merged
authornipkow
Sat, 17 Sep 2011 03:37:14 +0200
changeset 44943 b62559f085bc
parent 44941 617eb31e63f9 (diff)
parent 44942 a05ab4d803f2 (current diff)
child 44944 f136409c2cef
merged
--- a/src/HOL/Probability/Radon_Nikodym.thy	Fri Sep 16 09:18:15 2011 +0200
+++ b/src/HOL/Probability/Radon_Nikodym.thy	Sat Sep 17 03:37:14 2011 +0200
@@ -412,7 +412,6 @@
   proof (rule antisym)
     show "(SUP i. integral\<^isup>P M (?g i)) \<le> ?y"
       using g_in_G
-      using [[simp_trace]]
       by (auto intro!: exI Sup_mono simp: SUP_def)
     show "?y \<le> (SUP i. integral\<^isup>P M (?g i))" unfolding y_eq
       by (auto intro!: SUP_mono positive_integral_mono Max_ge)
--- a/src/HOL/Word/Bit_Int.thy	Fri Sep 16 09:18:15 2011 +0200
+++ b/src/HOL/Word/Bit_Int.thy	Sat Sep 17 03:37:14 2011 +0200
@@ -1,9 +1,9 @@
 (* 
   Author: Jeremy Dawson and Gerwin Klein, NICTA
 
-  definition and basic theorems for bit-wise logical operations 
+  Definitions and basic theorems for bit-wise logical operations 
   for integers expressed using Pls, Min, BIT,
-  and converting them to and from lists of bools
+  and converting them to and from lists of bools.
 *) 
 
 header {* Bitwise Operations on Binary Integers *}
--- a/src/HOL/Word/Bit_Representation.thy	Fri Sep 16 09:18:15 2011 +0200
+++ b/src/HOL/Word/Bit_Representation.thy	Sat Sep 17 03:37:14 2011 +0200
@@ -1,8 +1,7 @@
 (* 
   Author: Jeremy Dawson, NICTA
 
-  contains basic definition to do with integers
-  expressed using Pls, Min, BIT
+  Basic definitions to do with integers, expressed using Pls, Min, BIT.
 *) 
 
 header {* Basic Definitions for Binary Integers *}
@@ -876,8 +875,7 @@
     size list = number_of k"
   by (auto simp: pred_def succ_def split add : split_if_asm)
 
-lemmas ls_splits = 
-  prod.split split_split prod.split_asm split_split_asm split_if_asm
+lemmas ls_splits = prod.split prod.split_asm split_if_asm
 
 lemma not_B1_is_B0: "y \<noteq> (1::bit) \<Longrightarrow> y = (0::bit)"
   by (cases y) auto
--- a/src/HOL/Word/Bool_List_Representation.thy	Fri Sep 16 09:18:15 2011 +0200
+++ b/src/HOL/Word/Bool_List_Representation.thy	Sat Sep 17 03:37:14 2011 +0200
@@ -1,7 +1,7 @@
 (* 
   Author: Jeremy Dawson, NICTA
 
-  contains theorems to do with integers, expressed using Pls, Min, BIT,
+  Theorems to do with integers, expressed using Pls, Min, BIT,
   theorems linking them to lists of booleans, and repeated splitting 
   and concatenation.
 *) 
@@ -60,8 +60,10 @@
 
 subsection "Arithmetic in terms of bool lists"
 
