--- a/doc-src/IsarRef/isar-ref.tex Sat Jun 02 08:27:29 2012 +0200
+++ b/doc-src/IsarRef/isar-ref.tex Sat Jun 02 08:32:42 2012 +0200
@@ -81,10 +81,12 @@
\input{Thy/document/ML_Tactic.tex}
\begingroup
+ \tocentry{\bibname}
\bibliographystyle{abbrv} \small\raggedright\frenchspacing
\bibliography{../manual}
\endgroup
+\tocentry{\indexname}
\printindex
\end{document}
--- a/doc-src/System/system.tex Sat Jun 02 08:27:29 2012 +0200
+++ b/doc-src/System/system.tex Sat Jun 02 08:32:42 2012 +0200
@@ -35,10 +35,12 @@
\input{Thy/document/Misc.tex}
\begingroup
+ \tocentry{\bibname}
\bibliographystyle{abbrv} \small\raggedright\frenchspacing
\bibliography{../manual}
\endgroup
+\tocentry{\indexname}
\printindex
\end{document}
--- a/src/HOL/Library/Cardinality.thy Sat Jun 02 08:27:29 2012 +0200
+++ b/src/HOL/Library/Cardinality.thy Sat Jun 02 08:32:42 2012 +0200
@@ -27,6 +27,9 @@
lemma (in type_definition) card: "card (UNIV :: 'b set) = card A"
by (simp add: univ card_image inj_on_def Abs_inject)
+lemma finite_range_Some: "finite (range (Some :: 'a \<Rightarrow> 'a option)) = finite (UNIV :: 'a set)"
+by(auto dest: finite_imageD intro: inj_Some)
+
subsection {* Cardinalities of types *}
@@ -41,197 +44,47 @@
in [(@{const_syntax card}, card_univ_tr')] end
*}
-lemma card_prod [simp]: "CARD('a \<times> 'b) = CARD('a::finite) * CARD('b::finite)"
+lemma card_prod [simp]: "CARD('a \<times> 'b) = CARD('a) * CARD('b)"
unfolding UNIV_Times_UNIV [symmetric] by (simp only: card_cartesian_product)
+lemma card_UNIV_sum: "CARD('a + 'b) = (if CARD('a) \<noteq> 0 \<and> CARD('b) \<noteq> 0 then CARD('a) + CARD('b) else 0)"
+unfolding UNIV_Plus_UNIV[symmetric]
+by(auto simp add: card_eq_0_iff card_Plus simp del: UNIV_Plus_UNIV)
+
lemma card_sum [simp]: "CARD('a + 'b) = CARD('a::finite) + CARD('b::finite)"
- unfolding UNIV_Plus_UNIV [symmetric] by (simp only: finite card_Plus)
+by(simp add: card_UNIV_sum)
+
+lemma card_UNIV_option: "CARD('a option) = (if CARD('a) = 0 then 0 else CARD('a) + 1)"
+proof -
+ have "(None :: 'a option) \<notin> range Some" by clarsimp
+ thus ?thesis
+ by(simp add: UNIV_option_conv card_eq_0_iff finite_range_Some card_insert_disjoint card_image)
+qed
lemma card_option [simp]: "CARD('a option) = Suc CARD('a::finite)"
- unfolding UNIV_option_conv
- apply (subgoal_tac "(None::'a option) \<notin> range Some")
- apply (simp add: card_image)
- apply fast
- done
+by(simp add: card_UNIV_option)
+
+lemma card_UNIV_set: "CARD('a set) = (if CARD('a) = 0 then 0 else 2 ^ CARD('a))"
+by(simp add: Pow_UNIV[symmetric] card_eq_0_iff card_Pow del: Pow_UNIV)
