 
 lemma convex_hull_caratheodory: fixes p::"(real^'n::finite) set"
   shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and>
-  (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *s v) s = y}"
+  (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
   unfolding convex_hull_explicit expand_set_eq mem_Collect_eq
 proof(rule,rule)
-  fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y"
-  assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y"
+  fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
+  assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
   then obtain N where "?P N" by auto
   hence "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" apply(rule_tac ex_least_nat_le) by auto
   then obtain n where "?P n" and smallest:"\<forall>k<n. \<not> ?P k" by blast
-  then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1"  "(\<Sum>v\<in>s. u v *s v) = y" by auto
+  then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1"  "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto
 
   have "card s \<le> CARD('n) + 1" proof(rule ccontr, simp only: not_le)
     assume "CARD('n) + 1 < card s"
     hence "affine_dependent s" using affine_dependent_biggerset[OF obt(1)] by auto
-    then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *s v) = 0"
+    then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *\<^sub>R v) = 0"
       using affine_dependent_explicit_finite[OF obt(1)] by auto
     def i \<equiv> "(\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}"  def t \<equiv> "Min i"
     have "\<exists>x\<in>s. w x < 0" proof(rule ccontr, simp add: not_less)
@@ -1147,15 +1158,15 @@
     have *:"\<And>f. setsum f (s - {a}) = setsum f s - ((f a)::'a::ring)" unfolding setsum_diff1'[OF obt(1) `a\<in>s`] by auto 
     have "(\<Sum>v\<in>s. u v + t * w v) = 1"
       unfolding setsum_addf wv(1) setsum_right_distrib[THEN sym] obt(5) by auto
-    moreover have "(\<Sum>v\<in>s. u v *s v + (t * w v) *s v) - (u a *s a + (t * w a) *s a) = y" 
-      unfolding setsum_addf obt(6) vector_smult_assoc[THEN sym] setsum_cmul wv(4)
+    moreover have "(\<Sum>v\<in>s. u v *\<^sub>R v + (t * w v) *\<^sub>R v) - (u a *\<^sub>R a + (t * w a) *\<^sub>R a) = y" 
+      unfolding setsum_addf obt(6) scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] wv(4)
       using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]]
       by (simp add: vector_smult_lneg)
     ultimately have "?P (n - 1)" apply(rule_tac x="(s - {a})" in exI)
-      apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a by (auto simp add: *)
+      apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a by (auto simp add: * scaleR_left_distrib)
     thus False using smallest[THEN spec[where x="n - 1"]] by auto qed
   thus "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1
-    \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y" using obt by auto
+    \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" using obt by auto
 qed auto
 
 lemma caratheodory:
@@ -1164,7 +1175,7 @@
   unfolding expand_set_eq apply(rule, rule) unfolding mem_Collect_eq proof-
   fix x assume "x \<in> convex hull p"
   then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1"
-     "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x"unfolding convex_hull_caratheodory by auto
+     "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"unfolding convex_hull_caratheodory by auto
   thus "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
     apply(rule_tac x=s in exI) using hull_subset[of s convex]
   using convex_convex_hull[unfolded convex_explicit, of s, THEN spec[where x=s], THEN spec[where x=u]] by auto
@@ -1181,14 +1192,14 @@
   shows "open(convex hull s)"
   unfolding open_contains_cball convex_hull_explicit unfolding mem_Collect_eq ball_simps(10) 
 proof(rule, rule) fix a
-  assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = a"
-  then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *s v) = a" by auto
+  assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = a"
+  then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = a" by auto
 
   from assms[unfolded open_contains_cball] obtain b where b:"\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s"
     using bchoice[of s "\<lambda>x e. e>0 \<and> cball x e \<subseteq> s"] by auto
   have "b ` t\<noteq>{}" unfolding i_def using obt by auto  def i \<equiv> "b ` t"
 
-  show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = y}"
+  show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y}"
     apply(rule_tac x="Min i" in exI) unfolding subset_eq apply rule defer apply rule unfolding mem_Collect_eq
   proof-
     show "0 < Min i" unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] `b \` t\<noteq>{}`]
@@ -1204,41 +1215,65 @@
     have *:"inj_on (\<lambda>v. v + (y - a)) t" unfolding inj_on_def by auto
     have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a))) = 1"
       unfolding setsum_reindex[OF *] o_def using obt(4) by auto
-    moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *s v) = y"
+    moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *\<^sub>R v) = y"
       unfolding setsum_reindex[OF *] o_def using obt(4,5)
-      by (simp add: setsum_addf setsum_subtractf setsum_vmul[OF obt(1), THEN sym]) 
-    ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = y"
+      by (simp add: setsum_addf setsum_subtractf scaleR_left.setsum[THEN sym] scaleR_right_distrib)
+    ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"
       apply(rule_tac x="(\<lambda>v. v + (y - a)) ` t" in exI) apply(rule_tac x="\<lambda>v. u (v - (y - a))" in exI)
       using obt(1, 3) by auto
   qed
 qed
 
+lemma open_dest_vec1_vimage: "open S \<Longrightarrow> open (dest_vec1 -` S)"
+unfolding open_vector_def all_1
+by (auto simp add: dest_vec1_def)
+
+lemma tendsto_dest_vec1 [tendsto_intros]:
+  "(f ---> l) net \<Longrightarrow> ((\<lambda>x. dest_vec1 (f x)) ---> dest_vec1 l) net"
+  unfolding tendsto_def
+  apply clarify
+  apply (drule_tac x="dest_vec1 -` S" in spec)
+  apply (simp add: open_dest_vec1_vimage)
+  done
+
+lemma continuous_dest_vec1: "continuous net f \<Longrightarrow> continuous net (\<lambda>x. dest_vec1 (f x))"
+  unfolding continuous_def by (rule tendsto_dest_vec1)
+
+(* TODO: move *)
+lemma compact_real_interval:
+  fixes a b :: real shows "compact {a..b}"
+proof -
+  have "continuous_on {vec1 a .. vec1 b} dest_vec1"
+    unfolding continuous_on
+    by (simp add: tendsto_dest_vec1 Lim_at_within Lim_ident_at)
+  moreover have "compact {vec1 a .. vec1 b}" by (rule compact_interval)
+  ultimately have "compact (dest_vec1 ` {vec1 a .. vec1 b})"
+    by (rule compact_continuous_image)
+  also have "dest_vec1 ` {vec1 a .. vec1 b} = {a..b}"
+    by (auto simp add: image_def Bex_def exists_vec1)
+  finally show ?thesis .
+qed
 
 lemma compact_convex_combinations:
-  fixes s t :: "(real ^ _) set"
+  fixes s t :: "(real ^ 'n::finite) set"
   assumes "compact s" "compact t"
-  shows "compact { (1 - u) *s x + u *s y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}"
+  shows "compact { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}"
 proof-
-  let ?X = "{ pastecart u w | u w. u \<in> {vec1 0 .. vec1 1} \<and> w \<in> { pastecart x y |x y. x \<in> s \<and> y \<in> t} }"
-  let ?h = "(\<lambda>z. (1 - dest_vec1(fstcart z)) *s fstcart(sndcart z) + dest_vec1(fstcart z) *s sndcart(sndcart z))"
-  have *:"{ (1 - u) *s x + u *s y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
-    apply(rule set_ext) unfolding image_iff mem_Collect_eq unfolding mem_interval_1 vec1_dest_vec1
-    apply rule apply auto apply(rule_tac x="pastecart (vec1 u) (pastecart xa y)" in exI) apply simp
-    apply(rule_tac x="vec1 u" in exI) apply(rule_tac x="pastecart xa y" in exI) by auto 
-  { fix u::"real^1" fix x y assume as:"0 \<le> dest_vec1 u" "dest_vec1 u \<le> 1" "x \<in> s" "y \<in> t"
-    hence "continuous (at (pastecart u (pastecart x y)))
-           (\<lambda>z. fstcart (sndcart z) - dest_vec1 (fstcart z) *s fstcart (sndcart z) +
-                dest_vec1 (fstcart z) *s sndcart (sndcart z))"
-      apply (auto intro!: continuous_add continuous_sub continuous_mul simp add: o_def vec1_dest_vec1)
-      using linear_continuous_at linear_fstcart linear_sndcart linear_sndcart
-      using linear_compose[unfolded o_def] by auto }
-  hence "continuous_on {pastecart u w |u w. u \<in> {vec1 0..vec1 1} \<and> w \<in> {pastecart x y |x y. x \<in> s \<and> y \<in> t}}
-     (\<lambda>z. (1 - dest_vec1 (fstcart z)) *s fstcart (sndcart z) + dest_vec1 (fstcart z) *s sndcart (sndcart z))"
-    apply(rule_tac continuous_at_imp_continuous_on) unfolding mem_Collect_eq
-    unfolding mem_interval_1 vec1_dest_vec1 by auto
- thus ?thesis unfolding * apply(rule compact_continuous_image)
-    defer apply(rule compact_pastecart) defer apply(rule compact_pastecart)
-    using compact_interval assms by auto
+  let ?X = "{0..1} \<times> s \<times> t"
+  let ?h = "(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))"
+  have *:"{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
+    apply(rule set_ext) unfolding image_iff mem_Collect_eq
+    apply rule apply auto
+    apply (rule_tac x=u in rev_bexI, simp)
+    apply (erule rev_bexI, erule rev_bexI, simp)
+    by auto
+  have "continuous_on ({0..1} \<times> s \<times> t)
+     (\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))"
+    unfolding continuous_on by (rule ballI) (intro tendsto_intros)
+  thus ?thesis unfolding *
+    apply (rule compact_continuous_image)
+    apply (intro compact_Times compact_real_interval assms)
+    done
 qed
 
 lemma compact_convex_hull: fixes s::"(real^'n::finite) set"
@@ -1273,14 +1308,14 @@
       qed thus ?thesis using assms by simp
     next
       case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} =
-	{ (1 - u) *s x + u *s y | x y u. 
+	{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 
 	0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}"
 	unfolding expand_set_eq and mem_Collect_eq proof(rule,rule)
-	fix x assume "\<exists>u v c. x = (1 - c) *s u + c *s v \<and>
+	fix x assume "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and>
           0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"
-	then obtain u v c t where obt:"x = (1 - c) *s u + c *s v"
+	then obtain u v c t where obt:"x = (1 - c) *\<^sub>R u + c *\<^sub>R v"
           "0 \<le> c \<and> c \<le> 1" "u \<in> s" "finite t" "t \<subseteq> s" "card t \<le> n"  "v \<in> convex hull t" by auto
-	moreover have "(1 - c) *s u + c *s v \<in> convex hull insert u t"
+	moreover have "(1 - c) *\<^sub>R u + c *\<^sub>R v \<in> convex hull insert u t"
 	  apply(rule mem_convex) using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex]
 	  using obt(7) and hull_mono[of t "insert u t"] by auto
 	ultimately show "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
@@ -1288,7 +1323,7 @@
       next
 	fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
 	then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto
-	let ?P = "\<exists>u v c. x = (1 - c) *s u + c *s v \<and>
+	let ?P = "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and>
           0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"
 	show ?P proof(cases "card t = Suc n")
 	  case False hence "card t \<le> n" using t(3) by auto
@@ -1301,7 +1336,7 @@
 	    show ?P unfolding `x=a` apply(rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI)
 	      using t and `n\<noteq>0` unfolding au by(auto intro!: exI[where x="{a}"] simp add: convex_hull_singleton)
 	  next
-	    case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *s a + vx *s b"
+	    case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *\<^sub>R a + vx *\<^sub>R b"
 	      using t(4)[unfolded au convex_hull_insert[OF False]] by auto
 	    have *:"1 - vx = ux" using obt(3) by auto
 	    show ?P apply(rule_tac x=a in exI, rule_tac x=b in exI, rule_tac x=vx in exI)
@@ -1325,16 +1360,16 @@
   fixes a b d :: "real ^ 'n::finite"
   assumes "d \<noteq> 0"
   shows "dist a (b + d) > dist a b \<or> dist a (b - d) > dist a b"
-proof(cases "a \<bullet> d - b \<bullet> d > 0")
-  case True hence "0 < d \<bullet> d + (a \<bullet> d * 2 - b \<bullet> d * 2)" 
+proof(cases "inner a d - inner b d > 0")
+  case True hence "0 < inner d d + (inner a d * 2 - inner b d * 2)" 
     apply(rule_tac add_pos_pos) using assms by auto
-  thus ?thesis apply(rule_tac disjI2) unfolding dist_norm and real_vector_norm_def and real_sqrt_less_iff
-    by(simp add: dot_rsub dot_radd dot_lsub dot_ladd dot_sym field_simps)
+  thus ?thesis apply(rule_tac disjI2) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
+    by (simp add: algebra_simps inner_commute)
 next
-  case False hence "0 < d \<bullet> d + (b \<bullet> d * 2 - a \<bullet> d * 2)" 
+  case False hence "0 < inner d d + (inner b d * 2 - inner a d * 2)" 
     apply(rule_tac add_pos_nonneg) using assms by auto
-  thus ?thesis apply(rule_tac disjI1) unfolding dist_norm and real_vector_norm_def and real_sqrt_less_iff
-    by(simp add: dot_rsub dot_radd dot_lsub dot_ladd dot_sym field_simps)
+  thus ?thesis apply(rule_tac disjI1) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff
+    by (simp add: algebra_simps inner_commute)
 qed
 
 lemma norm_increases_online:
@@ -1349,7 +1384,7 @@
   show "\<forall>xa\<in>convex hull insert x s. xa \<notin> insert x s \<longrightarrow> (\<exists>y\<in>convex hull insert x s. norm (xa - a) < norm (y - a))"
   proof(rule,rule,cases "s = {}")
     case False fix y assume y:"y \<in> convex hull insert x s" "y \<notin> insert x s"
-    obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *s x + v *s b"
+    obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *\<^sub>R x + v *\<^sub>R b"
       using y(1)[unfolded convex_hull_insert[OF False]] by auto
     show "\<exists>z\<in>convex hull insert x s. norm (y - a) < norm (z - a)"
     proof(cases "y\<in>convex hull s")
@@ -1368,24 +1403,24 @@
 	then obtain w where w:"w>0" "w<u" "w<v" using real_lbound_gt_zero[of u v] and obt(1,2) by auto
 	have "x\<noteq>b" proof(rule ccontr) 
 	  assume "\<not> x\<noteq>b" hence "y=b" unfolding obt(5)
-	    using obt(3) by(auto simp add: vector_sadd_rdistrib[THEN sym])
+	    using obt(3) by(auto simp add: scaleR_left_distrib[THEN sym])
 	  thus False using obt(4) and False by simp qed
-	hence *:"w *s (x - b) \<noteq> 0" using w(1) by auto
+	hence *:"w *\<^sub>R (x - b) \<noteq> 0" using w(1) by auto
 	show ?thesis using dist_increases_online[OF *, of a y]
  	proof(erule_tac disjE)
-	  assume "dist a y < dist a (y + w *s (x - b))"
-	  hence "norm (y - a) < norm ((u + w) *s x + (v - w) *s b - a)"
-	    unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: ring_simps)
-	  moreover have "(u + w) *s x + (v - w) *s b \<in> convex hull insert x s"
+	  assume "dist a y < dist a (y + w *\<^sub>R (x - b))"
+	  hence "norm (y - a) < norm ((u + w) *\<^sub>R x + (v - w) *\<^sub>R b - a)"
+	    unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps)
+	  moreover have "(u + w) *\<^sub>R x + (v - w) *\<^sub>R b \<in> convex hull insert x s"
 	    unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 	    apply(rule_tac x="u + w" in exI) apply rule defer 
 	    apply(rule_tac x="v - w" in exI) using `u\<ge>0` and w and obt(3,4) by auto
 	  ultimately show ?thesis by auto
 	next
-	  assume "dist a y < dist a (y - w *s (x - b))"
-	  hence "norm (y - a) < norm ((u - w) *s x + (v + w) *s b - a)"
-	    unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: ring_simps)
-	  moreover have "(u - w) *s x + (v + w) *s b \<in> convex hull insert x s"
+	  assume "dist a y < dist a (y - w *\<^sub>R (x - b))"
+	  hence "norm (y - a) < norm ((u - w) *\<^sub>R x + (v + w) *\<^sub>R b - a)"
+	    unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps)
+	  moreover have "(u - w) *\<^sub>R x + (v + w) *\<^sub>R b \<in> convex hull insert x s"
 	    unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 	    apply(rule_tac x="u - w" in exI) apply rule defer 
 	    apply(rule_tac x="v + w" in exI) using `u\<ge>0` and w and obt(3,4) by auto
@@ -1469,38 +1504,59 @@
  "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s x = x \<longleftrightarrow> x \<in> s)"
   using closest_point_in_set[of s x] closest_point_self[of x s] by auto
 
+(* TODO: move *)
+lemma norm_lt: "norm x < norm y \<longleftrightarrow> inner x x < inner y y"
+  unfolding norm_eq_sqrt_inner by simp
+
+(* TODO: move *)
+lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> inner x x \<le> inner y y"
+  unfolding norm_eq_sqrt_inner by simp
+
 lemma closer_points_lemma: fixes y::"real^'n::finite"
-  assumes "y \<bullet> z > 0"
-  shows "\<exists>u>0. \<forall>v>0. v \<le> u \<longrightarrow> norm(v *s z - y) < norm y"
-proof- have z:"z \<bullet> z > 0" unfolding dot_pos_lt using assms by auto
-  thus ?thesis using assms apply(rule_tac x="(y \<bullet> z) / (z \<bullet> z)" in exI) apply(rule) defer proof(rule+)
-    fix v assume "0<v" "v \<le> y \<bullet> z / (z \<bullet> z)"
-    thus "norm (v *s z - y) < norm y" unfolding norm_lt using z and assms
-      by (simp add: field_simps dot_sym  mult_strict_left_mono[OF _ `0<v`])
+  assumes "inner y z > 0"
+  shows "\<exists>u>0. \<forall>v>0. v \<le> u \<longrightarrow> norm(v *\<^sub>R z - y) < norm y"
+proof- have z:"inner z z > 0" unfolding inner_gt_zero_iff using assms by auto
+  thus ?thesis using assms apply(rule_tac x="inner y z / inner z z" in exI) apply(rule) defer proof(rule+)
+    fix v assume "0<v" "v \<le> inner y z / inner z z"
+    thus "norm (v *\<^sub>R z - y) < norm y" unfolding norm_lt using z and assms
+      by (simp add: field_simps inner_diff inner_commute mult_strict_left_mono[OF _ `0<v`])
   qed(rule divide_pos_pos, auto) qed
 
 lemma closer_point_lemma:
   fixes x y z :: "real ^ 'n::finite"
-  assumes "(y - x) \<bullet> (z - x) > 0"
-  shows "\<exists>u>0. u \<le> 1 \<and> dist (x + u *s (z - x)) y < dist x y"
-proof- obtain u where "u>0" and u:"\<forall>v>0. v \<le> u \<longrightarrow> norm (v *s (z - x) - (y - x)) < norm (y - x)"
+  assumes "inner (y - x) (z - x) > 0"
+  shows "\<exists>u>0. u \<le> 1 \<and> dist (x + u *\<^sub>R (z - x)) y < dist x y"
+proof- obtain u where "u>0" and u:"\<forall>v>0. v \<le> u \<longrightarrow> norm (v *\<^sub>R (z - x) - (y - x)) < norm (y - x)"
     using closer_points_lemma[OF assms] by auto
   show ?thesis apply(rule_tac x="min u 1" in exI) using u[THEN spec[where x="min u 1"]] and `u>0`
     unfolding dist_norm by(auto simp add: norm_minus_commute field_simps) qed
 
 lemma any_closest_point_dot:
   assumes "convex s" "closed s" "x \<in> s" "y \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"
-  shows "(a - x) \<bullet> (y - x) \<le> 0"
-proof(rule ccontr) assume "\<not> (a - x) \<bullet> (y - x) \<le> 0"
-  then obtain u where u:"u>0" "u\<le>1" "dist (x + u *s (y - x)) a < dist x a" using closer_point_lemma[of a x y] by auto
-  let ?z = "(1 - u) *s x + u *s y" have "?z \<in> s" using mem_convex[OF assms(1,3,4), of u] using u by auto
-  thus False using assms(5)[THEN bspec[where x="?z"]] and u(3) by (auto simp add: dist_commute field_simps) qed
+  shows "inner (a - x) (y - x) \<le> 0"
+proof(rule ccontr) assume "\<not> inner (a - x) (y - x) \<le> 0"
+  then obtain u where u:"u>0" "u\<le>1" "dist (x + u *\<^sub>R (y - x)) a < dist x a" using closer_point_lemma[of a x y] by auto
+  let ?z = "(1 - u) *\<^sub>R x + u *\<^sub>R y" have "?z \<in> s" using mem_convex[OF assms(1,3,4), of u] using u by auto
+  thus False using assms(5)[THEN bspec[where x="?z"]] and u(3) by (auto simp add: dist_commute algebra_simps) qed
+
+(* TODO: move *)
+lemma norm_le_square: "norm x \<le> a \<longleftrightarrow> 0 \<le> a \<and> inner x x \<le> a\<twosuperior>"
+proof -
+  have "norm x \<le> a \<longleftrightarrow> 0 \<le> a \<and> norm x \<le> a"
+    using norm_ge_zero [of x] by arith
+  also have "\<dots> \<longleftrightarrow> 0 \<le> a \<and> (norm x)\<twosuperior> \<le> a\<twosuperior>"
+    by (auto intro: power_mono dest: power2_le_imp_le)
+  also have "\<dots> \<longleftrightarrow> 0 \<le> a \<and> inner x x \<le> a\<twosuperior>"
+    unfolding power2_norm_eq_inner ..
+  finally show ?thesis .
+qed
 
 lemma any_closest_point_unique:
   assumes "convex s" "closed s" "x \<in> s" "y \<in> s"
   "\<forall>z\<in>s. dist a x \<le> dist a z" "\<forall>z\<in>s. dist a y \<le> dist a z"
   shows "x = y" using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF assms(1-2,4,3,6)]
-  unfolding norm_pths(1) and norm_le_square by auto
+  unfolding norm_pths(1) and norm_le_square
+  by (auto simp add: algebra_simps)
 
 lemma closest_point_unique:
   assumes "convex s" "closed s" "x \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"
@@ -1510,7 +1566,7 @@
 
 lemma closest_point_dot:
   assumes "convex s" "closed s" "x \<in> s"
-  shows "(a - closest_point s a) \<bullet> (x - closest_point s a) \<le> 0"
+  shows "inner (a - closest_point s a) (x - closest_point s a) \<le> 0"
   apply(rule any_closest_point_dot[OF assms(1,2) _ assms(3)])
   using closest_point_exists[OF assms(2)] and assms(3) by auto
 
@@ -1525,13 +1581,13 @@
   assumes "convex s" "closed s" "s \<noteq> {}"
   shows "dist (closest_point s x) (closest_point s y) \<le> dist x y"
 proof-
-  have "(x - closest_point s x) \<bullet> (closest_point s y - closest_point s x) \<le> 0"
-       "(y - closest_point s y) \<bullet> (closest_point s x - closest_point s y) \<le> 0"
+  have "inner (x - closest_point s x) (closest_point s y - closest_point s x) \<le> 0"
+       "inner (y - closest_point s y) (closest_point s x - closest_point s y) \<le> 0"
     apply(rule_tac[!] any_closest_point_dot[OF assms(1-2)])
     using closest_point_exists[OF assms(2-3)] by auto
   thus ?thesis unfolding dist_norm and norm_le
-    using dot_pos_le[of "(x - closest_point s x) - (y - closest_point s y)"]
-    by (auto simp add: dot_sym dot_ladd dot_radd) qed
+    using inner_ge_zero[of "(x - closest_point s x) - (y - closest_point s y)"]
+    by (simp add: inner_add inner_diff inner_commute) qed
 
 lemma continuous_at_closest_point:
   assumes "convex s" "closed s" "s \<noteq> {}"
@@ -1548,50 +1604,50 @@
 
 lemma supporting_hyperplane_closed_point:
   assumes "convex s" "closed s" "s \<noteq> {}" "z \<notin> s"
-  shows "\<exists>a b. \<exists>y\<in>s. a \<bullet> z < b \<and> (a \<bullet> y = b) \<and> (\<forall>x\<in>s. a \<bullet> x \<ge> b)"
+  shows "\<exists>a b. \<exists>y\<in>s. inner a z < b \<and> (inner a y = b) \<and> (\<forall>x\<in>s. inner a x \<ge> b)"
 proof-
   from distance_attains_inf[OF assms(2-3)] obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" by auto
-  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="(y - z) \<bullet> y" in exI, rule_tac x=y in bexI)
+  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) y" in exI, rule_tac x=y in bexI)
     apply rule defer apply rule defer apply(rule, rule ccontr) using `y\<in>s` proof-
-    show "(y - z) \<bullet> z < (y - z) \<bullet> y" apply(subst diff_less_iff(1)[THEN sym])
-      unfolding dot_rsub[THEN sym] and dot_pos_lt using `y\<in>s` `z\<notin>s` by auto
+    show "inner (y - z) z < inner (y - z) y" apply(subst diff_less_iff(1)[THEN sym])
+      unfolding inner_diff_right[THEN sym] and inner_gt_zero_iff using `y\<in>s` `z\<notin>s` by auto
   next
-    fix x assume "x\<in>s" have *:"\<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> dist z y \<le> dist z ((1 - u) *s y + u *s x)"
+    fix x assume "x\<in>s" have *:"\<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> dist z y \<le> dist z ((1 - u) *\<^sub>R y + u *\<^sub>R x)"
       using assms(1)[unfolded convex_alt] and y and `x\<in>s` and `y\<in>s` by auto
-    assume "\<not> (y - z) \<bullet> y \<le> (y - z) \<bullet> x" then obtain v where
-      "v>0" "v\<le>1" "dist (y + v *s (x - y)) z < dist y z" using closer_point_lemma[of z y x] by auto
-    thus False using *[THEN spec[where x=v]] by(auto simp add: dist_commute field_simps)
+    assume "\<not> inner (y - z) y \<le> inner (y - z) x" then obtain v where
+      "v>0" "v\<le>1" "dist (y + v *\<^sub>R (x - y)) z < dist y z" using closer_point_lemma[of z y x] apply - by (auto simp add: inner_diff)
+    thus False using *[THEN spec[where x=v]] by(auto simp add: dist_commute algebra_simps)
   qed auto
 qed
 
 lemma separating_hyperplane_closed_point:
   assumes "convex s" "closed s" "z \<notin> s"
-  shows "\<exists>a b. a \<bullet> z < b \<and> (\<forall>x\<in>s. a \<bullet> x > b)"
+  shows "\<exists>a b. inner a z < b \<and> (\<forall>x\<in>s. inner a x > b)"
 proof(cases "s={}")
   case True thus ?thesis apply(rule_tac x="-z" in exI, rule_tac x=1 in exI)
-    using less_le_trans[OF _ dot_pos_le[of z]] by auto
+    using less_le_trans[OF _ inner_ge_zero[of z]] by auto
 next
   case False obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x"
     using distance_attains_inf[OF assms(2) False] by auto
-  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="(y - z) \<bullet> z + (norm(y - z))\<twosuperior> / 2" in exI)
+  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) z + (norm(y - z))\<twosuperior> / 2" in exI)
     apply rule defer apply rule proof-
     fix x assume "x\<in>s"
-    have "\<not> 0 < (z - y) \<bullet> (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma)
-      assume "\<exists>u>0. u \<le> 1 \<and> dist (y + u *s (x - y)) z < dist y z"
-      then obtain u where "u>0" "u\<le>1" "dist (y + u *s (x - y)) z < dist y z" by auto
-      thus False using y[THEN bspec[where x="y + u *s (x - y)"]]
+    have "\<not> 0 < inner (z - y) (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma)
+      assume "\<exists>u>0. u \<le> 1 \<and> dist (y + u *\<^sub>R (x - y)) z < dist y z"
+      then obtain u where "u>0" "u\<le>1" "dist (y + u *\<^sub>R (x - y)) z < dist y z" by auto
+      thus False using y[THEN bspec[where x="y + u *\<^sub>R (x - y)"]]
 	using assms(1)[unfolded convex_alt, THEN bspec[where x=y]]
-	using `x\<in>s` `y\<in>s` by (auto simp add: dist_commute field_simps) qed
+	using `x\<in>s` `y\<in>s` by (auto simp add: dist_commute algebra_simps) qed
     moreover have "0 < norm (y - z) ^ 2" using `y\<in>s` `z\<notin>s` by auto
-    hence "0 < (y - z) \<bullet> (y - z)" unfolding norm_pow_2 by simp
-    ultimately show "(y - z) \<bullet> z + (norm (y - z))\<twosuperior> / 2 < (y - z) \<bullet> x"
-      unfolding norm_pow_2 and dlo_simps(3) by (auto simp add: field_simps dot_sym)
+    hence "0 < inner (y - z) (y - z)" unfolding power2_norm_eq_inner by simp
+    ultimately show "inner (y - z) z + (norm (y - z))\<twosuperior> / 2 < inner (y - z) x"
+      unfolding power2_norm_eq_inner and not_less by (auto simp add: field_simps inner_commute inner_diff)
   qed(insert `y\<in>s` `z\<notin>s`, auto)
 qed
 
 lemma separating_hyperplane_closed_0:
   assumes "convex (s::(real^'n::finite) set)" "closed s" "0 \<notin> s"
-  shows "\<exists>a b. a \<noteq> 0 \<and> 0 < b \<and> (\<forall>x\<in>s. a \<bullet> x > b)"
+  shows "\<exists>a b. a \<noteq> 0 \<and> 0 < b \<and> (\<forall>x\<in>s. inner a x > b)"
   proof(cases "s={}") guess a using UNIV_witness[where 'a='n] ..
   case True have "norm ((basis a)::real^'n::finite) = 1" 
     using norm_basis and dimindex_ge_1 by auto
@@ -1603,41 +1659,41 @@
 
 lemma separating_hyperplane_closed_compact:
   assumes "convex (s::(real^'n::finite) set)" "closed s" "convex t" "compact t" "t \<noteq> {}" "s \<inter> t = {}"
-  shows "\<exists>a b. (\<forall>x\<in>s. a \<bullet> x < b) \<and> (\<forall>x\<in>t. a \<bullet> x > b)"
+  shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)"
 proof(cases "s={}")
   case True
   obtain b where b:"b>0" "\<forall>x\<in>t. norm x \<le> b" using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto
   obtain z::"real^'n" where z:"norm z = b + 1" using vector_choose_size[of "b + 1"] and b(1) by auto
   hence "z\<notin>t" using b(2)[THEN bspec[where x=z]] by auto
-  then obtain a b where ab:"a \<bullet> z < b" "\<forall>x\<in>t. b < a \<bullet> x"
+  then obtain a b where ab:"inner a z < b" "\<forall>x\<in>t. b < inner a x"
     using separating_hyperplane_closed_point[OF assms(3) compact_imp_closed[OF assms(4)], of z] by auto
   thus ?thesis using True by auto
 next
   case False then obtain y where "y\<in>s" by auto
-  obtain a b where "0 < b" "\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. b < a \<bullet> x"
+  obtain a b where "0 < b" "\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. b < inner a x"
     using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0]
     using closed_compact_differences[OF assms(2,4)] using assms(6) by(auto, blast)
-  hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + a \<bullet> y < a \<bullet> x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by auto
-  def k \<equiv> "rsup ((\<lambda>x. a \<bullet> x) ` t)"
+  hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + inner a y < inner a x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by (auto simp add: inner_diff)
+  def k \<equiv> "rsup ((\<lambda>x. inner a x) ` t)"
   show ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-(k + b / 2)" in exI)
-    apply(rule,rule) defer apply(rule) unfolding dot_lneg and neg_less_iff_less proof-
-    from ab have "((\<lambda>x. a \<bullet> x) ` t) *<= (a \<bullet> y - b)"
+    apply(rule,rule) defer apply(rule) unfolding inner_minus_left and neg_less_iff_less proof-
+    from ab have "((\<lambda>x. inner a x) ` t) *<= (inner a y - b)"
       apply(erule_tac x=y in ballE) apply(rule setleI) using `y\<in>s` by auto
-    hence k:"isLub UNIV ((\<lambda>x. a \<bullet> x) ` t) k" unfolding k_def apply(rule_tac rsup) using assms(5) by auto
-    fix x assume "x\<in>t" thus "a \<bullet> x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "a \<bullet> x"] by auto
+    hence k:"isLub UNIV ((\<lambda>x. inner a x) ` t) k" unfolding k_def apply(rule_tac rsup) using assms(5) by auto
+    fix x assume "x\<in>t" thus "inner a x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "inner a x"] by auto
   next
     fix x assume "x\<in>s" 
-    hence "k \<le> a \<bullet> x - b" unfolding k_def apply(rule_tac rsup_le) using assms(5)
+    hence "k \<le> inner a x - b" unfolding k_def apply(rule_tac rsup_le) using assms(5)
       unfolding setle_def
       using ab[THEN bspec[where x=x]] by auto
-    thus "k + b / 2 < a \<bullet> x" using `0 < b` by auto
+    thus "k + b / 2 < inner a x" using `0 < b` by auto
   qed
 qed
 
 lemma separating_hyperplane_compact_closed:
   assumes "convex s" "compact s" "s \<noteq> {}" "convex t" "closed t" "s \<inter> t = {}"
-  shows "\<exists>a b. (\<forall>x\<in>s. a \<bullet> x < b) \<and> (\<forall>x\<in>t. a \<bullet> x > b)"
-proof- obtain a b where "(\<forall>x\<in>t. a \<bullet> x < b) \<and> (\<forall>x\<in>s. b < a \<bullet> x)"
+  shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)"
+proof- obtain a b where "(\<forall>x\<in>t. inner a x < b) \<and> (\<forall>x\<in>s. b < inner a x)"
     using separating_hyperplane_closed_compact[OF assms(4-5,1-2,3)] and assms(6) by auto
   thus ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-b" in exI) by auto qed
 
@@ -1645,33 +1701,33 @@
 
 lemma separating_hyperplane_set_0:
   assumes "convex s" "(0::real^'n::finite) \<notin> s"
-  shows "\<exists>a. a \<noteq> 0 \<and> (\<forall>x\<in>s. 0 \<le> a \<bullet> x)"
-proof- let ?k = "\<lambda>c. {x::real^'n. 0 \<le> c \<bullet> x}"
+  shows "\<exists>a. a \<noteq> 0 \<and> (\<forall>x\<in>s. 0 \<le> inner a x)"
+proof- let ?k = "\<lambda>c. {x::real^'n. 0 \<le> inner c x}"
   have "frontier (cball 0 1) \<inter> (\<Inter> (?k ` s)) \<noteq> {}"
     apply(rule compact_imp_fip) apply(rule compact_frontier[OF compact_cball])
     defer apply(rule,rule,erule conjE) proof-
     fix f assume as:"f \<subseteq> ?k ` s" "finite f"
     obtain c where c:"f = ?k ` c" "c\<subseteq>s" "finite c" using finite_subset_image[OF as(2,1)] by auto
-    then obtain a b where ab:"a \<noteq> 0" "0 < b"  "\<forall>x\<in>convex hull c. b < a \<bullet> x"
+    then obtain a b where ab:"a \<noteq> 0" "0 < b"  "\<forall>x\<in>convex hull c. b < inner a x"
       using separating_hyperplane_closed_0[OF convex_convex_hull, of c]
       using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed] and assms(2)
       using subset_hull[unfolded mem_def, of convex, OF assms(1), THEN sym, of c] by auto
-    hence "\<exists>x. norm x = 1 \<and> (\<forall>y\<in>c. 0 \<le> y \<bullet> x)" apply(rule_tac x="inverse(norm a) *s a" in exI)
-       using hull_subset[of c convex] unfolding subset_eq and dot_rmult
+    hence "\<exists>x. norm x = 1 \<and> (\<forall>y\<in>c. 0 \<le> inner y x)" apply(rule_tac x="inverse(norm a) *\<^sub>R a" in exI)
+       using hull_subset[of c convex] unfolding subset_eq and inner_scaleR
        apply- apply rule defer apply rule apply(rule mult_nonneg_nonneg)
-       by(auto simp add: dot_sym elim!: ballE) 
+       by(auto simp add: inner_commute elim!: ballE)
     thus "frontier (cball 0 1) \<inter> \<Inter>f \<noteq> {}" unfolding c(1) frontier_cball dist_norm by auto
   qed(insert closed_halfspace_ge, auto)
   then obtain x where "norm x = 1" "\<forall>y\<in>s. x\<in>?k y" unfolding frontier_cball dist_norm by auto
-  thus ?thesis apply(rule_tac x=x in exI) by(auto simp add: dot_sym) qed
+  thus ?thesis apply(rule_tac x=x in exI) by(auto simp add: inner_commute) qed
 
 lemma separating_hyperplane_sets:
   assumes "convex s" "convex (t::(real^'n::finite) set)" "s \<noteq> {}" "t \<noteq> {}" "s \<inter> t = {}"
-  shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. a \<bullet> x \<le> b) \<and> (\<forall>x\<in>t. a \<bullet> x \<ge> b)"
+  shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. inner a x \<le> b) \<and> (\<forall>x\<in>t. inner a x \<ge> b)"
 proof- from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]]
-  obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> a \<bullet> x"  using assms(3-5) by auto 
-  hence "\<forall>x\<in>t. \<forall>y\<in>s. a \<bullet> y \<le> a \<bullet> x" apply- apply(rule, rule) apply(erule_tac x="x - y" in ballE) by auto
-  thus ?thesis apply(rule_tac x=a in exI, rule_tac x="rsup ((\<lambda>x. a \<bullet> x) ` s)" in exI) using `a\<noteq>0`
+  obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> inner a x"  using assms(3-5) by auto 
+  hence "\<forall>x\<in>t. \<forall>y\<in>s. inner a y \<le> inner a x" apply- apply(rule, rule) apply(erule_tac x="x - y" in ballE) by (auto simp add: inner_diff)
+  thus ?thesis apply(rule_tac x=a in exI, rule_tac x="rsup ((\<lambda>x. inner a x) ` s)" in exI) using `a\<noteq>0`
     apply(rule) apply(rule,rule) apply(rule rsup[THEN isLubD2]) prefer 4 apply(rule,rule rsup_le) unfolding setle_def
     prefer 4 using assms(3-5) by blast+ qed
 
@@ -1680,7 +1736,7 @@
 lemma convex_closure: assumes "convex s" shows "convex(closure s)"
   unfolding convex_def Ball_def closure_sequential
   apply(rule,rule,rule,rule,rule,rule,rule,rule,rule) apply(erule_tac exE)+
-  apply(rule_tac x="\<lambda>n. u *s xb n + v *s xc n" in exI) apply(rule,rule)
+  apply(rule_tac x="\<lambda>n. u *\<^sub>R xb n + v *\<^sub>R xc n" in exI) apply(rule,rule)
   apply(rule assms[unfolded convex_def, rule_format]) prefer 6
   apply(rule Lim_add) apply(rule_tac [1-2] Lim_cmul) by auto
 
@@ -1688,13 +1744,13 @@
   unfolding convex_alt Ball_def mem_interior apply(rule,rule,rule,rule,rule,rule) apply(erule exE | erule conjE)+ proof-
   fix x y u assume u:"0 \<le> u" "u \<le> (1::real)"
   fix e d assume ed:"ball x e \<subseteq> s" "ball y d \<subseteq> s" "0<d" "0<e" 
-  show "\<exists>e>0. ball ((1 - u) *s x + u *s y) e \<subseteq> s" apply(rule_tac x="min d e" in exI)
+  show "\<exists>e>0. ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) e \<subseteq> s" apply(rule_tac x="min d e" in exI)
     apply rule unfolding subset_eq defer apply rule proof-
-    fix z assume "z \<in> ball ((1 - u) *s x + u *s y) (min d e)"
-    hence "(1- u) *s (z - u *s (y - x)) + u *s (z + (1 - u) *s (y - x)) \<in> s"
+    fix z assume "z \<in> ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) (min d e)"
+    hence "(1- u) *\<^sub>R (z - u *\<^sub>R (y - x)) + u *\<^sub>R (z + (1 - u) *\<^sub>R (y - x)) \<in> s"
       apply(rule_tac assms[unfolded convex_alt, rule_format])
-      using ed(1,2) and u unfolding subset_eq mem_ball Ball_def dist_norm by(auto simp add: ring_simps)
-    thus "z \<in> s" using u by (auto simp add: ring_simps) qed(insert u ed(3-4), auto) qed
+      using ed(1,2) and u unfolding subset_eq mem_ball Ball_def dist_norm by(auto simp add: algebra_simps)
+    thus "z \<in> s" using u by (auto simp add: algebra_simps) qed(insert u ed(3-4), auto) qed
 
 lemma convex_hull_eq_empty: "convex hull s = {} \<longleftrightarrow> s = {}"
   using hull_subset[of s convex] convex_hull_empty by auto
@@ -1717,27 +1773,27 @@
   apply(rule convex_hull_bilemma[rule_format, of _ _ "\<lambda>a. -a"], rule convex_hull_translation_lemma) unfolding image_image by auto
 
 lemma convex_hull_scaling_lemma:
- "(convex hull ((\<lambda>x. c *s x) ` s)) \<subseteq> (\<lambda>x. c *s x) ` (convex hull s)"
+ "(convex hull ((\<lambda>x. c *\<^sub>R x) ` s)) \<subseteq> (\<lambda>x. c *\<^sub>R x) ` (convex hull s)"
   apply(rule hull_minimal, rule image_mono, rule hull_subset)
   unfolding mem_def by(rule convex_scaling, rule convex_convex_hull)
 
 lemma convex_hull_scaling:
-  "convex hull ((\<lambda>x. c *s x) ` s) = (\<lambda>x. c *s x) ` (convex hull s)"
+  "convex hull ((\<lambda>x. c *\<^sub>R x) ` s) = (\<lambda>x. c *\<^sub>R x) ` (convex hull s)"
   apply(cases "c=0") defer apply(rule convex_hull_bilemma[rule_format, of _ _ inverse]) apply(rule convex_hull_scaling_lemma)
-  unfolding image_image vector_smult_assoc by(auto simp add:image_constant_conv convex_hull_eq_empty)
+  unfolding image_image scaleR_scaleR by(auto simp add:image_constant_conv convex_hull_eq_empty)
 
 lemma convex_hull_affinity:
-  "convex hull ((\<lambda>x. a + c *s x) ` s) = (\<lambda>x. a + c *s x) ` (convex hull s)"
+  "convex hull ((\<lambda>x. a + c *\<^sub>R x) ` s) = (\<lambda>x. a + c *\<^sub>R x) ` (convex hull s)"
   unfolding image_image[THEN sym] convex_hull_scaling convex_hull_translation  ..
 