-(* arithmetic operations in terms of the reversed bool list,
-  assuming input list(s) the same length, and don't extend them *)
+text {* 
+  Arithmetic operations in terms of the reversed bool list,
+  assuming input list(s) the same length, and don't extend them. 
+*}
 
 primrec rbl_succ :: "bool list => bool list" where
   Nil: "rbl_succ Nil = Nil"
@@ -72,13 +74,13 @@
   | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)"
 
 primrec rbl_add :: "bool list => bool list => bool list" where
-    (* result is length of first arg, second arg may be longer *)
+  -- "result is length of first arg, second arg may be longer"
   Nil: "rbl_add Nil x = Nil"
   | Cons: "rbl_add (y # ys) x = (let ws = rbl_add ys (tl x) in 
     (y ~= hd x) # (if hd x & y then rbl_succ ws else ws))"
 
 primrec rbl_mult :: "bool list => bool list => bool list" where
-    (* result is length of first arg, second arg may be longer *)
+  -- "result is length of first arg, second arg may be longer"
   Nil: "rbl_mult Nil x = Nil"
   | Cons: "rbl_mult (y # ys) x = (let ws = False # rbl_mult ys x in 
     if y then rbl_add ws x else ws)"
@@ -112,7 +114,7 @@
     bin_to_bl_aux (n - 1) w (True # bl)"
   by (cases n) auto
 
-(** link between bin and bool list **)
+text {* Link between bin and bool list. *}
 
 lemma bl_to_bin_aux_append: 
   "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)"
--- a/src/HOL/Word/Misc_Numeric.thy	Fri Sep 16 09:18:15 2011 +0200
+++ b/src/HOL/Word/Misc_Numeric.thy	Sat Sep 17 03:37:14 2011 +0200
@@ -11,13 +11,6 @@
 lemma the_elemI: "y = {x} ==> the_elem y = x" 
   by simp
 
-lemmas split_split = prod.split
-lemmas split_split_asm = prod.split_asm
-lemmas split_splits = split_split split_split_asm
-
-lemmas funpow_0 = funpow.simps(1)
-lemmas funpow_Suc = funpow.simps(2)
-
 lemma nonemptyE: "S ~= {} ==> (!!x. x : S ==> R) ==> R" by auto
 
 lemma gt_or_eq_0: "0 < y \<or> 0 = (y::nat)" by arith 
--- a/src/HOL/Word/Misc_Typedef.thy	Fri Sep 16 09:18:15 2011 +0200
+++ b/src/HOL/Word/Misc_Typedef.thy	Sat Sep 17 03:37:14 2011 +0200
@@ -1,8 +1,7 @@
 (* 
-    Author:     Jeremy Dawson and Gerwin Klein, NICTA
+  Author:     Jeremy Dawson and Gerwin Klein, NICTA
 
-  consequences of type definition theorems, 
-  and of extended type definition theorems
+  Consequences of type definition theorems, and of extended type definition. theorems
 *)
 
 header {* Type Definition Theorems *}
--- a/src/HOL/Word/Word.thy	Fri Sep 16 09:18:15 2011 +0200
+++ b/src/HOL/Word/Word.thy	Sat Sep 17 03:37:14 2011 +0200
@@ -4514,7 +4514,7 @@
   apply (simp add:  mod_nat_add word_size)
   done
 
-lemma word_neq_0_conv [simp]:
+lemma word_neq_0_conv:
   fixes w :: "'a :: len word"
   shows "(w \<noteq> 0) = (0 < w)"
 proof -
--- a/src/Tools/Code/code_haskell.ML	Fri Sep 16 09:18:15 2011 +0200
+++ b/src/Tools/Code/code_haskell.ML	Sat Sep 17 03:37:14 2011 +0200
@@ -17,13 +17,13 @@
 val target = "Haskell";
 
 val language_extensions =
-    ["EmptyDataDecls", "RankNTypes", "ScopedTypeVariables"];
+  ["EmptyDataDecls", "RankNTypes", "ScopedTypeVariables"];
 
 val language_pragma =
-    "{-# LANGUAGE " ^ commas language_extensions ^ " #-}";
+  "{-# LANGUAGE " ^ commas language_extensions ^ " #-}";
 
 val language_params =
-    space_implode " " (map (prefix "-X") language_extensions);
+  space_implode " " (map (prefix "-X") language_extensions);
 
 open Basic_Code_Thingol;
 open Code_Printer;