lemma card_set [simp]: "CARD('a set) = 2 ^ CARD('a::finite)"
- unfolding Pow_UNIV [symmetric]
- by (simp only: card_Pow finite)
+by(simp add: card_UNIV_set)
lemma card_nat [simp]: "CARD(nat) = 0"
by (simp add: card_eq_0_iff)
-
-subsection {* Classes with at least 1 and 2 *}
-
-text {* Class finite already captures "at least 1" *}
-
-lemma zero_less_card_finite [simp]: "0 < CARD('a::finite)"
- unfolding neq0_conv [symmetric] by simp
-
-lemma one_le_card_finite [simp]: "Suc 0 \<le> CARD('a::finite)"
- by (simp add: less_Suc_eq_le [symmetric])
-
-text {* Class for cardinality "at least 2" *}
-
-class card2 = finite +
- assumes two_le_card: "2 \<le> CARD('a)"
-
-lemma one_less_card: "Suc 0 < CARD('a::card2)"
- using two_le_card [where 'a='a] by simp
-
-lemma one_less_int_card: "1 < int CARD('a::card2)"
- using one_less_card [where 'a='a] by simp
-
-subsection {* A type class for computing the cardinality of types *}
-
-class card_UNIV =
- fixes card_UNIV :: "'a itself \<Rightarrow> nat"
- assumes card_UNIV: "card_UNIV x = card (UNIV :: 'a set)"
-begin
-
-lemma card_UNIV_neq_0_finite_UNIV:
- "card_UNIV x \<noteq> 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
-by(simp add: card_UNIV card_eq_0_iff)
-
-lemma card_UNIV_ge_0_finite_UNIV:
- "card_UNIV x > 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
-by(auto simp add: card_UNIV intro: card_ge_0_finite finite_UNIV_card_ge_0)
-
-lemma card_UNIV_eq_0_infinite_UNIV:
- "card_UNIV x = 0 \<longleftrightarrow> \<not> finite (UNIV :: 'a set)"
-by(simp add: card_UNIV card_eq_0_iff)
-
-definition is_list_UNIV :: "'a list \<Rightarrow> bool"
-where "is_list_UNIV xs = (let c = card_UNIV (TYPE('a)) in if c = 0 then False else size (remdups xs) = c)"
-
-lemma is_list_UNIV_iff: fixes xs :: "'a list"
- shows "is_list_UNIV xs \<longleftrightarrow> set xs = UNIV"
-proof
- assume "is_list_UNIV xs"
- hence c: "card_UNIV (TYPE('a)) > 0" and xs: "size (remdups xs) = card_UNIV (TYPE('a))"
- unfolding is_list_UNIV_def by(simp_all add: Let_def split: split_if_asm)
- from c have fin: "finite (UNIV :: 'a set)" by(auto simp add: card_UNIV_ge_0_finite_UNIV)
- have "card (set (remdups xs)) = size (remdups xs)" by(subst distinct_card) auto
- also note set_remdups
- finally show "set xs = UNIV" using fin unfolding xs card_UNIV by-(rule card_eq_UNIV_imp_eq_UNIV)
-next
- assume xs: "set xs = UNIV"
- from finite_set[of xs] have fin: "finite (UNIV :: 'a set)" unfolding xs .
- hence "card_UNIV (TYPE ('a)) \<noteq> 0" unfolding card_UNIV_neq_0_finite_UNIV .