 subsection {* Convex set as intersection of halfspaces. *}
 
 lemma convex_halfspace_intersection:
   assumes "closed s" "convex s"
-  shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. a \<bullet> x \<le> b})}"
+  shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. inner a x \<le> b})}"
   apply(rule set_ext, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof- 
-  fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. a \<bullet> x \<le> b}) \<longrightarrow> x \<in> xa"
-  hence "\<forall>a b. s \<subseteq> {x. a \<bullet> x \<le> b} \<longrightarrow> x \<in> {x. a \<bullet> x \<le> b}" by blast
+  fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. inner a x \<le> b}) \<longrightarrow> x \<in> xa"
+  hence "\<forall>a b. s \<subseteq> {x. inner a x \<le> b} \<longrightarrow> x \<in> {x. inner a x \<le> b}" by blast
   thus "x\<in>s" apply(rule_tac ccontr) apply(drule separating_hyperplane_closed_point[OF assms(2,1)])
     apply(erule exE)+ apply(erule_tac x="-a" in allE, erule_tac x="-b" in allE) by auto
 qed auto
@@ -1746,9 +1802,9 @@
 
 lemma radon_ex_lemma:
   assumes "finite c" "affine_dependent c"
-  shows "\<exists>u. setsum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *s v) c = 0"
+  shows "\<exists>u. setsum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) c = 0"
 proof- from assms(2)[unfolded affine_dependent_explicit] guess s .. then guess u ..
-  thus ?thesis apply(rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI) unfolding if_smult vector_smult_lzero
+  thus ?thesis apply(rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI) unfolding if_smult scaleR_zero_left
     and setsum_restrict_set[OF assms(1), THEN sym] by(auto simp add: Int_absorb1) qed
 
 lemma radon_s_lemma:
@@ -1769,9 +1825,9 @@
 lemma radon_partition:
   assumes "finite c" "affine_dependent c"
   shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = c \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}" proof-
-  obtain u v where uv:"setsum u c = 0" "v\<in>c" "u v \<noteq> 0"  "(\<Sum>v\<in>c. u v *s v) = 0" using radon_ex_lemma[OF assms] by auto
+  obtain u v where uv:"setsum u c = 0" "v\<in>c" "u v \<noteq> 0"  "(\<Sum>v\<in>c. u v *\<^sub>R v) = 0" using radon_ex_lemma[OF assms] by auto
   have fin:"finite {x \<in> c. 0 < u x}" "finite {x \<in> c. 0 > u x}" using assms(1) by auto
-  def z \<equiv> "(inverse (setsum u {x\<in>c. u x > 0})) *s setsum (\<lambda>x. u x *s x) {x\<in>c. u x > 0}"
+  def z \<equiv> "(inverse (setsum u {x\<in>c. u x > 0})) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) {x\<in>c. u x > 0}"
   have "setsum u {x \<in> c. 0 < u x} \<noteq> 0" proof(cases "u v \<ge> 0")
     case False hence "u v < 0" by auto
     thus ?thesis proof(cases "\<exists>w\<in>{x \<in> c. 0 < u x}. u w > 0") 
@@ -1783,23 +1839,23 @@
 
   hence *:"setsum u {x\<in>c. u x > 0} > 0" unfolding real_less_def apply(rule_tac conjI, rule_tac setsum_nonneg) by auto
   moreover have "setsum u ({x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}) = setsum u c"
-    "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *s x) = (\<Sum>x\<in>c. u x *s x)"
+    "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *\<^sub>R x) = (\<Sum>x\<in>c. u x *\<^sub>R x)"
     using assms(1) apply(rule_tac[!] setsum_mono_zero_left) by auto
   hence "setsum u {x \<in> c. 0 < u x} = - setsum u {x \<in> c. 0 > u x}"
-   "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *s x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *s x)" 
+   "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *\<^sub>R x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *\<^sub>R x)" 
     unfolding eq_neg_iff_add_eq_0 using uv(1,4) by (auto simp add:  setsum_Un_zero[OF fin, THEN sym]) 
   moreover have "\<forall>x\<in>{v \<in> c. u v < 0}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * - u x" 
     apply (rule) apply (rule mult_nonneg_nonneg) using * by auto
 
   ultimately have "z \<in> convex hull {v \<in> c. u v \<le> 0}" unfolding convex_hull_explicit mem_Collect_eq
     apply(rule_tac x="{v \<in> c. u v < 0}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * - u y" in exI)
-    using assms(1) unfolding vector_smult_assoc[THEN sym] setsum_cmul and z_def
+    using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def
     by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])
   moreover have "\<forall>x\<in>{v \<in> c. 0 < u v}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * u x" 
     apply (rule) apply (rule mult_nonneg_nonneg) using * by auto 
   hence "z \<in> convex hull {v \<in> c. u v > 0}" unfolding convex_hull_explicit mem_Collect_eq
     apply(rule_tac x="{v \<in> c. 0 < u v}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * u y" in exI)
-    using assms(1) unfolding vector_smult_assoc[THEN sym] setsum_cmul and z_def using *
+    using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def using *
     by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])
   ultimately show ?thesis apply(rule_tac x="{v\<in>c. u v \<le> 0}" in exI, rule_tac x="{v\<in>c. u v > 0}" in exI) by auto
 qed
@@ -1865,10 +1921,10 @@
   apply(erule imageE)apply(rule_tac x=xa in image_eqI) apply assumption
   apply(rule hull_subset[unfolded subset_eq, rule_format]) apply assumption
 proof- show "convex {x. f x \<in> convex hull f ` s}" 
-  unfolding convex_def by(auto simp add: linear_cmul[OF assms]  linear_add[OF assms]
+  unfolding convex_def by(auto simp add: linear_cmul[OF assms, unfolded smult_conv_scaleR]  linear_add[OF assms]
     convex_convex_hull[unfolded convex_def, rule_format]) next
   show "convex {x. x \<in> f ` (convex hull s)}" using  convex_convex_hull[unfolded convex_def, of s] 
-    unfolding convex_def by (auto simp add: linear_cmul[OF assms, THEN sym]  linear_add[OF assms, THEN sym])
+    unfolding convex_def by (auto simp add: linear_cmul[OF assms, THEN sym, unfolded smult_conv_scaleR]  linear_add[OF assms, THEN sym])
 qed auto
 
 lemma in_convex_hull_linear_image:
@@ -1880,72 +1936,75 @@
 lemma compact_frontier_line_lemma:
   fixes s :: "(real ^ _) set"
   assumes "compact s" "0 \<in> s" "x \<noteq> 0" 
-  obtains u where "0 \<le> u" "(u *s x) \<in> frontier s" "\<forall>v>u. (v *s x) \<notin> s"
+  obtains u where "0 \<le> u" "(u *\<^sub>R x) \<in> frontier s" "\<forall>v>u. (v *\<^sub>R x) \<notin> s"
 proof-
   obtain b where b:"b>0" "\<forall>x\<in>s. norm x \<le> b" using compact_imp_bounded[OF assms(1), unfolded bounded_pos] by auto
-  let ?A = "{y. \<exists>u. 0 \<le> u \<and> u \<le> b / norm(x) \<and> (y = u *s x)}"
-  have A:"?A = (\<lambda>u. dest_vec1 u *s x) ` {0 .. vec1 (b / norm x)}"
-    unfolding image_image[of "\<lambda>u. u *s x" "\<lambda>x. dest_vec1 x", THEN sym]
+  let ?A = "{y. \<exists>u. 0 \<le> u \<and> u \<le> b / norm(x) \<and> (y = u *\<^sub>R x)}"
+  have A:"?A = (\<lambda>u. dest_vec1 u *\<^sub>R x) ` {0 .. vec1 (b / norm x)}"
+    unfolding image_image[of "\<lambda>u. u *\<^sub>R x" "\<lambda>x. dest_vec1 x", THEN sym]
     unfolding dest_vec1_inverval vec1_dest_vec1 by auto
   have "compact ?A" unfolding A apply(rule compact_continuous_image, rule continuous_at_imp_continuous_on)
-    apply(rule, rule continuous_vmul) unfolding o_def vec1_dest_vec1 apply(rule continuous_at_id) by(rule compact_interval)
-  moreover have "{y. \<exists>u\<ge>0. u \<le> b / norm x \<and> y = u *s x} \<inter> s \<noteq> {}" apply(rule not_disjointI[OF _ assms(2)])
+    apply(rule, rule continuous_vmul)
+    apply (rule continuous_dest_vec1)
+    apply(rule continuous_at_id) by(rule compact_interval)
+  moreover have "{y. \<exists>u\<ge>0. u \<le> b / norm x \<and> y = u *\<^sub>R x} \<inter> s \<noteq> {}" apply(rule not_disjointI[OF _ assms(2)])
     unfolding mem_Collect_eq using `b>0` assms(3) by(auto intro!: divide_nonneg_pos)
-  ultimately obtain u y where obt: "u\<ge>0" "u \<le> b / norm x" "y = u *s x"
+  ultimately obtain u y where obt: "u\<ge>0" "u \<le> b / norm x" "y = u *\<^sub>R x"
     "y\<in>?A" "y\<in>s" "\<forall>z\<in>?A \<inter> s. dist 0 z \<le> dist 0 y" using distance_attains_sup[OF compact_inter[OF _ assms(1), of ?A], of 0] by auto
 
   have "norm x > 0" using assms(3)[unfolded zero_less_norm_iff[THEN sym]] by auto
-  { fix v assume as:"v > u" "v *s x \<in> s"
+  { fix v assume as:"v > u" "v *\<^sub>R x \<in> s"
     hence "v \<le> b / norm x" using b(2)[rule_format, OF as(2)] 
-      using `u\<ge>0` unfolding pos_le_divide_eq[OF `norm x > 0`] and norm_mul by auto
-    hence "norm (v *s x) \<le> norm y" apply(rule_tac obt(6)[rule_format, unfolded dist_0_norm]) apply(rule IntI) defer 
+      using `u\<ge>0` unfolding pos_le_divide_eq[OF `norm x > 0`] by auto
+    hence "norm (v *\<^sub>R x) \<le> norm y" apply(rule_tac obt(6)[rule_format, unfolded dist_0_norm]) apply(rule IntI) defer 
       apply(rule as(2)) unfolding mem_Collect_eq apply(rule_tac x=v in exI) 
       using as(1) `u\<ge>0` by(auto simp add:field_simps) 
-    hence False unfolding obt(3) unfolding norm_mul using `u\<ge>0` `norm x > 0` `v>u` by(auto simp add:field_simps)
+    hence False unfolding obt(3) using `u\<ge>0` `norm x > 0` `v>u` by(auto simp add:field_simps)
   } note u_max = this
 
-  have "u *s x \<in> frontier s" unfolding frontier_straddle apply(rule,rule,rule) apply(rule_tac x="u *s x" in bexI) unfolding obt(3)[THEN sym]
-    prefer 3 apply(rule_tac x="(u + (e / 2) / norm x) *s x" in exI) apply(rule, rule) proof-
-    fix e  assume "0 < e" and as:"(u + e / 2 / norm x) *s x \<in> s"
+  have "u *\<^sub>R x \<in> frontier s" unfolding frontier_straddle apply(rule,rule,rule) apply(rule_tac x="u *\<^sub>R x" in bexI) unfolding obt(3)[THEN sym]
+    prefer 3 apply(rule_tac x="(u + (e / 2) / norm x) *\<^sub>R x" in exI) apply(rule, rule) proof-
+    fix e  assume "0 < e" and as:"(u + e / 2 / norm x) *\<^sub>R x \<in> s"
     hence "u + e / 2 / norm x > u" using`norm x > 0` by(auto simp del:zero_less_norm_iff intro!: divide_pos_pos)
     thus False using u_max[OF _ as] by auto
-  qed(insert `y\<in>s`, auto simp add: dist_norm obt(3))
+  qed(insert `y\<in>s`, auto simp add: dist_norm scaleR_left_distrib obt(3))
   thus ?thesis apply(rule_tac that[of u]) apply(rule obt(1), assumption)
     apply(rule,rule,rule ccontr) apply(rule u_max) by auto qed
 
 lemma starlike_compact_projective:
   assumes "compact s" "cball (0::real^'n::finite) 1 \<subseteq> s "
-  "\<forall>x\<in>s. \<forall>u. 0 \<le> u \<and> u < 1 \<longrightarrow> (u *s x) \<in> (s - frontier s )"
+  "\<forall>x\<in>s. \<forall>u. 0 \<le> u \<and> u < 1 \<longrightarrow> (u *\<^sub>R x) \<in> (s - frontier s )"
   shows "s homeomorphic (cball (0::real^'n::finite) 1)"
 proof-
   have fs:"frontier s \<subseteq> s" apply(rule frontier_subset_closed) using compact_imp_closed[OF assms(1)] by simp
-  def pi \<equiv> "\<lambda>x::real^'n. inverse (norm x) *s x"
+  def pi \<equiv> "\<lambda>x::real^'n. inverse (norm x) *\<^sub>R x"
   have "0 \<notin> frontier s" unfolding frontier_straddle apply(rule ccontr) unfolding not_not apply(erule_tac x=1 in allE)
     using assms(2)[unfolded subset_eq Ball_def mem_cball] by auto
   have injpi:"\<And>x y. pi x = pi y \<and> norm x = norm y \<longleftrightarrow> x = y" unfolding pi_def by auto
 
   have contpi:"continuous_on (UNIV - {0}) pi" apply(rule continuous_at_imp_continuous_on)
-    apply rule unfolding pi_def apply(rule continuous_mul) unfolding o_def
-    apply(rule continuous_at_inv[unfolded o_def]) unfolding continuous_at_vec1_range[unfolded o_def]
-    apply(rule,rule) apply(rule_tac x=e in exI) apply(rule,assumption,rule,rule)
-    proof- fix e x y assume "0 < e" "norm (y - x::real^'n) < e" 
-      thus "\<bar>norm y - norm x\<bar> < e" using norm_triangle_ineq3[of y x] by auto
-    qed(auto intro!:continuous_at_id)
+    apply rule unfolding pi_def
+    apply (rule continuous_mul)
+    apply (rule continuous_at_inv[unfolded o_def])
+    apply (rule continuous_at_norm)
+    apply simp
+    apply (rule continuous_at_id)
+    done
   def sphere \<equiv> "{x::real^'n. norm x = 1}"
-  have pi:"\<And>x. x \<noteq> 0 \<Longrightarrow> pi x \<in> sphere" "\<And>x u. u>0 \<Longrightarrow> pi (u *s x) = pi x" unfolding pi_def sphere_def by auto
+  have pi:"\<And>x. x \<noteq> 0 \<Longrightarrow> pi x \<in> sphere" "\<And>x u. u>0 \<Longrightarrow> pi (u *\<^sub>R x) = pi x" unfolding pi_def sphere_def by auto
 
   have "0\<in>s" using assms(2) and centre_in_cball[of 0 1] by auto
-  have front_smul:"\<forall>x\<in>frontier s. \<forall>u\<ge>0. u *s x \<in> s \<longleftrightarrow> u \<le> 1" proof(rule,rule,rule)
+  have front_smul:"\<forall>x\<in>frontier s. \<forall>u\<ge>0. u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" proof(rule,rule,rule)
     fix x u assume x:"x\<in>frontier s" and "(0::real)\<le>u"
     hence "x\<noteq>0" using `0\<notin>frontier s` by auto
-    obtain v where v:"0 \<le> v" "v *s x \<in> frontier s" "\<forall>w>v. w *s x \<notin> s"
+    obtain v where v:"0 \<le> v" "v *\<^sub>R x \<in> frontier s" "\<forall>w>v. w *\<^sub>R x \<notin> s"
       using compact_frontier_line_lemma[OF assms(1) `0\<in>s` `x\<noteq>0`] by auto
     have "v=1" apply(rule ccontr) unfolding neq_iff apply(erule disjE) proof-
       assume "v<1" thus False using v(3)[THEN spec[where x=1]] using x and fs by auto next
-      assume "v>1" thus False using assms(3)[THEN bspec[where x="v *s x"], THEN spec[where x="inverse v"]]
+      assume "v>1" thus False using assms(3)[THEN bspec[where x="v *\<^sub>R x"], THEN spec[where x="inverse v"]]
 	using v and x and fs unfolding inverse_less_1_iff by auto qed
-    show "u *s x \<in> s \<longleftrightarrow> u \<le> 1" apply rule  using v(3)[unfolded `v=1`, THEN spec[where x=u]] proof-
-      assume "u\<le>1" thus "u *s x \<in> s" apply(cases "u=1")
+    show "u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" apply rule  using v(3)[unfolded `v=1`, THEN spec[where x=u]] proof-
+      assume "u\<le>1" thus "u *\<^sub>R x \<in> s" apply(cases "u=1")
 	using assms(3)[THEN bspec[where x=x], THEN spec[where x=u]] using `0\<le>u` and x and fs by auto qed auto qed
 
   have "\<exists>surf. homeomorphism (frontier s) sphere pi surf"
@@ -1955,14 +2014,14 @@
   proof- fix x assume "x\<in>pi ` frontier s" then obtain y where "y\<in>frontier s" "x = pi y" by auto
     thus "x \<in> sphere" using pi(1)[of y] and `0 \<notin> frontier s` by auto
   next fix x assume "x\<in>sphere" hence "norm x = 1" "x\<noteq>0" unfolding sphere_def by auto
-    then obtain u where "0 \<le> u" "u *s x \<in> frontier s" "\<forall>v>u. v *s x \<notin> s"
+    then obtain u where "0 \<le> u" "u *\<^sub>R x \<in> frontier s" "\<forall>v>u. v *\<^sub>R x \<notin> s"
       using compact_frontier_line_lemma[OF assms(1) `0\<in>s`, of x] by auto
-    thus "x \<in> pi ` frontier s" unfolding image_iff le_less pi_def apply(rule_tac x="u *s x" in bexI) using `norm x = 1` `0\<notin>frontier s` by auto
+    thus "x \<in> pi ` frontier s" unfolding image_iff le_less pi_def apply(rule_tac x="u *\<^sub>R x" in bexI) using `norm x = 1` `0\<notin>frontier s` by auto
   next fix x y assume as:"x \<in> frontier s" "y \<in> frontier s" "pi x = pi y"
     hence xys:"x\<in>s" "y\<in>s" using fs by auto
     from as(1,2) have nor:"norm x \<noteq> 0" "norm y \<noteq> 0" using `0\<notin>frontier s` by auto 
-    from nor have x:"x = norm x *s ((inverse (norm y)) *s y)" unfolding as(3)[unfolded pi_def, THEN sym] by auto 
-    from nor have y:"y = norm y *s ((inverse (norm x)) *s x)" unfolding as(3)[unfolded pi_def] by auto 
+    from nor have x:"x = norm x *\<^sub>R ((inverse (norm y)) *\<^sub>R y)" unfolding as(3)[unfolded pi_def, THEN sym] by auto 
+    from nor have y:"y = norm y *\<^sub>R ((inverse (norm x)) *\<^sub>R x)" unfolding as(3)[unfolded pi_def] by auto 
     have "0 \<le> norm y * inverse (norm x)" "0 \<le> norm x * inverse (norm y)"
       unfolding divide_inverse[THEN sym] apply(rule_tac[!] divide_nonneg_pos) using nor by auto
     hence "norm x = norm y" apply(rule_tac ccontr) unfolding neq_iff
@@ -1978,7 +2037,7 @@
     apply(rule continuous_on_subset[of sphere], rule surf(6)) using pi(1) by auto
 
   { fix x assume as:"x \<in> cball (0::real^'n) 1"
-    have "norm x *s surf (pi x) \<in> s" proof(cases "x=0 \<or> norm x = 1") 
+    have "norm x *\<^sub>R surf (pi x) \<in> s" proof(cases "x=0 \<or> norm x = 1") 
       case False hence "pi x \<in> sphere" "norm x < 1" using pi(1)[of x] as by(auto simp add: dist_norm)
       thus ?thesis apply(rule_tac assms(3)[rule_format, THEN DiffD1])
 	apply(rule_tac fs[unfolded subset_eq, rule_format])
@@ -1987,35 +2046,35 @@
 	unfolding  surf(5)[unfolded sphere_def, THEN sym] using `0\<in>s` by auto qed } note hom = this
 
   { fix x assume "x\<in>s"
-    hence "x \<in> (\<lambda>x. norm x *s surf (pi x)) ` cball 0 1" proof(cases "x=0")
+    hence "x \<in> (\<lambda>x. norm x *\<^sub>R surf (pi x)) ` cball 0 1" proof(cases "x=0")
       case True show ?thesis unfolding image_iff True apply(rule_tac x=0 in bexI) by auto
     next let ?a = "inverse (norm (surf (pi x)))"
       case False hence invn:"inverse (norm x) \<noteq> 0" by auto
       from False have pix:"pi x\<in>sphere" using pi(1) by auto
       hence "pi (surf (pi x)) = pi x" apply(rule_tac surf(4)[rule_format]) by assumption
-      hence **:"norm x *s (?a *s surf (pi x)) = x" apply(rule_tac vector_mul_lcancel_imp[OF invn]) unfolding pi_def by auto
+      hence **:"norm x *\<^sub>R (?a *\<^sub>R surf (pi x)) = x" apply(rule_tac scaleR_left_imp_eq[OF invn]) unfolding pi_def using invn by auto
       hence *:"?a * norm x > 0" and"?a > 0" "?a \<noteq> 0" using surf(5) `0\<notin>frontier s` apply -
 	apply(rule_tac mult_pos_pos) using False[unfolded zero_less_norm_iff[THEN sym]] by auto
       have "norm (surf (pi x)) \<noteq> 0" using ** False by auto
-      hence "norm x = norm ((?a * norm x) *s surf (pi x))"
-	unfolding norm_mul abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] by auto
-      moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *s surf (pi x))" 
+      hence "norm x = norm ((?a * norm x) *\<^sub>R surf (pi x))"
+	unfolding norm_scaleR abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] by auto
+      moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *\<^sub>R surf (pi x))" 
 	unfolding pi(2)[OF *] surf(4)[rule_format, OF pix] ..
       moreover have "surf (pi x) \<in> frontier s" using surf(5) pix by auto
-      hence "dist 0 (inverse (norm (surf (pi x))) *s x) \<le> 1" unfolding dist_norm
+      hence "dist 0 (inverse (norm (surf (pi x))) *\<^sub>R x) \<le> 1" unfolding dist_norm
 	using ** and * using front_smul[THEN bspec[where x="surf (pi x)"], THEN spec[where x="norm x * ?a"]]
 	using False `x\<in>s` by(auto simp add:field_simps)
-      ultimately show ?thesis unfolding image_iff apply(rule_tac x="inverse (norm (surf(pi x))) *s x" in bexI)
-	apply(subst injpi[THEN sym]) unfolding norm_mul abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`]
+      ultimately show ?thesis unfolding image_iff apply(rule_tac x="inverse (norm (surf(pi x))) *\<^sub>R x" in bexI)
+	apply(subst injpi[THEN sym]) unfolding abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`]
 	unfolding pi(2)[OF `?a > 0`] by auto
     qed } note hom2 = this
 
-  show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *s surf (pi x)"])
+  show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *\<^sub>R surf (pi x)"])
     apply(rule compact_cball) defer apply(rule set_ext, rule, erule imageE, drule hom)
     prefer 4 apply(rule continuous_at_imp_continuous_on, rule) apply(rule_tac [3] hom2) proof-
     fix x::"real^'n" assume as:"x \<in> cball 0 1"
-    thus "continuous (at x) (\<lambda>x. norm x *s surf (pi x))" proof(cases "x=0")
-      case False thus ?thesis apply(rule_tac continuous_mul, rule_tac continuous_at_vec1_norm)
+    thus "continuous (at x) (\<lambda>x. norm x *\<^sub>R surf (pi x))" proof(cases "x=0")
+      case False thus ?thesis apply(rule_tac continuous_mul, rule_tac continuous_at_norm)
 	using cont_surfpi unfolding continuous_on_eq_continuous_at[OF open_delete[OF open_UNIV]] o_def by auto
     next guess a using UNIV_witness[where 'a = 'n] ..
       obtain B where B:"\<forall>x\<in>s. norm x \<le> B" using compact_imp_bounded[OF assms(1)] unfolding bounded_iff by auto
@@ -2023,7 +2082,7 @@
 	unfolding Ball_def mem_cball dist_norm by (auto simp add: norm_basis[unfolded One_nat_def])
       case True show ?thesis unfolding True continuous_at Lim_at apply(rule,rule) apply(rule_tac x="e / B" in exI)
 	apply(rule) apply(rule divide_pos_pos) prefer 3 apply(rule,rule,erule conjE)
-	unfolding norm_0 vector_smult_lzero dist_norm diff_0_right norm_mul abs_norm_cancel proof-
+	unfolding norm_0 scaleR_zero_left dist_norm diff_0_right norm_scaleR abs_norm_cancel proof-
 	fix e and x::"real^'n" assume as:"norm x < e / B" "0 < norm x" "0<e"
 	hence "surf (pi x) \<in> frontier s" using pi(1)[of x] unfolding surf(5)[THEN sym] by auto
 	hence "norm (surf (pi x)) \<le> B" using B fs by auto
@@ -2038,8 +2097,8 @@
 	hence "surf (pi x) \<in> frontier s" using surf(5) by auto
 	thus False using `0\<notin>frontier s` unfolding as by simp qed
     } note surf_0 = this
-    show "inj_on (\<lambda>x. norm x *s surf (pi x)) (cball 0 1)" unfolding inj_on_def proof(rule,rule,rule)
-      fix x y assume as:"x \<in> cball 0 1" "y \<in> cball 0 1" "norm x *s surf (pi x) = norm y *s surf (pi y)"
+    show "inj_on (\<lambda>x. norm x *\<^sub>R surf (pi x)) (cball 0 1)" unfolding inj_on_def proof(rule,rule,rule)
+      fix x y assume as:"x \<in> cball 0 1" "y \<in> cball 0 1" "norm x *\<^sub>R surf (pi x) = norm y *\<^sub>R surf (pi y)"
       thus "x=y" proof(cases "x=0 \<or> y=0") 
 	case True thus ?thesis using as by(auto elim: surf_0) next
 	case False
@@ -2056,18 +2115,18 @@
   shows "s homeomorphic (cball (0::real^'n) 1)"
   apply(rule starlike_compact_projective[OF assms(2-3)]) proof(rule,rule,rule,erule conjE)
   fix x u assume as:"x \<in> s" "0 \<le> u" "u < (1::real)"
-  hence "u *s x \<in> interior s" unfolding interior_def mem_Collect_eq
-    apply(rule_tac x="ball (u *s x) (1 - u)" in exI) apply(rule, rule open_ball)
+  hence "u *\<^sub>R x \<in> interior s" unfolding interior_def mem_Collect_eq
+    apply(rule_tac x="ball (u *\<^sub>R x) (1 - u)" in exI) apply(rule, rule open_ball)
     unfolding centre_in_ball apply rule defer apply(rule) unfolding mem_ball proof-
-    fix y assume "dist (u *s x) y < 1 - u"
-    hence "inverse (1 - u) *s (y - u *s x) \<in> s"
+    fix y assume "dist (u *\<^sub>R x) y < 1 - u"
+    hence "inverse (1 - u) *\<^sub>R (y - u *\<^sub>R x) \<in> s"
       using assms(3) apply(erule_tac subsetD) unfolding mem_cball dist_commute dist_norm
-      unfolding group_add_class.diff_0 group_add_class.diff_0_right norm_minus_cancel norm_mul      
+      unfolding group_add_class.diff_0 group_add_class.diff_0_right norm_minus_cancel norm_scaleR
       apply (rule mult_left_le_imp_le[of "1 - u"])
       unfolding class_semiring.mul_a using `u<1` by auto
-    thus "y \<in> s" using assms(1)[unfolded convex_def, rule_format, of "inverse(1 - u) *s (y - u *s x)" x "1 - u" u]
-      using as unfolding vector_smult_assoc by auto qed auto
-  thus "u *s x \<in> s - frontier s" using frontier_def and interior_subset by auto qed
+    thus "y \<in> s" using assms(1)[unfolded convex_def, rule_format, of "inverse(1 - u) *\<^sub>R (y - u *\<^sub>R x)" x "1 - u" u]
+      using as unfolding scaleR_scaleR by auto qed auto
+  thus "u *\<^sub>R x \<in> s - frontier s" using frontier_def and interior_subset by auto qed
 
 lemma homeomorphic_convex_compact_cball: fixes e::real and s::"(real^'n::finite) set"
   assumes "convex s" "compact s" "interior s \<noteq> {}" "0 < e"
@@ -2075,16 +2134,16 @@
 proof- obtain a where "a\<in>interior s" using assms(3) by auto
   then obtain d where "d>0" and d:"cball a d \<subseteq> s" unfolding mem_interior_cball by auto
   let ?d = "inverse d" and ?n = "0::real^'n"
-  have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *s (x - a)) ` s"
-    apply(rule, rule_tac x="d *s x + a" in image_eqI) defer
+  have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *\<^sub>R (x - a)) ` s"
+    apply(rule, rule_tac x="d *\<^sub>R x + a" in image_eqI) defer
     apply(rule d[unfolded subset_eq, rule_format]) using `d>0` unfolding mem_cball dist_norm
     by(auto simp add: mult_right_le_one_le)
-  hence "(\<lambda>x. inverse d *s (x - a)) ` s homeomorphic cball ?n 1"
-    using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *s -a + ?d *s x) ` s", OF convex_affinity compact_affinity]
-    using assms(1,2) by(auto simp add: uminus_add_conv_diff)
+  hence "(\<lambda>x. inverse d *\<^sub>R (x - a)) ` s homeomorphic cball ?n 1"
+    using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *\<^sub>R -a + ?d *\<^sub>R x) ` s", OF convex_affinity compact_affinity]
+    using assms(1,2) by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib)
   thus ?thesis apply(rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]])
-    apply(rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *s -a"]])
-    using `d>0` `e>0` by(auto simp add: uminus_add_conv_diff) qed
+    apply(rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *\<^sub>R -a"]])
+    using `d>0` `e>0` by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib) qed
 
 lemma homeomorphic_convex_compact: fixes s::"(real^'n::finite) set" and t::"(real^'n) set"
   assumes "convex s" "compact s" "interior s \<noteq> {}"
@@ -2101,8 +2160,8 @@
 lemma convex_epigraph: 
   "convex(epigraph s f) \<longleftrightarrow> convex_on s f \<and> convex s"
   unfolding convex_def convex_on_def unfolding Ball_def forall_pastecart epigraph_def
-  unfolding mem_Collect_eq fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul fstcart_add fstcart_cmul
-  unfolding Ball_def[symmetric] unfolding dest_vec1_add dest_vec1_cmul
+  unfolding mem_Collect_eq fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul [where 'a=real, unfolded smult_conv_scaleR] fstcart_add fstcart_cmul [where 'a=real, unfolded smult_conv_scaleR]
+  unfolding Ball_def[symmetric] unfolding dest_vec1_add dest_vec1_cmul [where 'a=real, unfolded smult_conv_scaleR]
   apply(subst forall_dest_vec1[THEN sym])+ by(meson real_le_refl real_le_trans add_mono mult_left_mono) 
 
 lemma convex_epigraphI: assumes "convex_on s f" "convex s"
@@ -2131,11 +2190,11 @@
 lemma convex_on:
   assumes "convex s"
   shows "convex_on s f \<longleftrightarrow> (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow>
-   f (setsum (\<lambda>i. u i *s x i) {1..k} ) \<le> setsum (\<lambda>i. u i * f(x i)) {1..k} ) "
+   f (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} ) \<le> setsum (\<lambda>i. u i * f(x i)) {1..k} ) "
   unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq
   unfolding sndcart_setsum[OF finite_atLeastAtMost] fstcart_setsum[OF finite_atLeastAtMost] dest_vec1_setsum[OF finite_atLeastAtMost]
-  unfolding fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul fstcart_add fstcart_cmul
-  unfolding dest_vec1_add dest_vec1_cmul apply(subst forall_of_pastecart)+ apply(subst forall_of_dest_vec1)+ apply rule
+  unfolding fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul [where 'a=real, unfolded smult_conv_scaleR] fstcart_add fstcart_cmul [where 'a=real, unfolded smult_conv_scaleR]
+  unfolding dest_vec1_add dest_vec1_cmul [where 'a=real, unfolded smult_conv_scaleR] apply(subst forall_of_pastecart)+ apply(subst forall_of_dest_vec1)+ apply rule
   using assms[unfolded convex] apply simp apply(rule,rule,rule)
   apply(erule_tac x=k in allE, erule_tac x=u in allE, erule_tac x=x in allE) apply rule apply rule apply rule defer
   apply(rule_tac j="\<Sum>i = 1..k. u i * f (x i)" in real_le_trans)
@@ -2157,7 +2216,7 @@
     hence "v * b > (1 - u) * a" unfolding not_le using as(4) by(auto simp add: field_simps)
     hence "a < b" unfolding * using as(4) apply(rule_tac mult_left_less_imp_less) by(auto simp add: ring_simps)
     hence "u * a + v * b \<le> b" unfolding ** using **(2) as(3) by(auto simp add: field_simps intro!:mult_right_mono) }
-  ultimately show "u *s x + v *s y \<in> s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)])
+  ultimately show "u *\<^sub>R x + v *\<^sub>R y \<in> s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)])
     using as(3-) dimindex_ge_1 apply- by(auto simp add: vector_component) qed
 
 lemma is_interval_connected:
@@ -2179,10 +2238,10 @@
   apply(rule,rule,rule,rule,erule conjE,rule ccontr) proof-
   fix a b x assume as:"connected s" "a \<in> s" "b \<in> s" "dest_vec1 a \<le> dest_vec1 x" "dest_vec1 x \<le> dest_vec1 b" "x\<notin>s"
   hence *:"dest_vec1 a < dest_vec1 x" "dest_vec1 x < dest_vec1 b" apply(rule_tac [!] ccontr) unfolding not_less by auto
-  let ?halfl = "{z. basis 1 \<bullet> z < dest_vec1 x} " and ?halfr = "{z. basis 1 \<bullet> z > dest_vec1 x} "
+  let ?halfl = "{z. inner (basis 1) z < dest_vec1 x} " and ?halfr = "{z. inner (basis 1) z > dest_vec1 x} "
   { fix y assume "y \<in> s" have "y \<in> ?halfr \<union> ?halfl" apply(rule ccontr)
-    using as(6) `y\<in>s` by (auto simp add: basis_component field_simps dest_vec1_eq[unfolded dest_vec1_def One_nat_def] dest_vec1_def) }
-  moreover have "a\<in>?halfl" "b\<in>?halfr" using * by (auto simp add: basis_component field_simps dest_vec1_def) 
+    using as(6) `y\<in>s` by (auto simp add: inner_vector_def dest_vec1_eq [unfolded dest_vec1_def] dest_vec1_def) }
+  moreover have "a\<in>?halfl" "b\<in>?halfr" using * by (auto simp add: inner_vector_def dest_vec1_def)
   hence "?halfl \<inter> s \<noteq> {}" "?halfr \<inter> s \<noteq> {}"  using as(2-3) by auto
   ultimately show False apply(rule_tac notE[OF as(1)[unfolded connected_def]])
     apply(rule_tac x="?halfl" in exI, rule_tac x="?halfr" in exI) 
@@ -2232,7 +2291,7 @@
   assumes "convex_on (convex hull s) f" "\<forall>x\<in>s. f x \<le> b"
   shows "\<forall>x\<in> convex hull s. f x \<le> b" proof
   fix x assume "x\<in>convex hull s"
-  then obtain k u v where obt:"\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *s v i) = x"
+  then obtain k u v where obt:"\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R v i) = x"
     unfolding convex_hull_indexed mem_Collect_eq by auto
   have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b" using setsum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"]
     unfolding setsum_left_distrib[THEN sym] obt(2) mult_1 apply(drule_tac meta_mp) apply(rule mult_left_mono)
@@ -2270,7 +2329,7 @@
         thus "x\<in>convex hull ?points" apply(rule_tac hull_subset[unfolded subset_eq, rule_format])
 	  by(auto simp add: Cart_lambda_beta)
       next let ?y = "\<lambda>j. if x$j = 0 then 0 else (x$j - x$i) / (1 - x$i)"
-	case False hence *:"x = x$i *s (\<chi> j. if x$j = 0 then 0 else 1) + (1 - x$i) *s (\<chi> j. ?y j)" unfolding Cart_eq
+	case False hence *:"x = x$i *\<^sub>R (\<chi> j. if x$j = 0 then 0 else 1) + (1 - x$i) *\<^sub>R (\<chi> j. ?y j)" unfolding Cart_eq
 	  by(auto simp add: Cart_lambda_beta vector_add_component vector_smult_component vector_minus_component field_simps)
 	{ fix j have "x$j \<noteq> 0 \<Longrightarrow> 0 \<le> (x $ j - x $ i) / (1 - x $ i)" "(x $ j - x $ i) / (1 - x $ i) \<le> 1"
 	    apply(rule_tac divide_nonneg_pos) using i(1)[of j] using False i01
@@ -2304,7 +2363,7 @@
 lemma cube_convex_hull:
   assumes "0 < d" obtains s::"(real^'n::finite) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s" proof-
   let ?d = "(\<chi> i. d)::real^'n"
-  have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *s y) ` {0 .. 1}" apply(rule set_ext, rule)
+  have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *\<^sub>R y) ` {0 .. 1}" apply(rule set_ext, rule)
     unfolding image_iff defer apply(erule bexE) proof-
     fix y assume as:"y\<in>{x - ?d .. x + ?d}"
     { fix i::'n have "x $ i \<le> d + y $ i" "y $ i \<le> d + x $ i" using as[unfolded mem_interval, THEN spec[where x=i]]
@@ -2314,26 +2373,26 @@
 	using assms by(auto simp add: field_simps right_inverse) 
       hence "inverse d * (x $ i * 2) \<le> 2 + inverse d * (y $ i * 2)"
             "inverse d * (y $ i * 2) \<le> 2 + inverse d * (x $ i * 2)" by(auto simp add:field_simps) }
-    hence "inverse (2 * d) *s (y - (x - ?d)) \<in> {0..1}" unfolding mem_interval using assms
+    hence "inverse (2 * d) *\<^sub>R (y - (x - ?d)) \<in> {0..1}" unfolding mem_interval using assms
       by(auto simp add: Cart_eq vector_component_simps field_simps)
-    thus "\<exists>z\<in>{0..1}. y = x - ?d + (2 * d) *s z" apply- apply(rule_tac x="inverse (2 * d) *s (y - (x - ?d))" in bexI) 
+    thus "\<exists>z\<in>{0..1}. y = x - ?d + (2 * d) *\<^sub>R z" apply- apply(rule_tac x="inverse (2 * d) *\<^sub>R (y - (x - ?d))" in bexI) 
       using assms by(auto simp add: Cart_eq vector_less_eq_def Cart_lambda_beta)
   next
-    fix y z assume as:"z\<in>{0..1}" "y = x - ?d + (2*d) *s z" 
+    fix y z assume as:"z\<in>{0..1}" "y = x - ?d + (2*d) *\<^sub>R z" 
     have "\<And>i. 0 \<le> d * z $ i \<and> d * z $ i \<le> d" using assms as(1)[unfolded mem_interval] apply(erule_tac x=i in allE)
       apply rule apply(rule mult_nonneg_nonneg) prefer 3 apply(rule mult_right_le_one_le)
       using assms by(auto simp add: vector_component_simps Cart_eq)
     thus "y \<in> {x - ?d..x + ?d}" unfolding as(2) mem_interval apply- apply rule using as(1)[unfolded mem_interval]
       apply(erule_tac x=i in allE) using assms by(auto simp add:  vector_component_simps Cart_eq) qed
   obtain s where "finite s" "{0..1::real^'n} = convex hull s" using unit_cube_convex_hull by auto
-  thus ?thesis apply(rule_tac that[of "(\<lambda>y. x - ?d + (2 * d) *s y)` s"]) unfolding * and convex_hull_affinity by auto qed
+  thus ?thesis apply(rule_tac that[of "(\<lambda>y. x - ?d + (2 * d) *\<^sub>R y)` s"]) unfolding * and convex_hull_affinity by auto qed
 
