--- a/src/HOL/Analysis/Complex_Transcendental.thy Wed Jun 30 22:14:27 2021 +0200
+++ b/src/HOL/Analysis/Complex_Transcendental.thy Fri Jul 02 15:54:41 2021 +0100
@@ -1781,7 +1781,7 @@
text\<open>Unlike in HOL Light, it's defined for the same interval as the complex logarithm: \<open>(-\<pi>,\<pi>]\<close>.\<close>
lemma Arg_eq_Im_Ln:
- assumes "z \<noteq> 0" shows "arg z = Im (Ln z)"
+ assumes "z \<noteq> 0" shows "Arg z = Im (Ln z)"
proof (rule arg_unique)
show "sgn z = cis (Im (Ln z))"
by (metis assms exp_Ln exp_eq_polar nonzero_mult_div_cancel_left norm_eq_zero
@@ -1793,11 +1793,9 @@
qed
text \<open>The 1990s definition of argument coincides with the more recent one\<close>
-lemma Arg_definition_equivalence:
- shows "arg z = (if z = 0 then 0 else Im (Ln z))"
- by (simp add: Arg_eq_Im_Ln arg_zero)
-
-definition\<^marker>\<open>tag important\<close> Arg :: "complex \<Rightarrow> real" where "Arg z \<equiv> (if z = 0 then 0 else Im (Ln z))"
+lemma\<^marker>\<open>tag important\<close> Arg_def:
+ shows "Arg z = (if z = 0 then 0 else Im (Ln z))"
+ by (simp add: Arg_eq_Im_Ln Arg_zero)
lemma Arg_of_real: "Arg (of_real r) = (if r<0 then pi else 0)"
by (simp add: Im_Ln_eq_pi Arg_def)
--- a/src/HOL/Complex.thy Wed Jun 30 22:14:27 2021 +0200
+++ b/src/HOL/Complex.thy Fri Jul 02 15:54:41 2021 +0100
@@ -888,7 +888,6 @@
lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1 / r2) (a - b)"
by (simp add: rcis_def cis_divide [symmetric])
-
subsubsection \<open>Complex exponential\<close>
lemma exp_Reals_eq:
@@ -957,15 +956,15 @@
subsubsection \<open>Complex argument\<close>
-definition arg :: "complex \<Rightarrow> real"
- where "arg z = (if z = 0 then 0 else (SOME a. sgn z = cis a \<and> - pi < a \<and> a \<le> pi))"
+definition Arg :: "complex \<Rightarrow> real"
+ where "Arg z = (if z = 0 then 0 else (SOME a. sgn z = cis a \<and> - pi < a \<and> a \<le> pi))"
-lemma arg_zero: "arg 0 = 0"
- by (simp add: arg_def)
+lemma Arg_zero: "Arg 0 = 0"
+ by (simp add: Arg_def)
lemma arg_unique:
assumes "sgn z = cis x" and "-pi < x" and "x \<le> pi"
- shows "arg z = x"
+ shows "Arg z = x"
proof -
from assms have "z \<noteq> 0" by auto
have "(SOME a. sgn z = cis a \<and> -pi < a \<and> a \<le> pi) = x"
@@ -987,14 +986,14 @@
then show "a = x"
by (simp add: d_def)
qed (simp add: assms del: Re_sgn Im_sgn)
- with \<open>z \<noteq> 0\<close> show "arg z = x"
- by (simp add: arg_def)
+ with \<open>z \<noteq> 0\<close> show "Arg z = x"
+ by (simp add: Arg_def)
qed
lemma arg_correct:
assumes "z \<noteq> 0"
- shows "sgn z = cis (arg z) \<and> -pi < arg z \<and> arg z \<le> pi"
-proof (simp add: arg_def assms, rule someI_ex)
+ shows "sgn z = cis (Arg z) \<and> -pi < Arg z \<and> Arg z \<le> pi"
+proof (simp add: Arg_def assms, rule someI_ex)
obtain r a where z: "z = rcis r a"
using rcis_Ex by fast
with assms have "r \<noteq> 0" by auto
@@ -1016,22 +1015,26 @@
by fast
qed
-lemma arg_bounded: "- pi < arg z \<and> arg z \<le> pi"
- by (cases "z = 0") (simp_all add: arg_zero arg_correct)
+lemma Arg_bounded: "- pi < Arg z \<and> Arg z \<le> pi"
+ by (cases "z = 0") (simp_all add: Arg_zero arg_correct)
-lemma cis_arg: "z \<noteq> 0 \<Longrightarrow> cis (arg z) = sgn z"
+lemma cis_Arg: "z \<noteq> 0 \<Longrightarrow> cis (Arg z) = sgn z"
by (simp add: arg_correct)
-lemma rcis_cmod_arg: "rcis (cmod z) (arg z) = z"
- by (cases "z = 0") (simp_all add: rcis_def cis_arg sgn_div_norm of_real_def)
+lemma rcis_cmod_Arg: "rcis (cmod z) (Arg z) = z"
+ by (cases "z = 0") (simp_all add: rcis_def cis_Arg sgn_div_norm of_real_def)
-lemma cos_arg_i_mult_zero [simp]: "y \<noteq> 0 \<Longrightarrow> Re y = 0 \<Longrightarrow> cos (arg y) = 0"