- moreover have "size (remdups xs) = card (set (remdups xs))"
- by(subst distinct_card) auto
- ultimately show "is_list_UNIV xs" using xs by(simp add: is_list_UNIV_def Let_def card_UNIV)
-qed
-
-lemma card_UNIV_eq_0_is_list_UNIV_False:
- assumes cU0: "card_UNIV x = 0"
- shows "is_list_UNIV = (\<lambda>xs. False)"
-proof(rule ext)
- fix xs :: "'a list"
- from cU0 have "\<not> finite (UNIV :: 'a set)"
- by(auto simp only: card_UNIV_eq_0_infinite_UNIV)
- moreover have "finite (set xs)" by(rule finite_set)
- ultimately have "(UNIV :: 'a set) \<noteq> set xs" by(auto simp del: finite_set)
- thus "is_list_UNIV xs = False" unfolding is_list_UNIV_iff by simp
-qed
-
-end
-
-subsection {* Instantiations for @{text "card_UNIV"} *}
-
-subsubsection {* @{typ "nat"} *}
-
-instantiation nat :: card_UNIV begin
-definition "card_UNIV_class.card_UNIV = (\<lambda>a :: nat itself. 0)"
-instance by intro_classes (simp add: card_UNIV_nat_def)
-end
-
-subsubsection {* @{typ "int"} *}
-
-instantiation int :: card_UNIV begin
-definition "card_UNIV = (\<lambda>a :: int itself. 0)"
-instance by intro_classes (simp add: card_UNIV_int_def infinite_UNIV_int)
-end
-
-subsubsection {* @{typ "'a list"} *}
-
-instantiation list :: (type) card_UNIV begin
-definition "card_UNIV = (\<lambda>a :: 'a list itself. 0)"
-instance by intro_classes (simp add: card_UNIV_list_def infinite_UNIV_listI)
-end
-
-subsubsection {* @{typ "unit"} *}
-
-instantiation unit :: card_UNIV begin
-definition "card_UNIV = (\<lambda>a :: unit itself. 1)"
-instance by intro_classes (simp add: card_UNIV_unit_def card_UNIV_unit)
-end
-
-subsubsection {* @{typ "bool"} *}
-
-instantiation bool :: card_UNIV begin
-definition "card_UNIV = (\<lambda>a :: bool itself. 2)"
-instance by(intro_classes)(simp add: card_UNIV_bool_def card_UNIV_bool)
-end
-
-subsubsection {* @{typ "char"} *}
-
-lemma card_UNIV_char: "card (UNIV :: char set) = 256"
+lemma card_fun: "CARD('a \<Rightarrow> 'b) = (if CARD('a) \<noteq> 0 \<and> CARD('b) \<noteq> 0 \<or> CARD('b) = 1 then CARD('b) ^ CARD('a) else 0)"
proof -
- from enum_distinct
- have "card (set (Enum.enum :: char list)) = length (Enum.enum :: char list)"
- by (rule distinct_card)
- also have "set Enum.enum = (UNIV :: char set)" by (auto intro: in_enum)
- also note enum_chars
- finally show ?thesis by (simp add: chars_def)
-qed
-
-instantiation char :: card_UNIV begin
-definition "card_UNIV_class.card_UNIV = (\<lambda>a :: char itself. 256)"
-instance by intro_classes (simp add: card_UNIV_char_def card_UNIV_char)
-end
-
-subsubsection {* @{typ "'a \<times> 'b"} *}
-
-instantiation prod :: (card_UNIV, card_UNIV) card_UNIV begin
-definition "card_UNIV = (\<lambda>a :: ('a \<times> 'b) itself. card_UNIV (TYPE('a)) * card_UNIV (TYPE('b)))"
-instance
- by intro_classes (simp add: card_UNIV_prod_def card_UNIV UNIV_Times_UNIV[symmetric] card_cartesian_product del: UNIV_Times_UNIV)
-end
-
-subsubsection {* @{typ "'a + 'b"} *}
-
-instantiation sum :: (card_UNIV, card_UNIV) card_UNIV begin
-definition "card_UNIV_class.card_UNIV = (\<lambda>a :: ('a + 'b) itself.