 subsection {* Bounded convex function on open set is continuous. *}
 
 lemma convex_on_bounded_continuous:
   assumes "open s" "convex_on s f" "\<forall>x\<in>s. abs(f x) \<le> b"
-  shows "continuous_on s (vec1 o f)"
-  apply(rule continuous_at_imp_continuous_on) unfolding continuous_at_vec1_range proof(rule,rule,rule)
+  shows "continuous_on s f"
+  apply(rule continuous_at_imp_continuous_on) unfolding continuous_at_real_range proof(rule,rule,rule)
   fix x e assume "x\<in>s" "(0::real) < e"
   def B \<equiv> "abs b + 1"
   have B:"0 < B" "\<And>x. x\<in>s \<Longrightarrow> abs (f x) \<le> B"
@@ -2347,12 +2406,12 @@
       have "2 < t" "0<t" unfolding t_def using as False and `k>0` by(auto simp add:field_simps)
       have "y\<in>s" apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm
 	apply(rule order_trans[of _ "2 * norm (x - y)"]) using as by(auto simp add: field_simps norm_minus_commute) 
-      { def w \<equiv> "x + t *s (y - x)"
+      { def w \<equiv> "x + t *\<^sub>R (y - x)"
 	have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm 
-	  unfolding t_def using `k>0` by(auto simp add: norm_mul simp del: vector_ssub_ldistrib) 
-	have "(1 / t) *s x + - x + ((t - 1) / t) *s x = (1 / t - 1 + (t - 1) / t) *s x" by auto 
-	also have "\<dots> = 0"  using `t>0` by(auto simp add:field_simps simp del:vector_sadd_rdistrib)
-	finally have w:"(1 / t) *s w + ((t - 1) / t) *s x = y" unfolding w_def using False and `t>0` by auto
+	  unfolding t_def using `k>0` by auto
+	have "(1 / t) *\<^sub>R x + - x + ((t - 1) / t) *\<^sub>R x = (1 / t - 1 + (t - 1) / t) *\<^sub>R x" by (auto simp add: algebra_simps)
+	also have "\<dots> = 0"  using `t>0` by(auto simp add:field_simps)
+	finally have w:"(1 / t) *\<^sub>R w + ((t - 1) / t) *\<^sub>R x = y" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps)
 	have  "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) 
 	hence "(f w - f x) / t < e"
 	  using B(2)[OF `w\<in>s`] and B(2)[OF `x\<in>s`] using `t>0` by(auto simp add:field_simps) 
@@ -2360,12 +2419,12 @@
 	  using assms(2)[unfolded convex_on_def,rule_format,of w x "1/t" "(t - 1)/t", unfolded w]
 	  using `0<t` `2<t` and `x\<in>s` `w\<in>s` by(auto simp add:field_simps) }
       moreover 
-      { def w \<equiv> "x - t *s (y - x)"
+      { def w \<equiv> "x - t *\<^sub>R (y - x)"
 	have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm 
-	  unfolding t_def using `k>0` by(auto simp add: norm_mul simp del: vector_ssub_ldistrib) 
-	have "(1 / (1 + t)) *s x + (t / (1 + t)) *s x = (1 / (1 + t) + t / (1 + t)) *s x" by auto
-	also have "\<dots>=x" using `t>0` by (auto simp add:field_simps simp del:vector_sadd_rdistrib)
-	finally have w:"(1 / (1+t)) *s w + (t / (1 + t)) *s y = x" unfolding w_def using False and `t>0` by auto 
+	  unfolding t_def using `k>0` by auto
+	have "(1 / (1 + t)) *\<^sub>R x + (t / (1 + t)) *\<^sub>R x = (1 / (1 + t) + t / (1 + t)) *\<^sub>R x" by (auto simp add: algebra_simps)
+	also have "\<dots>=x" using `t>0` by (auto simp add:field_simps)
+	finally have w:"(1 / (1+t)) *\<^sub>R w + (t / (1 + t)) *\<^sub>R y = x" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps)
 	have  "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) 
 	hence *:"(f w - f y) / t < e" using B(2)[OF `w\<in>s`] and B(2)[OF `y\<in>s`] using `t>0` by(auto simp add:field_simps) 
 	have "f x \<le> 1 / (1 + t) * f w + (t / (1 + t)) * f y" 
@@ -2384,10 +2443,10 @@
   assumes "convex_on (cball x e) f"  "\<forall>y \<in> cball x e. f y \<le> b"
   shows "\<forall>y \<in> cball x e. abs(f y) \<le> b + 2 * abs(f x)"
   apply(rule) proof(cases "0 \<le> e") case True
-  fix y assume y:"y\<in>cball x e" def z \<equiv> "2 *s x - y"
-  have *:"x - (2 *s x - y) = y - x" by vector
+  fix y assume y:"y\<in>cball x e" def z \<equiv> "2 *\<^sub>R x - y"
+  have *:"x - (2 *\<^sub>R x - y) = y - x" by vector
   have z:"z\<in>cball x e" using y unfolding z_def mem_cball dist_norm * by(auto simp add: norm_minus_commute)
-  have "(1 / 2) *s y + (1 / 2) *s z = x" unfolding z_def by auto
+  have "(1 / 2) *\<^sub>R y + (1 / 2) *\<^sub>R z = x" unfolding z_def by (auto simp add: algebra_simps)
   thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using assms(1)[unfolded convex_on_def,rule_format, OF y z, of "1/2" "1/2"]
     using assms(2)[rule_format,OF y] assms(2)[rule_format,OF z] by(auto simp add:field_simps)
 next case False fix y assume "y\<in>cball x e" 
@@ -2398,7 +2457,7 @@
 
 lemma convex_on_continuous:
   assumes "open (s::(real^'n::finite) set)" "convex_on s f" 
-  shows "continuous_on s (vec1 \<circ> f)"
+  shows "continuous_on s f"
   unfolding continuous_on_eq_continuous_at[OF assms(1)] proof
   note dimge1 = dimindex_ge_1[where 'a='n]
   fix x assume "x\<in>s"
@@ -2428,19 +2487,25 @@
 	using order_trans[OF component_le_norm y[unfolded mem_cball dist_norm], of i] by(auto simp add: vector_component)  }
     thus "f y \<le> k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_norm 
       by(auto simp add: vector_component_simps) qed
-  hence "continuous_on (ball x d) (vec1 \<circ> f)" apply(rule_tac convex_on_bounded_continuous)
+  hence "continuous_on (ball x d) f" apply(rule_tac convex_on_bounded_continuous)
     apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball) by auto
-  thus "continuous (at x) (vec1 \<circ> f)" unfolding continuous_on_eq_continuous_at[OF open_ball] using `d>0` by auto qed
+  thus "continuous (at x) f" unfolding continuous_on_eq_continuous_at[OF open_ball] using `d>0` by auto qed
 
 subsection {* Line segments, starlike sets etc.                                         *)
 (* Use the same overloading tricks as for intervals, so that                 *)
 (* segment[a,b] is closed and segment(a,b) is open relative to affine hull. *}
 
-definition "midpoint a b = (inverse (2::real)) *s (a + b)"
-
-definition "open_segment a b = {(1 - u) *s a + u *s b | u::real.  0 < u \<and> u < 1}"
-
-definition "closed_segment a b = {(1 - u) *s a + u *s b | u::real. 0 \<le> u \<and> u \<le> 1}"
+definition
+  midpoint :: "real ^ 'n::finite \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 'n" where
+  "midpoint a b = (inverse (2::real)) *\<^sub>R (a + b)"
+
+definition
+  open_segment :: "real ^ 'n::finite \<Rightarrow> real ^ 'n \<Rightarrow> (real ^ 'n) set" where
+  "open_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real.  0 < u \<and> u < 1}"
+
+definition
+  closed_segment :: "real ^ 'n::finite \<Rightarrow> real ^ 'n \<Rightarrow> (real ^ 'n) set" where
+  "closed_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real. 0 \<le> u \<and> u \<le> 1}"
 
 definition "between = (\<lambda> (a,b). closed_segment a b)"
 
@@ -2449,9 +2514,9 @@
 definition "starlike s \<longleftrightarrow> (\<exists>a\<in>s. \<forall>x\<in>s. closed_segment a x \<subseteq> s)"
 
 lemma midpoint_refl: "midpoint x x = x"
-  unfolding midpoint_def unfolding vector_add_ldistrib unfolding vector_sadd_rdistrib[THEN sym] by auto
-
-lemma midpoint_sym: "midpoint a b = midpoint b a" unfolding midpoint_def by auto
+  unfolding midpoint_def unfolding scaleR_right_distrib unfolding scaleR_left_distrib[THEN sym] by auto
+
+lemma midpoint_sym: "midpoint a b = midpoint b a" unfolding midpoint_def by (auto simp add: scaleR_right_distrib)
 
 lemma dist_midpoint:
   "dist a (midpoint a b) = (dist a b) / 2" (is ?t1)
@@ -2459,8 +2524,9 @@
   "dist (midpoint a b) a = (dist a b) / 2" (is ?t3)
   "dist (midpoint a b) b = (dist a b) / 2" (is ?t4)
 proof-
-  have *: "\<And>x y::real^'n::finite. 2 *s x = - y \<Longrightarrow> norm x = (norm y) / 2" unfolding equation_minus_iff by auto
-  have **:"\<And>x y::real^'n::finite. 2 *s x =   y \<Longrightarrow> norm x = (norm y) / 2" by auto
+  have *: "\<And>x y::real^'n::finite. 2 *\<^sub>R x = - y \<Longrightarrow> norm x = (norm y) / 2" unfolding equation_minus_iff by auto
+  have **:"\<And>x y::real^'n::finite. 2 *\<^sub>R x =   y \<Longrightarrow> norm x = (norm y) / 2" by auto
+  note scaleR_right_distrib [simp]
   show ?t1 unfolding midpoint_def dist_norm apply (rule **) by(auto,vector)
   show ?t2 unfolding midpoint_def dist_norm apply (rule *)  by(auto,vector)
   show ?t3 unfolding midpoint_def dist_norm apply (rule *)  by(auto,vector)
@@ -2507,7 +2573,7 @@
   using segment_furthest_le[OF assms, of b]
   by (auto simp add:norm_minus_commute) 
 
-lemma segment_refl:"closed_segment a a = {a}" unfolding segment by auto
+lemma segment_refl:"closed_segment a a = {a}" unfolding segment by (auto simp add: algebra_simps)
 
 lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b"
   unfolding between_def mem_def by auto
@@ -2517,32 +2583,32 @@
   case True thus ?thesis unfolding between_def split_conv mem_def[of x, symmetric]
     by(auto simp add:segment_refl dist_commute) next
   case False hence Fal:"norm (a - b) \<noteq> 0" and Fal2: "norm (a - b) > 0" by auto 
-  have *:"\<And>u. a - ((1 - u) *s a + u *s b) = u *s (a - b)" by auto
+  have *:"\<And>u. a - ((1 - u) *\<^sub>R a + u *\<^sub>R b) = u *\<^sub>R (a - b)" by (auto simp add: algebra_simps)
   show ?thesis unfolding between_def split_conv mem_def[of x, symmetric] closed_segment_def mem_Collect_eq
     apply rule apply(erule exE, (erule conjE)+) apply(subst dist_triangle_eq) proof-
-      fix u assume as:"x = (1 - u) *s a + u *s b" "0 \<le> u" "u \<le> 1" 
-      hence *:"a - x = u *s (a - b)" "x - b = (1 - u) *s (a - b)"
-	unfolding as(1) by(auto simp add:field_simps)
-      show "norm (a - x) *s (x - b) = norm (x - b) *s (a - x)"
-	unfolding norm_minus_commute[of x a] * norm_mul Cart_eq using as(2,3)
+      fix u assume as:"x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 \<le> u" "u \<le> 1" 
+      hence *:"a - x = u *\<^sub>R (a - b)" "x - b = (1 - u) *\<^sub>R (a - b)"
+	unfolding as(1) by(auto simp add:algebra_simps)
+      show "norm (a - x) *\<^sub>R (x - b) = norm (x - b) *\<^sub>R (a - x)"
+	unfolding norm_minus_commute[of x a] * Cart_eq using as(2,3)
 	by(auto simp add: vector_component_simps field_simps)
     next assume as:"dist a b = dist a x + dist x b"
       have "norm (a - x) / norm (a - b) \<le> 1" unfolding divide_le_eq_1_pos[OF Fal2] unfolding as[unfolded dist_norm] norm_ge_zero by auto 
-      thus "\<exists>u. x = (1 - u) *s a + u *s b \<and> 0 \<le> u \<and> u \<le> 1" apply(rule_tac x="dist a x / dist a b" in exI)
+      thus "\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1" apply(rule_tac x="dist a x / dist a b" in exI)
 	unfolding dist_norm Cart_eq apply- apply rule defer apply(rule, rule divide_nonneg_pos) prefer 4 proof rule
-	  fix i::'n have "((1 - norm (a - x) / norm (a - b)) *s a + (norm (a - x) / norm (a - b)) *s b) $ i =
+	  fix i::'n have "((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i =
 	    ((norm (a - b) - norm (a - x)) * (a $ i) + norm (a - x) * (b $ i)) / norm (a - b)"
 	    using Fal by(auto simp add:vector_component_simps field_simps)
 	  also have "\<dots> = x$i" apply(rule divide_eq_imp[OF Fal])
 	    unfolding as[unfolded dist_norm] using as[unfolded dist_triangle_eq Cart_eq,rule_format, of i]
 	    by(auto simp add:field_simps vector_component_simps)
-	  finally show "x $ i = ((1 - norm (a - x) / norm (a - b)) *s a + (norm (a - x) / norm (a - b)) *s b) $ i" by auto
+	  finally show "x $ i = ((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i" by auto
 	qed(insert Fal2, auto) qed qed
 
 lemma between_midpoint: fixes a::"real^'n::finite" shows
   "between (a,b) (midpoint a b)" (is ?t1) 
   "between (b,a) (midpoint a b)" (is ?t2)
-proof- have *:"\<And>x y z. x = (1/2::real) *s z \<Longrightarrow> y = (1/2) *s z \<Longrightarrow> norm z = norm x + norm y" by auto
+proof- have *:"\<And>x y z. x = (1/2::real) *\<^sub>R z \<Longrightarrow> y = (1/2) *\<^sub>R z \<Longrightarrow> norm z = norm x + norm y" by auto
   show ?t1 ?t2 unfolding between midpoint_def dist_norm apply(rule_tac[!] *)
     by(auto simp add:field_simps Cart_eq vector_component_simps) qed
 
@@ -2554,16 +2620,16 @@
 
 lemma mem_interior_convex_shrink:
   assumes "convex s" "c \<in> interior s" "x \<in> s" "0 < e" "e \<le> 1"
-  shows "x - e *s (x - c) \<in> interior s"
+  shows "x - e *\<^sub>R (x - c) \<in> interior s"
 proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto
   show ?thesis unfolding mem_interior apply(rule_tac x="e*d" in exI)
     apply(rule) defer unfolding subset_eq Ball_def mem_ball proof(rule,rule)
-    fix y assume as:"dist (x - e *s (x - c)) y < e * d"
-    have *:"y = (1 - (1 - e)) *s ((1 / e) *s y - ((1 - e) / e) *s x) + (1 - e) *s x" using `e>0` by auto
-    have "dist c ((1 / e) *s y - ((1 - e) / e) *s x) = abs(1/e) * norm (e *s c - y + (1 - e) *s x)"
-      unfolding dist_norm unfolding norm_mul[THEN sym] apply(rule norm_eqI) using `e>0`
+    fix y assume as:"dist (x - e *\<^sub>R (x - c)) y < e * d"
+    have *:"y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using `e>0` by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib)
+    have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = abs(1/e) * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)"
+      unfolding dist_norm unfolding norm_scaleR[THEN sym] apply(rule norm_eqI) using `e>0`
       by(auto simp add:vector_component_simps Cart_eq field_simps) 
-    also have "\<dots> = abs(1/e) * norm (x - e *s (x - c) - y)" by(auto intro!:norm_eqI)
+    also have "\<dots> = abs(1/e) * norm (x - e *\<^sub>R (x - c) - y)" by(auto intro!:norm_eqI simp add: algebra_simps)
     also have "\<dots> < d" using as[unfolded dist_norm] and `e>0`
       by(auto simp add:pos_divide_less_eq[OF `e>0`] real_mult_commute)
     finally show "y \<in> s" apply(subst *) apply(rule assms(1)[unfolded convex_alt,rule_format])
@@ -2572,7 +2638,7 @@
 
 lemma mem_interior_closure_convex_shrink:
   assumes "convex s" "c \<in> interior s" "x \<in> closure s" "0 < e" "e \<le> 1"
-  shows "x - e *s (x - c) \<in> interior s"
+  shows "x - e *\<^sub>R (x - c) \<in> interior s"
 proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto
   have "\<exists>y\<in>s. norm (y - x) * (1 - e) < e * d" proof(cases "x\<in>s")
     case True thus ?thesis using `e>0` `d>0` by(rule_tac bexI[where x=x], auto intro!: mult_pos_pos) next
@@ -2587,11 +2653,11 @@
 	using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto
       thus ?thesis apply(rule_tac x=y in bexI) unfolding dist_norm using pos_less_divide_eq[OF *] by auto qed qed
   then obtain y where "y\<in>s" and y:"norm (y - x) * (1 - e) < e * d" by auto
-  def z \<equiv> "c + ((1 - e) / e) *s (x - y)"
-  have *:"x - e *s (x - c) = y - e *s (y - z)" unfolding z_def using `e>0` by auto
+  def z \<equiv> "c + ((1 - e) / e) *\<^sub>R (x - y)"
+  have *:"x - e *\<^sub>R (x - c) = y - e *\<^sub>R (y - z)" unfolding z_def using `e>0` by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib)
   have "z\<in>interior s" apply(rule subset_interior[OF d,unfolded subset_eq,rule_format])
     unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5)
-    by(auto simp del:vector_ssub_ldistrib simp add:field_simps norm_minus_commute) 
+    by(auto simp add:field_simps norm_minus_commute)
   thus ?thesis unfolding * apply - apply(rule mem_interior_convex_shrink) 
     using assms(1,4-5) `y\<in>s` by auto qed
 
@@ -2599,7 +2665,7 @@
 
 lemma simplex:
   assumes "finite s" "0 \<notin> s"
-  shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *s x) s = y)}"
+  shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y)}"
   unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_ext, rule) unfolding mem_Collect_eq
   apply(erule_tac[!] exE) apply(erule_tac[!] conjE)+ unfolding setsum_clauses(2)[OF assms(1)]
   apply(rule_tac x=u in exI) defer apply(rule_tac x="\<lambda>x. if x = 0 then 1 - setsum u s else u x" in exI) using assms(2)
@@ -2614,16 +2680,16 @@
   note sumbas = this  setsum_reindex[OF basis_inj, unfolded o_def]
   show ?thesis unfolding simplex[OF finite_stdbasis `0\<notin>?p`] apply(rule set_ext) unfolding mem_Collect_eq apply rule
     apply(erule exE, (erule conjE)+) apply(erule_tac[2] conjE)+ proof-
-    fix x::"real^'n" and u assume as: "\<forall>x\<in>{basis i |i. i \<in>?D}. 0 \<le> u x" "setsum u {basis i |i. i \<in> ?D} \<le> 1" "(\<Sum>x\<in>{basis i |i. i \<in>?D}. u x *s x) = x"
-    have *:"\<forall>i. u (basis i) = x$i" using as(3) unfolding sumbas and basis_expansion_unique by auto
+    fix x::"real^'n" and u assume as: "\<forall>x\<in>{basis i |i. i \<in>?D}. 0 \<le> u x" "setsum u {basis i |i. i \<in> ?D} \<le> 1" "(\<Sum>x\<in>{basis i |i. i \<in>?D}. u x *\<^sub>R x) = x"
+    have *:"\<forall>i. u (basis i) = x$i" using as(3) unfolding sumbas and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by auto
     hence **:"setsum u {basis i |i. i \<in> ?D} = setsum (op $ x) ?D" unfolding sumbas by(rule_tac setsum_cong, auto)
     show " (\<forall>i. 0 \<le> x $ i) \<and> setsum (op $ x) ?D \<le> 1" apply - proof(rule,rule)
       fix i::'n show "0 \<le> x$i" unfolding *[rule_format,of i,THEN sym] apply(rule_tac as(1)[rule_format]) by auto
     qed(insert as(2)[unfolded **], auto)
   next fix x::"real^'n" assume as:"\<forall>i. 0 \<le> x $ i" "setsum (op $ x) ?D \<le> 1"
-    show "\<exists>u. (\<forall>x\<in>{basis i |i. i \<in> ?D}. 0 \<le> u x) \<and> setsum u {basis i |i. i \<in> ?D} \<le> 1 \<and> (\<Sum>x\<in>{basis i |i. i \<in> ?D}. u x *s x) = x"
-      apply(rule_tac x="\<lambda>y. y \<bullet> x" in exI) apply(rule,rule) unfolding mem_Collect_eq apply(erule exE) using as(1) apply(erule_tac x=i in allE) 
-      unfolding sumbas using as(2) and basis_expansion_unique by(auto simp add:dot_basis) qed qed 
+    show "\<exists>u. (\<forall>x\<in>{basis i |i. i \<in> ?D}. 0 \<le> u x) \<and> setsum u {basis i |i. i \<in> ?D} \<le> 1 \<and> (\<Sum>x\<in>{basis i |i. i \<in> ?D}. u x *\<^sub>R x) = x"
+      apply(rule_tac x="\<lambda>y. inner y x" in exI) apply(rule,rule) unfolding mem_Collect_eq apply(erule exE) using as(1) apply(erule_tac x=i in allE) 
+      unfolding sumbas using as(2) and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by(auto simp add:inner_basis) qed qed 
 
 lemma interior_std_simplex:
   "interior (convex hull (insert 0 { basis i| i. i\<in>UNIV})) =
@@ -2632,14 +2698,14 @@
   unfolding Ball_def[symmetric] apply rule apply(erule exE, (erule conjE)+) defer apply(erule conjE) proof-
   fix x::"real^'n" and e assume "0<e" and as:"\<forall>xa. dist x xa < e \<longrightarrow> (\<forall>x. 0 \<le> xa $ x) \<and> setsum (op $ xa) UNIV \<le> 1"
   show "(\<forall>xa. 0 < x $ xa) \<and> setsum (op $ x) UNIV < 1" apply(rule,rule) proof-
-    fix i::'n show "0 < x $ i" using as[THEN spec[where x="x - (e / 2) *s basis i"]] and `e>0`
+    fix i::'n show "0 < x $ i" using as[THEN spec[where x="x - (e / 2) *\<^sub>R basis i"]] and `e>0`
       unfolding dist_norm by(auto simp add: norm_basis vector_component_simps basis_component elim:allE[where x=i])
   next guess a using UNIV_witness[where 'a='n] ..
-    have **:"dist x (x + (e / 2) *s basis a) < e" using  `e>0` and norm_basis[of a]
+    have **:"dist x (x + (e / 2) *\<^sub>R basis a) < e" using  `e>0` and norm_basis[of a]
       unfolding dist_norm by(auto simp add: vector_component_simps basis_component intro!: mult_strict_left_mono_comm)
-    have "\<And>i. (x + (e / 2) *s basis a) $ i = x$i + (if i = a then e/2 else 0)" by(auto simp add:vector_component_simps)
-    hence *:"setsum (op $ (x + (e / 2) *s basis a)) UNIV = setsum (\<lambda>i. x$i + (if a = i then e/2 else 0)) UNIV" by(rule_tac setsum_cong, auto) 
-    have "setsum (op $ x) UNIV < setsum (op $ (x + (e / 2) *s basis a)) UNIV" unfolding * setsum_addf
+    have "\<And>i. (x + (e / 2) *\<^sub>R basis a) $ i = x$i + (if i = a then e/2 else 0)" by(auto simp add:vector_component_simps)
+    hence *:"setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV = setsum (\<lambda>i. x$i + (if a = i then e/2 else 0)) UNIV" by(rule_tac setsum_cong, auto) 
+    have "setsum (op $ x) UNIV < setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV" unfolding * setsum_addf
       using `0<e` dimindex_ge_1 by(auto simp add: setsum_delta')
     also have "\<dots> \<le> 1" using ** apply(drule_tac as[rule_format]) by auto
     finally show "setsum (op $ x) UNIV < 1" by auto qed
@@ -2665,8 +2731,8 @@
 
 lemma interior_std_simplex_nonempty: obtains a::"real^'n::finite" where
   "a \<in> interior(convex hull (insert 0 {basis i | i . i \<in> UNIV}))" proof-
-  let ?D = "UNIV::'n set" let ?a = "setsum (\<lambda>b. inverse (2 * real CARD('n)) *s b) {(basis i) | i. i \<in> ?D}"
-  have *:"{basis i | i. i \<in> ?D} = basis ` ?D" by auto
+  let ?D = "UNIV::'n set" let ?a = "setsum (\<lambda>b::real^'n. inverse (2 * real CARD('n)) *\<^sub>R b) {(basis i) | i. i \<in> ?D}"
+  have *:"{basis i :: real ^ 'n | i. i \<in> ?D} = basis ` ?D" by auto
   { fix i have "?a $ i = inverse (2 * real CARD('n))"
     unfolding setsum_component vector_smult_component and * and setsum_reindex[OF basis_inj] and o_def
     apply(rule trans[of _ "setsum (\<lambda>j. if i = j then inverse (2 * real CARD('n)) else 0) ?D"]) apply(rule setsum_cong2)
@@ -2691,7 +2757,7 @@
 definition "reversepath (g::real^1 \<Rightarrow> real^'n) = (\<lambda>x. g(1 - x))"
 
 definition joinpaths:: "(real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n)" (infixr "+++" 75)
-  where "joinpaths g1 g2 = (\<lambda>x. if dest_vec1 x \<le> ((1 / 2)::real) then g1 (2 *s x) else g2(2 *s x - 1))"
+  where "joinpaths g1 g2 = (\<lambda>x. if dest_vec1 x \<le> ((1 / 2)::real) then g1 (2 *\<^sub>R x) else g2(2 *\<^sub>R x - 1))"
 definition "simple_path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow>
   (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
 
@@ -2736,7 +2802,7 @@
   unfolding pathstart_def joinpaths_def pathfinish_def by auto
 
 lemma pathfinish_join[simp]:"pathfinish(g1 +++ g2) = pathfinish g2" proof-
-  have "2 *s 1 - 1 = (1::real^1)" unfolding Cart_eq by(auto simp add:vector_component_simps)
+  have "2 *\<^sub>R 1 - 1 = (1::real^1)" unfolding Cart_eq by(auto simp add:vector_component_simps)
   thus ?thesis unfolding pathstart_def joinpaths_def pathfinish_def
     unfolding vec_1[THEN sym] dest_vec1_vec by auto qed
 
@@ -2759,9 +2825,9 @@
 lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \<longleftrightarrow>  path g1 \<and> path g2"
   unfolding path_def pathfinish_def pathstart_def apply rule defer apply(erule conjE) proof-
   assume as:"continuous_on {0..1} (g1 +++ g2)"
-  have *:"g1 = (\<lambda>x. g1 (2 *s x)) \<circ> (\<lambda>x. (1/2) *s x)" 
-         "g2 = (\<lambda>x. g2 (2 *s x - 1)) \<circ> (\<lambda>x. (1/2) *s (x + 1))" unfolding o_def by auto
-  have "op *s (1 / 2) ` {0::real^1..1} \<subseteq> {0..1}"  "(\<lambda>x. (1 / 2) *s (x + 1)) ` {(0::real^1)..1} \<subseteq> {0..1}"
+  have *:"g1 = (\<lambda>x. g1 (2 *\<^sub>R x)) \<circ> (\<lambda>x. (1/2) *\<^sub>R x)" 
+         "g2 = (\<lambda>x. g2 (2 *\<^sub>R x - 1)) \<circ> (\<lambda>x. (1/2) *\<^sub>R (x + 1))" unfolding o_def by auto
+  have "op *\<^sub>R (1 / 2) ` {0::real^1..1} \<subseteq> {0..1}"  "(\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {(0::real^1)..1} \<subseteq> {0..1}"
     unfolding image_smult_interval by (auto, auto simp add:vector_less_eq_def vector_component_simps elim!:ballE)
   thus "continuous_on {0..1} g1 \<and> continuous_on {0..1} g2" apply -apply rule
     apply(subst *) defer apply(subst *) apply (rule_tac[!] continuous_on_compose)
@@ -2769,35 +2835,35 @@
     apply (rule continuous_on_cmul, rule continuous_on_id) apply(rule_tac[!] continuous_on_eq[of _ "g1 +++ g2"]) defer prefer 3
     apply(rule_tac[1-2] continuous_on_subset[of "{0 .. 1}"]) apply(rule as, assumption, rule as, assumption)
     apply(rule) defer apply rule proof-
-    fix x assume "x \<in> op *s (1 / 2) ` {0::real^1..1}"
+    fix x assume "x \<in> op *\<^sub>R (1 / 2) ` {0::real^1..1}"
     hence "dest_vec1 x \<le> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps)
-    thus "(g1 +++ g2) x = g1 (2 *s x)" unfolding joinpaths_def by auto next
-    fix x assume "x \<in> (\<lambda>x. (1 / 2) *s (x + 1)) ` {0::real^1..1}"
+    thus "(g1 +++ g2) x = g1 (2 *\<^sub>R x)" unfolding joinpaths_def by auto next
+    fix x assume "x \<in> (\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {0::real^1..1}"
     hence "dest_vec1 x \<ge> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps)
-    thus "(g1 +++ g2) x = g2 (2 *s x - 1)" proof(cases "dest_vec1 x = 1 / 2")
-      case True hence "x = (1/2) *s 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)
+    thus "(g1 +++ g2) x = g2 (2 *\<^sub>R x - 1)" proof(cases "dest_vec1 x = 1 / 2")
+      case True hence "x = (1/2) *\<^sub>R 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)
       thus ?thesis unfolding joinpaths_def using assms[unfolded pathstart_def pathfinish_def] by auto
     qed (auto simp add:le_less joinpaths_def) qed
 next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2"
-  have *:"{0 .. 1::real^1} = {0.. (1/2)*s 1} \<union> {(1/2) *s 1 .. 1}" by(auto simp add: vector_component_simps) 
-  have **:"op *s 2 ` {0..(1 / 2) *s 1} = {0..1::real^1}" apply(rule set_ext, rule) unfolding image_iff 
-    defer apply(rule_tac x="(1/2)*s x" in bexI) by(auto simp add: vector_component_simps)
-  have ***:"(\<lambda>x. 2 *s x - 1) ` {(1 / 2) *s 1..1} = {0..1::real^1}"
+  have *:"{0 .. 1::real^1} = {0.. (1/2)*\<^sub>R 1} \<union> {(1/2) *\<^sub>R 1 .. 1}" by(auto simp add: vector_component_simps) 
+  have **:"op *\<^sub>R 2 ` {0..(1 / 2) *\<^sub>R 1} = {0..1::real^1}" apply(rule set_ext, rule) unfolding image_iff 
+    defer apply(rule_tac x="(1/2)*\<^sub>R x" in bexI) by(auto simp add: vector_component_simps)
+  have ***:"(\<lambda>x. 2 *\<^sub>R x - 1) ` {(1 / 2) *\<^sub>R 1..1} = {0..1::real^1}"
     unfolding image_affinity_interval[of _ "- 1", unfolded diff_def[symmetric]] and interval_eq_empty_1
     by(auto simp add: vector_component_simps)
-  have ****:"\<And>x::real^1. x $ 1 * 2 = 1 \<longleftrightarrow> x = (1/2) *s 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)
+  have ****:"\<And>x::real^1. x $ 1 * 2 = 1 \<longleftrightarrow> x = (1/2) *\<^sub>R 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)
   show "continuous_on {0..1} (g1 +++ g2)" unfolding * apply(rule continuous_on_union) apply(rule closed_interval)+ proof-
-    show "continuous_on {0..(1 / 2) *s 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\<lambda>x. g1 (2 *s x)"]) defer
+    show "continuous_on {0..(1 / 2) *\<^sub>R 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\<lambda>x. g1 (2 *\<^sub>R x)"]) defer
       unfolding o_def[THEN sym] apply(rule continuous_on_compose) apply(rule continuous_on_cmul, rule continuous_on_id)
       unfolding ** apply(rule as(1)) unfolding joinpaths_def by(auto simp add: vector_component_simps) next
-    show "continuous_on {(1/2)*s1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \<circ> (\<lambda>x. 2 *s x - 1)"]) defer
+    show "continuous_on {(1/2)*\<^sub>R1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \<circ> (\<lambda>x. 2 *\<^sub>R x - 1)"]) defer
       apply(rule continuous_on_compose) apply(rule continuous_on_sub, rule continuous_on_cmul, rule continuous_on_id, rule continuous_on_const)
       unfolding *** o_def joinpaths_def apply(rule as(2)) using assms[unfolded pathstart_def pathfinish_def]
       by(auto simp add: vector_component_simps ****) qed qed
 
 lemma path_image_join_subset: "path_image(g1 +++ g2) \<subseteq> (path_image g1 \<union> path_image g2)" proof
   fix x assume "x \<in> path_image (g1 +++ g2)"
-  then obtain y where y:"y\<in>{0..1}" "x = (if dest_vec1 y \<le> 1 / 2 then g1 (2 *s y) else g2 (2 *s y - 1))"
+  then obtain y where y:"y\<in>{0..1}" "x = (if dest_vec1 y \<le> 1 / 2 then g1 (2 *\<^sub>R y) else g2 (2 *\<^sub>R y - 1))"
     unfolding path_image_def image_iff joinpaths_def by auto
   thus "x \<in> path_image g1 \<union> path_image g2" apply(cases "dest_vec1 y \<le> 1/2")
     apply(rule_tac UnI1) defer apply(rule_tac UnI2) unfolding y(2) path_image_def using y(1)
@@ -2814,12 +2880,12 @@
   fix x assume "x \<in> path_image g1"
   then obtain y where y:"y\<in>{0..1}" "x = g1 y" unfolding path_image_def image_iff by auto
   thus "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff
-    apply(rule_tac x="(1/2) *s y" in bexI) by(auto simp add: vector_component_simps) next
+    apply(rule_tac x="(1/2) *\<^sub>R y" in bexI) by(auto simp add: vector_component_simps) next
   fix x assume "x \<in> path_image g2"
   then obtain y where y:"y\<in>{0..1}" "x = g2 y" unfolding path_image_def image_iff by auto
   moreover have *:"y $ 1 = 0 \<Longrightarrow> y = 0" unfolding Cart_eq by auto
   ultimately show "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff
-    apply(rule_tac x="(1/2) *s (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def]
+    apply(rule_tac x="(1/2) *\<^sub>R (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def]
     by(auto simp add: vector_component_simps) qed 
 
 lemma not_in_path_image_join:
@@ -2831,6 +2897,10 @@
   apply(erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE)
   unfolding mem_interval_1 by(auto simp add:vector_component_simps)
 
+lemma dest_vec1_scaleR [simp]:
+  "dest_vec1 (scaleR a x) = scaleR a (dest_vec1 x)"
+unfolding dest_vec1_def by simp
+
 lemma simple_path_join_loop:
   assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1"
   "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g1,pathstart g2}"
@@ -2840,40 +2910,40 @@
   fix x y::"real^1" assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "?g x = ?g y"
   show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" proof(case_tac "x$1 \<le> 1/2",case_tac[!] "y$1 \<le> 1/2", unfold not_le)
     assume as:"x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2"
-    hence "g1 (2 *s x) = g1 (2 *s y)" using xy(3) unfolding joinpaths_def dest_vec1_def by auto
-    moreover have "2 *s x \<in> {0..1}" "2 *s y \<in> {0..1}" using xy(1,2) as
+    hence "g1 (2 *\<^sub>R x) = g1 (2 *\<^sub>R y)" using xy(3) unfolding joinpaths_def dest_vec1_def by auto
+    moreover have "2 *\<^sub>R x \<in> {0..1}" "2 *\<^sub>R y \<in> {0..1}" using xy(1,2) as
       unfolding mem_interval_1 dest_vec1_def by(auto simp add:vector_component_simps)
-    ultimately show ?thesis using inj(1)[of "2*s x" "2*s y"] by auto
+    ultimately show ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] by auto
   next assume as:"x $ 1 > 1 / 2" "y $ 1 > 1 / 2"
-    hence "g2 (2 *s x - 1) = g2 (2 *s y - 1)" using xy(3) unfolding joinpaths_def dest_vec1_def by auto
-    moreover have "2 *s x - 1 \<in> {0..1}" "2 *s y - 1 \<in> {0..1}" using xy(1,2) as
+    hence "g2 (2 *\<^sub>R x - 1) = g2 (2 *\<^sub>R y - 1)" using xy(3) unfolding joinpaths_def dest_vec1_def by auto
+    moreover have "2 *\<^sub>R x - 1 \<in> {0..1}" "2 *\<^sub>R y - 1 \<in> {0..1}" using xy(1,2) as
       unfolding mem_interval_1 dest_vec1_def by(auto simp add:vector_component_simps)
-    ultimately show ?thesis using inj(2)[of "2*s x - 1" "2*s y - 1"] by auto
+    ultimately show ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] by auto
   next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2"
     hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def
       using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
     moreover have "?g y \<noteq> pathstart g2" using as(2) unfolding pathstart_def joinpaths_def
-      using inj(2)[of "2 *s y - 1" 0] and xy(2)[unfolded mem_interval_1]
+      using inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(2)[unfolded mem_interval_1]
       apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq)
     ultimately have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto
     hence "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1)[unfolded mem_interval_1]
-      using inj(1)[of "2 *s x" 0] by(auto simp add:vector_component_simps)
+      using inj(1)[of "2 *\<^sub>R x" 0] by(auto simp add:vector_component_simps)
     moreover have "y = 1" using * unfolding xy(3) assms(3)[THEN sym]
       unfolding joinpaths_def pathfinish_def using as(2) and xy(2)[unfolded mem_interval_1]
-      using inj(2)[of "2 *s y - 1" 1] by (auto simp add:vector_component_simps Cart_eq)
+      using inj(2)[of "2 *\<^sub>R y - 1" 1] by (auto simp add:vector_component_simps Cart_eq)
     ultimately show ?thesis by auto 
   next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2"
     hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def
       using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
     moreover have "?g x \<noteq> pathstart g2" using as(1) unfolding pathstart_def joinpaths_def
-      using inj(2)[of "2 *s x - 1" 0] and xy(1)[unfolded mem_interval_1]
+      using inj(2)[of "2 *\<^sub>R x - 1" 0] and xy(1)[unfolded mem_interval_1]
       apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq)
     ultimately have *:"?g y = pathstart g1" using assms(4) unfolding xy(3) by auto
     hence "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2)[unfolded mem_interval_1]
-      using inj(1)[of "2 *s y" 0] by(auto simp add:vector_component_simps)
+      using inj(1)[of "2 *\<^sub>R y" 0] by(auto simp add:vector_component_simps)
     moreover have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym]
       unfolding joinpaths_def pathfinish_def using as(1) and xy(1)[unfolded mem_interval_1]
-      using inj(2)[of "2 *s x - 1" 1] by(auto simp add:vector_component_simps Cart_eq)
+      using inj(2)[of "2 *\<^sub>R x - 1" 1] by(auto simp add:vector_component_simps Cart_eq)
     ultimately show ?thesis by auto qed qed
 
 lemma injective_path_join:
@@ -2884,22 +2954,22 @@
   note inj = assms(1,2)[unfolded injective_path_def, rule_format]
   fix x y assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y"
   show "x = y" proof(cases "x$1 \<le> 1/2", case_tac[!] "y$1 \<le> 1/2", unfold not_le)
-    assume "x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2" thus ?thesis using inj(1)[of "2*s x" "2*s y"] and xy
+    assume "x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2" thus ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] and xy
       unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps)
-  next assume "x $ 1 > 1 / 2" "y $ 1 > 1 / 2" thus ?thesis using inj(2)[of "2*s x - 1" "2*s y - 1"] and xy
+  next assume "x $ 1 > 1 / 2" "y $ 1 > 1 / 2" thus ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] and xy
       unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps)
   next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2" 
     hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def
       using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
     hence "?g x = pathfinish g1" "?g y = pathstart g2" using assms(4) unfolding assms(3) xy(3) by auto
-    thus ?thesis using as and inj(1)[of "2 *s x" 1] inj(2)[of "2 *s y - 1" 0] and xy(1,2)
+    thus ?thesis using as and inj(1)[of "2 *\<^sub>R x" 1] inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(1,2)
       unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1
       by(auto simp add:vector_component_simps Cart_eq forall_1)
   next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2" 
     hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def
       using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
     hence "?g x = pathstart g2" "?g y = pathfinish g1" using assms(4) unfolding assms(3) xy(3) by auto
-    thus ?thesis using as and inj(2)[of "2 *s x - 1" 0] inj(1)[of "2 *s y" 1] and xy(1,2)
+    thus ?thesis using as and inj(2)[of "2 *\<^sub>R x - 1" 0] inj(1)[of "2 *\<^sub>R y" 1] and xy(1,2)
       unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1
       by(auto simp add:vector_component_simps forall_1 Cart_eq) qed qed
 