- using cis_arg [of y] by (simp add: complex_eq_iff)
+lemma rcis_cnj:
+ shows "cnj a = rcis (cmod a) (- Arg a)"
+ by (metis cis_cnj complex_cnj_complex_of_real complex_cnj_mult rcis_cmod_Arg rcis_def)
-lemma arg_ii [simp]: "arg \<i> = pi/2"
+lemma cos_Arg_i_mult_zero [simp]: "y \<noteq> 0 \<Longrightarrow> Re y = 0 \<Longrightarrow> cos (Arg y) = 0"
+ using cis_Arg [of y] by (simp add: complex_eq_iff)
+
+lemma Arg_ii [simp]: "Arg \<i> = pi/2"
by (rule arg_unique; simp add: sgn_eq)
-lemma arg_minus_ii [simp]: "arg (-\<i>) = -pi/2"
+lemma Arg_minus_ii [simp]: "Arg (-\<i>) = -pi/2"
proof (rule arg_unique)
show "sgn (- \<i>) = cis (- pi / 2)"
by (simp add: sgn_eq)
@@ -1097,23 +1100,23 @@
lemma bij_betw_nth_root_unity:
fixes c :: complex and n :: nat
assumes c: "c \<noteq> 0" and n: "n > 0"
- defines "c' \<equiv> root n (norm c) * cis (arg c / n)"
+ defines "c' \<equiv> root n (norm c) * cis (Arg c / n)"
shows "bij_betw (\<lambda>z. c' * z) {z. z ^ n = 1} {z. z ^ n = c}"
proof -
- have "c' ^ n = of_real (root n (norm c) ^ n) * cis (arg c)"
+ have "c' ^ n = of_real (root n (norm c) ^ n) * cis (Arg c)"
unfolding of_real_power using n by (simp add: c'_def power_mult_distrib DeMoivre)
also from n have "root n (norm c) ^ n = norm c" by simp
- also from c have "of_real \<dots> * cis (arg c) = c" by (simp add: cis_arg Complex.sgn_eq)
+ also from c have "of_real \<dots> * cis (Arg c) = c" by (simp add: cis_Arg Complex.sgn_eq)
finally have [simp]: "c' ^ n = c" .
show ?thesis unfolding bij_betw_def inj_on_def
proof safe
fix z :: complex assume "z ^ n = 1"
hence "(c' * z) ^ n = c' ^ n" by (simp add: power_mult_distrib)
- also have "c' ^ n = of_real (root n (norm c) ^ n) * cis (arg c)"
+ also have "c' ^ n = of_real (root n (norm c) ^ n) * cis (Arg c)"
unfolding of_real_power using n by (simp add: c'_def power_mult_distrib DeMoivre)
also from n have "root n (norm c) ^ n = norm c" by simp
- also from c have "\<dots> * cis (arg c) = c" by (simp add: cis_arg Complex.sgn_eq)
+ also from c have "\<dots> * cis (Arg c) = c" by (simp add: cis_Arg Complex.sgn_eq)
finally show "(c' * z) ^ n = c" .
next
fix z assume z: "c = z ^ n"
@@ -1188,7 +1191,7 @@
finally show ?thesis .
next
case False
- define c' where "c' = root n (norm c) * cis (arg c / n)"
+ define c' where "c' = root n (norm c) * cis (Arg c / n)"
from False and assms have "(\<Sum>{z. z ^ n = c}) = (\<Sum>z | z ^ n = 1. c' * z)"
by (subst sum.reindex_bij_betw [OF bij_betw_nth_root_unity, symmetric])
(auto simp: sum_distrib_left finite_roots_unity c'_def)
--- a/src/HOL/Complex_Analysis/Complex_Residues.thy Wed Jun 30 22:14:27 2021 +0200
+++ b/src/HOL/Complex_Analysis/Complex_Residues.thy Fri Jul 02 15:54:41 2021 +0100
@@ -11,11 +11,6 @@
"residue f z = (SOME int. \<exists>e>0. \<forall>\<epsilon>>0. \<epsilon><e
\<longrightarrow> (f has_contour_integral 2*pi* \<i> *int) (circlepath z \<epsilon>))"
-lemma Eps_cong:
- assumes "\<And>x. P x = Q x"
- shows "Eps P = Eps Q"
- using ext[of P Q, OF assms] by simp
-
lemma residue_cong:
assumes eq: "eventually (\<lambda>z. f z = g z) (at z)" and "z = z'"
shows "residue f z = residue g z'"
@@ -542,4 +537,4 @@
using Gamma_residues[of n] by simp
qed auto
-end
\ No newline at end of file
+end
--- a/src/HOL/Series.thy Wed Jun 30 22:14:27 2021 +0200
+++ b/src/HOL/Series.thy Fri Jul 02 15:54:41 2021 +0100
@@ -58,7 +58,7 @@
by simp
lemma sums_cong: "(\<And>n. f n = g n) \<Longrightarrow> f sums c \<longleftrightarrow> g sums c"
- by (drule ext) simp
+ by presburger
lemma sums_summable: "f sums l \<Longrightarrow> summable f"
by (simp add: sums_def summable_def, blast)