- let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
- in if ca \<noteq> 0 \<and> cb \<noteq> 0 then ca + cb else 0)"
-instance
- by intro_classes (auto simp add: card_UNIV_sum_def card_UNIV card_eq_0_iff UNIV_Plus_UNIV[symmetric] finite_Plus_iff Let_def card_Plus simp del: UNIV_Plus_UNIV dest!: card_ge_0_finite)
-end
-
-subsubsection {* @{typ "'a \<Rightarrow> 'b"} *}
-
-instantiation "fun" :: (card_UNIV, card_UNIV) card_UNIV begin
-
-definition "card_UNIV =
- (\<lambda>a :: ('a \<Rightarrow> 'b) itself. let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
- in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"
-
-instance proof
- fix x :: "('a \<Rightarrow> 'b) itself"
-
- { assume "0 < card (UNIV :: 'a set)"
- and "0 < card (UNIV :: 'b set)"
+ { assume "0 < CARD('a)" and "0 < CARD('b)"
hence fina: "finite (UNIV :: 'a set)" and finb: "finite (UNIV :: 'b set)"
by(simp_all only: card_ge_0_finite)
from finite_distinct_list[OF finb] obtain bs
where bs: "set bs = (UNIV :: 'b set)" and distb: "distinct bs" by blast
from finite_distinct_list[OF fina] obtain as
where as: "set as = (UNIV :: 'a set)" and dista: "distinct as" by blast
- have cb: "card (UNIV :: 'b set) = length bs"
+ have cb: "CARD('b) = length bs"
unfolding bs[symmetric] distinct_card[OF distb] ..
- have ca: "card (UNIV :: 'a set) = length as"
+ have ca: "CARD('a) = length as"
unfolding as[symmetric] distinct_card[OF dista] ..
let ?xs = "map (\<lambda>ys. the o map_of (zip as ys)) (Enum.n_lists (length as) bs)"
have "UNIV = set ?xs"
@@ -261,10 +114,9 @@
qed
hence "card (set ?xs) = length ?xs" by(simp only: distinct_card)
moreover have "length ?xs = length bs ^ length as" by(simp add: length_n_lists)
- ultimately have "card (UNIV :: ('a \<Rightarrow> 'b) set) = card (UNIV :: 'b set) ^ card (UNIV :: 'a set)"
- using cb ca by simp }
+ ultimately have "CARD('a \<Rightarrow> 'b) = CARD('b) ^ CARD('a)" using cb ca by simp }
moreover {
- assume cb: "card (UNIV :: 'b set) = Suc 0"
+ assume cb: "CARD('b) = 1"
then obtain b where b: "UNIV = {b :: 'b}" by(auto simp add: card_Suc_eq)
have eq: "UNIV = {\<lambda>x :: 'a. b ::'b}"
proof(rule UNIV_eq_I)
@@ -274,45 +126,224 @@
hence "x y = b" unfolding b by simp }
thus "x \<in> {\<lambda>x. b}" by(auto)
qed
- have "card (UNIV :: ('a \<Rightarrow> 'b) set) = Suc 0" unfolding eq by simp }
- ultimately show "card_UNIV x = card (UNIV :: ('a \<Rightarrow> 'b) set)"
- unfolding card_UNIV_fun_def card_UNIV Let_def
+ have "CARD('a \<Rightarrow> 'b) = 1" unfolding eq by simp }
+ ultimately show ?thesis
by(auto simp del: One_nat_def)(auto simp add: card_eq_0_iff dest: finite_fun_UNIVD2 finite_fun_UNIVD1)
qed
+lemma card_nibble: "CARD(nibble) = 16"
+unfolding UNIV_nibble by simp
+
+lemma card_UNIV_char: "CARD(char) = 256"
+proof -
+ have "inj (\<lambda>(x, y). Char x y)" by(auto intro: injI)
+ thus ?thesis unfolding UNIV_char by(simp add: card_image card_nibble)
+qed
+
+lemma card_literal: "CARD(String.literal) = 0"
+proof -
+ have "inj STR" by(auto intro: injI)
+ thus ?thesis by(simp add: type_definition.univ[OF type_definition_literal] card_image infinite_UNIV_listI)
+qed
+
+subsection {* Classes with at least 1 and 2 *}
+
+text {* Class finite already captures "at least 1" *}
+
+lemma zero_less_card_finite [simp]: "0 < CARD('a::finite)"
+ unfolding neq0_conv [symmetric] by simp
+
+lemma one_le_card_finite [simp]: "Suc 0 \<le> CARD('a::finite)"
+ by (simp add: less_Suc_eq_le [symmetric])
+
+text {* Class for cardinality "at least 2" *}
+
+class card2 = finite +
+ assumes two_le_card: "2 \<le> CARD('a)"