@@ -2966,7 +3036,7 @@
 
 definition
   linepath :: "real ^ 'n::finite \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 1 \<Rightarrow> real ^ 'n" where
-  "linepath a b = (\<lambda>x. (1 - dest_vec1 x) *s a + dest_vec1 x *s b)"
+  "linepath a b = (\<lambda>x. (1 - dest_vec1 x) *\<^sub>R a + dest_vec1 x *\<^sub>R b)"
 
 lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a"
   unfolding pathstart_def linepath_def by auto
@@ -2975,7 +3045,8 @@
   unfolding pathfinish_def linepath_def by auto
 
 lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)"
-  unfolding linepath_def by(auto simp add: vec1_dest_vec1 o_def intro!: continuous_intros)
+  unfolding linepath_def
+  by (intro continuous_intros continuous_dest_vec1)
 
 lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)"
   using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on)
@@ -2985,7 +3056,7 @@
 
 lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)"
   unfolding path_image_def segment linepath_def apply (rule set_ext, rule) defer
-  unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *s 1" in bexI)
+  unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *\<^sub>R 1" in bexI)
   by(auto simp add:vector_component_simps)
 
 lemma reversepath_linepath[simp]:  "reversepath(linepath a b) = linepath b a"
@@ -2993,10 +3064,10 @@
 
 lemma injective_path_linepath: assumes "a \<noteq> b" shows "injective_path(linepath a b)" proof- 
   { obtain i where i:"a$i \<noteq> b$i" using assms[unfolded Cart_eq] by auto
-    fix x y::"real^1" assume "x $ 1 *s b + y $ 1 *s a = x $ 1 *s a + y $ 1 *s b"
+    fix x y::"real^1" assume "x $ 1 *\<^sub>R b + y $ 1 *\<^sub>R a = x $ 1 *\<^sub>R a + y $ 1 *\<^sub>R b"
     hence "x$1 * (b$i - a$i) = y$1 * (b$i - a$i)" unfolding Cart_eq by(auto simp add:field_simps vector_component_simps)
     hence "x = y" unfolding mult_cancel_right Cart_eq using i(1) by(auto simp add:field_simps) }
-  thus ?thesis unfolding injective_path_def linepath_def by(auto simp add:vector_component_simps field_simps) qed
+  thus ?thesis unfolding injective_path_def linepath_def by(auto simp add:vector_component_simps algebra_simps) qed
 
 lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path(linepath a b)" by(auto intro!: injective_imp_simple_path injective_path_linepath)
 
@@ -3136,7 +3207,7 @@
 
 lemma path_connected_singleton: "path_connected {a}"
   unfolding path_connected_def apply(rule,rule)
-  apply(rule_tac x="linepath a a" in exI) by(auto simp add:segment)
+  apply(rule_tac x="linepath a a" in exI) by(auto simp add:segment scaleR_left_diff_distrib)
 
 lemma path_connected_Un: assumes "path_connected s" "path_connected t" "s \<inter> t \<noteq> {}"
   shows "path_connected (s \<union> t)" unfolding path_connected_component proof(rule,rule)
@@ -3153,18 +3224,18 @@
   obtain \<psi> where \<psi>:"bij_betw \<psi> {1..CARD('n)} (UNIV::'n set)" using ex_bij_betw_nat_finite_1[OF finite_UNIV] by auto
   let ?U = "UNIV::(real^'n) set" let ?u = "?U - {0}"
   let ?basis = "\<lambda>k. basis (\<psi> k)"
-  let ?A = "\<lambda>k. {x::real^'n. \<exists>i\<in>{1..k}. (basis (\<psi> i)) \<bullet> x \<noteq> 0}"
+  let ?A = "\<lambda>k. {x::real^'n. \<exists>i\<in>{1..k}. inner (basis (\<psi> i)) x \<noteq> 0}"
   have "\<forall>k\<in>{2..CARD('n)}. path_connected (?A k)" proof
-    have *:"\<And>k. ?A (Suc k) = {x. ?basis (Suc k) \<bullet> x < 0} \<union> {x. ?basis (Suc k) \<bullet> x > 0} \<union> ?A k" apply(rule set_ext,rule) defer
+    have *:"\<And>k. ?A (Suc k) = {x. inner (?basis (Suc k)) x < 0} \<union> {x. inner (?basis (Suc k)) x > 0} \<union> ?A k" apply(rule set_ext,rule) defer
       apply(erule UnE)+  unfolding mem_Collect_eq apply(rule_tac[1-2] x="Suc k" in bexI)
       by(auto elim!: ballE simp add: not_less le_Suc_eq)
     fix k assume "k \<in> {2..CARD('n)}" thus "path_connected (?A k)" proof(induct k)
       case (Suc k) show ?case proof(cases "k = 1")
 	case False from Suc have d:"k \<in> {1..CARD('n)}" "Suc k \<in> {1..CARD('n)}" by auto
 	hence "\<psi> k \<noteq> \<psi> (Suc k)" using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=k]] by auto
-	hence **:"?basis k + ?basis (Suc k) \<in> {x. 0 < ?basis (Suc k) \<bullet> x} \<inter> (?A k)" 
-          "?basis k - ?basis (Suc k) \<in> {x. 0 > ?basis (Suc k) \<bullet> x} \<inter> ({x. 0 < ?basis (Suc k) \<bullet> x} \<union> (?A k))" using d
-	  by(auto simp add: dot_basis vector_component_simps intro!:bexI[where x=k])
+	hence **:"?basis k + ?basis (Suc k) \<in> {x. 0 < inner (?basis (Suc k)) x} \<inter> (?A k)" 
+          "?basis k - ?basis (Suc k) \<in> {x. 0 > inner (?basis (Suc k)) x} \<inter> ({x. 0 < inner (?basis (Suc k)) x} \<union> (?A k))" using d
+	  by(auto simp add: inner_basis vector_component_simps intro!:bexI[where x=k])
 	show ?thesis unfolding * Un_assoc apply(rule path_connected_Un) defer apply(rule path_connected_Un) 
 	  prefer 5 apply(rule_tac[1-2] convex_imp_path_connected, rule convex_halfspace_lt, rule convex_halfspace_gt)
 	  apply(rule Suc(1)) apply(rule_tac[2-3] ccontr) using d ** False by auto
@@ -3177,18 +3248,18 @@
 	  apply(rule_tac[5] x=" ?basis 1 + ?basis 2" in nequals0I)
 	  apply(rule_tac[6] x="-?basis 1 + ?basis 2" in nequals0I)
 	  apply(rule_tac[7] x="-?basis 1 - ?basis 2" in nequals0I)
-	  using d unfolding *** by(auto intro!: convex_halfspace_gt convex_halfspace_lt, auto simp add:vector_component_simps dot_basis)
+	  using d unfolding *** by(auto intro!: convex_halfspace_gt convex_halfspace_lt, auto simp add:vector_component_simps inner_basis)
   qed qed auto qed note lem = this
 
-  have ***:"\<And>x::real^'n. (\<exists>i\<in>{1..CARD('n)}. basis (\<psi> i) \<bullet> x \<noteq> 0) \<longleftrightarrow> (\<exists>i. basis i \<bullet> x \<noteq> 0)"
+  have ***:"\<And>x::real^'n. (\<exists>i\<in>{1..CARD('n)}. inner (basis (\<psi> i)) x \<noteq> 0) \<longleftrightarrow> (\<exists>i. inner (basis i) x \<noteq> 0)"
     apply rule apply(erule bexE) apply(rule_tac x="\<psi> i" in exI) defer apply(erule exE) proof- 
-    fix x::"real^'n" and i assume as:"basis i \<bullet> x \<noteq> 0"
+    fix x::"real^'n" and i assume as:"inner (basis i) x \<noteq> 0"
     have "i\<in>\<psi> ` {1..CARD('n)}" using \<psi>[unfolded bij_betw_def, THEN conjunct2] by auto
     then obtain j where "j\<in>{1..CARD('n)}" "\<psi> j = i" by auto
-    thus "\<exists>i\<in>{1..CARD('n)}. basis (\<psi> i) \<bullet> x \<noteq> 0" apply(rule_tac x=j in bexI) using as by auto qed auto
+    thus "\<exists>i\<in>{1..CARD('n)}. inner (basis (\<psi> i)) x \<noteq> 0" apply(rule_tac x=j in bexI) using as by auto qed auto
   have *:"?U - {a} = (\<lambda>x. x + a) ` {x. x \<noteq> 0}" apply(rule set_ext) unfolding image_iff 
     apply rule apply(rule_tac x="x - a" in bexI) by auto
-  have **:"\<And>x::real^'n. x\<noteq>0 \<longleftrightarrow> (\<exists>i. basis i \<bullet> x \<noteq> 0)" unfolding Cart_eq by(auto simp add: dot_basis)
+  have **:"\<And>x::real^'n. x\<noteq>0 \<longleftrightarrow> (\<exists>i. inner (basis i) x \<noteq> 0)" unfolding Cart_eq by(auto simp add: inner_basis)
   show ?thesis unfolding * apply(rule path_connected_continuous_image) apply(rule continuous_on_intros)+ 
     unfolding ** apply(rule lem[THEN bspec[where x="CARD('n)"], unfolded ***]) using assms by auto qed
 
@@ -3197,14 +3268,14 @@
     case False hence "{x::real^'n. norm(x - a) = r} = {}" using True by auto
     thus ?thesis using path_connected_empty by auto
   qed(auto intro!:path_connected_singleton) next
-  case False hence *:"{x::real^'n. norm(x - a) = r} = (\<lambda>x. a + r *s x) ` {x. norm x = 1}" unfolding not_le apply -apply(rule set_ext,rule)
-    unfolding image_iff apply(rule_tac x="(1/r) *s (x - a)" in bexI) unfolding mem_Collect_eq norm_mul by auto
+  case False hence *:"{x::real^'n. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}" unfolding not_le apply -apply(rule set_ext,rule)
+    unfolding image_iff apply(rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI) unfolding mem_Collect_eq norm_scaleR by (auto simp add: scaleR_right_diff_distrib)
   have ***:"\<And>xa. (if xa = 0 then 0 else 1) \<noteq> 1 \<Longrightarrow> xa = 0" apply(rule ccontr) by auto
-  have **:"{x::real^'n. norm x = 1} = (\<lambda>x. (1/norm x) *s x) ` (UNIV - {0})" apply(rule set_ext,rule)
-    unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq norm_mul by(auto intro!: ***) 
-  have "continuous_on (UNIV - {0}) (vec1 \<circ> (\<lambda>x::real^'n. 1 / norm x))" unfolding o_def continuous_on_eq_continuous_within
+  have **:"{x::real^'n. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})" apply(rule set_ext,rule)
+    unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq by(auto intro!: ***)
+  have "continuous_on (UNIV - {0}) (\<lambda>x::real^'n. 1 / norm x)" unfolding o_def continuous_on_eq_continuous_within
     apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within)
-    apply(rule continuous_at_vec1_norm[unfolded o_def]) by auto
+    apply(rule continuous_at_norm[unfolded o_def]) by auto
   thus ?thesis unfolding * ** using path_connected_punctured_universe[OF assms]
     by(auto intro!: path_connected_continuous_image continuous_on_intros continuous_on_mul) qed
 
--- a/src/HOL/Library/Euclidean_Space.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/Library/Euclidean_Space.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -369,19 +369,33 @@
 
 end
 
-lemma tendsto_Cart_nth:
-  fixes f :: "'a \<Rightarrow> 'b::topological_space ^ 'n::finite"
+lemma open_vector_box: "\<forall>i. open (S i) \<Longrightarrow> open {x. \<forall>i. x $ i \<in> S i}"
+unfolding open_vector_def by auto
+
+lemma open_vimage_Cart_nth: "open S \<Longrightarrow> open ((\<lambda>x. x $ i) -` S)"
+unfolding open_vector_def
+apply clarify
+apply (rule_tac x="\<lambda>k. if k = i then S else UNIV" in exI, simp)
+done
+
+lemma closed_vimage_Cart_nth: "closed S \<Longrightarrow> closed ((\<lambda>x. x $ i) -` S)"
+unfolding closed_open vimage_Compl [symmetric]
+by (rule open_vimage_Cart_nth)
+
+lemma closed_vector_box: "\<forall>i. closed (S i) \<Longrightarrow> closed {x. \<forall>i. x $ i \<in> S i}"
+proof -
+  have "{x. \<forall>i. x $ i \<in> S i} = (\<Inter>i. (\<lambda>x. x $ i) -` S i)" by auto
+  thus "\<forall>i. closed (S i) \<Longrightarrow> closed {x. \<forall>i. x $ i \<in> S i}"
+    by (simp add: closed_INT closed_vimage_Cart_nth)
+qed
+
+lemma tendsto_Cart_nth [tendsto_intros]:
   assumes "((\<lambda>x. f x) ---> a) net"
   shows "((\<lambda>x. f x $ i) ---> a $ i) net"
 proof (rule topological_tendstoI)
-  fix S :: "'b set" assume "open S" "a $ i \<in> S"
+  fix S assume "open S" "a $ i \<in> S"
   then have "open ((\<lambda>y. y $ i) -` S)" "a \<in> ((\<lambda>y. y $ i) -` S)"
-    unfolding open_vector_def
-    apply simp_all
-    apply clarify
-    apply (rule_tac x="\<lambda>k. if k = i then S else UNIV" in exI)
-    apply simp
-    done
+    by (simp_all add: open_vimage_Cart_nth)
   with assms have "eventually (\<lambda>x. f x \<in> (\<lambda>y. y $ i) -` S) net"
     by (rule topological_tendstoD)
   then show "eventually (\<lambda>x. f x $ i \<in> S) net"
@@ -736,7 +750,7 @@
 instantiation "^" :: (real_normed_vector, finite) real_normed_vector
 begin
 
-definition vector_norm_def:
+definition norm_vector_def:
   "norm (x::'a^'b) = setL2 (\<lambda>i. norm (x$i)) UNIV"
 
 definition vector_sgn_def:
@@ -745,30 +759,30 @@
 instance proof
   fix a :: real and x y :: "'a ^ 'b"
   show "0 \<le> norm x"
-    unfolding vector_norm_def
+    unfolding norm_vector_def
     by (rule setL2_nonneg)
   show "norm x = 0 \<longleftrightarrow> x = 0"
-    unfolding vector_norm_def
+    unfolding norm_vector_def
     by (simp add: setL2_eq_0_iff Cart_eq)
   show "norm (x + y) \<le> norm x + norm y"
-    unfolding vector_norm_def
+    unfolding norm_vector_def
     apply (rule order_trans [OF _ setL2_triangle_ineq])
     apply (simp add: setL2_mono norm_triangle_ineq)
     done
   show "norm (scaleR a x) = \<bar>a\<bar> * norm x"
-    unfolding vector_norm_def
-    by (simp add: norm_scaleR setL2_right_distrib)
+    unfolding norm_vector_def
+    by (simp add: setL2_right_distrib)
   show "sgn x = scaleR (inverse (norm x)) x"
     by (rule vector_sgn_def)
   show "dist x y = norm (x - y)"
-    unfolding dist_vector_def vector_norm_def
+    unfolding dist_vector_def norm_vector_def
     by (simp add: dist_norm)
 qed
 
 end
 
 lemma norm_nth_le: "norm (x $ i) \<le> norm x"
-unfolding vector_norm_def
+unfolding norm_vector_def
 by (rule member_le_setL2) simp_all
 
 interpretation Cart_nth: bounded_linear "\<lambda>x. x $ i"
@@ -785,28 +799,28 @@
 instantiation "^" :: (real_inner, finite) real_inner
 begin
 
-definition vector_inner_def:
+definition inner_vector_def:
   "inner x y = setsum (\<lambda>i. inner (x$i) (y$i)) UNIV"
 
 instance proof
   fix r :: real and x y z :: "'a ^ 'b"
   show "inner x y = inner y x"
-    unfolding vector_inner_def
+    unfolding inner_vector_def
     by (simp add: inner_commute)
   show "inner (x + y) z = inner x z + inner y z"
-    unfolding vector_inner_def
-    by (simp add: inner_left_distrib setsum_addf)
+    unfolding inner_vector_def
+    by (simp add: inner_add_left setsum_addf)
   show "inner (scaleR r x) y = r * inner x y"
-    unfolding vector_inner_def
-    by (simp add: inner_scaleR_left setsum_right_distrib)
+    unfolding inner_vector_def
+    by (simp add: setsum_right_distrib)
   show "0 \<le> inner x x"
-    unfolding vector_inner_def
+    unfolding inner_vector_def
     by (simp add: setsum_nonneg)
   show "inner x x = 0 \<longleftrightarrow> x = 0"
-    unfolding vector_inner_def
+    unfolding inner_vector_def
     by (simp add: Cart_eq setsum_nonneg_eq_0_iff)
   show "norm x = sqrt (inner x x)"
-    unfolding vector_inner_def vector_norm_def setL2_def
+    unfolding inner_vector_def norm_vector_def setL2_def
     by (simp add: power2_norm_eq_inner)
 qed
 
@@ -864,7 +878,7 @@
   done
 
 lemma norm_vector_1: "norm (x :: _^1) = norm (x$1)"
-  by (simp add: vector_norm_def UNIV_1)
+  by (simp add: norm_vector_def UNIV_1)
 
 lemma norm_real: "norm(x::real ^ 1) = abs(x$1)"
   by (simp add: norm_vector_1)
@@ -983,12 +997,12 @@
   by (rule norm_zero)
 
 lemma norm_mul[simp]: "norm(a *s x) = abs(a) * norm x"
-  by (simp add: vector_norm_def vector_component setL2_right_distrib
+  by (simp add: norm_vector_def vector_component setL2_right_distrib
            abs_mult cong: strong_setL2_cong)
 lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (x \<bullet> x = (0::real))"
-  by (simp add: vector_norm_def dot_def setL2_def power2_eq_square)
+  by (simp add: norm_vector_def dot_def setL2_def power2_eq_square)
 lemma real_vector_norm_def: "norm x = sqrt (x \<bullet> x)"
-  by (simp add: vector_norm_def setL2_def dot_def power2_eq_square)
+  by (simp add: norm_vector_def setL2_def dot_def power2_eq_square)
 lemma norm_pow_2: "norm x ^ 2 = x \<bullet> x"
   by (simp add: real_vector_norm_def)
 lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n::finite)" by (metis norm_eq_zero)
@@ -1064,7 +1078,7 @@
 qed
 
 lemma component_le_norm: "\<bar>x$i\<bar> <= norm (x::real ^ 'n::finite)"
-  apply (simp add: vector_norm_def)
+  apply (simp add: norm_vector_def)
   apply (rule member_le_setL2, simp_all)
   done
 
@@ -1077,7 +1091,7 @@
   by (metis component_le_norm basic_trans_rules(21))
 
 lemma norm_le_l1: "norm (x:: real ^'n::finite) <= setsum(\<lambda>i. \<bar>x$i\<bar>) UNIV"
-  by (simp add: vector_norm_def setL2_le_setsum)
+  by (simp add: norm_vector_def setL2_le_setsum)
 
 lemma real_abs_norm: "\<bar>norm x\<bar> = norm (x :: real ^ _)"
   by (rule abs_norm_cancel)
@@ -1522,6 +1536,13 @@
   shows "basis i \<bullet> x = x$i" "x \<bullet> (basis i :: 'a^'n::finite) = (x$i :: 'a::semiring_1)"
   by (auto simp add: dot_def basis_def cond_application_beta  cond_value_iff setsum_delta cong del: if_weak_cong)
 
+lemma inner_basis:
+  fixes x :: "'a::{real_inner, real_algebra_1} ^ 'n::finite"
+  shows "inner (basis i) x = inner 1 (x $ i)"
+    and "inner x (basis i) = inner (x $ i) 1"
+  unfolding inner_vector_def basis_def
+  by (auto simp add: cond_application_beta  cond_value_iff setsum_delta cong del: if_weak_cong)
+
 lemma basis_eq_0: "basis i = (0::'a::semiring_1^'n) \<longleftrightarrow> False"
   by (auto simp add: Cart_eq)
 
@@ -2917,7 +2938,7 @@
 done
 
 lemma norm_pastecart: "norm (pastecart x y) <= norm x + norm y"
-  unfolding vector_norm_def setL2_def setsum_UNIV_sum
+  unfolding norm_vector_def setL2_def setsum_UNIV_sum
   by (simp add: sqrt_add_le_add_sqrt setsum_nonneg)
 
 subsection {* A generic notion of "hull" (convex, affine, conic hull and closure). *}
--- a/src/HOL/Library/Inner_Product.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/Library/Inner_Product.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -27,28 +27,28 @@
 class real_inner = real_vector + sgn_div_norm + dist_norm + open_dist +
   fixes inner :: "'a \<Rightarrow> 'a \<Rightarrow> real"
   assumes inner_commute: "inner x y = inner y x"
-  and inner_left_distrib: "inner (x + y) z = inner x z + inner y z"
-  and inner_scaleR_left: "inner (scaleR r x) y = r * (inner x y)"
+  and inner_add_left: "inner (x + y) z = inner x z + inner y z"
+  and inner_scaleR_left [simp]: "inner (scaleR r x) y = r * (inner x y)"
   and inner_ge_zero [simp]: "0 \<le> inner x x"
   and inner_eq_zero_iff [simp]: "inner x x = 0 \<longleftrightarrow> x = 0"
   and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)"
 begin
 
 lemma inner_zero_left [simp]: "inner 0 x = 0"
-  using inner_left_distrib [of 0 0 x] by simp
+  using inner_add_left [of 0 0 x] by simp
 
 lemma inner_minus_left [simp]: "inner (- x) y = - inner x y"
-  using inner_left_distrib [of x "- x" y] by simp
+  using inner_add_left [of x "- x" y] by simp
 
 lemma inner_diff_left: "inner (x - y) z = inner x z - inner y z"
-  by (simp add: diff_minus inner_left_distrib)
+  by (simp add: diff_minus inner_add_left)
 
 text {* Transfer distributivity rules to right argument. *}
 
-lemma inner_right_distrib: "inner x (y + z) = inner x y + inner x z"
-  using inner_left_distrib [of y z x] by (simp only: inner_commute)
+lemma inner_add_right: "inner x (y + z) = inner x y + inner x z"
+  using inner_add_left [of y z x] by (simp only: inner_commute)
 
-lemma inner_scaleR_right: "inner x (scaleR r y) = r * (inner x y)"
+lemma inner_scaleR_right [simp]: "inner x (scaleR r y) = r * (inner x y)"
   using inner_scaleR_left [of r y x] by (simp only: inner_commute)
 
 lemma inner_zero_right [simp]: "inner x 0 = 0"
@@ -60,9 +60,14 @@
 lemma inner_diff_right: "inner x (y - z) = inner x y - inner x z"
   using inner_diff_left [of y z x] by (simp only: inner_commute)
 
+lemmas inner_add [algebra_simps] = inner_add_left inner_add_right
+lemmas inner_diff [algebra_simps]  = inner_diff_left inner_diff_right
+lemmas inner_scaleR = inner_scaleR_left inner_scaleR_right
+
+text {* Legacy theorem names *}
+lemmas inner_left_distrib = inner_add_left
+lemmas inner_right_distrib = inner_add_right
 lemmas inner_distrib = inner_left_distrib inner_right_distrib
-lemmas inner_diff = inner_diff_left inner_diff_right
-lemmas inner_scaleR = inner_scaleR_left inner_scaleR_right
 
 lemma inner_gt_zero_iff [simp]: "0 < inner x x \<longleftrightarrow> x \<noteq> 0"
   by (simp add: order_less_le)
@@ -81,7 +86,7 @@
   have "0 \<le> inner (x - scaleR ?r y) (x - scaleR ?r y)"
     by (rule inner_ge_zero)
   also have "\<dots> = inner x x - inner y x * ?r"
-    by (simp add: inner_diff inner_scaleR)
+    by (simp add: inner_diff)
   also have "\<dots> = inner x x - (inner x y)\<twosuperior> / inner y y"
     by (simp add: power2_eq_square inner_commute)
   finally have "0 \<le> inner x x - (inner x y)\<twosuperior> / inner y y" .
@@ -116,7 +121,7 @@
         by (rule order_trans [OF abs_ge_self Cauchy_Schwarz_ineq2])
       thus "(norm (x + y))\<twosuperior> \<le> (norm x + norm y)\<twosuperior>"
         unfolding power2_sum power2_norm_eq_inner
-        by (simp add: inner_distrib inner_commute)
+        by (simp add: inner_add inner_commute)
       show "0 \<le> norm x + norm y"
         unfolding norm_eq_sqrt_inner
         by (simp add: add_nonneg_nonneg)
@@ -125,7 +130,7 @@
     by (simp add: real_sqrt_mult_distrib)
   then show "norm (a *\<^sub>R x) = \<bar>a\<bar> * norm x"
     unfolding norm_eq_sqrt_inner
-    by (simp add: inner_scaleR power2_eq_square mult_assoc)
+    by (simp add: power2_eq_square mult_assoc)
 qed
 
 end
@@ -149,9 +154,9 @@
 proof
   fix x y z :: 'a and r :: real
   show "inner (x + y) z = inner x z + inner y z"
-    by (rule inner_left_distrib)
+    by (rule inner_add_left)
   show "inner x (y + z) = inner x y + inner x z"
-    by (rule inner_right_distrib)
+    by (rule inner_add_right)
   show "inner (scaleR r x) y = scaleR r (inner x y)"
     unfolding real_scaleR_def by (rule inner_scaleR_left)
   show "inner x (scaleR r y) = scaleR r (inner x y)"
@@ -244,7 +249,7 @@
      \<Longrightarrow> GDERIV (\<lambda>x. g (f x)) x :> scaleR dg df"
   unfolding gderiv_def deriv_fderiv
   apply (drule (1) FDERIV_compose)
-  apply (simp add: inner_scaleR_right mult_ac)
+  apply (simp add: mult_ac)
   done
 
 lemma FDERIV_subst: "\<lbrakk>FDERIV f x :> df; df = d\<rbrakk> \<Longrightarrow> FDERIV f x :> d"
@@ -286,7 +291,7 @@
   unfolding gderiv_def
   apply (rule FDERIV_subst)
   apply (erule (1) FDERIV_mult)
-  apply (simp add: inner_distrib inner_scaleR mult_ac)
+  apply (simp add: inner_add mult_ac)
   done
 
 lemma GDERIV_inverse:
@@ -302,7 +307,7 @@
   have 1: "FDERIV (\<lambda>x. inner x x) x :> (\<lambda>h. inner x h + inner h x)"
     by (intro inner.FDERIV FDERIV_ident)
   have 2: "(\<lambda>h. inner x h + inner h x) = (\<lambda>h. inner h (scaleR 2 x))"
-    by (simp add: expand_fun_eq inner_scaleR inner_commute)
+    by (simp add: expand_fun_eq inner_commute)
   have "0 < inner x x" using `x \<noteq> 0` by simp
   then have 3: "DERIV sqrt (inner x x) :> (inverse (sqrt (inner x x)) / 2)"
     by (rule DERIV_real_sqrt)
--- a/src/HOL/Library/Product_Vector.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/Library/Product_Vector.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -72,6 +72,37 @@
 
 end
 
+lemma open_Times: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<times> T)"
+unfolding open_prod_def by auto
+
+lemma fst_vimage_eq_Times: "fst -` S = S \<times> UNIV"
+by auto
+
+lemma snd_vimage_eq_Times: "snd -` S = UNIV \<times> S"
+by auto
+
+lemma open_vimage_fst: "open S \<Longrightarrow> open (fst -` S)"
+by (simp add: fst_vimage_eq_Times open_Times)
+
+lemma open_vimage_snd: "open S \<Longrightarrow> open (snd -` S)"
+by (simp add: snd_vimage_eq_Times open_Times)
+
+lemma closed_vimage_fst: "closed S \<Longrightarrow> closed (fst -` S)"
+unfolding closed_open vimage_Compl [symmetric]
+by (rule open_vimage_fst)
+
+lemma closed_vimage_snd: "closed S \<Longrightarrow> closed (snd -` S)"
+unfolding closed_open vimage_Compl [symmetric]
+by (rule open_vimage_snd)
+
+lemma closed_Times: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<times> T)"
+proof -
+  have "S \<times> T = (fst -` S) \<inter> (snd -` T)" by auto
+  thus "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<times> T)"
+    by (simp add: closed_vimage_fst closed_vimage_snd closed_Int)
+qed
+
+
 subsection {* Product is a metric space *}
 
 instantiation
@@ -87,25 +118,21 @@
 instance proof
   fix x y :: "'a \<times> 'b"
   show "dist x y = 0 \<longleftrightarrow> x = y"
-    unfolding dist_prod_def
-    by (simp add: expand_prod_eq)
+    unfolding dist_prod_def expand_prod_eq by simp
 next
   fix x y z :: "'a \<times> 'b"
   show "dist x y \<le> dist x z + dist y z"
     unfolding dist_prod_def
-    apply (rule order_trans [OF _ real_sqrt_sum_squares_triangle_ineq])
-    apply (rule real_sqrt_le_mono)
-    apply (rule order_trans [OF add_mono])
-    apply (rule power_mono [OF dist_triangle2 [of _ _ "fst z"] zero_le_dist])
-    apply (rule power_mono [OF dist_triangle2 [of _ _ "snd z"] zero_le_dist])
-    apply (simp only: real_sum_squared_expand)
-    done
+    by (intro order_trans [OF _ real_sqrt_sum_squares_triangle_ineq]
+        real_sqrt_le_mono add_mono power_mono dist_triangle2 zero_le_dist)
 next
   (* FIXME: long proof! *)
   (* Maybe it would be easier to define topological spaces *)
   (* in terms of neighborhoods instead of open sets? *)
   fix S :: "('a \<times> 'b) set"
   show "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
+  proof
+    assume "open S" thus "\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S"
     unfolding open_prod_def open_dist
     apply safe
     apply (drule (1) bspec)
@@ -121,7 +148,11 @@
     apply (erule le_less_trans [OF real_sqrt_sum_squares_ge1])
     apply (drule spec, erule mp)
     apply (erule le_less_trans [OF real_sqrt_sum_squares_ge2])
-
+    done
+  next
+    assume "\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S" thus "open S"
+    unfolding open_prod_def open_dist
+    apply safe
     apply (drule (1) bspec)
     apply clarify
     apply (subgoal_tac "\<exists>r>0. \<exists>s>0. e = sqrt (r\<twosuperior> + s\<twosuperior>)")
@@ -132,14 +163,14 @@
     apply clarify
     apply (rule_tac x="r - dist x a" in exI, rule conjI, simp)
     apply clarify
-    apply (rule le_less_trans [OF dist_triangle])
-    apply (erule less_le_trans [OF add_strict_right_mono], simp)
+    apply (simp add: less_diff_eq)
+    apply (erule le_less_trans [OF dist_triangle])
     apply (rule conjI)
     apply clarify
     apply (rule_tac x="s - dist x b" in exI, rule conjI, simp)
     apply clarify
-    apply (rule le_less_trans [OF dist_triangle])
-    apply (erule less_le_trans [OF add_strict_right_mono], simp)
+    apply (simp add: less_diff_eq)
+    apply (erule le_less_trans [OF dist_triangle])
     apply (rule conjI)
     apply simp
     apply (clarify, rename_tac c d)
@@ -149,6 +180,7 @@
     apply (rule_tac x="e / sqrt 2" in exI, simp add: divide_pos_pos)
     apply (simp add: power_divide)
     done
+  qed
 qed
 
 end
@@ -161,7 +193,7 @@
 lemma dist_snd_le: "dist (snd x) (snd y) \<le> dist x y"
 unfolding dist_prod_def by simp
 
-lemma tendsto_fst:
+lemma tendsto_fst [tendsto_intros]:
   assumes "(f ---> a) net"
   shows "((\<lambda>x. fst (f x)) ---> fst a) net"
 proof (rule topological_tendstoI)
@@ -180,7 +212,7 @@
     by simp
 qed
 
-lemma tendsto_snd:
+lemma tendsto_snd [tendsto_intros]:
   assumes "(f ---> a) net"
   shows "((\<lambda>x. snd (f x)) ---> snd a) net"
 proof (rule topological_tendstoI)
@@ -199,7 +231,7 @@
     by simp
 qed
 
-lemma tendsto_Pair:
+lemma tendsto_Pair [tendsto_intros]:
   assumes "(f ---> a) net" and "(g ---> b) net"
   shows "((\<lambda>x. (f x, g x)) ---> (a, b)) net"
 proof (rule topological_tendstoI)
@@ -315,7 +347,7 @@
     done
   show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
     unfolding norm_prod_def
-    apply (simp add: norm_scaleR power_mult_distrib)
+    apply (simp add: power_mult_distrib)
     apply (simp add: right_distrib [symmetric])
     apply (simp add: real_sqrt_mult_distrib)
     done
@@ -349,10 +381,10 @@
     by (simp add: inner_commute)
   show "inner (x + y) z = inner x z + inner y z"
     unfolding inner_prod_def
-    by (simp add: inner_left_distrib)
+    by (simp add: inner_add_left)
   show "inner (scaleR r x) y = r * inner x y"
     unfolding inner_prod_def
-    by (simp add: inner_scaleR_left right_distrib)
+    by (simp add: right_distrib)
   show "0 \<le> inner x x"
     unfolding inner_prod_def
     by (intro add_nonneg_nonneg inner_ge_zero)
--- a/src/HOL/Library/Topology_Euclidean_Space.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/Library/Topology_Euclidean_Space.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -6,7 +6,7 @@
 header {* Elementary topology in Euclidean space. *}
 
 theory Topology_Euclidean_Space
-imports SEQ Euclidean_Space
+imports SEQ Euclidean_Space Product_Vector
 begin
 
 declare fstcart_pastecart[simp] sndcart_pastecart[simp]
@@ -748,7 +748,7 @@
   { fix x
     have "x \<in> interior S \<longleftrightarrow> x \<in> UNIV - (closure (UNIV - S))"
       unfolding interior_def closure_def islimpt_def
-      by blast
+      by blast (* FIXME: VERY slow! *)
   }
   thus ?thesis
     by blast
@@ -1031,7 +1031,7 @@
   unfolding trivial_limit_def Rep_net_at_infinity
   apply (clarsimp simp add: expand_set_eq)
   apply (drule_tac x="scaleR r (sgn 1)" in spec)
-  apply (simp add: norm_scaleR norm_sgn)
+  apply (simp add: norm_sgn)
   done
 
 lemma trivial_limit_sequentially: "\<not> trivial_limit sequentially"
@@ -1245,17 +1245,16 @@
 unfolding linear_conv_bounded_linear
 by (rule bounded_linear.tendsto)
 
+lemma Lim_ident_at: "((\<lambda>x. x) ---> a) (at a)"
+  unfolding tendsto_def Limits.eventually_at_topological by fast
+
 lemma Lim_const: "((\<lambda>x. a) ---> a) net"
   by (rule tendsto_const)
 
 lemma Lim_cmul:
   fixes f :: "'a \<Rightarrow> real ^ 'n::finite"
-  shows "(f ---> l) net ==> ((\<lambda>x. c *s f x) ---> c *s l) net"
-  apply (rule Lim_linear[where f = f])
-  apply simp
-  apply (rule linear_compose_cmul)
-  apply (rule linear_id[unfolded id_def])
-  done
+  shows "(f ---> l) net ==> ((\<lambda>x. c *\<^sub>R f x) ---> c *\<^sub>R l) net"
+  by (intro tendsto_intros)
 
 lemma Lim_neg:
   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
@@ -1277,38 +1276,34 @@
 
 lemma Lim_null_norm:
   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  shows "(f ---> 0) net \<longleftrightarrow> ((\<lambda>x. vec1(norm(f x))) ---> 0) net"
-  by (simp add: Lim dist_norm norm_vec1)
+  shows "(f ---> 0) net \<longleftrightarrow> ((\<lambda>x. norm(f x)) ---> 0) net"
+  by (simp add: Lim dist_norm)
 
 lemma Lim_null_comparison:
   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  assumes "eventually (\<lambda>x. norm(f x) <= g x) net" "((\<lambda>x. vec1(g x)) ---> 0) net"
+  assumes "eventually (\<lambda>x. norm (f x) \<le> g x) net" "(g ---> 0) net"
   shows "(f ---> 0) net"
 proof(simp add: tendsto_iff, rule+)
   fix e::real assume "0<e"
   { fix x
-    assume "norm (f x) \<le> g x" "dist (vec1 (g x)) 0 < e"
-    hence "dist (f x) 0 < e"  unfolding vec_def using dist_vec1[of "g x" "0"]
-      by (vector dist_norm norm_vec1 real_vector_norm_def dot_def vec1_def)
+    assume "norm (f x) \<le> g x" "dist (g x) 0 < e"
+    hence "dist (f x) 0 < e" by (simp add: dist_norm)
   }
   thus "eventually (\<lambda>x. dist (f x) 0 < e) net"
-    using eventually_and[of "\<lambda>x. norm(f x) <= g x" "\<lambda>x. dist (vec1 (g x)) 0 < e" net]
-    using eventually_mono[of "(\<lambda>x. norm (f x) \<le> g x \<and> dist (vec1 (g x)) 0 < e)" "(\<lambda>x. dist (f x) 0 < e)" net]
+    using eventually_and[of "\<lambda>x. norm(f x) <= g x" "\<lambda>x. dist (g x) 0 < e" net]
+    using eventually_mono[of "(\<lambda>x. norm (f x) \<le> g x \<and> dist (g x) 0 < e)" "(\<lambda>x. dist (f x) 0 < e)" net]
     using assms `e>0` unfolding tendsto_iff by auto
 qed
 
-lemma Lim_component: "(f ---> l) net
-                      ==> ((\<lambda>a. vec1((f a :: real ^'n::finite)$i)) ---> vec1(l$i)) net"
+lemma Lim_component:
+  fixes f :: "'a \<Rightarrow> 'b::metric_space ^ 'n::finite"
+  shows "(f ---> l) net \<Longrightarrow> ((\<lambda>a. f a $i) ---> l$i) net"
   unfolding tendsto_iff
-  apply (simp add: dist_norm vec1_sub[symmetric] norm_vec1  vector_minus_component[symmetric] del: vector_minus_component)
-  apply (auto simp del: vector_minus_component)
-  apply (erule_tac x=e in allE)
-  apply clarify
-  apply (erule eventually_rev_mono)
-  apply (auto simp del: vector_minus_component)
-  apply (rule order_le_less_trans)
-  apply (rule component_le_norm)
-  by auto
+  apply (clarify)
+  apply (drule spec, drule (1) mp)
+  apply (erule eventually_elim1)
+  apply (erule le_less_trans [OF dist_nth_le])
+  done
 
 lemma Lim_transform_bound:
   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
@@ -1504,12 +1499,6 @@
   netlimit :: "'a::metric_space net \<Rightarrow> 'a" where
   "netlimit net = (SOME a. \<forall>r>0. eventually (\<lambda>x. dist x a < r) net)"
 
-lemma dist_triangle3:
-  fixes x y :: "'a::metric_space"
-  shows "dist x y \<le> dist a x + dist a y"
-using dist_triangle2 [of x y a]
-by (simp add: dist_commute)
-
 lemma netlimit_within:
   assumes "\<not> trivial_limit (at a within S)"
   shows "netlimit (at a within S) = a"
@@ -1694,14 +1683,14 @@
   apply (subgoal_tac "\<And>N k (n::nat). N + k <= n ==> N <= n - k \<and> (n - k) + k = n")
   by metis arith
 
-lemma seq_harmonic: "((\<lambda>n. vec1(inverse (real n))) ---> 0) sequentially"
+lemma seq_harmonic: "((\<lambda>n. inverse (real n)) ---> 0) sequentially"
 proof-
   { fix e::real assume "e>0"
     hence "\<exists>N::nat. \<forall>n::nat\<ge>N. inverse (real n) < e"
       using real_arch_inv[of e] apply auto apply(rule_tac x=n in exI)
-      by (metis dlo_simps(4) le_imp_inverse_le linorder_not_less real_of_nat_gt_zero_cancel_iff real_of_nat_less_iff xt1(7))
+      by (metis not_le le_imp_inverse_le not_less real_of_nat_gt_zero_cancel_iff real_of_nat_less_iff xt1(7))
   }
-  thus ?thesis unfolding Lim_sequentially dist_norm apply simp unfolding norm_vec1 by auto
+  thus ?thesis unfolding Lim_sequentially dist_norm by simp
 qed
 
 text{* More properties of closed balls. *}
@@ -1768,7 +1757,7 @@
 	also have "\<dots> = \<bar>- 1 + d / (2 * norm (x - y))\<bar> * norm (x - y)"
 	  using scaleR_left_distrib[of "- 1" "d / (2 * norm (y - x))", THEN sym, of "y - x"]
 	  unfolding scaleR_minus_left scaleR_one
-	  by (auto simp add: norm_minus_commute norm_scaleR)
+	  by (auto simp add: norm_minus_commute)
 	also have "\<dots> = \<bar>- norm (x - y) + d / 2\<bar>"
 	  unfolding abs_mult_pos[of "norm (x - y)", OF norm_ge_zero[of "x - y"]]
 	  unfolding real_add_mult_distrib using `x\<noteq>y`[unfolded dist_nz, unfolded dist_norm] by auto
@@ -1780,7 +1769,7 @@
 	have "(d / (2*dist y x)) *\<^sub>R (y - x) \<noteq> 0"
 	  using `x\<noteq>y`[unfolded dist_nz] `d>0` unfolding scaleR_eq_0_iff by (auto simp add: dist_commute)
 	moreover
-	have "dist (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) y < d" unfolding dist_norm apply simp unfolding norm_minus_cancel norm_scaleR
+	have "dist (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) y < d" unfolding dist_norm apply simp unfolding norm_minus_cancel
 	  using `d>0` `x\<noteq>y`[unfolded dist_nz] dist_commute[of x y]
 	  unfolding dist_norm by auto
 	ultimately show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" by (rule_tac  x="y - (d / (2*dist y x)) *\<^sub>R (y - x)" in bexI) auto
@@ -1819,11 +1808,11 @@
     unfolding z_def by (simp add: algebra_simps)
   have "dist z y < r"
     unfolding z_def k_def using `0 < r`
-    by (simp add: dist_norm norm_scaleR min_def)
+    by (simp add: dist_norm min_def)
   hence "z \<in> T" using `\<forall>z. dist z y < r \<longrightarrow> z \<in> T` by simp
   have "dist x z < dist x y"
     unfolding z_def2 dist_norm
-    apply (simp add: norm_scaleR norm_minus_commute)
+    apply (simp add: norm_minus_commute)
     apply (simp only: dist_norm [symmetric])
     apply (subgoal_tac "\<bar>1 - k\<bar> * dist x y < 1 * dist x y", simp)
     apply (rule mult_strict_right_mono)
@@ -1856,9 +1845,10 @@
 apply (simp add: zero_less_dist_iff)
 done
 