@@ -67,8 +67,7 @@
by (simp add: summable_def sums_def convergent_def)
lemma summable_iff_convergent': "summable f \<longleftrightarrow> convergent (\<lambda>n. sum f {..n})"
- by (simp_all only: summable_iff_convergent convergent_def
- lessThan_Suc_atMost [symmetric] filterlim_sequentially_Suc[of "\<lambda>n. sum f {..<n}"])
+ by (simp add: convergent_def summable_def sums_def_le)
lemma suminf_eq_lim: "suminf f = lim (\<lambda>n. \<Sum>i<n. f i)"
by (simp add: suminf_def sums_def lim_def)
@@ -82,11 +81,10 @@
lemma sums_group: "f sums s \<Longrightarrow> 0 < k \<Longrightarrow> (\<lambda>n. sum f {n * k ..< n * k + k}) sums s"
apply (simp only: sums_def sum.nat_group tendsto_def eventually_sequentially)
apply (erule all_forward imp_forward exE| assumption)+
- apply (rule_tac x="N" in exI)
by (metis le_square mult.commute mult.left_neutral mult_le_cancel2 mult_le_mono)
lemma suminf_cong: "(\<And>n. f n = g n) \<Longrightarrow> suminf f = suminf g"
- by (rule arg_cong[of f g], rule ext) simp
+ by presburger
lemma summable_cong:
fixes f g :: "nat \<Rightarrow> 'a::real_normed_vector"
@@ -225,16 +223,13 @@
assumes "summable f" and pos: "\<And>n. 0 \<le> f n"
shows "suminf f = 0 \<longleftrightarrow> (\<forall>n. f n = 0)"
proof
- assume "suminf f = 0"
+ assume L: "suminf f = 0"
then have f: "(\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> 0"
using summable_LIMSEQ[of f] assms by simp
then have "\<And>i. (\<Sum>n\<in>{i}. f n) \<le> 0"
- proof (rule LIMSEQ_le_const)
- show "\<exists>N. \<forall>n\<ge>N. (\<Sum>n\<in>{i}. f n) \<le> sum f {..<n}" for i
- using pos by (intro exI[of _ "Suc i"] allI impI sum_mono2) auto
- qed
+ by (metis L \<open>summable f\<close> order_refl pos sum.infinite sum_le_suminf)
with pos show "\<forall>n. f n = 0"
- by (auto intro!: antisym)
+ by (simp add: order.antisym)
qed (metis suminf_zero fun_eq_iff)
lemma suminf_pos_iff: "summable f \<Longrightarrow> (\<And>n. 0 \<le> f n) \<Longrightarrow> 0 < suminf f \<longleftrightarrow> (\<exists>i. 0 < f i)"
@@ -735,11 +730,11 @@
proof (cases m n rule: linorder_class.le_cases)
assume "m \<le> n"
then show ?thesis
- by (metis Groups_Big.sum_diff N finite_lessThan lessThan_minus_lessThan lessThan_subset_iff norm_minus_commute \<open>m\<ge>N\<close>)
+ by (metis N finite_lessThan lessThan_minus_lessThan lessThan_subset_iff norm_minus_commute sum_diff \<open>m\<ge>N\<close>)
next
assume "n \<le> m"
then show ?thesis
- by (metis Groups_Big.sum_diff N finite_lessThan lessThan_minus_lessThan lessThan_subset_iff \<open>n\<ge>N\<close>)
+ by (metis N finite_lessThan lessThan_minus_lessThan lessThan_subset_iff sum_diff \<open>n\<ge>N\<close>)
qed
then show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (sum f {..<m} - sum f {..<n}) < e"
by blast
@@ -748,13 +743,14 @@
lemma summable_Cauchy':
fixes f :: "nat \<Rightarrow> 'a :: banach"
- assumes "eventually (\<lambda>m. \<forall>n\<ge>m. norm (sum f {m..<n}) \<le> g m) sequentially"
- assumes "filterlim g (nhds 0) sequentially"
+ assumes ev: "eventually (\<lambda>m. \<forall>n\<ge>m. norm (sum f {m..<n}) \<le> g m) sequentially"
+ assumes g0: "g \<longlonglongrightarrow> 0"
shows "summable f"
proof (subst summable_Cauchy, intro allI impI, goal_cases)
case (1 e)
- from order_tendstoD(2)[OF assms(2) this] and assms(1)
- have "eventually (\<lambda>m. \<forall>n. norm (sum f {m..<n}) < e) at_top"
+ then have "\<forall>\<^sub>F x in sequentially. g x < e"
+ using g0 order_tendstoD(2) by blast
+ with ev have "eventually (\<lambda>m. \<forall>n. norm (sum f {m..<n}) < e) at_top"
proof eventually_elim
case (elim m)
show ?case