+
+lemma one_less_card: "Suc 0 < CARD('a::card2)"
+ using two_le_card [where 'a='a] by simp
+
+lemma one_less_int_card: "1 < int CARD('a::card2)"
+ using one_less_card [where 'a='a] by simp
+
+subsection {* A type class for computing the cardinality of types *}
+
+definition is_list_UNIV :: "'a list \<Rightarrow> bool"
+where "is_list_UNIV xs = (let c = CARD('a) in if c = 0 then False else size (remdups xs) = c)"
+
+lemmas [code_unfold] = is_list_UNIV_def[abs_def]
+
+lemma is_list_UNIV_iff: "is_list_UNIV xs \<longleftrightarrow> set xs = UNIV"
+by(auto simp add: is_list_UNIV_def Let_def card_eq_0_iff List.card_set[symmetric]
+ dest: subst[where P="finite", OF _ finite_set] card_eq_UNIV_imp_eq_UNIV)
+
+class card_UNIV =
+ fixes card_UNIV :: "'a itself \<Rightarrow> nat"
+ assumes card_UNIV: "card_UNIV x = CARD('a)"
+
+lemma card_UNIV_code [code_unfold]: "CARD('a :: card_UNIV) = card_UNIV TYPE('a)"
+by(simp add: card_UNIV)
+
+lemma finite_UNIV_conv_card_UNIV [code_unfold]:
+ "finite (UNIV :: 'a :: card_UNIV set) \<longleftrightarrow> card_UNIV TYPE('a) > 0"
+by(simp add: card_UNIV card_gt_0_iff)
+
+subsection {* Instantiations for @{text "card_UNIV"} *}
+
+instantiation nat :: card_UNIV begin
+definition "card_UNIV_class.card_UNIV = (\<lambda>a :: nat itself. 0)"
+instance by intro_classes (simp add: card_UNIV_nat_def)
+end
+
+instantiation int :: card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: int itself. 0)"
+instance by intro_classes (simp add: card_UNIV_int_def infinite_UNIV_int)
+end
+
+instantiation list :: (type) card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: 'a list itself. 0)"
+instance by intro_classes (simp add: card_UNIV_list_def infinite_UNIV_listI)
+end
+
+instantiation unit :: card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: unit itself. 1)"
+instance by intro_classes (simp add: card_UNIV_unit_def card_UNIV_unit)
+end
+
+instantiation bool :: card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: bool itself. 2)"
+instance by(intro_classes)(simp add: card_UNIV_bool_def card_UNIV_bool)
end
-subsubsection {* @{typ "'a option"} *}
+instantiation char :: card_UNIV begin
+definition "card_UNIV_class.card_UNIV = (\<lambda>a :: char itself. 256)"
+instance by intro_classes (simp add: card_UNIV_char_def card_UNIV_char)
+end
-instantiation option :: (card_UNIV) card_UNIV
-begin
+instantiation prod :: (card_UNIV, card_UNIV) card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: ('a \<times> 'b) itself. card_UNIV (TYPE('a)) * card_UNIV (TYPE('b)))"
+instance by intro_classes (simp add: card_UNIV_prod_def card_UNIV)
+end
-definition "card_UNIV = (\<lambda>a :: 'a option itself. let c = card_UNIV (TYPE('a)) in if c \<noteq> 0 then Suc c else 0)"
+instantiation sum :: (card_UNIV, card_UNIV) card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: ('a + 'b) itself.
+ let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
+ in if ca \<noteq> 0 \<and> cb \<noteq> 0 then ca + cb else 0)"
+instance by intro_classes (auto simp add: card_UNIV_sum_def card_UNIV card_UNIV_sum)
+end
-instance proof
- fix x :: "'a option itself"
- show "card_UNIV x = card (UNIV :: 'a option set)"
- by(auto simp add: UNIV_option_conv card_UNIV_option_def card_UNIV card_eq_0_iff Let_def intro: inj_Some dest: finite_imageD)
- (subst card_insert_disjoint, auto simp add: card_eq_0_iff card_image inj_Some intro: finite_imageI card_ge_0_finite)
-qed
+instantiation "fun" :: (card_UNIV, card_UNIV) card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: ('a \<Rightarrow> 'b) itself.