+(* In a trivial vector space, this fails for e = 0. *)
 lemma interior_cball:
-  fixes x :: "real ^ _" (* FIXME: generalize *)
-  shows "interior(cball x e) = ball x e"
+  fixes x :: "'a::{real_normed_vector, perfect_space}"
+  shows "interior (cball x e) = ball x e"
 proof(cases "e\<ge>0")
   case False note cs = this
   from cs have "ball x e = {}" using ball_empty[of e x] by auto moreover
@@ -1873,9 +1863,9 @@
   { fix S y assume as: "S \<subseteq> cball x e" "open S" "y\<in>S"
     then obtain d where "d>0" and d:"\<forall>x'. dist x' y < d \<longrightarrow> x' \<in> S" unfolding open_dist by blast
 
-    then obtain xa where xa:"dist y xa = d / 2" using vector_choose_dist[of "d/2" y] by auto
-    hence xa_y:"xa \<noteq> y" using dist_nz[of y xa] using `d>0` by auto
-    have "xa\<in>S" using d[THEN spec[where x=xa]] using xa apply(auto simp add: dist_commute) unfolding dist_nz[THEN sym] using xa_y by auto
+    then obtain xa where xa_y: "xa \<noteq> y" and xa: "dist xa y < d"
+      using perfect_choose_dist [of d] by auto
+    have "xa\<in>S" using d[THEN spec[where x=xa]] using xa by(auto simp add: dist_commute)
     hence xa_cball:"xa \<in> cball x e" using as(1) by auto
 
     hence "y \<in> ball x e" proof(cases "x = y")
@@ -1884,18 +1874,19 @@
       thus "y \<in> ball x e" using `x = y ` by simp
     next
       case False
-      have "dist (y + (d / 2 / dist y x) *s (y - x)) y < d" unfolding dist_norm
+      have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) y < d" unfolding dist_norm
 	using `d>0` norm_ge_zero[of "y - x"] `x \<noteq> y` by auto
-      hence *:"y + (d / 2 / dist y x) *s (y - x) \<in> cball x e" using d as(1)[unfolded subset_eq] by blast
+      hence *:"y + (d / 2 / dist y x) *\<^sub>R (y - x) \<in> cball x e" using d as(1)[unfolded subset_eq] by blast
       have "y - x \<noteq> 0" using `x \<noteq> y` by auto
       hence **:"d / (2 * norm (y - x)) > 0" unfolding zero_less_norm_iff[THEN sym]
 	using `d>0` divide_pos_pos[of d "2*norm (y - x)"] by auto
 
-      have "dist (y + (d / 2 / dist y x) *s (y - x)) x = norm (y + (d / (2 * norm (y - x))) *s y - (d / (2 * norm (y - x))) *s x - x)"
-	by (auto simp add: dist_norm vector_ssub_ldistrib add_diff_eq)
-      also have "\<dots> = norm ((1 + d / (2 * norm (y - x))) *s (y - x))"
-	by (auto simp add: vector_sadd_rdistrib vector_smult_lid ring_simps vector_sadd_rdistrib vector_ssub_ldistrib)
-      also have "\<dots> = \<bar>1 + d / (2 * norm (y - x))\<bar> * norm (y - x)" using ** by auto
+      have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) x = norm (y + (d / (2 * norm (y - x))) *\<^sub>R y - (d / (2 * norm (y - x))) *\<^sub>R x - x)"
+        by (auto simp add: dist_norm algebra_simps)
+      also have "\<dots> = norm ((1 + d / (2 * norm (y - x))) *\<^sub>R (y - x))"
+        by (auto simp add: algebra_simps)
+      also have "\<dots> = \<bar>1 + d / (2 * norm (y - x))\<bar> * norm (y - x)"
+        using ** by auto
       also have "\<dots> = (dist y x) + d/2"using ** by (auto simp add: left_distrib dist_norm)
       finally have "e \<ge> dist x y +d/2" using *[unfolded mem_cball] by (auto simp add: dist_commute)
       thus "y \<in> ball x e" unfolding mem_ball using `d>0` by auto
@@ -1905,14 +1896,14 @@
 qed
 
 lemma frontier_ball:
-  fixes a :: "real ^ _" (* FIXME: generalize *)
+  fixes a :: "'a::real_normed_vector"
   shows "0 < e ==> frontier(ball a e) = {x. dist a x = e}"
   apply (simp add: frontier_def closure_ball interior_open open_ball order_less_imp_le)
   apply (simp add: expand_set_eq)
   by arith
 
 lemma frontier_cball:
-  fixes a :: "real ^ _" (* FIXME: generalize *)
+  fixes a :: "'a::{real_normed_vector, perfect_space}"
   shows "frontier(cball a e) = {x. dist a x = e}"
   apply (simp add: frontier_def interior_cball closed_cball closure_closed order_less_imp_le)
   apply (simp add: expand_set_eq)
@@ -1924,20 +1915,20 @@
 lemma cball_empty: "e < 0 ==> cball x e = {}" by (simp add: cball_eq_empty)
 
 lemma cball_eq_sing:
-  fixes x :: "real ^ _" (* FIXME: generalize *)
+  fixes x :: "'a::perfect_space"
   shows "(cball x e = {x}) \<longleftrightarrow> e = 0"
-proof-
-  { assume as:"\<forall>xa. (dist x xa \<le> e) = (xa = x)"
-    hence "e \<ge> 0" apply (erule_tac x=x in allE) by auto
-    then obtain y where y:"dist x y = e" using vector_choose_dist[of e] by auto
-    hence "e = 0" using as apply(erule_tac x=y in allE) by auto
-  }
-  thus ?thesis unfolding expand_set_eq mem_cball by (auto simp add: dist_nz)
-qed
+proof (rule linorder_cases)
+  assume e: "0 < e"
+  obtain a where "a \<noteq> x" "dist a x < e"
+    using perfect_choose_dist [OF e] by auto
+  hence "a \<noteq> x" "dist x a \<le> e" by (auto simp add: dist_commute)
+  with e show ?thesis by (auto simp add: expand_set_eq)
+qed auto
 
 lemma cball_sing:
-  fixes x :: "real ^ _" (* FIXME: generalize *)
-  shows "e = 0 ==> cball x e = {x}" by (simp add: cball_eq_sing)
+  fixes x :: "'a::metric_space"
+  shows "e = 0 ==> cball x e = {x}"
+  by (auto simp add: expand_set_eq)
 
 text{* For points in the interior, localization of limits makes no difference.   *}
 
@@ -2082,7 +2073,7 @@
   fix b::real  assume b: "b >0"
   have b1: "b +1 \<ge> 0" using b by simp
   with `x \<noteq> 0` have "b < norm (scaleR (b + 1) (sgn x))"
-    by (simp add: norm_scaleR norm_sgn)
+    by (simp add: norm_sgn)
   then show "\<exists>x::'a. b < norm x" ..
 qed
 
@@ -2104,9 +2095,11 @@
 
 lemma bounded_scaling:
   fixes S :: "(real ^ 'n::finite) set"
-  shows "bounded S \<Longrightarrow> bounded ((\<lambda>x. c *s x) ` S)"
+  shows "bounded S \<Longrightarrow> bounded ((\<lambda>x. c *\<^sub>R x) ` S)"
   apply (rule bounded_linear_image, assumption)
-  by (rule linear_compose_cmul, rule linear_id[unfolded id_def])
+  apply (simp only: linear_conv_bounded_linear)
+  apply (rule scaleR.bounded_linear_right)
+  done
 
 lemma bounded_translation:
   fixes S :: "'a::real_normed_vector set"
@@ -2123,26 +2116,26 @@
 
 text{* Some theorems on sups and infs using the notion "bounded". *}
 
-lemma bounded_vec1:
+lemma bounded_real:
   fixes S :: "real set"
-  shows "bounded(vec1 ` S) \<longleftrightarrow>  (\<exists>a. \<forall>x\<in>S. abs x <= a)"
-  by (simp add: bounded_iff forall_vec1 norm_vec1 vec1_in_image_vec1)
-
-lemma bounded_has_rsup: assumes "bounded(vec1 ` S)" "S \<noteq> {}"
+  shows "bounded S \<longleftrightarrow>  (\<exists>a. \<forall>x\<in>S. abs x <= a)"
+  by (simp add: bounded_iff)
+
+lemma bounded_has_rsup: assumes "bounded S" "S \<noteq> {}"
   shows "\<forall>x\<in>S. x <= rsup S" and "\<forall>b. (\<forall>x\<in>S. x <= b) \<longrightarrow> rsup S <= b"
 proof
   fix x assume "x\<in>S"
-  from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_vec1 by auto
+  from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_real by auto
   hence *:"S *<= a" using setleI[of S a] by (metis abs_le_interval_iff mem_def)
-  thus "x \<le> rsup S" using rsup[OF `S\<noteq>{}`] using assms(1)[unfolded bounded_vec1] using isLubD2[of UNIV S "rsup S" x] using `x\<in>S` by auto
+  thus "x \<le> rsup S" using rsup[OF `S\<noteq>{}`] using assms(1)[unfolded bounded_real] using isLubD2[of UNIV S "rsup S" x] using `x\<in>S` by auto
 next
   show "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> rsup S \<le> b" using assms
   using rsup[of S, unfolded isLub_def isUb_def leastP_def setle_def setge_def]
-  apply (auto simp add: bounded_vec1)
+  apply (auto simp add: bounded_real)
   by (auto simp add: isLub_def isUb_def leastP_def setle_def setge_def)
 qed
 
-lemma rsup_insert: assumes "bounded (vec1 ` S)"
+lemma rsup_insert: assumes "bounded S"
   shows "rsup(insert x S) = (if S = {} then x else max x (rsup S))"
 proof(cases "S={}")
   case True thus ?thesis using rsup_finite_in[of "{x}"] by auto
@@ -2168,17 +2161,17 @@
   by simp
 
 lemma bounded_has_rinf:
-  assumes "bounded(vec1 ` S)"  "S \<noteq> {}"
+  assumes "bounded S"  "S \<noteq> {}"
   shows "\<forall>x\<in>S. x >= rinf S" and "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> rinf S >= b"
 proof
   fix x assume "x\<in>S"
-  from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_vec1 by auto
+  from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_real by auto
   hence *:"- a <=* S" using setgeI[of S "-a"] unfolding abs_le_interval_iff by auto
   thus "x \<ge> rinf S" using rinf[OF `S\<noteq>{}`] using isGlbD2[of UNIV S "rinf S" x] using `x\<in>S` by auto
 next
   show "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> rinf S \<ge> b" using assms
   using rinf[of S, unfolded isGlb_def isLb_def greatestP_def setle_def setge_def]
-  apply (auto simp add: bounded_vec1)
+  apply (auto simp add: bounded_real)
   by (auto simp add: isGlb_def isLb_def greatestP_def setle_def setge_def)
 qed
 
@@ -2189,7 +2182,7 @@
   apply (blast intro!: order_antisym dest!: isGlb_le_isLb)
   done
 
-lemma rinf_insert: assumes "bounded (vec1 ` S)"
+lemma rinf_insert: assumes "bounded S"
   shows "rinf(insert x S) = (if S = {} then x else min x (rinf S))" (is "?lhs = ?rhs")
 proof(cases "S={}")
   case True thus ?thesis using rinf_finite_in[of "{x}"] by auto
@@ -2217,8 +2210,8 @@
 definition
   compact :: "'a::metric_space set \<Rightarrow> bool" where (* TODO: generalize *)
   "compact S \<longleftrightarrow>
-   (\<forall>f. (\<forall>n::nat. f n \<in> S) \<longrightarrow>
-       (\<exists>l\<in>S. \<exists>r. (\<forall>m n. m < n \<longrightarrow> r m < r n) \<and> ((f o r) ---> l) sequentially))"
+   (\<forall>f. (\<forall>n. f n \<in> S) \<longrightarrow>
+       (\<exists>l\<in>S. \<exists>r. subseq r \<and> ((f o r) ---> l) sequentially))"
 
 text {*
   A metric space (or topological vector space) is said to have the
@@ -2227,44 +2220,43 @@
 
 class heine_borel =
   assumes bounded_imp_convergent_subsequence:
-    "bounded s \<Longrightarrow> \<forall>n::nat. f n \<in> s
-      \<Longrightarrow> \<exists>l r. (\<forall>m n. m < n --> r m < r n) \<and> ((f \<circ> r) ---> l) sequentially"
+    "bounded s \<Longrightarrow> \<forall>n. f n \<in> s
+      \<Longrightarrow> \<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially"
 
 lemma bounded_closed_imp_compact:
   fixes s::"'a::heine_borel set"
   assumes "bounded s" and "closed s" shows "compact s"
 proof (unfold compact_def, clarify)
   fix f :: "nat \<Rightarrow> 'a" assume f: "\<forall>n. f n \<in> s"
-  obtain l r where r: "\<forall>m n. m < n \<longrightarrow> r m < r n" and l: "((f \<circ> r) ---> l) sequentially"
+  obtain l r where r: "subseq r" and l: "((f \<circ> r) ---> l) sequentially"
     using bounded_imp_convergent_subsequence [OF `bounded s` `\<forall>n. f n \<in> s`] by auto
   from f have fr: "\<forall>n. (f \<circ> r) n \<in> s" by simp
   have "l \<in> s" using `closed s` fr l
     unfolding closed_sequential_limits by blast
-  show "\<exists>l\<in>s. \<exists>r. (\<forall>m n. m < n \<longrightarrow> r m < r n) \<and> ((f \<circ> r) ---> l) sequentially"
+  show "\<exists>l\<in>s. \<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially"
     using `l \<in> s` r l by blast
 qed
 
-lemma monotone_bigger: fixes r::"nat\<Rightarrow>nat"
-  assumes "\<forall>m n::nat. m < n --> r m < r n"
-  shows "n \<le> r n"
+lemma subseq_bigger: assumes "subseq r" shows "n \<le> r n"
 proof(induct n)
   show "0 \<le> r 0" by auto
 next
   fix n assume "n \<le> r n"
-  moreover have "r n < r (Suc n)" using assms by auto
+  moreover have "r n < r (Suc n)"
+    using assms [unfolded subseq_def] by auto
   ultimately show "Suc n \<le> r (Suc n)" by auto
 qed
 
-lemma eventually_subsequence:
-  assumes r: "\<forall>m n. m < n \<longrightarrow> r m < r n"
+lemma eventually_subseq:
+  assumes r: "subseq r"
   shows "eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially"
 unfolding eventually_sequentially
-by (metis monotone_bigger [OF r] le_trans)
-
-lemma lim_subsequence:
-  fixes l :: "'a::metric_space" (* TODO: generalize *)
-  shows "\<forall>m n. m < n \<longrightarrow> r m < r n \<Longrightarrow> (s ---> l) sequentially \<Longrightarrow> ((s o r) ---> l) sequentially"
-unfolding Lim_sequentially by (simp, metis  monotone_bigger le_trans)
+by (metis subseq_bigger [OF r] le_trans)
+
+lemma lim_subseq:
+  "subseq r \<Longrightarrow> (s ---> l) sequentially \<Longrightarrow> ((s o r) ---> l) sequentially"
+unfolding tendsto_def eventually_sequentially o_def
+by (metis subseq_bigger le_trans)
 
 lemma num_Axiom: "EX! g. g 0 = e \<and> (\<forall>n. g (Suc n) = f n (g n))"
   unfolding Ex1_def
@@ -2280,9 +2272,8 @@
 apply (simp)
 done
 
-
 lemma convergent_bounded_increasing: fixes s ::"nat\<Rightarrow>real"
-  assumes "\<forall>m n. m \<le> n --> s m \<le> s n" and "\<forall>n. abs(s n) \<le> b"
+  assumes "incseq s" and "\<forall>n. abs(s n) \<le> b"
   shows "\<exists> l. \<forall>e::real>0. \<exists> N. \<forall>n \<ge> N.  abs(s n - l) < e"
 proof-
   have "isUb UNIV (range s) b" using assms(2) and abs_le_D1 unfolding isUb_def and setle_def by auto
@@ -2292,27 +2283,27 @@
       obtain N where "N\<ge>n" and n:"\<bar>s N - t\<bar> \<ge> e" using as[THEN spec[where x=n]] by auto
       have "t \<ge> s N" using isLub_isUb[OF t, unfolded isUb_def setle_def] by auto
       with n have "s N \<le> t - e" using `e>0` by auto
-      hence "s n \<le> t - e" using assms(1)[THEN spec[where x=n], THEN spec[where x=N]] using `n\<le>N` by auto  }
+      hence "s n \<le> t - e" using assms(1)[unfolded incseq_def, THEN spec[where x=n], THEN spec[where x=N]] using `n\<le>N` by auto  }
     hence "isUb UNIV (range s) (t - e)" unfolding isUb_def and setle_def by auto
     hence False using isLub_le_isUb[OF t, of "t - e"] and `e>0` by auto  }
   thus ?thesis by blast
 qed
 
 lemma convergent_bounded_monotone: fixes s::"nat \<Rightarrow> real"
-  assumes "\<forall>n. abs(s n) \<le> b" and "(\<forall>m n. m \<le> n --> s m \<le> s n) \<or> (\<forall>m n. m \<le> n --> s n \<le> s m)"
+  assumes "\<forall>n. abs(s n) \<le> b" and "monoseq s"
   shows "\<exists>l. \<forall>e::real>0. \<exists>N. \<forall>n\<ge>N. abs(s n - l) < e"
   using convergent_bounded_increasing[of s b] assms using convergent_bounded_increasing[of "\<lambda>n. - s n" b]
+  unfolding monoseq_def incseq_def
   apply auto unfolding minus_add_distrib[THEN sym, unfolded diff_minus[THEN sym]]
   unfolding abs_minus_cancel by(rule_tac x="-l" in exI)auto
 
 lemma compact_real_lemma:
   assumes "\<forall>n::nat. abs(s n) \<le> b"
-  shows "\<exists>(l::real) r. (\<forall>m n::nat. m < n --> r m < r n) \<and> ((s \<circ> r) ---> l) sequentially"
+  shows "\<exists>(l::real) r. subseq r \<and> ((s \<circ> r) ---> l) sequentially"
 proof-
-  obtain r where r:"\<forall>m n::nat. m < n \<longrightarrow> r m < r n"
-    "(\<forall>m n. m \<le> n \<longrightarrow> s (r m) \<le> s (r n)) \<or> (\<forall>m n. m \<le> n \<longrightarrow> s (r n) \<le> s (r m))"
-    using seq_monosub[of s] by (auto simp add: subseq_def monoseq_def)
-  thus ?thesis using convergent_bounded_monotone[of "s o r" b] and assms
+  obtain r where r:"subseq r" "monoseq (\<lambda>n. s (r n))"
+    using seq_monosub[of s] by auto
+  thus ?thesis using convergent_bounded_monotone[of "\<lambda>n. s (r n)" b] and assms
     unfolding tendsto_iff dist_norm eventually_sequentially by auto
 qed
 
@@ -2323,9 +2314,9 @@
   then obtain b where b: "\<forall>n. abs (f n) \<le> b"
     unfolding bounded_iff by auto
   obtain l :: real and r :: "nat \<Rightarrow> nat" where
-    r: "\<forall>m n. m < n \<longrightarrow> r m < r n" and l: "((f \<circ> r) ---> l) sequentially"
+    r: "subseq r" and l: "((f \<circ> r) ---> l) sequentially"
     using compact_real_lemma [OF b] by auto
-  thus "\<exists>l r. (\<forall>m n. m < n \<longrightarrow> r m < r n) \<and> ((f \<circ> r) ---> l) sequentially"
+  thus "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially"
     by auto
 qed
 
@@ -2342,28 +2333,29 @@
   fixes f :: "nat \<Rightarrow> 'a::heine_borel ^ 'n::finite"
   assumes "bounded s" and "\<forall>n. f n \<in> s"
   shows "\<forall>d.
-        \<exists>l r. (\<forall>n m::nat. m < n --> r m < r n) \<and>
+        \<exists>l r. subseq r \<and>
         (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)"
 proof
   fix d::"'n set" have "finite d" by simp
-  thus "\<exists>l::'a ^ 'n. \<exists>r. (\<forall>n m::nat. m < n --> r m < r n) \<and>
+  thus "\<exists>l::'a ^ 'n. \<exists>r. subseq r \<and>
       (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)"
-  proof(induct d) case empty thus ?case by auto
+  proof(induct d) case empty thus ?case unfolding subseq_def by auto
   next case (insert k d)
     have s': "bounded ((\<lambda>x. x $ k) ` s)" using `bounded s` by (rule bounded_component)
-    obtain l1::"'a^'n" and r1 where r1:"\<forall>n m::nat. m < n \<longrightarrow> r1 m < r1 n" and lr1:"\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially"
+    obtain l1::"'a^'n" and r1 where r1:"subseq r1" and lr1:"\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially"
       using insert(3) by auto
     have f': "\<forall>n. f (r1 n) $ k \<in> (\<lambda>x. x $ k) ` s" using `\<forall>n. f n \<in> s` by simp
-    obtain l2 r2 where r2:"\<forall>m n::nat. m < n \<longrightarrow> r2 m < r2 n" and lr2:"((\<lambda>i. f (r1 (r2 i)) $ k) ---> l2) sequentially"
+    obtain l2 r2 where r2:"subseq r2" and lr2:"((\<lambda>i. f (r1 (r2 i)) $ k) ---> l2) sequentially"
       using bounded_imp_convergent_subsequence[OF s' f'] unfolding o_def by auto
-    def r \<equiv> "r1 \<circ> r2" have r:"\<forall>m n. m < n \<longrightarrow> r m < r n" unfolding r_def o_def using r1 and r2 by auto
+    def r \<equiv> "r1 \<circ> r2" have r:"subseq r"
+      using r1 and r2 unfolding r_def o_def subseq_def by auto
     moreover
     def l \<equiv> "(\<chi> i. if i = k then l2 else l1$i)::'a^'n"
     { fix e::real assume "e>0"
       from lr1 `e>0` have N1:"eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially" by blast
       from lr2 `e>0` have N2:"eventually (\<lambda>n. dist (f (r1 (r2 n)) $ k) l2 < e) sequentially" by (rule tendstoD)
       from r2 N1 have N1': "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 (r2 n)) $ i) (l1 $ i) < e) sequentially"
-        by (rule eventually_subsequence)
+        by (rule eventually_subseq)
       have "eventually (\<lambda>n. \<forall>i\<in>(insert k d). dist (f (r n) $ i) (l $ i) < e) sequentially"
         using N1' N2 by (rule eventually_elim2, simp add: l_def r_def)
     }
@@ -2375,7 +2367,7 @@
 proof
   fix s :: "('a ^ 'b) set" and f :: "nat \<Rightarrow> 'a ^ 'b"
   assume s: "bounded s" and f: "\<forall>n. f n \<in> s"
-  then obtain l r where r: "\<forall>n m::nat. m < n --> r m < r n"
+  then obtain l r where r: "subseq r"
     and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>UNIV. dist (f (r n) $ i) (l $ i) < e) sequentially"
     using compact_lemma [OF s f] by blast
   let ?d = "UNIV::'b set"
@@ -2396,7 +2388,55 @@
       by (rule eventually_elim1)
   }
   hence *:"((f \<circ> r) ---> l) sequentially" unfolding o_def tendsto_iff by simp
-  with r show "\<exists>l r. (\<forall>m n. m < n \<longrightarrow> r m < r n) \<and> ((f \<circ> r) ---> l) sequentially" by auto
+  with r show "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" by auto
+qed
+
+lemma bounded_fst: "bounded s \<Longrightarrow> bounded (fst ` s)"
+unfolding bounded_def
+apply clarify
+apply (rule_tac x="a" in exI)
+apply (rule_tac x="e" in exI)
+apply clarsimp
+apply (drule (1) bspec)
+apply (simp add: dist_Pair_Pair)
+apply (erule order_trans [OF real_sqrt_sum_squares_ge1])
+done
+
+lemma bounded_snd: "bounded s \<Longrightarrow> bounded (snd ` s)"
+unfolding bounded_def
+apply clarify
+apply (rule_tac x="b" in exI)
+apply (rule_tac x="e" in exI)
+apply clarsimp
+apply (drule (1) bspec)
+apply (simp add: dist_Pair_Pair)
+apply (erule order_trans [OF real_sqrt_sum_squares_ge2])
+done
+
+instance "*" :: (heine_borel, heine_borel) heine_borel
+proof
+  fix s :: "('a * 'b) set" and f :: "nat \<Rightarrow> 'a * 'b"
+  assume s: "bounded s" and f: "\<forall>n. f n \<in> s"
+  from s have s1: "bounded (fst ` s)" by (rule bounded_fst)
+  from f have f1: "\<forall>n. fst (f n) \<in> fst ` s" by simp
+  obtain l1 r1 where r1: "subseq r1"
+    and l1: "((\<lambda>n. fst (f (r1 n))) ---> l1) sequentially"
+    using bounded_imp_convergent_subsequence [OF s1 f1]
+    unfolding o_def by fast
+  from s have s2: "bounded (snd ` s)" by (rule bounded_snd)
+  from f have f2: "\<forall>n. snd (f (r1 n)) \<in> snd ` s" by simp
+  obtain l2 r2 where r2: "subseq r2"
+    and l2: "((\<lambda>n. snd (f (r1 (r2 n)))) ---> l2) sequentially"
+    using bounded_imp_convergent_subsequence [OF s2 f2]
+    unfolding o_def by fast
+  have l1': "((\<lambda>n. fst (f (r1 (r2 n)))) ---> l1) sequentially"
+    using lim_subseq [OF r2 l1] unfolding o_def .
+  have l: "((f \<circ> (r1 \<circ> r2)) ---> (l1, l2)) sequentially"
+    using tendsto_Pair [OF l1' l2] unfolding o_def by simp
+  have r: "subseq (r1 \<circ> r2)"
+    using r1 r2 unfolding subseq_def by simp
+  show "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially"
+    using l r by fast
 qed
 
 subsection{* Completeness. *}
@@ -2461,14 +2501,9 @@
 lemma compact_imp_complete: assumes "compact s" shows "complete s"
 proof-
   { fix f assume as: "(\<forall>n::nat. f n \<in> s)" "Cauchy f"
-    from as(1) obtain l r where lr: "l\<in>s" "(\<forall>m n. m < n \<longrightarrow> r m < r n)" "((f \<circ> r) ---> l) sequentially" using assms unfolding compact_def by blast
-
-    { fix n :: nat have lr':"n \<le> r n"
-    proof (induct n)
-      show "0 \<le> r 0" using lr(2) by blast
-    next fix na assume "na \<le> r na" moreover have "na < Suc na \<longrightarrow> r na < r (Suc na)" using lr(2) by blast
-      ultimately show "Suc na \<le> r (Suc na)" by auto
-    qed } note lr' = this
+    from as(1) obtain l r where lr: "l\<in>s" "subseq r" "((f \<circ> r) ---> l) sequentially" using assms unfolding compact_def by blast
+
+    note lr' = subseq_bigger [OF lr(2)]
 
     { fix e::real assume "e>0"
       from as(2) obtain N where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (f m) (f n) < e/2" unfolding cauchy_def using `e>0` apply (erule_tac x="e/2" in allE) by auto
@@ -2575,12 +2610,12 @@
       thus "x n \<in> s \<and> (\<forall>m<n. \<not> dist (x m) (x n) < e)" unfolding Q_def by auto
     qed }
   hence "\<forall>n::nat. x n \<in> s" and x:"\<forall>n. \<forall>m < n. \<not> (dist (x m) (x n) < e)" by blast+
-  then obtain l r where "l\<in>s" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and "((x \<circ> r) ---> l) sequentially" using assms(1)[unfolded compact_def, THEN spec[where x=x]] by auto
+  then obtain l r where "l\<in>s" and r:"subseq r" and "((x \<circ> r) ---> l) sequentially" using assms(1)[unfolded compact_def, THEN spec[where x=x]] by auto
   from this(3) have "Cauchy (x \<circ> r)" using convergent_imp_cauchy by auto
   then obtain N::nat where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist ((x \<circ> r) m) ((x \<circ> r) n) < e" unfolding cauchy_def using `e>0` by auto
   show False
     using N[THEN spec[where x=N], THEN spec[where x="N+1"]]
-    using r[THEN spec[where x=N], THEN spec[where x="N+1"]]
+    using r[unfolded subseq_def, THEN spec[where x=N], THEN spec[where x="N+1"]]
     using x[THEN spec[where x="r (N+1)"], THEN spec[where x="r (N)"]] by auto
 qed
 
@@ -2599,7 +2634,7 @@
   then obtain f where f:"\<forall>n::nat. f n \<in> s \<and> (\<forall>xa\<in>t. \<not> ball (f n) (inverse (real (n + 1))) \<subseteq> xa)"
     using choice[of "\<lambda>n::nat. \<lambda>x. x\<in>s \<and> (\<forall>xa\<in>t. \<not> ball x (inverse (real (n + 1))) \<subseteq> xa)"] by auto
 
-  then obtain l r where l:"l\<in>s" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and lr:"((f \<circ> r) ---> l) sequentially"
+  then obtain l r where l:"l\<in>s" and r:"subseq r" and lr:"((f \<circ> r) ---> l) sequentially"
     using assms(1)[unfolded compact_def, THEN spec[where x=f]] by auto
 
   obtain b where "l\<in>b" "b\<in>t" using assms(2) and l by auto
@@ -2612,7 +2647,7 @@
   obtain N2::nat where N2:"N2>0" "inverse (real N2) < e /2" using real_arch_inv[of "e/2"] and `e>0` by auto
   have N2':"inverse (real (r (N1 + N2) +1 )) < e/2"
     apply(rule order_less_trans) apply(rule less_imp_inverse_less) using N2
-    using monotone_bigger[OF r, of "N1 + N2"] by auto
+    using subseq_bigger[OF r, of "N1 + N2"] by auto
 
   def x \<equiv> "(f (r (N1 + N2)))"
   have x:"\<not> ball x (inverse (real (r (N1 + N2) + 1))) \<subseteq> b" unfolding x_def
@@ -2926,7 +2961,7 @@
   by blast
 
 lemma compact_sing [simp]: "compact {a}"
-  unfolding compact_def o_def
+  unfolding compact_def o_def subseq_def
   by (auto simp add: tendsto_const)
 
 lemma compact_cball[simp]:
@@ -2987,7 +3022,7 @@
   from assms(2) obtain x where x:"\<forall>n::nat. x n \<in> s n" using choice[of "\<lambda>n x. x\<in> s n"] by auto
   from assms(4,1) have *:"compact (s 0)" using bounded_closed_imp_compact[of "s 0"] by auto
 
-  then obtain l r where lr:"l\<in>s 0" "\<forall>m n. m < n \<longrightarrow> r m < r n" "((x \<circ> r) ---> l) sequentially"
+  then obtain l r where lr:"l\<in>s 0" "subseq r" "((x \<circ> r) ---> l) sequentially"
     unfolding compact_def apply(erule_tac x=x in allE)  using x using assms(3) by blast
 
   { fix n::nat
@@ -2995,7 +3030,7 @@
       with lr(3) obtain N where N:"\<forall>m\<ge>N. dist ((x \<circ> r) m) l < e" unfolding Lim_sequentially by auto
       hence "dist ((x \<circ> r) (max N n)) l < e" by auto
       moreover
-      have "r (max N n) \<ge> n" using lr(2) using monotone_bigger[of r "max N n"] by auto
+      have "r (max N n) \<ge> n" using lr(2) using subseq_bigger[of r "max N n"] by auto
       hence "(x \<circ> r) (max N n) \<in> s n"
 	using x apply(erule_tac x=n in allE)
 	using x apply(erule_tac x="r (max N n)" in allE)
@@ -3415,7 +3450,7 @@
 
 lemma continuous_cmul:
   fixes f :: "'a::metric_space \<Rightarrow> real ^ 'n::finite"
-  shows "continuous net f ==> continuous net (\<lambda>x. c *s f x)"
+  shows "continuous net f ==> continuous net (\<lambda>x. c *\<^sub>R f x)"
   by (auto simp add: continuous_def Lim_cmul)
 
 lemma continuous_neg:
@@ -3441,7 +3476,7 @@
 
 lemma continuous_on_cmul:
   fixes f :: "'a::metric_space \<Rightarrow> real ^ _"
-  shows "continuous_on s f ==>  continuous_on s (\<lambda>x. c *s (f x))"
+  shows "continuous_on s f ==>  continuous_on s (\<lambda>x. c *\<^sub>R (f x))"
   unfolding continuous_on_eq_continuous_within using continuous_cmul by blast
 
 lemma continuous_on_neg:
@@ -3470,12 +3505,12 @@
 lemma uniformly_continuous_on_cmul:
   fixes f :: "'a::real_normed_vector \<Rightarrow> real ^ _"
   assumes "uniformly_continuous_on s f"
-  shows "uniformly_continuous_on s (\<lambda>x. c *s f(x))"
+  shows "uniformly_continuous_on s (\<lambda>x. c *\<^sub>R f(x))"
 proof-
   { fix x y assume "((\<lambda>n. f (x n) - f (y n)) ---> 0) sequentially"
-    hence "((\<lambda>n. c *s f (x n) - c *s f (y n)) ---> 0) sequentially"
+    hence "((\<lambda>n. c *\<^sub>R f (x n) - c *\<^sub>R f (y n)) ---> 0) sequentially"
       using Lim_cmul[of "(\<lambda>n. f (x n) - f (y n))" 0 sequentially c]
-      unfolding  vector_smult_rzero vector_ssub_ldistrib[of c] by auto
+      unfolding scaleR_zero_right scaleR_right_diff_distrib by auto
   }
   thus ?thesis using assms unfolding uniformly_continuous_on_sequentially by auto
 qed
@@ -3701,13 +3736,11 @@
 qed
 
 lemma continuous_open_preimage_univ:
-  fixes f :: "real ^ _ \<Rightarrow> real ^ _" (* FIXME: generalize *)
-  shows "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open {x. f x \<in> s}"
+  "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open {x. f x \<in> s}"
   using continuous_open_preimage[of UNIV f s] open_UNIV continuous_at_imp_continuous_on by auto
 
 lemma continuous_closed_preimage_univ:
-  fixes f :: "real ^ _ \<Rightarrow> real ^ _" (* FIXME: generalize *)
-  shows "(\<forall>x. continuous (at x) f) \<Longrightarrow> closed s ==> closed {x. f x \<in> s}"
+  "(\<forall>x. continuous (at x) f) \<Longrightarrow> closed s ==> closed {x. f x \<in> s}"
   using continuous_closed_preimage[of UNIV f s] closed_UNIV continuous_at_imp_continuous_on by auto
 
 text{* Equality of continuous functions on closure and related results.          *}
@@ -3802,20 +3835,20 @@
 text{* Some arithmetical combinations (more to prove).                           *}
 
 lemma open_scaling[intro]:
-  fixes s :: "(real ^ _) set"
+  fixes s :: "'a::real_normed_vector set"
   assumes "c \<noteq> 0"  "open s"
-  shows "open((\<lambda>x. c *s x) ` s)"
+  shows "open((\<lambda>x. c *\<^sub>R x) ` s)"
 proof-
   { fix x assume "x \<in> s"
     then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> s" using assms(2)[unfolded open_dist, THEN bspec[where x=x]] by auto
     have "e * abs c > 0" using assms(1)[unfolded zero_less_abs_iff[THEN sym]] using real_mult_order[OF `e>0`] by auto
     moreover
-    { fix y assume "dist y (c *s x) < e * \<bar>c\<bar>"
-      hence "norm ((1 / c) *s y - x) < e" unfolding dist_norm
-	using norm_mul[of c "(1 / c) *s y - x", unfolded vector_ssub_ldistrib, unfolded vector_smult_assoc] assms(1)
+    { fix y assume "dist y (c *\<^sub>R x) < e * \<bar>c\<bar>"
+      hence "norm ((1 / c) *\<^sub>R y - x) < e" unfolding dist_norm
+	using norm_scaleR[of c "(1 / c) *\<^sub>R y - x", unfolded scaleR_right_diff_distrib, unfolded scaleR_scaleR] assms(1)
 	  assms(1)[unfolded zero_less_abs_iff[THEN sym]] by (simp del:zero_less_abs_iff)
-      hence "y \<in> op *s c ` s" using rev_image_eqI[of "(1 / c) *s y" s y "op *s c"]  e[THEN spec[where x="(1 / c) *s y"]]  assms(1) unfolding dist_norm vector_smult_assoc by auto  }
-    ultimately have "\<exists>e>0. \<forall>x'. dist x' (c *s x) < e \<longrightarrow> x' \<in> op *s c ` s" apply(rule_tac x="e * abs c" in exI) by auto  }
+      hence "y \<in> op *\<^sub>R c ` s" using rev_image_eqI[of "(1 / c) *\<^sub>R y" s y "op *\<^sub>R c"]  e[THEN spec[where x="(1 / c) *\<^sub>R y"]]  assms(1) unfolding dist_norm scaleR_scaleR by auto  }
+    ultimately have "\<exists>e>0. \<forall>x'. dist x' (c *\<^sub>R x) < e \<longrightarrow> x' \<in> op *\<^sub>R c ` s" apply(rule_tac x="e * abs c" in exI) by auto  }
   thus ?thesis unfolding open_dist by auto
 qed
 
@@ -3825,12 +3858,13 @@
   by (auto intro!: image_eqI [where f="\<lambda>x. - x"])
 
 lemma open_negations:
-  fixes s :: "(real ^ _) set" (* FIXME: generalize *)
+  fixes s :: "'a::real_normed_vector set"
   shows "open s ==> open ((\<lambda> x. -x) ` s)"
-  unfolding vector_sneg_minus1 by auto
+  unfolding scaleR_minus1_left [symmetric]
+  by (rule open_scaling, auto)
 
 lemma open_translation:
-  fixes s :: "(real ^ _) set" (* FIXME: generalize *)
+  fixes s :: "'a::real_normed_vector set"
   assumes "open s"  shows "open((\<lambda>x. a + x) ` s)"
 proof-
   { fix x have "continuous (at x) (\<lambda>x. x - a)" using continuous_sub[of "at x" "\<lambda>x. x" "\<lambda>x. a"] continuous_at_id[of x] continuous_const[of "at x" a] by auto  }
@@ -3841,11 +3875,11 @@
 lemma open_affinity:
   fixes s :: "(real ^ _) set"
   assumes "open s"  "c \<noteq> 0"
-  shows "open ((\<lambda>x. a + c *s x) ` s)"
+  shows "open ((\<lambda>x. a + c *\<^sub>R x) ` s)"
 proof-
-  have *:"(\<lambda>x. a + c *s x) = (\<lambda>x. a + x) \<circ> (\<lambda>x. c *s x)" unfolding o_def ..
-  have "op + a ` op *s c ` s = (op + a \<circ> op *s c) ` s" by auto
-  thus ?thesis using assms open_translation[of "op *s c ` s" a] unfolding * by auto
+  have *:"(\<lambda>x. a + c *\<^sub>R x) = (\<lambda>x. a + x) \<circ> (\<lambda>x. c *\<^sub>R x)" unfolding o_def ..
+  have "op + a ` op *\<^sub>R c ` s = (op + a \<circ> op *\<^sub>R c) ` s" by auto
+  thus ?thesis using assms open_translation[of "op *\<^sub>R c ` s" a] unfolding * by auto
 qed
 
 lemma interior_translation:
@@ -3875,13 +3909,13 @@
 proof-
   { fix x assume x:"\<forall>n::nat. x n \<in> f ` s"
     then obtain y where y:"\<forall>n. y n \<in> s \<and> x n = f (y n)" unfolding image_iff Bex_def using choice[of "\<lambda>n xa. xa \<in> s \<and> x n = f xa"] by auto
-    then obtain l r where "l\<in>s" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and lr:"((y \<circ> r) ---> l) sequentially" using assms(2)[unfolded compact_def, THEN spec[where x=y]] by auto
+    then obtain l r where "l\<in>s" and r:"subseq r" and lr:"((y \<circ> r) ---> l) sequentially" using assms(2)[unfolded compact_def, THEN spec[where x=y]] by auto
     { fix e::real assume "e>0"
       then obtain d where "d>0" and d:"\<forall>x'\<in>s. dist x' l < d \<longrightarrow> dist (f x') (f l) < e" using assms(1)[unfolded continuous_on_def, THEN bspec[where x=l], OF `l\<in>s`] by auto
       then obtain N::nat where N:"\<forall>n\<ge>N. dist ((y \<circ> r) n) l < d" using lr[unfolded Lim_sequentially, THEN spec[where x=d]] by auto
       { fix n::nat assume "n\<ge>N" hence "dist ((x \<circ> r) n) (f l) < e" using N[THEN spec[where x=n]] d[THEN bspec[where x="y (r n)"]] y[THEN spec[where x="r n"]] by auto  }
       hence "\<exists>N. \<forall>n\<ge>N. dist ((x \<circ> r) n) (f l) < e" by auto  }
-    hence "\<exists>l\<in>f ` s. \<exists>r. (\<forall>m n. m < n \<longrightarrow> r m < r n) \<and> ((x \<circ> r) ---> l) sequentially" unfolding Lim_sequentially using r lr `l\<in>s` by auto  }
+    hence "\<exists>l\<in>f ` s. \<exists>r. subseq r \<and> ((x \<circ> r) ---> l) sequentially" unfolding Lim_sequentially using r lr `l\<in>s` by auto  }
   thus ?thesis unfolding compact_def by auto
 qed
 