+ let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
+ in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"
+instance by intro_classes (simp add: card_UNIV_fun_def card_UNIV Let_def card_fun)
+end
+instantiation option :: (card_UNIV) card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: 'a option itself.
+ let c = card_UNIV (TYPE('a)) in if c \<noteq> 0 then Suc c else 0)"
+instance by intro_classes (simp add: card_UNIV_option_def card_UNIV card_UNIV_option)
+end
+
+instantiation String.literal :: card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: String.literal itself. 0)"
+instance by intro_classes (simp add: card_UNIV_literal_def card_literal)
+end
+
+instantiation set :: (card_UNIV) card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: 'a set itself.
+ let c = card_UNIV (TYPE('a)) in if c = 0 then 0 else 2 ^ c)"
+instance by intro_classes (simp add: card_UNIV_set_def card_UNIV_set card_UNIV)
end
-subsection {* Code setup for equality on sets *}
+
+lemma UNIV_finite_1: "UNIV = set [finite_1.a\<^isub>1]"
+by(auto intro: finite_1.exhaust)
+
+lemma UNIV_finite_2: "UNIV = set [finite_2.a\<^isub>1, finite_2.a\<^isub>2]"
+by(auto intro: finite_2.exhaust)
+
+lemma UNIV_finite_3: "UNIV = set [finite_3.a\<^isub>1, finite_3.a\<^isub>2, finite_3.a\<^isub>3]"
+by(auto intro: finite_3.exhaust)
+
+lemma UNIV_finite_4: "UNIV = set [finite_4.a\<^isub>1, finite_4.a\<^isub>2, finite_4.a\<^isub>3, finite_4.a\<^isub>4]"
+by(auto intro: finite_4.exhaust)
+
+lemma UNIV_finite_5:
+ "UNIV = set [finite_5.a\<^isub>1, finite_5.a\<^isub>2, finite_5.a\<^isub>3, finite_5.a\<^isub>4, finite_5.a\<^isub>5]"
+by(auto intro: finite_5.exhaust)
+
+instantiation Enum.finite_1 :: card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: Enum.finite_1 itself. 1)"
+instance by intro_classes (simp add: UNIV_finite_1 card_UNIV_finite_1_def)
+end
-definition eq_set :: "'a :: card_UNIV set \<Rightarrow> 'a :: card_UNIV set \<Rightarrow> bool"
-where [simp, code del]: "eq_set = op ="
+instantiation Enum.finite_2 :: card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: Enum.finite_2 itself. 2)"
+instance by intro_classes (simp add: UNIV_finite_2 card_UNIV_finite_2_def)
+end
+
+instantiation Enum.finite_3 :: card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: Enum.finite_3 itself. 3)"
+instance by intro_classes (simp add: UNIV_finite_3 card_UNIV_finite_3_def)
+end
-lemmas [code_unfold] = eq_set_def[symmetric]
+instantiation Enum.finite_4 :: card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: Enum.finite_4 itself. 4)"
+instance by intro_classes (simp add: UNIV_finite_4 card_UNIV_finite_4_def)
+end
+
+instantiation Enum.finite_5 :: card_UNIV begin
+definition "card_UNIV = (\<lambda>a :: Enum.finite_5 itself. 5)"
+instance by intro_classes (simp add: UNIV_finite_5 card_UNIV_finite_5_def)
+end
+
+subsection {* Code setup for sets *}
lemma card_Compl:
"finite A \<Longrightarrow> card (- A) = card (UNIV :: 'a set) - card (A :: 'a set)"