@@ -3938,7 +3972,8 @@
 text{* Continuity of inverse function on compact domain. *}
 
 lemma continuous_on_inverse:
-  fixes f :: "real ^ _ \<Rightarrow> real ^ _"
+  fixes f :: "'a::heine_borel \<Rightarrow> 'b::heine_borel"
+    (* TODO: can this be generalized more? *)
   assumes "continuous_on s f"  "compact s"  "\<forall>x \<in> s. g (f x) = x"
   shows "continuous_on (f ` s) g"
 proof-
@@ -4050,68 +4085,52 @@
 subsection{* Topological stuff lifted from and dropped to R                            *}
 
 
-lemma open_vec1:
-  fixes s :: "real set" shows
- "open(vec1 ` s) \<longleftrightarrow>
-        (\<forall>x \<in> s. \<exists>e>0. \<forall>x'. abs(x' - x) < e --> x' \<in> s)" (is "?lhs = ?rhs")
-  unfolding open_dist apply simp unfolding forall_vec1 dist_vec1 vec1_in_image_vec1 by simp
-
-lemma islimpt_approachable_vec1:
+lemma open_real:
   fixes s :: "real set" shows
- "(vec1 x) islimpt (vec1 ` s) \<longleftrightarrow>
-         (\<forall>e>0.  \<exists>x'\<in> s. x' \<noteq> x \<and> abs(x' - x) < e)"
-  by (auto simp add: islimpt_approachable dist_vec1 vec1_eq)
-
-lemma closed_vec1:
-  fixes s :: "real set" shows
- "closed (vec1 ` s) \<longleftrightarrow>
+ "open s \<longleftrightarrow>
+        (\<forall>x \<in> s. \<exists>e>0. \<forall>x'. abs(x' - x) < e --> x' \<in> s)" (is "?lhs = ?rhs")
+  unfolding open_dist dist_norm by simp
+
+lemma islimpt_approachable_real:
+  fixes s :: "real set"
+  shows "x islimpt s \<longleftrightarrow> (\<forall>e>0.  \<exists>x'\<in> s. x' \<noteq> x \<and> abs(x' - x) < e)"
+  unfolding islimpt_approachable dist_norm by simp
+
+lemma closed_real:
+  fixes s :: "real set"
+  shows "closed s \<longleftrightarrow>
         (\<forall>x. (\<forall>e>0.  \<exists>x' \<in> s. x' \<noteq> x \<and> abs(x' - x) < e)
             --> x \<in> s)"
-  unfolding closed_limpt islimpt_approachable forall_vec1 apply simp
-  unfolding dist_vec1 vec1_in_image_vec1 abs_minus_commute by auto
-
-lemma continuous_at_vec1_range:
-  fixes f :: "real ^ _ \<Rightarrow> real"
-  shows "continuous (at x) (vec1 o f) \<longleftrightarrow> (\<forall>e>0. \<exists>d>0.
+  unfolding closed_limpt islimpt_approachable dist_norm by simp
+
+lemma continuous_at_real_range:
+  fixes f :: "'a::real_normed_vector \<Rightarrow> real"
+  shows "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0.
         \<forall>x'. norm(x' - x) < d --> abs(f x' - f x) < e)"
-  unfolding continuous_at unfolding Lim_at apply simp unfolding dist_vec1 unfolding dist_nz[THEN sym] unfolding dist_norm apply auto
+  unfolding continuous_at unfolding Lim_at
+  unfolding dist_nz[THEN sym] unfolding dist_norm apply auto
   apply(erule_tac x=e in allE) apply auto apply (rule_tac x=d in exI) apply auto apply (erule_tac x=x' in allE) apply auto
   apply(erule_tac x=e in allE) by auto
 
-lemma continuous_on_vec1_range:
+lemma continuous_on_real_range:
   fixes f :: "'a::real_normed_vector \<Rightarrow> real"
-  shows "continuous_on s (vec1 o f) \<longleftrightarrow> (\<forall>x \<in> s. \<forall>e>0. \<exists>d>0. (\<forall>x' \<in> s. norm(x' - x) < d --> abs(f x' - f x) < e))"
-  unfolding continuous_on_def apply (simp del: dist_commute) unfolding dist_vec1 unfolding dist_norm ..
-
-lemma continuous_at_vec1_norm:
-  fixes x :: "real ^ _"
-  shows "continuous (at x) (vec1 o norm)"
-  unfolding continuous_at_vec1_range using real_abs_sub_norm order_le_less_trans by blast
-
-lemma continuous_on_vec1_norm:
-  fixes s :: "(real ^ _) set"
-  shows "continuous_on s (vec1 o norm)"
-unfolding continuous_on_vec1_range norm_vec1[THEN sym] by (metis norm_vec1 order_le_less_trans real_abs_sub_norm)
-
-lemma continuous_at_vec1_component:
-  shows "continuous (at (a::real^'a::finite)) (\<lambda> x. vec1(x$i))"
-proof-
-  { fix e::real and x assume "0 < dist x a" "dist x a < e" "e>0"
-    hence "\<bar>x $ i - a $ i\<bar> < e" using component_le_norm[of "x - a" i] unfolding dist_norm by auto  }
-  thus ?thesis unfolding continuous_at tendsto_iff eventually_at dist_vec1 by auto
-qed
-
-lemma continuous_on_vec1_component:
-  shows "continuous_on s (\<lambda> x::real^'a::finite. vec1(x$i))"
-proof-
-  { fix e::real and x xa assume "x\<in>s" "e>0" "xa\<in>s" "0 < norm (xa - x) \<and> norm (xa - x) < e"
-    hence "\<bar>xa $ i - x $ i\<bar> < e" using component_le_norm[of "xa - x" i] by auto  }
-  thus ?thesis unfolding continuous_on Lim_within dist_vec1 unfolding dist_norm by auto
-qed
-
-lemma continuous_at_vec1_infnorm:
- "continuous (at x) (vec1 o infnorm)"
-  unfolding continuous_at Lim_at o_def unfolding dist_vec1 unfolding dist_norm
+  shows "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. \<forall>e>0. \<exists>d>0. (\<forall>x' \<in> s. norm(x' - x) < d --> abs(f x' - f x) < e))"
+  unfolding continuous_on_def dist_norm by simp
+
+lemma continuous_at_norm: "continuous (at x) norm"
+  unfolding continuous_at by (intro tendsto_intros)
+
+lemma continuous_on_norm: "continuous_on s norm"
+unfolding continuous_on by (intro ballI tendsto_intros)
+
+lemma continuous_at_component: "continuous (at a) (\<lambda>x. x $ i)"
+unfolding continuous_at by (intro tendsto_intros)
+
+lemma continuous_on_component: "continuous_on s (\<lambda>x. x $ i)"
+unfolding continuous_on by (intro ballI tendsto_intros)
+
+lemma continuous_at_infnorm: "continuous (at x) infnorm"
+  unfolding continuous_at Lim_at o_def unfolding dist_norm
   apply auto apply (rule_tac x=e in exI) apply auto
   using order_trans[OF real_abs_sub_infnorm infnorm_le_norm, of _ x] by (metis xt1(7))
 
@@ -4119,23 +4138,23 @@
 
 lemma compact_attains_sup:
   fixes s :: "real set"
-  assumes "compact (vec1 ` s)"  "s \<noteq> {}"
+  assumes "compact s"  "s \<noteq> {}"
   shows "\<exists>x \<in> s. \<forall>y \<in> s. y \<le> x"
 proof-
-  from assms(1) have a:"bounded (vec1 ` s)" "closed (vec1 ` s)" unfolding compact_eq_bounded_closed by auto
+  from assms(1) have a:"bounded s" "closed s" unfolding compact_eq_bounded_closed by auto
   { fix e::real assume as: "\<forall>x\<in>s. x \<le> rsup s" "rsup s \<notin> s"  "0 < e" "\<forall>x'\<in>s. x' = rsup s \<or> \<not> rsup s - x' < e"
     have "isLub UNIV s (rsup s)" using rsup[OF assms(2)] unfolding setle_def using as(1) by auto
     moreover have "isUb UNIV s (rsup s - e)" unfolding isUb_def unfolding setle_def using as(4,2) by auto
     ultimately have False using isLub_le_isUb[of UNIV s "rsup s" "rsup s - e"] using `e>0` by auto  }
-  thus ?thesis using bounded_has_rsup(1)[OF a(1) assms(2)] using a(2)[unfolded closed_vec1, THEN spec[where x="rsup s"]]
+  thus ?thesis using bounded_has_rsup(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="rsup s"]]
     apply(rule_tac x="rsup s" in bexI) by auto
 qed
 
 lemma compact_attains_inf:
   fixes s :: "real set"
-  assumes "compact (vec1 ` s)" "s \<noteq> {}"  shows "\<exists>x \<in> s. \<forall>y \<in> s. x \<le> y"
+  assumes "compact s" "s \<noteq> {}"  shows "\<exists>x \<in> s. \<forall>y \<in> s. x \<le> y"
 proof-
-  from assms(1) have a:"bounded (vec1 ` s)" "closed (vec1 ` s)" unfolding compact_eq_bounded_closed by auto
+  from assms(1) have a:"bounded s" "closed s" unfolding compact_eq_bounded_closed by auto
   { fix e::real assume as: "\<forall>x\<in>s. x \<ge> rinf s"  "rinf s \<notin> s"  "0 < e"
       "\<forall>x'\<in>s. x' = rinf s \<or> \<not> abs (x' - rinf s) < e"
     have "isGlb UNIV s (rinf s)" using rinf[OF assms(2)] unfolding setge_def using as(1) by auto
@@ -4145,43 +4164,40 @@
       have "rinf s + e \<le> x" using as(4)[THEN bspec[where x=x]] using as(2) `x\<in>s` unfolding * by auto }
     hence "isLb UNIV s (rinf s + e)" unfolding isLb_def and setge_def by auto
     ultimately have False using isGlb_le_isLb[of UNIV s "rinf s" "rinf s + e"] using `e>0` by auto  }
-  thus ?thesis using bounded_has_rinf(1)[OF a(1) assms(2)] using a(2)[unfolded closed_vec1, THEN spec[where x="rinf s"]]
+  thus ?thesis using bounded_has_rinf(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="rinf s"]]
     apply(rule_tac x="rinf s" in bexI) by auto
 qed
 
 lemma continuous_attains_sup:
   fixes f :: "'a::metric_space \<Rightarrow> real"
-  shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s (vec1 o f)
+  shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f
         ==> (\<exists>x \<in> s. \<forall>y \<in> s.  f y \<le> f x)"
   using compact_attains_sup[of "f ` s"]
-  using compact_continuous_image[of s "vec1 \<circ> f"] unfolding image_compose by auto
+  using compact_continuous_image[of s f] by auto
 
 lemma continuous_attains_inf:
   fixes f :: "'a::metric_space \<Rightarrow> real"
-  shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s (vec1 o f)
+  shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f
         \<Longrightarrow> (\<exists>x \<in> s. \<forall>y \<in> s. f x \<le> f y)"
   using compact_attains_inf[of "f ` s"]
-  using compact_continuous_image[of s "vec1 \<circ> f"] unfolding image_compose by auto
+  using compact_continuous_image[of s f] by auto
 
 lemma distance_attains_sup:
-  fixes s :: "(real ^ _) set"
   assumes "compact s" "s \<noteq> {}"
   shows "\<exists>x \<in> s. \<forall>y \<in> s. dist a y \<le> dist a x"
-proof-
-  { fix x assume "x\<in>s" fix e::real assume "e>0"
-    { fix x' assume "x'\<in>s" and as:"norm (x' - x) < e"
-      hence "\<bar>norm (x' - a) - norm (x - a)\<bar> < e"
-	using real_abs_sub_norm[of "x' - a" "x - a"]  by auto  }
-    hence "\<exists>d>0. \<forall>x'\<in>s. norm (x' - x) < d \<longrightarrow> \<bar>dist x' a - dist x a\<bar> < e" using `e>0` unfolding dist_norm by auto }
-  thus ?thesis using assms
-    using continuous_attains_sup[of s "\<lambda>x. dist a x"]
-    unfolding continuous_on_vec1_range by (auto simp add: dist_commute)
+proof (rule continuous_attains_sup [OF assms])
+  { fix x assume "x\<in>s"
+    have "(dist a ---> dist a x) (at x within s)"
+      by (intro tendsto_dist tendsto_const Lim_at_within Lim_ident_at)
+  }
+  thus "continuous_on s (dist a)"
+    unfolding continuous_on ..
 qed
 
 text{* For *minimal* distance, we only need closure, not compactness.            *}
 
 lemma distance_attains_inf:
-  fixes a :: "real ^ _" (* FIXME: generalize *)
+  fixes a :: "'a::heine_borel"
   assumes "closed s"  "s \<noteq> {}"
   shows "\<exists>x \<in> s. \<forall>y \<in> s. dist a x \<le> dist a y"
 proof-
@@ -4192,14 +4208,25 @@
   moreover
   { fix x assume "x\<in>?B"
     fix e::real assume "e>0"
-    { fix x' assume "x'\<in>?B" and as:"norm (x' - x) < e"
-      hence "\<bar>norm (x' - a) - norm (x - a)\<bar> < e"
-	using real_abs_sub_norm[of "x' - a" "x - a"]  by auto  }
-    hence "\<exists>d>0. \<forall>x'\<in>?B. norm (x' - x) < d \<longrightarrow> \<bar>dist x' a - dist x a\<bar> < e" using `e>0` unfolding dist_norm by auto }
-  hence "continuous_on (cball a (dist b a) \<inter> s) (vec1 \<circ> dist a)" unfolding continuous_on_vec1_range
-    by (auto  simp add: dist_commute)
-  moreover have "compact ?B" using compact_cball[of a "dist b a"] unfolding compact_eq_bounded_closed using bounded_Int and closed_Int and assms(1) by auto
-  ultimately obtain x where "x\<in>cball a (dist b a) \<inter> s" "\<forall>y\<in>cball a (dist b a) \<inter> s. dist a x \<le> dist a y" using continuous_attains_inf[of ?B "dist a"] by fastsimp
+    { fix x' assume "x'\<in>?B" and as:"dist x' x < e"
+      from as have "\<bar>dist a x' - dist a x\<bar> < e"
+        unfolding abs_less_iff minus_diff_eq
+        using dist_triangle2 [of a x' x]
+        using dist_triangle [of a x x']
+        by arith
+    }
+    hence "\<exists>d>0. \<forall>x'\<in>?B. dist x' x < d \<longrightarrow> \<bar>dist a x' - dist a x\<bar> < e"
+      using `e>0` by auto
+  }
+  hence "continuous_on (cball a (dist b a) \<inter> s) (dist a)"
+    unfolding continuous_on Lim_within dist_norm real_norm_def
+    by fast
+  moreover have "compact ?B"
+    using compact_cball[of a "dist b a"]
+    unfolding compact_eq_bounded_closed
+    using bounded_Int and closed_Int and assms(1) by auto
+  ultimately obtain x where "x\<in>cball a (dist b a) \<inter> s" "\<forall>y\<in>cball a (dist b a) \<inter> s. dist a x \<le> dist a y"
+    using continuous_attains_inf[of ?B "dist a"] by fastsimp
   thus ?thesis by fastsimp
 qed
 
@@ -4207,99 +4234,64 @@
 
 lemma Lim_mul:
   fixes f :: "'a \<Rightarrow> real ^ _"
-  assumes "((vec1 o c) ---> vec1 d) net"  "(f ---> l) net"
-  shows "((\<lambda>x. c(x) *s f x) ---> (d *s l)) net"
-proof-
-  have "bilinear (\<lambda>x. op *s (dest_vec1 (x::real^1)))" unfolding bilinear_def linear_def
-    unfolding dest_vec1_add dest_vec1_cmul
-    apply vector apply auto unfolding semiring_class.right_distrib semiring_class.left_distrib by auto
-  thus ?thesis using Lim_bilinear[OF assms, of "\<lambda>x y. (dest_vec1 x) *s y"] by auto
-qed
+  assumes "(c ---> d) net"  "(f ---> l) net"
+  shows "((\<lambda>x. c(x) *\<^sub>R f x) ---> (d *\<^sub>R l)) net"
+  unfolding smult_conv_scaleR using assms by (rule scaleR.tendsto)
 
 lemma Lim_vmul:
-  fixes c :: "'a \<Rightarrow> real"
-  shows "((vec1 o c) ---> vec1 d) net ==> ((\<lambda>x. c(x) *s v) ---> d *s v) net"
-  using Lim_mul[of c d net "\<lambda>x. v" v] using Lim_const[of v] by auto
+  fixes c :: "'a \<Rightarrow> real" and v :: "'b::real_normed_vector"
+  shows "(c ---> d) net ==> ((\<lambda>x. c(x) *\<^sub>R v) ---> d *\<^sub>R v) net"
+  by (intro tendsto_intros)
 
 lemma continuous_vmul:
-  fixes c :: "'a::metric_space \<Rightarrow> real"
-  shows "continuous net (vec1 o c) ==> continuous net (\<lambda>x. c(x) *s v)"
+  fixes c :: "'a::metric_space \<Rightarrow> real" and v :: "'b::real_normed_vector"
+  shows "continuous net c ==> continuous net (\<lambda>x. c(x) *\<^sub>R v)"
   unfolding continuous_def using Lim_vmul[of c] by auto
 
 lemma continuous_mul:
   fixes c :: "'a::metric_space \<Rightarrow> real"
-  shows "continuous net (vec1 o c) \<Longrightarrow> continuous net f
-             ==> continuous net (\<lambda>x. c(x) *s f x) "
-  unfolding continuous_def using Lim_mul[of c] by auto
+  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
+  shows "continuous net c \<Longrightarrow> continuous net f
+             ==> continuous net (\<lambda>x. c(x) *\<^sub>R f x) "
+  unfolding continuous_def by (intro tendsto_intros)
 
 lemma continuous_on_vmul:
-  fixes c :: "'a::metric_space \<Rightarrow> real"
-  shows "continuous_on s (vec1 o c) ==> continuous_on s (\<lambda>x. c(x) *s v)"
+  fixes c :: "'a::metric_space \<Rightarrow> real" and v :: "'b::real_normed_vector"
+  shows "continuous_on s c ==> continuous_on s (\<lambda>x. c(x) *\<^sub>R v)"
   unfolding continuous_on_eq_continuous_within using continuous_vmul[of _ c] by auto
 
 lemma continuous_on_mul:
   fixes c :: "'a::metric_space \<Rightarrow> real"
-  shows "continuous_on s (vec1 o c) \<Longrightarrow> continuous_on s f
-             ==> continuous_on s (\<lambda>x. c(x) *s f x)"
+  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
+  shows "continuous_on s c \<Longrightarrow> continuous_on s f
+             ==> continuous_on s (\<lambda>x. c(x) *\<^sub>R f x)"
   unfolding continuous_on_eq_continuous_within using continuous_mul[of _ c] by auto
 
 text{* And so we have continuity of inverse.                                     *}
 
 lemma Lim_inv:
   fixes f :: "'a \<Rightarrow> real"
-  assumes "((vec1 o f) ---> vec1 l) (net::'a net)"  "l \<noteq> 0"
-  shows "((vec1 o inverse o f) ---> vec1(inverse l)) net"
-proof -
-  { fix e::real assume "e>0"
-    let ?d = "min (\<bar>l\<bar> / 2) (l\<twosuperior> * e / 2)"
-    have "0 < ?d" using `l\<noteq>0` `e>0` mult_pos_pos[of "l^2" "e/2"] by auto
-    with assms(1) have "eventually (\<lambda>x. dist ((vec1 o f) x) (vec1 l) < ?d) net"
-      by (rule tendstoD)
-    moreover
-    { fix x assume "dist ((vec1 o f) x) (vec1 l) < ?d"
-      hence *:"\<bar>f x - l\<bar> < min (\<bar>l\<bar> / 2) (l\<twosuperior> * e / 2)" unfolding o_def dist_vec1 by auto
-      hence fx0:"f x \<noteq> 0" using `l \<noteq> 0` by auto
-      hence fxl0: "(f x) * l \<noteq> 0" using `l \<noteq> 0` by auto
-      from * have **:"\<bar>f x - l\<bar> < l\<twosuperior> * e / 2" by auto
-      have "\<bar>f x\<bar> * 2 \<ge> \<bar>l\<bar>" using * by (auto simp del: less_divide_eq_number_of1)
-      hence "\<bar>f x\<bar> * 2 * \<bar>l\<bar>  \<ge> \<bar>l\<bar> * \<bar>l\<bar>" unfolding mult_le_cancel_right by auto
-      hence "\<bar>f x * l\<bar> * 2  \<ge> \<bar>l\<bar>^2" unfolding real_mult_commute and power2_eq_square by auto
-      hence ***:"inverse \<bar>f x * l\<bar> \<le> inverse (l\<twosuperior> / 2)" using fxl0
-	using le_imp_inverse_le[of "l^2 / 2" "\<bar>f x * l\<bar>"]  by auto
-
-      have "dist ((vec1 \<circ> inverse \<circ> f) x) (vec1 (inverse l)) < e" unfolding o_def unfolding dist_vec1
-	unfolding inverse_diff_inverse[OF fx0 `l\<noteq>0`] apply simp
-	unfolding mult_commute[of "inverse (f x)"]
-	unfolding real_divide_def[THEN sym]
-	unfolding divide_divide_eq_left
-	unfolding nonzero_abs_divide[OF fxl0]
-	using mult_less_le_imp_less[OF **, of "inverse \<bar>f x * l\<bar>", of "inverse (l^2 / 2)"] using *** using fx0 `l\<noteq>0`
-	unfolding inverse_eq_divide using `e>0` by auto
-    }
-    ultimately
-    have "eventually (\<lambda>x. dist ((vec1 o inverse o f) x) (vec1(inverse l)) < e) net"
-      by (auto elim: eventually_rev_mono)
-  }
-  thus ?thesis unfolding tendsto_iff by auto
-qed
+  assumes "(f ---> l) (net::'a net)"  "l \<noteq> 0"
+  shows "((inverse o f) ---> inverse l) net"
+  unfolding o_def using assms by (rule tendsto_inverse)
 
 lemma continuous_inv:
   fixes f :: "'a::metric_space \<Rightarrow> real"
-  shows "continuous net (vec1 o f) \<Longrightarrow> f(netlimit net) \<noteq> 0
-           ==> continuous net (vec1 o inverse o f)"
+  shows "continuous net f \<Longrightarrow> f(netlimit net) \<noteq> 0
+           ==> continuous net (inverse o f)"
   unfolding continuous_def using Lim_inv by auto
 
 lemma continuous_at_within_inv:
-  fixes f :: "real ^ _ \<Rightarrow> real"
-  assumes "continuous (at a within s) (vec1 o f)" "f a \<noteq> 0"
-  shows "continuous (at a within s) (vec1 o inverse o f)"
-  using assms unfolding continuous_within o_apply
-  by (rule Lim_inv)
+  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_field"
+  assumes "continuous (at a within s) f" "f a \<noteq> 0"
+  shows "continuous (at a within s) (inverse o f)"
+  using assms unfolding continuous_within o_def
+  by (intro tendsto_intros)
 
 lemma continuous_at_inv:
-  fixes f :: "real ^ _ \<Rightarrow> real"
-  shows "continuous (at a) (vec1 o f) \<Longrightarrow> f a \<noteq> 0
-         ==> continuous (at a) (vec1 o inverse o f) "
+  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_field"
+  shows "continuous (at a) f \<Longrightarrow> f a \<noteq> 0
+         ==> continuous (at a) (inverse o f) "
   using within_UNIV[THEN sym, of "at a"] using continuous_at_within_inv[of a UNIV] by auto
 
 subsection{* Preservation properties for pasted sets.                                  *}
@@ -4316,6 +4308,16 @@
   thus ?thesis unfolding bounded_iff by auto
 qed
 
+lemma bounded_Times:
+  assumes "bounded s" "bounded t" shows "bounded (s \<times> t)"
+proof-
+  obtain x y a b where "\<forall>z\<in>s. dist x z \<le> a" "\<forall>z\<in>t. dist y z \<le> b"
+    using assms [unfolded bounded_def] by auto
+  then have "\<forall>z\<in>s \<times> t. dist (x, y) z \<le> sqrt (a\<twosuperior> + b\<twosuperior>)"
+    by (auto simp add: dist_Pair_Pair real_sqrt_le_mono add_mono power_mono)
+  thus ?thesis unfolding bounded_any_center [where a="(x, y)"] by auto
+qed
+
 lemma closed_pastecart:
   fixes s :: "(real ^ 'a::finite) set" (* FIXME: generalize *)
   assumes "closed s"  "closed t"
@@ -4343,6 +4345,26 @@
   shows "compact s \<Longrightarrow> compact t ==> compact {pastecart x y | x y . x \<in> s \<and> y \<in> t}"
   unfolding compact_eq_bounded_closed using bounded_pastecart[of s t] closed_pastecart[of s t] by auto
 
+lemma mem_Times_iff: "x \<in> A \<times> B \<longleftrightarrow> fst x \<in> A \<and> snd x \<in> B"
+by (induct x) simp
+
+lemma compact_Times: "compact s \<Longrightarrow> compact t \<Longrightarrow> compact (s \<times> t)"
+unfolding compact_def
+apply clarify
+apply (drule_tac x="fst \<circ> f" in spec)
+apply (drule mp, simp add: mem_Times_iff)
+apply (clarify, rename_tac l1 r1)
+apply (drule_tac x="snd \<circ> f \<circ> r1" in spec)
+apply (drule mp, simp add: mem_Times_iff)
+apply (clarify, rename_tac l2 r2)
+apply (rule_tac x="(l1, l2)" in rev_bexI, simp)
+apply (rule_tac x="r1 \<circ> r2" in exI)
+apply (rule conjI, simp add: subseq_def)
+apply (drule_tac r=r2 in lim_subseq [COMP swap_prems_rl], assumption)
+apply (drule (1) tendsto_Pair) back
+apply (simp add: o_def)
+done
+
 text{* Hence some useful properties follow quite easily.                         *}
 
 lemma compact_scaleR_image:
@@ -4357,7 +4379,7 @@
 
 lemma compact_scaling:
   fixes s :: "(real ^ _) set"
-  assumes "compact s"  shows "compact ((\<lambda>x. c *s x) ` s)"
+  assumes "compact s"  shows "compact ((\<lambda>x. c *\<^sub>R x) ` s)"
   using assms unfolding smult_conv_scaleR by (rule compact_scaleR_image)
 
 lemma compact_negations:
@@ -4366,30 +4388,27 @@
   using compact_scaleR_image [OF assms, of "- 1"] by auto
 
 lemma compact_sums:
-  fixes s t :: "(real ^ _) set"
+  fixes s t :: "'a::real_normed_vector set"
   assumes "compact s"  "compact t"  shows "compact {x + y | x y. x \<in> s \<and> y \<in> t}"
 proof-
-  have *:"{x + y | x y. x \<in> s \<and> y \<in> t} =(\<lambda>z. fstcart z + sndcart z) ` {pastecart x y | x y.  x \<in> s \<and> y \<in> t}"
-    apply auto unfolding image_iff apply(rule_tac x="pastecart xa y" in bexI) unfolding fstcart_pastecart sndcart_pastecart by auto
-  have "linear (\<lambda>z::real^('a + 'a). fstcart z + sndcart z)" unfolding linear_def
-    unfolding fstcart_add sndcart_add apply auto
-    unfolding vector_add_ldistrib fstcart_cmul[THEN sym] sndcart_cmul[THEN sym] by auto
-  hence "continuous_on {pastecart x y |x y. x \<in> s \<and> y \<in> t} (\<lambda>z. fstcart z + sndcart z)"
-    using continuous_at_imp_continuous_on linear_continuous_at by auto
-  thus ?thesis unfolding * using compact_continuous_image compact_pastecart[OF assms] by auto
+  have *:"{x + y | x y. x \<in> s \<and> y \<in> t} = (\<lambda>z. fst z + snd z) ` (s \<times> t)"
+    apply auto unfolding image_iff apply(rule_tac x="(xa, y)" in bexI) by auto
+  have "continuous_on (s \<times> t) (\<lambda>z. fst z + snd z)"
+    unfolding continuous_on by (rule ballI) (intro tendsto_intros)
+  thus ?thesis unfolding * using compact_continuous_image compact_Times [OF assms] by auto
 qed
 
 lemma compact_differences:
-  fixes s t :: "(real ^ 'a::finite) set"
+  fixes s t :: "'a::real_normed_vector set"
   assumes "compact s" "compact t"  shows "compact {x - y | x y. x \<in> s \<and> y \<in> t}"
 proof-
-  have "{x - y | x y::real^'a. x\<in>s \<and> y \<in> t} =  {x + y | x y. x \<in> s \<and> y \<in> (uminus ` t)}"
+  have "{x - y | x y. x\<in>s \<and> y \<in> t} =  {x + y | x y. x \<in> s \<and> y \<in> (uminus ` t)}"
     apply auto apply(rule_tac x= xa in exI) apply auto apply(rule_tac x=xa in exI) by auto
   thus ?thesis using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto
 qed
 
 lemma compact_translation:
-  fixes s :: "(real ^ _) set"
+  fixes s :: "'a::real_normed_vector set"
   assumes "compact s"  shows "compact ((\<lambda>x. a + x) ` s)"
 proof-
   have "{x + y |x y. x \<in> s \<and> y \<in> {a}} = (\<lambda>x. a + x) ` s" by auto
@@ -4398,23 +4417,23 @@
 
 lemma compact_affinity:
   fixes s :: "(real ^ _) set"
-  assumes "compact s"  shows "compact ((\<lambda>x. a + c *s x) ` s)"
+  assumes "compact s"  shows "compact ((\<lambda>x. a + c *\<^sub>R x) ` s)"
 proof-
-  have "op + a ` op *s c ` s = (\<lambda>x. a + c *s x) ` s" by auto
+  have "op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s" by auto
   thus ?thesis using compact_translation[OF compact_scaling[OF assms], of a c] by auto
 qed
 
 text{* Hence we get the following.                                               *}
 
 lemma compact_sup_maxdistance:
-  fixes s :: "(real ^ _) set"
+  fixes s :: "'a::real_normed_vector set"
   assumes "compact s"  "s \<noteq> {}"
   shows "\<exists>x\<in>s. \<exists>y\<in>s. \<forall>u\<in>s. \<forall>v\<in>s. norm(u - v) \<le> norm(x - y)"
 proof-
   have "{x - y | x y . x\<in>s \<and> y\<in>s} \<noteq> {}" using `s \<noteq> {}` by auto
   then obtain x where x:"x\<in>{x - y |x y. x \<in> s \<and> y \<in> s}"  "\<forall>y\<in>{x - y |x y. x \<in> s \<and> y \<in> s}. norm y \<le> norm x"
     using compact_differences[OF assms(1) assms(1)]
-    using distance_attains_sup[unfolded dist_norm, of "{x - y | x y . x\<in>s \<and> y\<in>s}" 0] by(auto simp add: norm_minus_cancel)
+    using distance_attains_sup[where 'a="'a", unfolded dist_norm, of "{x - y | x y . x\<in>s \<and> y\<in>s}" 0] by(auto simp add: norm_minus_cancel)
   from x(1) obtain a b where "a\<in>s" "b\<in>s" "x = a - b" by auto
   thus ?thesis using x(2)[unfolded `x = a - b`] by blast
 qed
@@ -4458,11 +4477,11 @@
   using diameter_bounded by blast
 
 lemma diameter_compact_attained:
-  fixes s :: "(real ^ _) set"
+  fixes s :: "'a::real_normed_vector set"
   assumes "compact s"  "s \<noteq> {}"
   shows "\<exists>x\<in>s. \<exists>y\<in>s. (norm(x - y) = diameter s)"
 proof-
-  have b:"bounded s" using assms(1) compact_eq_bounded_closed by auto
+  have b:"bounded s" using assms(1) by (rule compact_imp_bounded)
   then obtain x y where xys:"x\<in>s" "y\<in>s" and xy:"\<forall>u\<in>s. \<forall>v\<in>s. norm (u - v) \<le> norm (x - y)" using compact_sup_maxdistance[OF assms] by auto
   hence "diameter s \<le> norm (x - y)" using rsup_le[of "{norm (x - y) |x y. x \<in> s \<and> y \<in> s}" "norm (x - y)"]
     unfolding setle_def and diameter_def by auto
@@ -4495,7 +4514,7 @@
 	then obtain N where "\<forall>n\<ge>N. dist (x n) l < e * \<bar>c\<bar>"
           using as(2)[unfolded Lim_sequentially, THEN spec[where x="e * abs c"]] by auto
 	hence "\<exists>N. \<forall>n\<ge>N. dist (scaleR (1 / c) (x n)) (scaleR (1 / c) l) < e"
-          unfolding dist_norm unfolding scaleR_right_diff_distrib[THEN sym] norm_scaleR
+          unfolding dist_norm unfolding scaleR_right_diff_distrib[THEN sym]
 	  using mult_imp_div_pos_less[of "abs c" _ e] `c\<noteq>0` by auto  }
       hence "((\<lambda>n. scaleR (1 / c) (x n)) ---> scaleR (1 / c) l) sequentially" unfolding Lim_sequentially by auto
       ultimately have "l \<in> scaleR c ` s"
@@ -4507,7 +4526,7 @@
 
 lemma closed_scaling:
   fixes s :: "(real ^ _) set"
-  assumes "closed s" shows "closed ((\<lambda>x. c *s x) ` s)"
+  assumes "closed s" shows "closed ((\<lambda>x. c *\<^sub>R x) ` s)"
   using assms unfolding smult_conv_scaleR by (rule closed_scaleR_image)
 
 lemma closed_negations:
@@ -4523,10 +4542,10 @@
   { fix x l assume as:"\<forall>n. x n \<in> ?S"  "(x ---> l) sequentially"
     from as(1) obtain f where f:"\<forall>n. x n = fst (f n) + snd (f n)"  "\<forall>n. fst (f n) \<in> s"  "\<forall>n. snd (f n) \<in> t"
       using choice[of "\<lambda>n y. x n = (fst y) + (snd y) \<and> fst y \<in> s \<and> snd y \<in> t"] by auto
-    obtain l' r where "l'\<in>s" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and lr:"(((\<lambda>n. fst (f n)) \<circ> r) ---> l') sequentially"
+    obtain l' r where "l'\<in>s" and r:"subseq r" and lr:"(((\<lambda>n. fst (f n)) \<circ> r) ---> l') sequentially"
       using assms(1)[unfolded compact_def, THEN spec[where x="\<lambda> n. fst (f n)"]] using f(2) by auto
     have "((\<lambda>n. snd (f (r n))) ---> l - l') sequentially"
-      using Lim_sub[OF lim_subsequence[OF r as(2)] lr] and f(1) unfolding o_def by auto
+      using Lim_sub[OF lim_subseq[OF r as(2)] lr] and f(1) unfolding o_def by auto
     hence "l - l' \<in> t"
       using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda> n. snd (f (r n))"], THEN spec[where x="l - l'"]]
       using f(3) by auto
@@ -4600,7 +4619,7 @@
 subsection{* Separation between points and sets.                                       *}
 
 lemma separate_point_closed:
-  fixes s :: "(real ^ _) set" (* FIXME: generalize *)
+  fixes s :: "'a::heine_borel set"
   shows "closed s \<Longrightarrow> a \<notin> s  ==> (\<exists>d>0. \<forall>x\<in>s. d \<le> dist a x)"
 proof(cases "s = {}")
   case True
@@ -4613,7 +4632,8 @@
 qed
 
 lemma separate_compact_closed:
-  fixes s t :: "(real ^ _) set"
+  fixes s t :: "'a::{heine_borel, real_normed_vector} set"
+    (* TODO: does this generalize to heine_borel? *)
   assumes "compact s" and "closed t" and "s \<inter> t = {}"
   shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
 proof-
@@ -4629,7 +4649,7 @@
 qed
 
 lemma separate_closed_compact:
-  fixes s t :: "(real ^ _) set"
+  fixes s t :: "'a::{heine_borel, real_normed_vector} set"
   assumes "closed s" and "compact t" and "s \<inter> t = {}"
   shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
 proof-
@@ -4666,10 +4686,10 @@
     hence False using as by auto  }
   moreover
   { assume as:"\<forall>i. \<not> (b$i \<le> a$i)"
-    let ?x = "(1/2) *s (a + b)"
+    let ?x = "(1/2) *\<^sub>R (a + b)"
     { fix i
       have "a$i < b$i" using as[THEN spec[where x=i]] by auto
-      hence "a$i < ((1/2) *s (a+b)) $ i" "((1/2) *s (a+b)) $ i < b$i"
+      hence "a$i < ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i < b$i"
 	unfolding vector_smult_component and vector_add_component
 	by (auto simp add: less_divide_eq_number_of1)  }
     hence "{a <..< b} \<noteq> {}" using mem_interval(1)[of "?x" a b] by auto  }
@@ -4681,10 +4701,10 @@
     hence False using as by auto  }
   moreover
   { assume as:"\<forall>i. \<not> (b$i < a$i)"
-    let ?x = "(1/2) *s (a + b)"
+    let ?x = "(1/2) *\<^sub>R (a + b)"
     { fix i
       have "a$i \<le> b$i" using as[THEN spec[where x=i]] by auto
-      hence "a$i \<le> ((1/2) *s (a+b)) $ i" "((1/2) *s (a+b)) $ i \<le> b$i"
+      hence "a$i \<le> ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i \<le> b$i"
 	unfolding vector_smult_component and vector_add_component
 	by (auto simp add: less_divide_eq_number_of1)  }
     hence "{a .. b} \<noteq> {}" using mem_interval(2)[of "?x" a b] by auto  }
@@ -4865,14 +4885,14 @@
     then obtain s where s:"open s" "x \<in> s" "s \<subseteq> {a..b}" by auto
     then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> {a..b}" unfolding open_dist and subset_eq by auto
     { fix i
-      have "dist (x - (e / 2) *s basis i) x < e"
-	   "dist (x + (e / 2) *s basis i) x < e"
+      have "dist (x - (e / 2) *\<^sub>R basis i) x < e"
+	   "dist (x + (e / 2) *\<^sub>R basis i) x < e"
 	unfolding dist_norm apply auto
-	unfolding norm_minus_cancel and norm_mul using norm_basis[of i] and `e>0` by auto
-      hence "a $ i \<le> (x - (e / 2) *s basis i) $ i"
-                    "(x + (e / 2) *s basis i) $ i \<le> b $ i"
-	using e[THEN spec[where x="x - (e/2) *s basis i"]]
-	and   e[THEN spec[where x="x + (e/2) *s basis i"]]
+	unfolding norm_minus_cancel using norm_basis[of i] and `e>0` by auto
+      hence "a $ i \<le> (x - (e / 2) *\<^sub>R basis i) $ i"
+                    "(x + (e / 2) *\<^sub>R basis i) $ i \<le> b $ i"
+	using e[THEN spec[where x="x - (e/2) *\<^sub>R basis i"]]
+	and   e[THEN spec[where x="x + (e/2) *\<^sub>R basis i"]]
 	unfolding mem_interval by (auto elim!: allE[where x=i])
       hence "a $ i < x $ i" and "x $ i < b $ i"
 	unfolding vector_minus_component and vector_add_component
@@ -4910,10 +4930,10 @@
   using bounded_closed_imp_compact using bounded_interval[of a b] using closed_interval[of a b] by auto
 
 lemma open_interval_midpoint: fixes a :: "real^'n::finite"
-  assumes "{a<..<b} \<noteq> {}" shows "((1/2) *s (a + b)) \<in> {a<..<b}"
+  assumes "{a<..<b} \<noteq> {}" shows "((1/2) *\<^sub>R (a + b)) \<in> {a<..<b}"
 proof-
   { fix i
-    have "a $ i < ((1 / 2) *s (a + b)) $ i \<and> ((1 / 2) *s (a + b)) $ i < b $ i"
+    have "a $ i < ((1 / 2) *\<^sub>R (a + b)) $ i \<and> ((1 / 2) *\<^sub>R (a + b)) $ i < b $ i"
       using assms[unfolded interval_ne_empty, THEN spec[where x=i]]
       unfolding vector_smult_component and vector_add_component
       by(auto simp add: less_divide_eq_number_of1)  }
@@ -4922,7 +4942,7 @@
 
 lemma open_closed_interval_convex: fixes x :: "real^'n::finite"
   assumes x:"x \<in> {a<..<b}" and y:"y \<in> {a .. b}" and e:"0 < e" "e \<le> 1"
-  shows "(e *s x + (1 - e) *s y) \<in> {a<..<b}"
+  shows "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \<in> {a<..<b}"
 proof-
   { fix i
     have "a $ i = e * a$i + (1 - e) * a$i" unfolding left_diff_distrib by simp
@@ -4931,7 +4951,7 @@
       using x unfolding mem_interval  apply simp
       using y unfolding mem_interval  apply simp
       done
-    finally have "a $ i < (e *s x + (1 - e) *s y) $ i" by auto
+    finally have "a $ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) $ i" by auto
     moreover {
     have "b $ i = e * b$i + (1 - e) * b$i" unfolding left_diff_distrib by simp
     also have "\<dots> > e * x $ i + (1 - e) * y $ i" apply(rule add_less_le_mono)
@@ -4939,8 +4959,8 @@
       using x unfolding mem_interval  apply simp
       using y unfolding mem_interval  apply simp
       done
-    finally have "(e *s x + (1 - e) *s y) $ i < b $ i" by auto
-    } ultimately have "a $ i < (e *s x + (1 - e) *s y) $ i \<and> (e *s x + (1 - e) *s y) $ i < b $ i" by auto }
+    finally have "(e *\<^sub>R x + (1 - e) *\<^sub>R y) $ i < b $ i" by auto
+    } ultimately have "a $ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) $ i \<and> (e *\<^sub>R x + (1 - e) *\<^sub>R y) $ i < b $ i" by auto }
   thus ?thesis unfolding mem_interval by auto
 qed
 
@@ -4949,13 +4969,14 @@
   shows "closure {a<..<b} = {a .. b}"
 proof-
   have ab:"a < b" using assms[unfolded interval_ne_empty] unfolding vector_less_def by auto
-  let ?c = "(1 / 2) *s (a + b)"
+  let ?c = "(1 / 2) *\<^sub>R (a + b)"
   { fix x assume as:"x \<in> {a .. b}"
-    def f == "\<lambda>n::nat. x + (inverse (real n + 1)) *s (?c - x)"
+    def f == "\<lambda>n::nat. x + (inverse (real n + 1)) *\<^sub>R (?c - x)"
     { fix n assume fn:"f n < b \<longrightarrow> a < f n \<longrightarrow> f n = x" and xc:"x \<noteq> ?c"
       have *:"0 < inverse (real n + 1)" "inverse (real n + 1) \<le> 1" unfolding inverse_le_1_iff by auto
-      have "(inverse (real n + 1)) *s ((1 / 2) *s (a + b)) + (1 - inverse (real n + 1)) *s x =
-	x + (inverse (real n + 1)) *s ((1 / 2 *s (a + b)) - x)" by (auto simp add: vector_ssub_ldistrib vector_add_ldistrib field_simps vector_sadd_rdistrib[THEN sym])
+      have "(inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b)) + (1 - inverse (real n + 1)) *\<^sub>R x =
+	x + (inverse (real n + 1)) *\<^sub>R (((1 / 2) *\<^sub>R (a + b)) - x)"
+        by (auto simp add: algebra_simps)
       hence "f n < b" and "a < f n" using open_closed_interval_convex[OF open_interval_midpoint[OF assms] as *] unfolding f_def by auto
       hence False using fn unfolding f_def using xc by(auto simp add: vector_mul_lcancel vector_ssub_ldistrib)  }
     moreover
@@ -4965,11 +4986,11 @@
 	then obtain N::nat where "inverse (real (N + 1)) < e" by auto
 	hence "\<forall>n\<ge>N. inverse (real n + 1) < e" by (auto, metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans real_of_nat_Suc real_of_nat_Suc_gt_zero)
 	hence "\<exists>N::nat. \<forall>n\<ge>N. inverse (real n + 1) < e" by auto  }
-      hence "((vec1 \<circ> (\<lambda>n. inverse (real n + 1))) ---> vec1 0) sequentially"
-	unfolding Lim_sequentially by(auto simp add: dist_vec1)
+      hence "((\<lambda>n. inverse (real n + 1)) ---> 0) sequentially"
+	unfolding Lim_sequentially by(auto simp add: dist_norm)
       hence "(f ---> x) sequentially" unfolding f_def
-	using Lim_add[OF Lim_const, of "\<lambda>n::nat. (inverse (real n + 1)) *s ((1 / 2) *s (a + b) - x)" 0 sequentially x]
-	using Lim_vmul[of "\<lambda>n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *s (a + b) - x)"] by auto  }
+	using Lim_add[OF Lim_const, of "\<lambda>n::nat. (inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x)" 0 sequentially x]
+	using Lim_vmul[of "\<lambda>n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *\<^sub>R (a + b) - x)"] by auto  }
     ultimately have "x \<in> closure {a<..<b}"
       using as and open_interval_midpoint[OF assms] unfolding closure_def unfolding islimpt_sequential by(cases "x=?c")auto  }
   thus ?thesis using closure_minimal[OF interval_open_subset_closed closed_interval, of a b] by blast
@@ -5128,99 +5149,82 @@
 
 subsection{* Closure of halfspaces and hyperplanes.                                    *}
 
-lemma Lim_vec1_dot: fixes f :: "real^'m \<Rightarrow> real^'n::finite"
-  assumes "(f ---> l) net"  shows "((vec1 o (\<lambda>y. a \<bullet> (f y))) ---> vec1(a \<bullet> l)) net"
-proof(cases "a = vec 0")
-  case True thus ?thesis using dot_lzero and Lim_const[of 0 net] unfolding vec1_vec and o_def by auto
-next
-  case False
-  { fix e::real
-    assume "0 < e"
-    with `a \<noteq> vec 0` have "0 < e / norm a" by (simp add: divide_pos_pos)
-    with assms(1) have "eventually (\<lambda>x. dist (f x) l < e / norm a) net"
-      by (rule tendstoD)
-    moreover
-    { fix z assume "dist (f z) l < e / norm a"
-      hence "norm a * norm (f z - l) < e" unfolding dist_norm and
-	pos_less_divide_eq[OF False[unfolded vec_0 zero_less_norm_iff[of a, THEN sym]]] and real_mult_commute by auto
-      hence "\<bar>a \<bullet> f z - a \<bullet> l\<bar> < e"
-        using order_le_less_trans[OF norm_cauchy_schwarz_abs[of a "f z - l"], of e]
-        unfolding dot_rsub[symmetric] by auto  }
-    ultimately have "eventually (\<lambda>x. \<bar>a \<bullet> f x - a \<bullet> l\<bar> < e) net"
-      by (auto elim: eventually_rev_mono)
-  }
-  thus ?thesis unfolding tendsto_iff
-    by (auto simp add: dist_vec1)
-qed
-
-lemma continuous_at_vec1_dot:
+lemma Lim_dot: fixes f :: "real^'m \<Rightarrow> real^'n::finite"
+  assumes "(f ---> l) net"  shows "((\<lambda>y. a \<bullet> (f y)) ---> a \<bullet> l) net"
+  unfolding dot_def by (intro tendsto_intros assms)
+
+lemma continuous_at_dot:
   fixes x :: "real ^ _"
-  shows "continuous (at x) (vec1 o (\<lambda>y. a \<bullet> y))"
+  shows "continuous (at x) (\<lambda>y. a \<bullet> y)"
 proof-
   have "((\<lambda>x. x) ---> x) (at x)" unfolding Lim_at by auto
-  thus ?thesis unfolding continuous_at and o_def using Lim_vec1_dot[of "\<lambda>x. x" x "at x" a] by auto
-qed
-
-lemma continuous_on_vec1_dot:
+  thus ?thesis unfolding continuous_at and o_def using Lim_dot[of "\<lambda>x. x" x "at x" a] by auto
+qed
+
+lemma continuous_on_dot:
   fixes s :: "(real ^ _) set"
-  shows "continuous_on s (vec1 o (\<lambda>y. a \<bullet> y)) "
-  using continuous_at_imp_continuous_on[of s "vec1 o (\<lambda>y. a \<bullet> y)"]
-  using continuous_at_vec1_dot
+  shows "continuous_on s (\<lambda>y. a \<bullet> y)"
+  using continuous_at_imp_continuous_on[of s "\<lambda>y. a \<bullet> y"]
+  using continuous_at_dot
   by auto
 
-lemma closed_halfspace_le: fixes a::"real^'n::finite"
-  shows "closed {x. a \<bullet> x \<le> b}"
+lemma continuous_on_inner:
+  fixes s :: "'a::real_inner set"
+  shows "continuous_on s (inner a)"
+  unfolding continuous_on by (rule ballI) (intro tendsto_intros)
+
+lemma closed_halfspace_le: "closed {x. inner a x \<le> b}"
 proof-
-  have *:"{x \<in> UNIV. (vec1 \<circ> op \<bullet> a) x \<in> vec1 ` {r. \<exists>x. a \<bullet> x = r \<and> r \<le> b}} = {x. a \<bullet> x \<le> b}" by auto
-  let ?T = "{x::real^1. (\<forall>i. x$i \<le> (vec1 b)$i)}"
-  have "closed ?T" using closed_interval_left[of "vec1 b"] by simp
-  moreover have "vec1 ` {r. \<exists>x. a \<bullet> x = r \<and> r \<le> b} = range (vec1 \<circ> op \<bullet> a) \<inter> ?T" unfolding all_1
+  have *:"{x \<in> UNIV. inner a x \<in> {r. \<exists>x. inner a x = r \<and> r \<le> b}} = {x. inner a x \<le> b}" by auto
+  let ?T = "{..b}"
+  have "closed ?T" by (rule closed_real_atMost)
+  moreover have "{r. \<exists>x. inner a x = r \<and> r \<le> b} = range (inner a) \<inter> ?T"
     unfolding image_def by auto
-  ultimately have "\<exists>T. closed T \<and> vec1 ` {r. \<exists>x. a \<bullet> x = r \<and> r \<le> b} = range (vec1 \<circ> op \<bullet> a) \<inter> T" by auto
-  hence "closedin euclidean {x \<in> UNIV. (vec1 \<circ> op \<bullet> a) x \<in> vec1 ` {r. \<exists>x. a \<bullet> x = r \<and> r \<le> b}}"
-    using continuous_on_vec1_dot[of UNIV a, unfolded continuous_on_closed subtopology_UNIV] unfolding closedin_closed
-    by (auto elim!: allE[where x="vec1 ` {r. (\<exists>x. a \<bullet> x = r \<and> r \<le> b)}"])
+  ultimately have "\<exists>T. closed T \<and> {r. \<exists>x. inner a x = r \<and> r \<le> b} = range (inner a) \<inter> T" by fast
+  hence "closedin euclidean {x \<in> UNIV. inner a x \<in> {r. \<exists>x. inner a x = r \<and> r \<le> b}}"
+    using continuous_on_inner[of UNIV a, unfolded continuous_on_closed subtopology_UNIV] unfolding closedin_closed
+    by (fast elim!: allE[where x="{r. (\<exists>x. inner a x = r \<and> r \<le> b)}"])
   thus ?thesis unfolding closed_closedin[THEN sym] and * by auto
 qed
 
-lemma closed_halfspace_ge: "closed {x::real^_. a \<bullet> x \<ge> b}"
-  using closed_halfspace_le[of "-a" "-b"] unfolding dot_lneg by auto
-
-lemma closed_hyperplane: "closed {x::real^_. a \<bullet> x = b}"
+lemma closed_halfspace_ge: "closed {x. inner a x \<ge> b}"
+  using closed_halfspace_le[of "-a" "-b"] unfolding inner_minus_left by auto
+
+lemma closed_hyperplane: "closed {x. inner a x = b}"
 proof-
-  have "{x. a \<bullet> x = b} = {x. a \<bullet> x \<ge> b} \<inter> {x. a \<bullet> x \<le> b}" by auto
+  have "{x. inner a x = b} = {x. inner a x \<ge> b} \<inter> {x. inner a x \<le> b}" by auto
   thus ?thesis using closed_halfspace_le[of a b] and closed_halfspace_ge[of b a] using closed_Int by auto
 qed
 
 lemma closed_halfspace_component_le:
   shows "closed {x::real^'n::finite. x$i \<le> a}"
-  using closed_halfspace_le[of "(basis i)::real^'n" a] unfolding dot_basis[OF assms] by auto
+  using closed_halfspace_le[of "(basis i)::real^'n" a] unfolding inner_basis[OF assms] by auto
 
 lemma closed_halfspace_component_ge:
   shows "closed {x::real^'n::finite. x$i \<ge> a}"
-  using closed_halfspace_ge[of a "(basis i)::real^'n"] unfolding dot_basis[OF assms] by auto
+  using closed_halfspace_ge[of a "(basis i)::real^'n"] unfolding inner_basis[OF assms] by auto
 
 text{* Openness of halfspaces.                                                   *}
 
-lemma open_halfspace_lt: "open {x::real^_. a \<bullet> x < b}"
+lemma open_halfspace_lt: "open {x. inner a x < b}"
 proof-
-  have "UNIV - {x. b \<le> a \<bullet> x} = {x. a \<bullet> x < b}" by auto
+  have "UNIV - {x. b \<le> inner a x} = {x. inner a x < b}" by auto
   thus ?thesis using closed_halfspace_ge[unfolded closed_def Compl_eq_Diff_UNIV, of b a] by auto
 qed
 
-lemma open_halfspace_gt: "open {x::real^_. a \<bullet> x > b}"
+lemma open_halfspace_gt: "open {x. inner a x > b}"
 proof-
-  have "UNIV - {x. b \<ge> a \<bullet> x} = {x. a \<bullet> x > b}" by auto
+  have "UNIV - {x. b \<ge> inner a x} = {x. inner a x > b}" by auto
   thus ?thesis using closed_halfspace_le[unfolded closed_def Compl_eq_Diff_UNIV, of a b] by auto
 qed
 
 lemma open_halfspace_component_lt:
   shows "open {x::real^'n::finite. x$i < a}"
-  using open_halfspace_lt[of "(basis i)::real^'n" a] unfolding dot_basis[OF assms] by auto
+  using open_halfspace_lt[of "(basis i)::real^'n" a] unfolding inner_basis[OF assms] by auto
 
 lemma open_halfspace_component_gt:
   shows "open {x::real^'n::finite. x$i  > a}"
-  using open_halfspace_gt[of a "(basis i)::real^'n"] unfolding dot_basis[OF assms] by auto
+  using open_halfspace_gt[of a "(basis i)::real^'n"] unfolding inner_basis[OF assms] by auto
 
 text{* This gives a simple derivation of limit component bounds.                 *}
 
@@ -5228,8 +5232,8 @@
   assumes "(f ---> l) net" "\<not> (trivial_limit net)"  "eventually (\<lambda>x. f(x)$i \<le> b) net"
   shows "l$i \<le> b"
 proof-
-  { fix x have "x \<in> {x::real^'n. basis i \<bullet> x \<le> b} \<longleftrightarrow> x$i \<le> b" unfolding dot_basis by auto } note * = this
-  show ?thesis using Lim_in_closed_set[of "{x. basis i \<bullet> x \<le> b}" f net l] unfolding *
+  { fix x have "x \<in> {x::real^'n. inner (basis i) x \<le> b} \<longleftrightarrow> x$i \<le> b" unfolding inner_basis by auto } note * = this
+  show ?thesis using Lim_in_closed_set[of "{x. inner (basis i) x \<le> b}" f net l] unfolding *
     using closed_halfspace_le[of "(basis i)::real^'n" b] and assms(1,2,3) by auto
 qed
 
@@ -5237,8 +5241,8 @@
   assumes "(f ---> l) net"  "\<not> (trivial_limit net)"  "eventually (\<lambda>x. b \<le> (f x)$i) net"
   shows "b \<le> l$i"
 proof-
-  { fix x have "x \<in> {x::real^'n. basis i \<bullet> x \<ge> b} \<longleftrightarrow> x$i \<ge> b" unfolding dot_basis by auto } note * = this
-  show ?thesis using Lim_in_closed_set[of "{x. basis i \<bullet> x \<ge> b}" f net l] unfolding *
+  { fix x have "x \<in> {x::real^'n. inner (basis i) x \<ge> b} \<longleftrightarrow> x$i \<ge> b" unfolding inner_basis by auto } note * = this
+  show ?thesis using Lim_in_closed_set[of "{x. inner (basis i) x \<ge> b}" f net l] unfolding *
     using closed_halfspace_ge[of b "(basis i)::real^'n"] and assms(1,2,3) by auto
 qed
 
@@ -5292,13 +5296,13 @@
 
 text{* Some more convenient intermediate-value theorem formulations.             *}
 
-lemma connected_ivt_hyperplane: fixes y :: "real^'n::finite"
-  assumes "connected s" "x \<in> s" "y \<in> s" "a \<bullet> x \<le> b" "b \<le> a \<bullet> y"
-  shows "\<exists>z \<in> s. a \<bullet> z = b"
+lemma connected_ivt_hyperplane:
+  assumes "connected s" "x \<in> s" "y \<in> s" "inner a x \<le> b" "b \<le> inner a y"
+  shows "\<exists>z \<in> s. inner a z = b"
 proof(rule ccontr)
-  assume as:"\<not> (\<exists>z\<in>s. a \<bullet> z = b)"
-  let ?A = "{x::real^'n. a \<bullet> x < b}"
-  let ?B = "{x::real^'n. a \<bullet> x > b}"
+  assume as:"\<not> (\<exists>z\<in>s. inner a z = b)"
+  let ?A = "{x. inner a x < b}"
+  let ?B = "{x. inner a x > b}"
   have "open ?A" "open ?B" using open_halfspace_lt and open_halfspace_gt by auto
   moreover have "?A \<inter> ?B = {}" by auto
   moreover have "s \<subseteq> ?A \<union> ?B" using as by auto
@@ -5307,7 +5311,7 @@
 
 lemma connected_ivt_component: fixes x::"real^'n::finite" shows
  "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> x$k \<le> a \<Longrightarrow> a \<le> y$k \<Longrightarrow> (\<exists>z\<in>s.  z$k = a)"
-  using connected_ivt_hyperplane[of s x y "(basis k)::real^'n" a] by (auto simp add: dot_basis)
+  using connected_ivt_hyperplane[of s x y "(basis k)::real^'n" a] by (auto simp add: inner_basis)
 
 text{* Also more convenient formulations of monotone convergence.                *}
 
@@ -5320,7 +5324,7 @@
     have "\<And> n. n\<ge>m \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)"
       apply(induct_tac n) apply simp using assms(2) apply(erule_tac x="na" in allE) by(auto simp add: not_less_eq_eq)  }
   hence "\<forall>m n. m \<le> n \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)" by auto
-  then obtain l where "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar>dest_vec1 (s n) - l\<bar> < e" using convergent_bounded_monotone[OF a] by auto
+  then obtain l where "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar>dest_vec1 (s n) - l\<bar> < e" using convergent_bounded_monotone[OF a] unfolding monoseq_def by auto
   thus ?thesis unfolding Lim_sequentially apply(rule_tac x="vec1 l" in exI)
     unfolding dist_norm unfolding abs_dest_vec1 and dest_vec1_sub by auto
 qed
@@ -5429,11 +5433,11 @@
 text{* Results on translation, scaling etc.                                      *}
 
 lemma homeomorphic_scaling:
-  assumes "c \<noteq> 0"  shows "s homeomorphic ((\<lambda>x. c *s x) ` s)"
+  assumes "c \<noteq> 0"  shows "s homeomorphic ((\<lambda>x. c *\<^sub>R x) ` s)"
   unfolding homeomorphic_minimal
-  apply(rule_tac x="\<lambda>x. c *s x" in exI)
-  apply(rule_tac x="\<lambda>x. (1 / c) *s x" in exI)
-  apply auto unfolding vector_smult_assoc using assms apply auto
+  apply(rule_tac x="\<lambda>x. c *\<^sub>R x" in exI)
+  apply(rule_tac x="\<lambda>x. (1 / c) *\<^sub>R x" in exI)
+  using assms apply auto
   using continuous_on_cmul[OF continuous_on_id] by auto
 
 lemma homeomorphic_translation:
@@ -5444,13 +5448,13 @@
   using continuous_on_add[OF continuous_on_const continuous_on_id] by auto
 
 lemma homeomorphic_affinity:
-  assumes "c \<noteq> 0"  shows "s homeomorphic ((\<lambda>x. a + c *s x) ` s)"
+  assumes "c \<noteq> 0"  shows "s homeomorphic ((\<lambda>x. a + c *\<^sub>R x) ` s)"
 proof-
-  have *:"op + a ` op *s c ` s = (\<lambda>x. a + c *s x) ` s" by auto
+  have *:"op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s" by auto
   show ?thesis
     using homeomorphic_trans
     using homeomorphic_scaling[OF assms, of s]
-    using homeomorphic_translation[of "(\<lambda>x. c *s x) ` s" a] unfolding * by auto
+    using homeomorphic_translation[of "(\<lambda>x. c *\<^sub>R x) ` s" a] unfolding * by auto
 qed
 
 lemma homeomorphic_balls: fixes a b ::"real^'a::finite"
@@ -5460,27 +5464,23 @@
 proof-
   have *:"\<bar>e / d\<bar> > 0" "\<bar>d / e\<bar> >0" using assms using divide_pos_pos by auto
   show ?th unfolding homeomorphic_minimal
-    apply(rule_tac x="\<lambda>x. b + (e/d) *s (x - a)" in exI)
-    apply(rule_tac x="\<lambda>x. a + (d/e) *s (x - b)" in exI)
-    apply (auto simp add: dist_commute) unfolding dist_norm and vector_smult_assoc using assms apply auto
-    unfolding norm_minus_cancel and norm_mul
-    using continuous_on_add[OF continuous_on_const continuous_on_cmul[OF continuous_on_sub[OF continuous_on_id continuous_on_const]]]
-    apply (auto simp add: dist_commute)
-    using pos_less_divide_eq[OF *(1), THEN sym] unfolding real_mult_commute[of _ "\<bar>e / d\<bar>"]
-    using pos_less_divide_eq[OF *(2), THEN sym] unfolding real_mult_commute[of _ "\<bar>d / e\<bar>"]
-    by (auto simp add: dist_commute)
+    apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI)
+    apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI)
+    using assms apply (auto simp add: dist_commute)
+    unfolding dist_norm
+    apply (auto simp add: pos_divide_less_eq mult_strict_left_mono)
+    unfolding continuous_on
+    by (intro ballI tendsto_intros, simp, assumption)+
 next
   have *:"\<bar>e / d\<bar> > 0" "\<bar>d / e\<bar> >0" using assms using divide_pos_pos by auto
   show ?cth unfolding homeomorphic_minimal
-    apply(rule_tac x="\<lambda>x. b + (e/d) *s (x - a)" in exI)
-    apply(rule_tac x="\<lambda>x. a + (d/e) *s (x - b)" in exI)
-    apply (auto simp add: dist_commute) unfolding dist_norm and vector_smult_assoc using assms apply auto
-    unfolding norm_minus_cancel and norm_mul
-    using continuous_on_add[OF continuous_on_const continuous_on_cmul[OF continuous_on_sub[OF continuous_on_id continuous_on_const]]]
-    apply auto
-    using pos_le_divide_eq[OF *(1), THEN sym] unfolding real_mult_commute[of _ "\<bar>e / d\<bar>"]
-    using pos_le_divide_eq[OF *(2), THEN sym] unfolding real_mult_commute[of _ "\<bar>d / e\<bar>"]
-    by auto
+    apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI)
+    apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI)
+    using assms apply (auto simp add: dist_commute)
+    unfolding dist_norm
+    apply (auto simp add: pos_divide_le_eq)
+    unfolding continuous_on
+    by (intro ballI tendsto_intros, simp, assumption)+
 qed
 
 text{* "Isometry" (up to constant bounds) of injective linear map etc.           *}
@@ -5568,10 +5568,10 @@
     next
       case False
       hence *:"0 < norm a / norm x" using `a\<noteq>0` unfolding zero_less_norm_iff[THEN sym] by(simp only: divide_pos_pos)
-      have "\<forall>c. \<forall>x\<in>s. c *s x \<in> s" using s[unfolded subspace_def] by auto
-      hence "(norm a / norm x) *s x \<in> {x \<in> s. norm x = norm a}" using `x\<in>s` and `x\<noteq>0` by auto
-      thus "norm (f b) / norm b * norm x \<le> norm (f x)" using b[THEN bspec[where x="(norm a / norm x) *s x"]]
-	unfolding linear_cmul[OF f(1)] and norm_mul and ba using `x\<noteq>0` `a\<noteq>0`
+      have "\<forall>c. \<forall>x\<in>s. c *\<^sub>R x \<in> s" using s[unfolded subspace_def smult_conv_scaleR] by auto
+      hence "(norm a / norm x) *\<^sub>R x \<in> {x \<in> s. norm x = norm a}" using `x\<in>s` and `x\<noteq>0` by auto
+      thus "norm (f b) / norm b * norm x \<le> norm (f x)" using b[THEN bspec[where x="(norm a / norm x) *\<^sub>R x"]]
+	unfolding linear_cmul[OF f(1), unfolded smult_conv_scaleR] and ba using `x\<noteq>0` `a\<noteq>0`
 	by (auto simp add: real_mult_commute pos_le_divide_eq pos_divide_le_eq)
     qed }
   ultimately
@@ -5598,16 +5598,16 @@
  "closed {x::real^'n::finite. \<forall>i. P i --> x$i = 0}" (is "closed ?A")
 proof-
   let ?D = "{i. P i}"
-  let ?Bs = "{{x::real^'n. basis i \<bullet> x = 0}| i. i \<in> ?D}"
+  let ?Bs = "{{x::real^'n. inner (basis i) x = 0}| i. i \<in> ?D}"
   { fix x
     { assume "x\<in>?A"
       hence x:"\<forall>i\<in>?D. x $ i = 0" by auto
-      hence "x\<in> \<Inter> ?Bs" by(auto simp add: dot_basis x) }
+      hence "x\<in> \<Inter> ?Bs" by(auto simp add: inner_basis x) }
     moreover
     { assume x:"x\<in>\<Inter>?Bs"
       { fix i assume i:"i \<in> ?D"
-	then obtain B where BB:"B \<in> ?Bs" and B:"B = {x::real^'n. basis i \<bullet> x = 0}" by auto
-	hence "x $ i = 0" unfolding B using x unfolding dot_basis by auto  }
+	then obtain B where BB:"B \<in> ?Bs" and B:"B = {x::real^'n. inner (basis i) x = 0}" by auto
+	hence "x $ i = 0" unfolding B using x unfolding inner_basis by auto  }
       hence "x\<in>?A" by auto }
     ultimately have "x\<in>?A \<longleftrightarrow> x\<in> \<Inter>?Bs" by auto }
   hence "?A = \<Inter> ?Bs" by auto
@@ -5635,8 +5635,8 @@
       case (insert k F)
       hence *:"\<forall>i. i \<notin> insert k F \<longrightarrow> x $ i = 0" by auto
       have **:"F \<subseteq> insert k F" by auto
-      def y \<equiv> "x - x$k *s basis k"
-      have y:"x = y + (x$k) *s basis k" unfolding y_def by auto
+      def y \<equiv> "x - x$k *\<^sub>R basis k"
+      have y:"x = y + (x$k) *\<^sub>R basis k" unfolding y_def by auto
       { fix i assume i':"i \<notin> F"
 	hence "y $ i = 0" unfolding y_def unfolding vector_minus_component
 	  and vector_smult_component and basis_component
@@ -5646,9 +5646,10 @@
 	using image_mono[OF **, of basis] by auto
       moreover
       have "basis k \<in> span (?bas ` (insert k F))" by(rule span_superset, auto)
-      hence "x$k *s basis k \<in> span (?bas ` (insert k F))" using span_mul by auto
+      hence "x$k *\<^sub>R basis k \<in> span (?bas ` (insert k F))"
+        using span_mul [where 'a=real, unfolded smult_conv_scaleR] by auto
       ultimately
-      have "y + x$k *s basis k \<in> span (?bas ` (insert k F))"
+      have "y + x$k *\<^sub>R basis k \<in> span (?bas ` (insert k F))"
 	using span_add by auto
       thus ?case using y by auto
     qed
@@ -5769,45 +5770,45 @@
 
 lemma image_affinity_interval: fixes m::real
   fixes a b c :: "real^'n::finite"
-  shows "(\<lambda>x. m *s x + c) ` {a .. b} =
+  shows "(\<lambda>x. m *\<^sub>R x + c) ` {a .. b} =
             (if {a .. b} = {} then {}
-            else (if 0 \<le> m then {m *s a + c .. m *s b + c}
-            else {m *s b + c .. m *s a + c}))"
+            else (if 0 \<le> m then {m *\<^sub>R a + c .. m *\<^sub>R b + c}
+            else {m *\<^sub>R b + c .. m *\<^sub>R a + c}))"
 proof(cases "m=0")
   { fix x assume "x \<le> c" "c \<le> x"
     hence "x=c" unfolding vector_less_eq_def and Cart_eq by (auto intro: order_antisym) }
   moreover case True
-  moreover have "c \<in> {m *s a + c..m *s b + c}" unfolding True by(auto simp add: vector_less_eq_def)
+  moreover have "c \<in> {m *\<^sub>R a + c..m *\<^sub>R b + c}" unfolding True by(auto simp add: vector_less_eq_def)
   ultimately show ?thesis by auto
 next
   case False
   { fix y assume "a \<le> y" "y \<le> b" "m > 0"
-    hence "m *s a + c \<le> m *s y + c"  "m *s y + c \<le> m *s b + c"
+    hence "m *\<^sub>R a + c \<le> m *\<^sub>R y + c"  "m *\<^sub>R y + c \<le> m *\<^sub>R b + c"
       unfolding vector_less_eq_def by(auto simp add: vector_smult_component vector_add_component)
   } moreover
   { fix y assume "a \<le> y" "y \<le> b" "m < 0"
-    hence "m *s b + c \<le> m *s y + c"  "m *s y + c \<le> m *s a + c"
+    hence "m *\<^sub>R b + c \<le> m *\<^sub>R y + c"  "m *\<^sub>R y + c \<le> m *\<^sub>R a + c"
       unfolding vector_less_eq_def by(auto simp add: vector_smult_component vector_add_component mult_left_mono_neg elim!:ballE)
   } moreover
-  { fix y assume "m > 0"  "m *s a + c \<le> y"  "y \<le> m *s b + c"
-    hence "y \<in> (\<lambda>x. m *s x + c) ` {a..b}"
+  { fix y assume "m > 0"  "m *\<^sub>R a + c \<le> y"  "y \<le> m *\<^sub>R b + c"
+    hence "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` {a..b}"
       unfolding image_iff Bex_def mem_interval vector_less_eq_def
       apply(auto simp add: vector_smult_component vector_add_component vector_minus_component vector_smult_assoc pth_3[symmetric]
-	intro!: exI[where x="(1 / m) *s (y - c)"])
+	intro!: exI[where x="(1 / m) *\<^sub>R (y - c)"])
       by(auto simp add: pos_le_divide_eq pos_divide_le_eq real_mult_commute diff_le_iff)
   } moreover
-  { fix y assume "m *s b + c \<le> y" "y \<le> m *s a + c" "m < 0"
-    hence "y \<in> (\<lambda>x. m *s x + c) ` {a..b}"
+  { fix y assume "m *\<^sub>R b + c \<le> y" "y \<le> m *\<^sub>R a + c" "m < 0"
+    hence "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` {a..b}"
       unfolding image_iff Bex_def mem_interval vector_less_eq_def
       apply(auto simp add: vector_smult_component vector_add_component vector_minus_component vector_smult_assoc pth_3[symmetric]
-	intro!: exI[where x="(1 / m) *s (y - c)"])
+	intro!: exI[where x="(1 / m) *\<^sub>R (y - c)"])
       by(auto simp add: neg_le_divide_eq neg_divide_le_eq real_mult_commute diff_le_iff)
   }
   ultimately show ?thesis using False by auto
 qed
 
-lemma image_smult_interval:"(\<lambda>x. m *s (x::real^'n::finite)) ` {a..b} =
-  (if {a..b} = {} then {} else if 0 \<le> m then {m *s a..m *s b} else {m *s b..m *s a})"
+lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::real^'n::finite)) ` {a..b} =
+  (if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})"
   using image_affinity_interval[of m 0 a b] by auto
 
 subsection{* Banach fixed point theorem (not really topological...) *}
@@ -5940,9 +5941,10 @@
 subsection{* Edelstein fixed point theorem.                                            *}
 
 lemma edelstein_fix:
+  fixes s :: "'a::real_normed_vector set"
   assumes s:"compact s" "s \<noteq> {}" and gs:"(g ` s) \<subseteq> s"
       and dist:"\<forall>x\<in>s. \<forall>y\<in>s. x \<noteq> y \<longrightarrow> dist (g x) (g y) < dist x y"
-  shows "\<exists>! x::real^'a::finite\<in>s. g x = x"
+  shows "\<exists>! x\<in>s. g x = x"
 proof(cases "\<exists>x\<in>s. g x \<noteq> x")
   obtain x where "x\<in>s" using s(2) by auto
   case False hence g:"\<forall>x\<in>s. g x = x" by auto
@@ -5985,26 +5987,23 @@
       qed
     qed } note distf = this
 
-  def h \<equiv> "\<lambda>n. pastecart (f n x) (f n y)"
-  let ?s2 = "{pastecart x y |x y. x \<in> s \<and> y \<in> s}"
-  obtain l r where "l\<in>?s2" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and lr:"((h \<circ> r) ---> l) sequentially"
-    using compact_pastecart[OF s(1) s(1), unfolded compact_def, THEN spec[where x=h]] unfolding  h_def
+  def h \<equiv> "\<lambda>n. (f n x, f n y)"
+  let ?s2 = "s \<times> s"
+  obtain l r where "l\<in>?s2" and r:"subseq r" and lr:"((h \<circ> r) ---> l) sequentially"
+    using compact_Times [OF s(1) s(1), unfolded compact_def, THEN spec[where x=h]] unfolding  h_def
     using fs[OF `x\<in>s`] and fs[OF `y\<in>s`] by blast
-  def a \<equiv> "fstcart l" def b \<equiv> "sndcart l"
-  have lab:"l = pastecart a b" unfolding a_def b_def and pastecart_fst_snd by simp
+  def a \<equiv> "fst l" def b \<equiv> "snd l"
+  have lab:"l = (a, b)" unfolding a_def b_def by simp
   have [simp]:"a\<in>s" "b\<in>s" unfolding a_def b_def using `l\<in>?s2` by auto
 
-  have "continuous_on (UNIV :: (real ^ _) set) fstcart"
-   and "continuous_on (UNIV :: (real ^ _) set) sndcart"
-    using linear_continuous_on using linear_fstcart and linear_sndcart by auto
-  hence lima:"((fstcart \<circ> (h \<circ> r)) ---> a) sequentially" and limb:"((sndcart \<circ> (h \<circ> r)) ---> b) sequentially"
-    unfolding atomize_conj unfolding continuous_on_sequentially
-    apply(erule_tac x="h \<circ> r" in allE) apply(erule_tac x="h \<circ> r" in allE) using lr
-    unfolding o_def and h_def a_def b_def  by auto
+  have lima:"((fst \<circ> (h \<circ> r)) ---> a) sequentially"
+   and limb:"((snd \<circ> (h \<circ> r)) ---> b) sequentially"
+    using lr
+    unfolding o_def a_def b_def by (simp_all add: tendsto_intros)
 
   { fix n::nat
-    have *:"\<And>fx fy (x::real^_) y. dist fx fy \<le> dist x y \<Longrightarrow> \<not> (dist (fx - fy) (a - b) < dist a b - dist x y)" unfolding dist_norm by norm
-    { fix x y ::"real^'a"
+    have *:"\<And>fx fy (x::'a) y. dist fx fy \<le> dist x y \<Longrightarrow> \<not> (dist (fx - fy) (a - b) < dist a b - dist x y)" unfolding dist_norm by norm
+    { fix x y :: 'a
       have "dist (-x) (-y) = dist x y" unfolding dist_norm
 	using norm_minus_cancel[of "x - y"] by (auto simp add: uminus_add_conv_diff) } note ** = this
 
@@ -6021,7 +6020,7 @@
       moreover
       have "dist (f (r (Na + Nb + n)) x - f (r (Na + Nb + n)) y) (a - b) \<ge> dist a b - dist (f n x) (f n y)"
 	using distf[of n "r (Na+Nb+n)", OF _ `x\<in>s` `y\<in>s`]
-	using monotone_bigger[OF r, of "Na+Nb+n"]
+	using subseq_bigger[OF r, of "Na+Nb+n"]
 	using *[of "f (r (Na + Nb + n)) x" "f (r (Na + Nb + n)) y" "f n x" "f n y"] by auto
       ultimately have False by simp
     }
@@ -6049,8 +6048,8 @@
     have "dist y x < e \<longrightarrow> dist (g y) (g x) < e" using dist by fastsimp }
   hence "continuous_on s g" unfolding continuous_on_def by auto
 
-  hence "((sndcart \<circ> h \<circ> r) ---> g a) sequentially" unfolding continuous_on_sequentially
-    apply (rule allE[where x="\<lambda>n. (fstcart \<circ> h \<circ> r) n"]) apply (erule ballE[where x=a])
+  hence "((snd \<circ> h \<circ> r) ---> g a) sequentially" unfolding continuous_on_sequentially
+    apply (rule allE[where x="\<lambda>n. (fst \<circ> h \<circ> r) n"]) apply (erule ballE[where x=a])
     using lima unfolding h_def o_def using fs[OF `x\<in>s`] by (auto simp add: y_def)
   hence "g a = a" using Lim_unique[OF trivial_limit_sequentially limb, of "g a"]
     unfolding `a=b` and o_assoc by auto
--- a/src/HOL/Limits.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/Limits.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -358,6 +358,14 @@
 where [code del]:
   "(f ---> l) net \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net)"
 
+ML{*
+structure TendstoIntros =
+  NamedThmsFun(val name = "tendsto_intros"
+               val description = "introduction rules for tendsto");
+*}
+
+setup TendstoIntros.setup
+
 lemma topological_tendstoI:
   "(\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) net)
     \<Longrightarrow> (f ---> l) net"
@@ -395,12 +403,38 @@
 lemma tendsto_Zfun_iff: "(f ---> a) net = Zfun (\<lambda>x. f x - a) net"
 by (simp only: tendsto_iff Zfun_def dist_norm)
 
-lemma tendsto_const: "((\<lambda>x. k) ---> k) net"
+lemma tendsto_ident_at [tendsto_intros]: "((\<lambda>x. x) ---> a) (at a)"
+unfolding tendsto_def eventually_at_topological by auto
+
+lemma tendsto_ident_at_within [tendsto_intros]:
+  "a \<in> S \<Longrightarrow> ((\<lambda>x. x) ---> a) (at a within S)"
+unfolding tendsto_def eventually_within eventually_at_topological by auto
+
+lemma tendsto_const [tendsto_intros]: "((\<lambda>x. k) ---> k) net"
 by (simp add: tendsto_def)
 
-lemma tendsto_norm:
-  fixes a :: "'a::real_normed_vector"
-  shows "(f ---> a) net \<Longrightarrow> ((\<lambda>x. norm (f x)) ---> norm a) net"
+lemma tendsto_dist [tendsto_intros]:
+  assumes f: "(f ---> l) net" and g: "(g ---> m) net"
+  shows "((\<lambda>x. dist (f x) (g x)) ---> dist l m) net"
+proof (rule tendstoI)
+  fix e :: real assume "0 < e"
+  hence e2: "0 < e/2" by simp
+  from tendstoD [OF f e2] tendstoD [OF g e2]
+  show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) net"
+  proof (rule eventually_elim2)
+    fix x assume "dist (f x) l < e/2" "dist (g x) m < e/2"
+    then show "dist (dist (f x) (g x)) (dist l m) < e"
+      unfolding dist_real_def
+      using dist_triangle2 [of "f x" "g x" "l"]
+      using dist_triangle2 [of "g x" "l" "m"]
+      using dist_triangle3 [of "l" "m" "f x"]
+      using dist_triangle [of "f x" "m" "g x"]
+      by arith
+  qed
+qed
+
+lemma tendsto_norm [tendsto_intros]:
+  "(f ---> a) net \<Longrightarrow> ((\<lambda>x. norm (f x)) ---> norm a) net"
 apply (simp add: tendsto_iff dist_norm, safe)
 apply (drule_tac x="e" in spec, safe)
 apply (erule eventually_elim1)
@@ -417,12 +451,12 @@
   shows "(- a) - (- b) = - (a - b)"
 by simp
 
-lemma tendsto_add:
+lemma tendsto_add [tendsto_intros]:
   fixes a b :: "'a::real_normed_vector"
   shows "\<lbrakk>(f ---> a) net; (g ---> b) net\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x + g x) ---> a + b) net"
 by (simp only: tendsto_Zfun_iff add_diff_add Zfun_add)
 
-lemma tendsto_minus:
+lemma tendsto_minus [tendsto_intros]:
   fixes a :: "'a::real_normed_vector"
   shows "(f ---> a) net \<Longrightarrow> ((\<lambda>x. - f x) ---> - a) net"
 by (simp only: tendsto_Zfun_iff minus_diff_minus Zfun_minus)
@@ -432,16 +466,34 @@
   shows "((\<lambda>x. - f x) ---> - a) net \<Longrightarrow> (f ---> a) net"
 by (drule tendsto_minus, simp)
 
-lemma tendsto_diff:
+lemma tendsto_diff [tendsto_intros]:
   fixes a b :: "'a::real_normed_vector"
   shows "\<lbrakk>(f ---> a) net; (g ---> b) net\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x - g x) ---> a - b) net"
 by (simp add: diff_minus tendsto_add tendsto_minus)
 
-lemma (in bounded_linear) tendsto:
+lemma tendsto_setsum [tendsto_intros]:
+  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_vector"
+  assumes "\<And>i. i \<in> S \<Longrightarrow> (f i ---> a i) net"
+  shows "((\<lambda>x. \<Sum>i\<in>S. f i x) ---> (\<Sum>i\<in>S. a i)) net"
+proof (cases "finite S")
+  assume "finite S" thus ?thesis using assms
+  proof (induct set: finite)
+    case empty show ?case
+      by (simp add: tendsto_const)
+  next
+    case (insert i F) thus ?case
+      by (simp add: tendsto_add)
+  qed
+next
+  assume "\<not> finite S" thus ?thesis
+    by (simp add: tendsto_const)
+qed
+
+lemma (in bounded_linear) tendsto [tendsto_intros]:
   "(g ---> a) net \<Longrightarrow> ((\<lambda>x. f (g x)) ---> f a) net"
 by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)
 