by (metis Compl_eq_Diff_UNIV card_Diff_subset top_greatest)
+context fixes xs :: "'a :: card_UNIV list"
+begin
+
+definition card' :: "'a set \<Rightarrow> nat"
+where [simp, code del, code_abbrev]: "card' = card"
+
+lemma card'_code [code]:
+ "card' (set xs) = length (remdups xs)"
+ "card' (List.coset xs) = card_UNIV TYPE('a) - length (remdups xs)"
+by(simp_all add: List.card_set card_Compl card_UNIV)
+
+lemma card'_UNIV [code_unfold]: "card' (UNIV :: 'a :: card_UNIV set) = card_UNIV TYPE('a)"
+by(simp add: card_UNIV)
+
+definition finite' :: "'a set \<Rightarrow> bool"
+where [simp, code del, code_abbrev]: "finite' = finite"
+
+lemma finite'_code [code]:
+ "finite' (set xs) \<longleftrightarrow> True"
+ "finite' (List.coset xs) \<longleftrightarrow> CARD('a) > 0"
+by(simp_all add: card_gt_0_iff)
+
+definition subset' :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
+where [simp, code del, code_abbrev]: "subset' = op \<subseteq>"
+
+lemma subset'_code [code]:
+ "subset' A (List.coset ys) \<longleftrightarrow> (\<forall>y \<in> set ys. y \<notin> A)"
+ "subset' (set ys) B \<longleftrightarrow> (\<forall>y \<in> set ys. y \<in> B)"
+ "subset' (List.coset xs) (set ys) \<longleftrightarrow> (let n = CARD('a) in n > 0 \<and> card(set (xs @ ys)) = n)"
+by(auto simp add: Let_def card_gt_0_iff dest: card_eq_UNIV_imp_eq_UNIV intro: arg_cong[where f=card])
+ (metis finite_compl finite_set rev_finite_subset)
+
+definition eq_set :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"
+where [simp, code del, code_abbrev]: "eq_set = op ="
+
lemma eq_set_code [code]:
- fixes xs ys :: "'a :: card_UNIV list"
+ fixes ys
defines "rhs \<equiv>
- let n = card_UNIV TYPE('a)
+ let n = CARD('a)
in if n = 0 then False else
let xs' = remdups xs; ys' = remdups ys
in length xs' + length ys' = n \<and> (\<forall>x \<in> set xs'. x \<notin> set ys') \<and> (\<forall>y \<in> set ys'. y \<notin> set xs')"
@@ -335,7 +366,13 @@
show ?thesis3 ?thesis4 unfolding eq_set_def List.coset_def by blast+
qed
-(* test code setup *)
-value [code] "List.coset [True] = set [False] \<and> set [] = List.coset [True, False]"
+end
+
+notepad begin (* test code setup *)
+have "List.coset [True] = set [False] \<and> List.coset [] \<subseteq> List.set [True, False] \<and> finite (List.coset [True])"
+ by eval
+end
+
+hide_const (open) card' finite' subset' eq_set
end
--- a/src/HOL/Library/FinFun.thy Sat Jun 02 08:27:29 2012 +0200
+++ b/src/HOL/Library/FinFun.thy Sat Jun 02 08:32:42 2012 +0200
@@ -435,8 +435,8 @@
by transfer (simp add: finfun_default_aux_update_const)
lemma finfun_default_const_code [code]:
- "finfun_default ((K$ c) :: ('a :: card_UNIV) \<Rightarrow>f 'b) = (if card_UNIV (TYPE('a)) = 0 then c else undefined)"
-by(simp add: finfun_default_const card_UNIV_eq_0_infinite_UNIV)
+ "finfun_default ((K$ c) :: 'a \<Rightarrow>f 'b) = (if CARD('a) = 0 then c else undefined)"
+by(simp add: finfun_default_const)
lemma finfun_default_update_code [code]:
"finfun_default (finfun_update_code f a b) = finfun_default f"
@@ -1285,9 +1285,8 @@
lemma finfun_dom_const_code [code]:
"finfun_dom ((K$ c) :: ('a :: card_UNIV) \<Rightarrow>f 'b) =
- (if card_UNIV (TYPE('a)) = 0 then (K$ False) else FinFun.code_abort (\<lambda>_. finfun_dom (K$ c)))"
-unfolding card_UNIV_eq_0_infinite_UNIV
-by(simp add: finfun_dom_const)
+ (if CARD('a) = 0 then (K$ False) else FinFun.code_abort (\<lambda>_. finfun_dom (K$ c)))"
+by(simp add: finfun_dom_const card_UNIV card_eq_0_iff)
lemma finfun_dom_finfunI: "(\<lambda>a. f $ a \<noteq> finfun_default f) \<in> finfun"
using finite_finfun_default[of f]
@@ -1349,9 +1348,8 @@
lemma finfun_to_list_const_code [code]:
"finfun_to_list ((K$ c) :: ('a :: {linorder, card_UNIV} \<Rightarrow>f 'b)) =
- (if card_UNIV (TYPE('a)) = 0 then [] else FinFun.code_abort (\<lambda>_. finfun_to_list ((K$ c) :: ('a \<Rightarrow>f 'b))))"
-unfolding card_UNIV_eq_0_infinite_UNIV
-by(auto simp add: finfun_to_list_const)
+ (if CARD('a) = 0 then [] else FinFun.code_abort (\<lambda>_. finfun_to_list ((K$ c) :: ('a \<Rightarrow>f 'b))))"
+by(auto simp add: finfun_to_list_const card_UNIV card_eq_0_iff)
lemma remove1_insort_insert_same:
"x \<notin> set xs \<Longrightarrow> remove1 x (insort_insert x xs) = xs"
--- a/src/HOL/ex/FinFunPred.thy Sat Jun 02 08:27:29 2012 +0200
+++ b/src/HOL/ex/FinFunPred.thy Sat Jun 02 08:32:42 2012 +0200
@@ -258,4 +258,11 @@
by eval
end
+declare iso_finfun_Ball_Ball[code_unfold]
+notepad begin
+have "(\<forall>x. ((\<lambda>_ :: nat. False)(1 := True, 2 := True)) x \<longrightarrow> x < 3)"
+ by eval
+end
+declare iso_finfun_Ball_Ball[code_unfold del]
+
end
\ No newline at end of file
--- a/src/HOL/ex/Set_Comprehension_Pointfree_Tests.thy Sat Jun 02 08:27:29 2012 +0200
+++ b/src/HOL/ex/Set_Comprehension_Pointfree_Tests.thy Sat Jun 02 08:32:42 2012 +0200
@@ -7,7 +7,7 @@
theory Set_Comprehension_Pointfree_Tests
imports Main
-uses "~~/src/HOL/ex/set_comprehension_pointfree.ML"
+uses "set_comprehension_pointfree.ML"
begin
simproc_setup finite_Collect ("finite (Collect P)") = {* Set_Comprehension_Pointfree.simproc *}
--- a/src/HOL/ex/set_comprehension_pointfree.ML Sat Jun 02 08:27:29 2012 +0200
+++ b/src/HOL/ex/set_comprehension_pointfree.ML Sat Jun 02 08:32:42 2012 +0200
@@ -1,4 +1,4 @@
-(* Title: HOL/Tools/set_comprehension_pointfree.ML
+(* Title: HOL/ex/set_comprehension_pointfree.ML
Author: Felix Kuperjans, Lukas Bulwahn, TU Muenchen
Simproc for rewriting set comprehensions to pointfree expressions.
--- a/src/Pure/System/isabelle_process.ML Sat Jun 02 08:27:29 2012 +0200
+++ b/src/Pure/System/isabelle_process.ML Sat Jun 02 08:32:42 2012 +0200
@@ -57,7 +57,8 @@
NONE => error ("Undefined Isabelle process command " ^ quote name)
| SOME cmd =>
(Runtime.debugging cmd args handle exn =>
- error ("Isabelle process protocol failure: " ^ name ^ "\n" ^ ML_Compiler.exn_message exn)));
+ error ("Isabelle process protocol failure: " ^ quote name ^ "\n" ^
+ ML_Compiler.exn_message exn)));
end;