-lemma (in bounded_bilinear) tendsto:
+lemma (in bounded_bilinear) tendsto [tendsto_intros]:
   "\<lbrakk>(f ---> a) net; (g ---> b) net\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ** g x) ---> a ** b) net"
 by (simp only: tendsto_Zfun_iff prod_diff_prod
                Zfun_add Zfun Zfun_left Zfun_right)
@@ -556,7 +608,7 @@
 apply (simp add: tendsto_Zfun_iff)
 done
 
-lemma tendsto_inverse:
+lemma tendsto_inverse [tendsto_intros]:
   fixes a :: "'a::real_normed_div_algebra"
   assumes f: "(f ---> a) net"
   assumes a: "a \<noteq> 0"
@@ -571,7 +623,7 @@
     by (rule tendsto_inverse_lemma)
 qed
 
-lemma tendsto_divide:
+lemma tendsto_divide [tendsto_intros]:
   fixes a b :: "'a::real_normed_field"
   shows "\<lbrakk>(f ---> a) net; (g ---> b) net; b \<noteq> 0\<rbrakk>
     \<Longrightarrow> ((\<lambda>x. f x / g x) ---> a / b) net"
--- a/src/HOL/List.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/List.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -2931,7 +2931,7 @@
 done
 
 
-subsubsection {* Infiniteness *}
+subsubsection {* (In)finiteness *}
 
 lemma finite_maxlen:
   "finite (M::'a list set) ==> EX n. ALL s:M. size s < n"
@@ -2944,6 +2944,27 @@
   thus ?case ..
 qed
 
+lemma finite_lists_length_eq:
+assumes "finite A"
+shows "finite {xs. set xs \<subseteq> A \<and> length xs = n}" (is "finite (?S n)")
+proof(induct n)
+  case 0 show ?case by simp
+next
+  case (Suc n)
+  have "?S (Suc n) = (\<Union>x\<in>A. (\<lambda>xs. x#xs) ` ?S n)"
+    by (auto simp:length_Suc_conv)
+  then show ?case using `finite A`
+    by (auto intro: finite_imageI Suc) (* FIXME metis? *)
+qed
+
+lemma finite_lists_length_le:
+  assumes "finite A" shows "finite {xs. set xs \<subseteq> A \<and> length xs \<le> n}"
+ (is "finite ?S")
+proof-
+  have "?S = (\<Union>n\<in>{0..n}. {xs. set xs \<subseteq> A \<and> length xs = n})" by auto
+  thus ?thesis by (auto intro: finite_lists_length_eq[OF `finite A`])
+qed
+
 lemma infinite_UNIV_listI: "~ finite(UNIV::'a list set)"
 apply(rule notI)
 apply(drule finite_maxlen)
--- a/src/HOL/RealVector.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/RealVector.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -116,11 +116,11 @@
   thus "a = b" by (simp only: right_minus_eq)
 qed
 
-lemma scale_cancel_left:
+lemma scale_cancel_left [simp]:
   "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
 by (auto intro: scale_left_imp_eq)
 
-lemma scale_cancel_right:
+lemma scale_cancel_right [simp]:
   "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
 by (auto intro: scale_right_imp_eq)
 
@@ -530,6 +530,9 @@
 lemma dist_triangle: "dist x z \<le> dist x y + dist y z"
 using dist_triangle2 [of x z y] by (simp add: dist_commute)
 
+lemma dist_triangle3: "dist x y \<le> dist a x + dist a y"
+using dist_triangle2 [of x y a] by (simp add: dist_commute)
+
 subclass topological_space
 proof
   have "\<exists>e::real. 0 < e"
@@ -568,7 +571,7 @@
   assumes norm_ge_zero [simp]: "0 \<le> norm x"
   and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0"
   and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
-  and norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
+  and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
 
 class real_normed_algebra = real_algebra + real_normed_vector +
   assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
@@ -592,32 +595,6 @@
   thus "norm (1::'a) = 1" by simp
 qed
 
-instantiation real :: real_normed_field
-begin
-
-definition real_norm_def [simp]:
-  "norm r = \<bar>r\<bar>"
-
-definition dist_real_def:
-  "dist x y = \<bar>x - y\<bar>"
-
-definition open_real_def [code del]:
-  "open (S :: real set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
-
-instance
-apply (intro_classes, unfold real_norm_def real_scaleR_def)
-apply (rule dist_real_def)
-apply (rule open_real_def)
-apply (simp add: real_sgn_def)
-apply (rule abs_ge_zero)
-apply (rule abs_eq_0)
-apply (rule abs_triangle_ineq)
-apply (rule abs_mult)
-apply (rule abs_mult)
-done
-
-end
-
 lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
 by simp
 
@@ -724,7 +701,7 @@
 
 lemma norm_of_real [simp]:
   "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
-unfolding of_real_def by (simp add: norm_scaleR)
+unfolding of_real_def by simp
 
 lemma norm_number_of [simp]:
   "norm (number_of w::'a::{number_ring,real_normed_algebra_1})
@@ -797,6 +774,76 @@
     using norm_triangle_ineq4 [of "x - z" "y - z"] by simp
 qed
 
+
+subsection {* Class instances for real numbers *}
+
+instantiation real :: real_normed_field
+begin
+
+definition real_norm_def [simp]:
+  "norm r = \<bar>r\<bar>"
+
+definition dist_real_def:
+  "dist x y = \<bar>x - y\<bar>"
+
+definition open_real_def [code del]:
+  "open (S :: real set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
+
+instance
+apply (intro_classes, unfold real_norm_def real_scaleR_def)
+apply (rule dist_real_def)
+apply (rule open_real_def)
+apply (simp add: real_sgn_def)
+apply (rule abs_ge_zero)
+apply (rule abs_eq_0)
+apply (rule abs_triangle_ineq)
+apply (rule abs_mult)
+apply (rule abs_mult)
+done
+
+end
+
+lemma open_real_lessThan [simp]:
+  fixes a :: real shows "open {..<a}"
+unfolding open_real_def dist_real_def
+proof (clarify)
+  fix x assume "x < a"
+  hence "0 < a - x \<and> (\<forall>y. \<bar>y - x\<bar> < a - x \<longrightarrow> y \<in> {..<a})" by auto
+  thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {..<a}" ..
+qed
+
+lemma open_real_greaterThan [simp]:
+  fixes a :: real shows "open {a<..}"
+unfolding open_real_def dist_real_def
+proof (clarify)
+  fix x assume "a < x"
+  hence "0 < x - a \<and> (\<forall>y. \<bar>y - x\<bar> < x - a \<longrightarrow> y \<in> {a<..})" by auto
+  thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {a<..}" ..
+qed
+
+lemma open_real_greaterThanLessThan [simp]:
+  fixes a b :: real shows "open {a<..<b}"
+proof -
+  have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
+  thus "open {a<..<b}" by (simp add: open_Int)
+qed
+
+lemma closed_real_atMost [simp]: 
+  fixes a :: real shows "closed {..a}"
+unfolding closed_open by simp
+
+lemma closed_real_atLeast [simp]:
+  fixes a :: real shows "closed {a..}"
+unfolding closed_open by simp
+
+lemma closed_real_atLeastAtMost [simp]:
+  fixes a b :: real shows "closed {a..b}"
+proof -
+  have "{a..b} = {a..} \<inter> {..b}" by auto
+  thus "closed {a..b}" by (simp add: closed_Int)
+qed
+
+
 subsection {* Extra type constraints *}
 
 text {* Only allow @{term "open"} in class @{text topological_space}. *}
@@ -819,7 +866,7 @@
 
 lemma norm_sgn:
   "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)"
-by (simp add: sgn_div_norm norm_scaleR)
+by (simp add: sgn_div_norm)
 
 lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0"
 by (simp add: sgn_div_norm)
@@ -832,7 +879,7 @@
 
 lemma sgn_scaleR:
   "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))"
-by (simp add: sgn_div_norm norm_scaleR mult_ac)
+by (simp add: sgn_div_norm mult_ac)
 
 lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
 by (simp add: sgn_div_norm)
@@ -1000,8 +1047,7 @@
 apply (rule scaleR_right_distrib)
 apply simp
 apply (rule scaleR_left_commute)
-apply (rule_tac x="1" in exI)
-apply (simp add: norm_scaleR)
+apply (rule_tac x="1" in exI, simp)
 done
 
 interpretation scaleR_left: bounded_linear "\<lambda>r. scaleR r x"
--- a/src/HOL/SEQ.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/SEQ.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -348,23 +348,7 @@
   fixes L :: "'a \<Rightarrow> 'b::real_normed_vector"
   assumes n: "\<And>n. n \<in> S \<Longrightarrow> X n ----> L n"
   shows "(\<lambda>m. \<Sum>n\<in>S. X n m) ----> (\<Sum>n\<in>S. L n)"
-proof (cases "finite S")
-  case True
-  thus ?thesis using n
-  proof (induct)
-    case empty
-    show ?case
-      by (simp add: LIMSEQ_const)
-  next
-    case insert
-    thus ?case
-      by (simp add: LIMSEQ_add)
-  qed
-next
-  case False
-  thus ?thesis
-    by (simp add: LIMSEQ_const)
-qed
+using n unfolding LIMSEQ_conv_tendsto by (rule tendsto_setsum)
 
 lemma LIMSEQ_setprod:
   fixes L :: "'a \<Rightarrow> 'b::{real_normed_algebra,comm_ring_1}"
--- a/src/HOL/Transitive_Closure.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/Transitive_Closure.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -486,6 +486,28 @@
 
 lemmas tranclD = tranclpD [to_set]
 
+lemma converse_tranclpE:
+  assumes major: "tranclp r x z"
+  assumes base: "r x z ==> P"
+  assumes step: "\<And> y. [| r x y; tranclp r y z |] ==> P"
+  shows P
+proof -
+  from tranclpD[OF major]
+  obtain y where "r x y" and "rtranclp r y z" by iprover
+  from this(2) show P
+  proof (cases rule: rtranclp.cases)
+    case rtrancl_refl
+    with `r x y` base show P by iprover
+  next
+    case rtrancl_into_rtrancl
+    from this have "tranclp r y z"
+      by (iprover intro: rtranclp_into_tranclp1)
+    with `r x y` step show P by iprover
+  qed
+qed
+
+lemmas converse_tranclE = converse_tranclpE [to_set]
+
 lemma tranclD2:
   "(x, y) \<in> R\<^sup>+ \<Longrightarrow> \<exists>z. (x, z) \<in> R\<^sup>* \<and> (z, y) \<in> R"
   by (blast elim: tranclE intro: trancl_into_rtrancl)
--- a/src/HOL/ex/Predicate_Compile_ex.thy	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/ex/Predicate_Compile_ex.thy	Sat Jun 13 16:32:38 2009 +0200
@@ -7,12 +7,8 @@
   | "even n \<Longrightarrow> odd (Suc n)"
   | "odd n \<Longrightarrow> even (Suc n)"
 
+code_pred even .
 
-(*
-code_pred even
-  using assms by (rule even.cases)
-*)
-setup {* Predicate_Compile.add_equations @{const_name even} *}
 thm odd.equation
 thm even.equation
 
@@ -31,15 +27,7 @@
 "rev [] []"
 | "rev xs xs' ==> append xs' [x] ys ==> rev (x#xs) ys"
 
-setup {* Predicate_Compile.add_equations @{const_name rev} *}
-
-thm rev.equation
-thm append.equation
-
-(*
-code_pred append
-  using assms by (rule append.cases)
-*)
+code_pred rev .
 
 thm append.equation
 
@@ -54,36 +42,44 @@
   | "f x \<Longrightarrow> partition f xs ys zs \<Longrightarrow> partition f (x # xs) (x # ys) zs"
   | "\<not> f x \<Longrightarrow> partition f xs ys zs \<Longrightarrow> partition f (x # xs) ys (x # zs)"
 
-setup {* Predicate_Compile.add_equations @{const_name partition} *}
+(* FIXME: correct handling of parameters *)
 (*
-code_pred partition
-  using assms by (rule partition.cases)
-*)
+ML {* reset Predicate_Compile.do_proofs *}
+code_pred partition .
 
 thm partition.equation
+ML {* set Predicate_Compile.do_proofs *}
+*)
 
+(* TODO: requires to handle abstractions in parameter positions correctly *)
 (*FIXME values 10 "{(ys, zs). partition (\<lambda>n. n mod 2 = 0)
-  [0, Suc 0, 2, 3, 4, 5, 6, 7] ys zs}"*)
+  [0, Suc 0, 2, 3, 4, 5, 6, 7] ys zs}" *)
+
 
-setup {* Predicate_Compile.add_equations @{const_name tranclp} *}
+lemma [code_pred_intros]:
+"r a b ==> tranclp r a b"
+"r a b ==> tranclp r b c ==> tranclp r a c" 
+by auto
+
+(* Setup requires quick and dirty proof *)
 (*
 code_pred tranclp
-  using assms by (rule tranclp.cases)
-*)
+proof -
+  case tranclp
+  from this converse_tranclpE[OF this(1)] show thesis by metis
+qed
 
 thm tranclp.equation
+*)
 
 inductive succ :: "nat \<Rightarrow> nat \<Rightarrow> bool" where
     "succ 0 1"
   | "succ m n \<Longrightarrow> succ (Suc m) (Suc n)"
 
-setup {* Predicate_Compile.add_equations @{const_name succ} *} 
-(*
-code_pred succ
-  using assms by (rule succ.cases)
-*)
+code_pred succ .
+
 thm succ.equation
-
+(* FIXME: why does this not terminate? *)
 (*
 values 20 "{n. tranclp succ 10 n}"
 values "{n. tranclp succ n 10}"
--- a/src/HOL/ex/predicate_compile.ML	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/HOL/ex/predicate_compile.ML	Sat Jun 13 16:32:38 2009 +0200
@@ -37,13 +37,17 @@
 fun tracing s = (if ! Toplevel.debug then Output.tracing s else ());
 
 fun print_tac s = (if ! Toplevel.debug then Tactical.print_tac s else Seq.single);
-fun debug_tac msg = (fn st => (tracing msg; Seq.single st));
+fun new_print_tac s = Tactical.print_tac s
+fun debug_tac msg = (fn st => (Output.tracing msg; Seq.single st));
 
 val do_proofs = ref true;
 
 fun mycheat_tac thy i st =
   (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) i) st
 
+fun remove_last_goal thy st =
+  (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) (nprems_of st)) st
+
 (* reference to preprocessing of InductiveSet package *)
 
 val ind_set_codegen_preproc = InductiveSetPackage.codegen_preproc;
@@ -131,6 +135,7 @@
   cat_lines (map (fn (s, ms) => s ^ ": " ^ commas (map
     string_of_mode ms)) modes));
 
+    
 datatype predfun_data = PredfunData of {
   name : string,
   definition : thm,
@@ -176,9 +181,7 @@
 (* queries *)
 
 fun lookup_pred_data thy name =
-  case try (Graph.get_node (PredData.get thy)) name of
-    SOME pred_data => SOME (rep_pred_data pred_data)
-  | NONE => NONE
+  Option.map rep_pred_data (try (Graph.get_node (PredData.get thy)) name)
 
 fun the_pred_data thy name = case lookup_pred_data thy name
  of NONE => error ("No such predicate " ^ quote name)  
@@ -239,16 +242,73 @@
  in thy end;
 *)
 
+
+fun imp_prems_conv cv ct =
+  case Thm.term_of ct of
+    Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
+  | _ => Conv.all_conv ct
+
+fun Trueprop_conv cv ct =
+  case Thm.term_of ct of
+    Const ("Trueprop", _) $ _ => Conv.arg_conv cv ct  
+  | _ => error "Trueprop_conv"
+
+fun preprocess_intro thy rule =
+  Conv.fconv_rule
+    (imp_prems_conv
+      (Trueprop_conv (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq})))))
+    (Thm.transfer thy rule)
+
+fun preprocess_elim thy nargs elimrule = let
+   fun replace_eqs (Const ("Trueprop", _) $ (Const ("op =", T) $ lhs $ rhs)) =
+      HOLogic.mk_Trueprop (Const (@{const_name Predicate.eq}, T) $ lhs $ rhs)
+    | replace_eqs t = t
+   fun preprocess_case t = let
+     val params = Logic.strip_params t
+     val (assums1, assums2) = chop nargs (Logic.strip_assums_hyp t)
+     val assums_hyp' = assums1 @ (map replace_eqs assums2)
+     in list_all (params, Logic.list_implies (assums_hyp', Logic.strip_assums_concl t)) end
+   val prems = Thm.prems_of elimrule
+   val cases' = map preprocess_case (tl prems)
+   val elimrule' = Logic.list_implies ((hd prems) :: cases', Thm.concl_of elimrule)
+ in
+   Thm.equal_elim
+     (Thm.symmetric (Conv.implies_concl_conv (MetaSimplifier.rewrite true [@{thm eq_is_eq}])
+        (cterm_of thy elimrule')))
+     elimrule
+ end;
+
+fun fetch_pred_data thy name =
+  case try (InductivePackage.the_inductive (ProofContext.init thy)) name of
+    SOME (info as (_, result)) => 
+      let
+        fun is_intro_of intro =
+          let
+            val (const, _) = strip_comb (HOLogic.dest_Trueprop (concl_of intro))
+          in (fst (dest_Const const) = name) end;
+        val intros = map (preprocess_intro thy) (filter is_intro_of (#intrs result)) 
+        val elim = nth (#elims result) (find_index (fn s => s = name) (#names (fst info)))
+        val nparams = length (InductivePackage.params_of (#raw_induct result))
+      in (intros, elim, nparams) end
+  | NONE => error ("No such predicate: " ^ quote name)
+  
 (* updaters *)
 
 fun add_predfun name mode data = let
     val add = apsnd (cons (mode, mk_predfun_data data))
   in PredData.map (Graph.map_node name (map_pred_data add)) end
 
-fun add_intro thm = let
+fun add_intro thm thy = let
    val (name, _) = dest_Const (fst (strip_intro_concl 0 (prop_of thm)))
-   fun set (intros, elim, nparams) = (thm::intros, elim, nparams)  
-  in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end
+   fun cons_intro gr =
+     case try (Graph.get_node gr) name of
+       SOME pred_data => Graph.map_node name (map_pred_data
+         (apfst (fn (intro, elim, nparams) => (thm::intro, elim, nparams)))) gr
+     | NONE =>
+       let
+         val nparams = the_default 0 (try (#3 o fetch_pred_data thy) name)
+       in Graph.new_node (name, mk_pred_data (([thm], NONE, nparams), [])) gr end;
+  in PredData.map cons_intro thy end
 
 fun set_elim thm = let
     val (name, _) = dest_Const (fst 
@@ -733,21 +793,27 @@
   val args = map Free (argnames ~~ (Ts1' @ Ts2))
   val (params, io_args) = chop nparams args
   val (inargs, outargs) = get_args (snd mode) io_args
+  val param_names = Name.variant_list argnames
+    (map (fn i => "p" ^ string_of_int i) (1 upto nparams))
+  val param_vs = map Free (param_names ~~ Ts1)
   val (params', names) = fold_map mk_Eval_of ((params ~~ Ts1) ~~ (fst mode)) []
-  val predprop = HOLogic.mk_Trueprop (list_comb (pred, params' @ io_args))
+  val predpropI = HOLogic.mk_Trueprop (list_comb (pred, param_vs @ io_args))
+  val predpropE = HOLogic.mk_Trueprop (list_comb (pred, params' @ io_args))
+  val param_eqs = map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (param_vs ~~ params')
   val funargs = params @ inargs
   val funpropE = HOLogic.mk_Trueprop (mk_Eval (list_comb (funtrm, funargs),
                   if null outargs then Free("y", HOLogic.unitT) else mk_tuple outargs))
   val funpropI = HOLogic.mk_Trueprop (mk_Eval (list_comb (funtrm, funargs),
                    mk_tuple outargs))
-  val introtrm = Logic.mk_implies (predprop, funpropI)
+  val introtrm = Logic.list_implies (predpropI :: param_eqs, funpropI)
+  val _ = Output.tracing (Syntax.string_of_term_global thy introtrm) 
   val simprules = [defthm, @{thm eval_pred},
                    @{thm "split_beta"}, @{thm "fst_conv"}, @{thm "snd_conv"}]
   val unfolddef_tac = (Simplifier.asm_full_simp_tac (HOL_basic_ss addsimps simprules) 1)
-  val introthm = Goal.prove (ProofContext.init thy) (argnames @ ["y"]) [] introtrm (fn {...} => unfolddef_tac)
+  val introthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ ["y"]) [] introtrm (fn {...} => unfolddef_tac)
   val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT));
-  val elimtrm = Logic.list_implies ([funpropE, Logic.mk_implies (predprop, P)], P)
-  val elimthm = Goal.prove (ProofContext.init thy) (argnames @ ["y", "P"]) [] elimtrm (fn {...} => unfolddef_tac)
+  val elimtrm = Logic.list_implies ([funpropE, Logic.mk_implies (predpropE, P)], P)
+  val elimthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ ["y", "P"]) [] elimtrm (fn {...} => unfolddef_tac)
 in 
   (introthm, elimthm)
 end;
@@ -792,6 +858,7 @@
       in thy' |> add_predfun name mode (mode_id, definition, intro, elim)
         |> PureThy.store_thm (Binding.name (Long_Name.base_name mode_id ^ "I"), intro) |> snd
         |> PureThy.store_thm (Binding.name (Long_Name.base_name mode_id ^ "E"), elim)  |> snd
+        |> Theory.checkpoint
       end;
   in
     fold create_definition modes thy
@@ -803,42 +870,6 @@
 fun is_Type (Type _) = true
   | is_Type _ = false
 
-fun imp_prems_conv cv ct =
-  case Thm.term_of ct of
-    Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
-  | _ => Conv.all_conv ct
-
-fun Trueprop_conv cv ct =
-  case Thm.term_of ct of
-    Const ("Trueprop", _) $ _ => Conv.arg_conv cv ct  
-  | _ => error "Trueprop_conv"
-
-fun preprocess_intro thy rule =
-  Conv.fconv_rule
-    (imp_prems_conv
-      (Trueprop_conv (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq})))))
-    (Thm.transfer thy rule)
-
-fun preprocess_elim thy nargs elimrule = let
-   fun replace_eqs (Const ("Trueprop", _) $ (Const ("op =", T) $ lhs $ rhs)) =
-      HOLogic.mk_Trueprop (Const (@{const_name Predicate.eq}, T) $ lhs $ rhs)
-    | replace_eqs t = t
-   fun preprocess_case t = let
-     val params = Logic.strip_params t
-     val (assums1, assums2) = chop nargs (Logic.strip_assums_hyp t)
-     val assums_hyp' = assums1 @ (map replace_eqs assums2)
-     in list_all (params, Logic.list_implies (assums_hyp', Logic.strip_assums_concl t)) end
-   val prems = Thm.prems_of elimrule
-   val cases' = map preprocess_case (tl prems)
-   val elimrule' = Logic.list_implies ((hd prems) :: cases', Thm.concl_of elimrule)
- in
-   Thm.equal_elim
-     (Thm.symmetric (Conv.implies_concl_conv (MetaSimplifier.rewrite true [@{thm eq_is_eq}])
-        (cterm_of thy elimrule')))
-     elimrule
- end;
-
-
 (* returns true if t is an application of an datatype constructor *)
 (* which then consequently would be splitted *)
 (* else false *)
@@ -859,7 +890,16 @@
 fun prove_param thy modes (NONE, t) =
   all_tac 
 | prove_param thy modes (m as SOME (Mode (mode, is, ms)), t) =
-  let
+  REPEAT_DETERM (etac @{thm thin_rl} 1)
+  THEN REPEAT_DETERM (rtac @{thm ext} 1)
+  THEN (rtac @{thm iffI} 1)
+  THEN new_print_tac "prove_param"
+  (* proof in one direction *)
+  THEN (atac 1)
+  (* proof in the other direction *)
+  THEN (atac 1)
+  THEN new_print_tac "after prove_param"
+(*  let
     val  (f, args) = strip_comb t
     val (params, _) = chop (length ms) args
     val f_tac = case f of
@@ -872,11 +912,10 @@
     print_tac "before simplification in prove_args:"
     THEN f_tac
     THEN print_tac "after simplification in prove_args"
-    (* work with parameter arguments *)
     THEN (EVERY (map (prove_param thy modes) (ms ~~ params)))
     THEN (REPEAT_DETERM (atac 1))
   end
-
+*)
 fun prove_expr thy modes (SOME (Mode (mode, is, ms)), t, us) (premposition : int) =
   (case strip_comb t of
     (Const (name, T), args) =>
@@ -897,8 +936,10 @@
         (* for the right assumption in first position *)
         THEN rotate_tac premposition 1
         THEN rtac introrule 1
-        THEN print_tac "after intro rule"
+        THEN new_print_tac "after intro rule"
         (* work with parameter arguments *)
+        THEN (atac 1)
+        THEN (new_print_tac "parameter goal")
         THEN (EVERY (map (prove_param thy modes) (ms ~~ args1)))
         THEN (REPEAT_DETERM (atac 1)) end)
       else error "Prove expr if case not implemented"
@@ -1032,7 +1073,7 @@
   val nargs = length (binder_types T) - nparams_of thy pred
   val pred_case_rule = singleton (ind_set_codegen_preproc thy)
     (preprocess_elim thy nargs (the_elim_of thy pred))
-  (* FIXME preprocessor |> Simplifier.full_simplify (HOL_basic_ss addsimps [@ {thm Predicate.memb_code}])*)
+  (* FIXME preprocessor |> Simplifier.full_simplify (HOL_basic_ss addsimps [@{thm Predicate.memb_code}])*)
 in
   REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"}))
   THEN etac (predfun_elim_of thy pred mode) 1
@@ -1041,6 +1082,7 @@
          (fn i => EVERY' (select_sup (length clauses) i) i) 
            (1 upto (length clauses))))
   THEN (EVERY (map (prove_clause thy nargs all_vs param_vs modes mode) clauses))
+  THEN new_print_tac "proved one direction"
 end;
 
 (*******************************************************************************************************)
@@ -1073,7 +1115,8 @@
 
 (* VERY LARGE SIMILIRATIY to function prove_param 
 -- join both functions
-*) 
+*)
+(*
 fun prove_param2 thy modes (NONE, t) = all_tac 
   | prove_param2 thy modes (m as SOME (Mode (mode, is, ms)), t) = let
     val  (f, args) = strip_comb t
@@ -1087,9 +1130,9 @@
     print_tac "before simplification in prove_args:"
     THEN f_tac
     THEN print_tac "after simplification in prove_args"
-    (* work with parameter arguments *)
     THEN (EVERY (map (prove_param2 thy modes) (ms ~~ params)))
   end
+*)
 
 fun prove_expr2 thy modes (SOME (Mode (mode, is, ms)), t) = 
   (case strip_comb t of
@@ -1097,8 +1140,14 @@
       if AList.defined op = modes name then
         etac @{thm bindE} 1
         THEN (REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"})))
+        THEN (debug_tac (Syntax.string_of_term_global thy
+          (prop_of (predfun_elim_of thy name mode))))
         THEN (etac (predfun_elim_of thy name mode) 1)
-        THEN (EVERY (map (prove_param2 thy modes) (ms ~~ args)))
+        THEN new_print_tac "prove_expr2"
+        (* TODO -- FIXME: replace remove_last_goal*)
+        THEN (EVERY (replicate (length args) (remove_last_goal thy)))
+        THEN new_print_tac "finished prove_expr2"
+        (* THEN (EVERY (map (prove_param thy modes) (ms ~~ args))) *)
       else error "Prove expr2 if case not implemented"
     | _ => etac @{thm bindE} 1)
   | prove_expr2 _ _ _ = error "Prove expr2 not implemented"
@@ -1177,7 +1226,7 @@
             THEN (if is_some name then
                 full_simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, js)]) 1 
                 THEN etac @{thm not_predE} 1
-                THEN (EVERY (map (prove_param2 thy modes) (param_modes ~~ params)))
+                THEN (EVERY (map (prove_param thy modes) (param_modes ~~ params)))
               else
                 etac @{thm not_predE'} 1)
             THEN rec_tac
@@ -1252,6 +1301,7 @@
 
 fun prepare_intrs thy prednames =
   let
+    (* FIXME: preprocessing moved to fetch_pred_data *)
     val intrs = map (preprocess_intro thy) (maps (intros_of thy) prednames)
       |> ind_set_codegen_preproc thy (*FIXME preprocessor
       |> map (Simplifier.full_simplify (HOL_basic_ss addsimps [@ {thm Predicate.memb_code}]))*)
@@ -1316,7 +1366,7 @@
   val modes = infer_modes thy extra_modes arities param_vs clauses
   val _ = print_modes modes
   val _ = tracing "Defining executable functions..."
-  val thy' = fold (create_definitions preds nparams) modes thy
+  val thy' = fold (create_definitions preds nparams) modes thy |> Theory.checkpoint
   val clauses' = map (fn (s, cls) => (s, (the (AList.lookup (op =) preds s), cls))) clauses
   val _ = tracing "Compiling equations..."
   val ts = compile_preds thy' all_vs param_vs (extra_modes @ modes) clauses'
@@ -1330,15 +1380,16 @@
     [((Binding.qualify true (Long_Name.base_name name) (Binding.name "equation"), result_thms),
       [Attrib.attribute_i thy Code.add_default_eqn_attrib])] thy))
     (arrange ((map (fn ((name, _), _) => name) pred_mode) ~~ result_thms)) thy'
+    |> Theory.checkpoint
 in
   thy''
 end
 
 (* generation of case rules from user-given introduction rules *)
 
-fun mk_casesrule introrules nparams ctxt =
+fun mk_casesrule ctxt nparams introrules =
   let
-    val intros = map prop_of introrules
+    val intros = map (Logic.unvarify o prop_of) introrules
     val (pred, (params, args)) = strip_intro_concl nparams (hd intros)
     val ([propname], ctxt1) = Variable.variant_fixes ["thesis"] ctxt
     val prop = HOLogic.mk_Trueprop (Free (propname, HOLogic.boolT))
@@ -1356,32 +1407,16 @@
         in fold Logic.all frees (Logic.list_implies (eqprems @ prems, prop)) end
     val assm = HOLogic.mk_Trueprop (list_comb (pred, params @ argvs))
     val cases = map mk_case intros
-    val (_, ctxt3) = ProofContext.add_assms_i Assumption.assume_export
-              [((Binding.name AutoBind.assmsN, []), map (fn t => (t, [])) (assm :: cases))]
-              ctxt2
-  in (pred, prop, ctxt3) end;
+  in Logic.list_implies (assm :: cases, prop) end;
 
 (* code dependency graph *)
-  
-fun fetch_pred_data thy name =
-  case try (InductivePackage.the_inductive (ProofContext.init thy)) name of
-    SOME (info as (_, result)) => 
-      let
-        fun is_intro_of intro =
-          let
-            val (const, _) = strip_comb (HOLogic.dest_Trueprop (concl_of intro))
-          in (fst (dest_Const const) = name) end;
-        val intros = map (preprocess_intro thy) (filter is_intro_of (#intrs result)) 
-        val elim = nth (#elims result) (find_index (fn s => s = name) (#names (fst info)))
-        val nparams = length (InductivePackage.params_of (#raw_induct result))
-      in mk_pred_data ((intros, SOME elim, nparams), []) end
-  | NONE => error ("No such predicate: " ^ quote name)
 
-fun dependencies_of (thy : theory) name =
+fun dependencies_of thy name =
   let
     fun is_inductive_predicate thy name =
       is_some (try (InductivePackage.the_inductive (ProofContext.init thy)) name)
-    val data = fetch_pred_data thy name
+    val (intro, elim, nparams) = fetch_pred_data thy name 
+    val data = mk_pred_data ((intro, SOME elim, nparams), [])
     val intros = map Thm.prop_of (#intros (rep_pred_data data))
     val keys = fold Term.add_consts intros [] |> map fst
     |> filter (is_inductive_predicate thy)
@@ -1391,7 +1426,7 @@
 
 fun add_equations name thy =
   let
-    val thy' = PredData.map (Graph.extend (dependencies_of thy) name) thy;
+    val thy' = PredData.map (Graph.extend (dependencies_of thy) name) thy |> Theory.checkpoint;
     (*val preds = Graph.all_preds (PredData.get thy') [name] |> filter_out (has_elim thy') *)
     fun strong_conn_of gr keys =
       Graph.strong_conn (Graph.subgraph (member (op =) (Graph.all_succs gr keys)) gr)
@@ -1399,7 +1434,7 @@
     val thy'' = fold_rev
       (fn preds => fn thy =>
         if forall (null o modes_of thy) preds then add_equations_of preds thy else thy)
-      scc thy'
+      scc thy' |> Theory.checkpoint
   in thy'' end
 
 (** user interface **)
@@ -1417,38 +1452,33 @@
 (* TODO: must create state to prove multiple cases *)
 fun generic_code_pred prep_const raw_const lthy =
   let
-    val thy = (ProofContext.theory_of lthy)
+  
+    val thy = ProofContext.theory_of lthy
     val const = prep_const thy raw_const
-    val lthy' = lthy
-    val thy' = PredData.map (Graph.extend (dependencies_of thy) const) thy
+    
+    val lthy' = LocalTheory.theory (PredData.map (Graph.extend (dependencies_of thy) const)) lthy
+      |> LocalTheory.checkpoint
+    val thy' = ProofContext.theory_of lthy'
     val preds = Graph.all_preds (PredData.get thy') [const] |> filter_out (has_elim thy')
-    val _ = Output.tracing ("preds: " ^ commas preds)
-    (*
-    fun mk_elim pred =
+    
+    fun mk_cases const =
       let
-        val nparams = nparams_of thy pred 
-        val intros = intros_of thy pred
-        val (((tfrees, frees), fact), lthy'') =
-          Variable.import_thms true intros lthy';
-        val (pred, prop, lthy''') = mk_casesrule fact nparams lthy''
-      in (pred, prop, lthy''') end;
-      
-        val (predname, _) = dest_Const pred
-    *)
-    val nparams = nparams_of thy' const
-    val intros = intros_of thy' const
-    val (((tfrees, frees), fact), lthy'') =
-      Variable.import_thms true intros lthy';
-    val (pred, prop, lthy''') = mk_casesrule fact nparams lthy''
-    val (predname, _) = dest_Const pred  
-    fun after_qed [[th]] lthy''' =
-      lthy'''
-      |> LocalTheory.note Thm.generatedK
-           ((Binding.empty, []), [th])
-      |> snd
-      |> LocalTheory.theory (add_equations_of [predname])
+        val nparams = nparams_of thy' const
+        val intros = intros_of thy' const
+      in mk_casesrule lthy' nparams intros end  
+    val cases_rules = map mk_cases preds
+    val cases =
+      map (fn case_rule => RuleCases.Case {fixes = [],
+        assumes = [("", Logic.strip_imp_prems case_rule)],
+        binds = [], cases = []}) cases_rules
+    val case_env = map2 (fn p => fn c => (Long_Name.base_name p, SOME c)) preds cases
+    val _ = Output.tracing (commas (map fst case_env))
+    val lthy'' = ProofContext.add_cases true case_env lthy'
+    
+    fun after_qed thms =
+      LocalTheory.theory (fold set_elim (map the_single thms) #> add_equations const)
   in
-    Proof.theorem_i NONE after_qed [[(prop, [])]] lthy'''
+    Proof.theorem_i NONE after_qed (map (single o (rpair [])) cases_rules) lthy''
   end;
 
 structure P = OuterParse
--- a/src/Pure/General/symbol.ML	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/Pure/General/symbol.ML	Sat Jun 13 16:32:38 2009 +0200
@@ -433,7 +433,7 @@
 val scan_encoded_newline =
   $$ "\^M" -- $$ "\n" >> K "\n" ||
   $$ "\^M" >> K "\n" ||
-  $$ "\\" -- Scan.optional ($$ "\\") "" -- Scan.this_string "<^newline>" >> K "\n";
+  Scan.this_string "\\<^newline>" >> K "\n";
 
 val scan_raw =
   Scan.this_string "raw:" ^^ (Scan.many raw_chr >> implode) ||
@@ -442,7 +442,7 @@
 val scan =
   Scan.one is_plain ||
   scan_encoded_newline ||
-  (($$ "\\" --| Scan.optional ($$ "\\") "") ^^ $$ "<" ^^
+  ($$ "\\" ^^ $$ "<" ^^
     !! (fn (cs, _) => malformed_msg (beginning 10 ("\\" :: "<" :: cs)))
       (($$ "^" ^^ (scan_raw || scan_id) || scan_id) ^^ $$ ">")) ||
   Scan.one not_eof;
@@ -453,7 +453,7 @@
   Scan.this_string "{*" || Scan.this_string "*}";
 
 val recover =
-  (Scan.this (explode "\\\\<") || Scan.this (explode "\\<")) @@@
+  Scan.this ["\\", "<"] @@@
     Scan.repeat (Scan.unless scan_resync (Scan.one not_eof))
   >> (fn ss => malformed :: ss @ [end_malformed]);
 
--- a/src/Pure/General/symbol.scala	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/Pure/General/symbol.scala	Sat Jun 13 16:32:38 2009 +0200
@@ -20,12 +20,12 @@
     [^\\ \ud800-\udfff] | [\ud800-\udbff][\udc00-\udfff] """)
 
   private val symbol = new Regex("""(?xs)
-      \\ \\? < (?:
+      \\ < (?:
       \^? [A-Za-z][A-Za-z0-9_']* |
       \^raw: [\x20-\x7e\u0100-\uffff && [^.>]]* ) >""")
 
   private val bad_symbol = new Regex("(?xs) (?!" + symbol + ")" +
-    """ \\ \\? < (?: (?! \s | [\"`\\] | \(\* | \*\) | \{\* | \*\} ) . )*""")
+    """ \\ < (?: (?! \s | [\"`\\] | \(\* | \*\) | \{\* | \*\} ) . )*""")
 
   // total pattern
   val regex = new Regex(plain + "|" + symbol + "|" + bad_symbol + "| .")
@@ -133,8 +133,8 @@
             }
           val ch = new String(Character.toChars(code))
         } yield (sym, ch)
-      (new Recoder(mapping ++ (for ((x, y) <- mapping) yield ("\\" + x, y))),
-       new Recoder(for ((x, y) <- mapping) yield (y, x)))
+      (new Recoder(mapping),
+       new Recoder(mapping map { case (x, y) => (y, x) }))
     }
 
     def decode(text: String) = decoder.recode(text)
--- a/src/Pure/ML/ml_lex.ML	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/Pure/ML/ml_lex.ML	Sat Jun 13 16:32:38 2009 +0200
@@ -247,7 +247,11 @@
   Symbol_Pos.source (Position.line 1) src
   |> Source.source Symbol_Pos.stopper (Scan.bulk (!!! "bad input" scan_ml)) (SOME (false, recover));
 
-val tokenize = Source.of_string #> source #> Source.exhaust;
+val tokenize =
+  Source.of_string #>
+  Symbol.source {do_recover = true} #>
+  source #>
+  Source.exhaust;
 
 fun read_antiq (syms, pos) =
   (Source.of_list syms
--- a/src/Pure/ML/ml_syntax.ML	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/Pure/ML/ml_syntax.ML	Sat Jun 13 16:32:38 2009 +0200
@@ -58,7 +58,7 @@
   | print_option f (SOME x) = "SOME (" ^ f x ^ ")";
 
 fun print_char s =
-  if not (Symbol.is_char s) then raise Fail ("Bad character: " ^ quote s)
+  if not (Symbol.is_char s) then s
   else if s = "\"" then "\\\""
   else if s = "\\" then "\\\\"
   else
@@ -68,7 +68,7 @@
       else "\\" ^ string_of_int c
     end;
 
-val print_string = quote o translate_string print_char;
+val print_string = quote o implode o map print_char o Symbol.explode;
 val print_strings = print_list print_string;
 
 val print_properties = print_list (print_pair print_string print_string);
--- a/src/Pure/Syntax/syn_trans.ML	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/Pure/Syntax/syn_trans.ML	Sat Jun 13 16:32:38 2009 +0200
@@ -223,7 +223,7 @@
 
 fun the_struct structs i =
   if 1 <= i andalso i <= length structs then nth structs (i - 1)
-  else raise error ("Illegal reference to implicit structure #" ^ string_of_int i);
+  else error ("Illegal reference to implicit structure #" ^ string_of_int i);
 
 fun struct_tr structs (*"_struct"*) [Const ("_indexdefault", _)] =
       Lexicon.free (the_struct structs 1)
@@ -503,7 +503,7 @@
     val exn_results = map (Exn.capture ast_of) pts;
     val exns = map_filter Exn.get_exn exn_results;
     val results = map_filter Exn.get_result exn_results
-  in (case (results, exns) of ([], exn :: _) => raise exn | _ => results) end;
+  in (case (results, exns) of ([], exn :: _) => reraise exn | _ => results) end;
 
 
 
@@ -534,6 +534,6 @@
     val exn_results = map (Exn.capture (term_of #> free_fixed)) asts;
     val exns = map_filter Exn.get_exn exn_results;
     val results = map_filter Exn.get_result exn_results
-  in (case (results, exns) of ([], exn :: _) => raise exn | _ => results) end;
+  in (case (results, exns) of ([], exn :: _) => reraise exn | _ => results) end;
 
 end;
--- a/src/Pure/Thy/thy_info.ML	Sat Jun 13 10:01:01 2009 +0200
+++ b/src/Pure/Thy/thy_info.ML	Sat Jun 13 16:32:38 2009 +0200
@@ -387,7 +387,7 @@
     (case Graph.get_node tasks name of
       Task body =>
         let val after_load = body ()
-        in after_load () handle exn => (kill_thy name; raise exn) end
+        in after_load () handle exn => (kill_thy name; reraise exn) end
     | _ => ()));
 
 in